
High Performance Graphics (2010)
M. Doggett, S. Laine, and W. Hunt (Editors)

Restart Trail for Stackless BVH Traversal

Samuli Laine

NVIDIA Research

Abstract

A ray cast algorithm utilizing a hierarchical acceleration structure needs to perform a tree traversal in the hierar-
chy. In its basic form, executing the traversal requires a stack that holds the nodes that are still to be processed. In
some cases, such a stack can be prohibitively expensive to maintain or access, due to storage or memory bandwidth
limitations. The stack can, however, be eliminated or replaced with a fixed-size buffer using so-called stackless or
short stack algorithms. These require that the traversal can be restarted from root so that the already processed
part of the tree is not entered again. For kd-tree ray casts, this is accomplished easily by ray shortening, but the
approach does not extend to other kinds of hierarchies such as BVHs.
In this paper, we introduce restart trail, a simple algorithmic method that makes restarts possible regardless of the
type of hierarchy by storing one bit of data per level. This enables stackless and short stack traversal for BVH ray
casts, where using a full stack or constraining the traversal order have so far been the only options.

1. Introduction

Tree traversal lies at the heart of efficient geometric queries
for large datasets. Arguably, the most important graphics-
related query is the ray cast query, where the goal is to find
the closest primitive hit by a ray. Two kinds of hierarchies
are dominant: kd-trees and bounding volume hierarchies
(BVHs). Generally, BVHs are easier to construct and work
with, and there is a large body of recent research devoted
to them. Among the strengths of BVHs is the ability to up-
date the nodes bottom-up to allow deformations [WBS07],
and a wide array of construction methods with varying fo-
cus on construction speed and tree quality [LGS∗09, Wal07,
SFD09]. Moreover, each primitive needs to be stored in a
single leaf node only, yielding predictable memory usage,
whereas kd-trees require multiple references for primitives
that straddle multiple leaves.

A major advantage for kd-trees is the possibility to dis-
pose of the usual traversal stack, as noted by Foley and Sug-
erman [FS05]. They presented two stackless kd-tree traver-
sal algorithms, one that restarts the traversal at root when a
stack pop would be required in the traditional algorithm, and
one that backtracks the tree in lieu of stack pops. Based on
the former variant, Horn et al. [HSHH07] developed the so-
called short stack traversal algorithm, where a small num-
ber of topmost items of the stack are retained in order to

avoid some of the expensive restarts. In practice, a very
small short stack is sufficient—the authors report that with
a three-item short stack, only 3% more nodes are traversed
compared to the traditional full stack. This is a major im-
provement over stackless traversal, which roughly doubles
the number of nodes processed due to restarts [FS05]. For
the special case of implicit kd-trees [WFM∗05], mostly use-
ful for storing dense, volumetric data, restarts can be avoided
altogether [HL09].

For general, i.e. non-implicit, kd-trees, both stackless and
short-stack traversal algorithms rely on the ability to restart
the traversal so that already processed parts of the tree are
not entered again. A restart is necessary when stack cannot
be popped, either due to lack of stack altogether in stackless
traversal, or due to short stack being exhausted. In kd-tree
ray cast, the restart is performed by shortening the ray from
the start so that the new starting point is just beyond the end
of the last processed node. Because the nodes in a kd-tree do
not overlap, the traversal does not enter already processed
parts of the tree after restart. In practice, the shortening is
accomplished by setting the current traversal t to tmax of the
current node. Care must be taken to make sure that equal t
values after the restart do not cause re-entering already pro-
cessed branches, leading to infinite loop. As a consequence,
it becomes somewhat tricky to handle zero-thickness nodes

c⃝ The Eurographics Association 2010.



Laine / Restart Trail for Stackless BVH Traversal

Figure 1: Example of a case where ray shortening does not
work for BVH restarts. The arrow represents the ray be-
ing cast. Assume that a stackless traversal has gone through
nodes A and A2, and after that the stack cannot be popped to
enter B. The restart should be performed so that the A branch
is not entered, but the B branch is processed. To ensure that
branch A is not entered again, the start of the ray would
need to be after A2, but then B1 would be missed. Con-
versely, restarting with the ray origin at start of B1 would
re-enter A and A2, causing an infinite loop. Short stack does
not solve the general problem, because there may be a sub-
tree between A and A2 that causes B to drop from the stack.

that occur when all primitives in a subtree lie on an axis-
aligned plane.

It is easy to see that the ray shortening method does not
extend to BVH traversal. As Figure 1 illustrates, there is gen-
erally no way to shorten the ray so that a desired part of the
hierarchy is excluded after restart. The BVH in the example
is perhaps not entirely realistic, but allowing even a small
amount of overlap between child nodes is enough to gener-
ate impossible situations.

If traversal order is fixed, the need for stack can be re-
moved by storing a so-called skip node pointer in every node
of the hierarchy [Smi98]. The skip node is the node to be
processed next if the current node is not intersected, i.e. the
subtree below the current node is to be skipped. The draw-
back of this approach is that ray direction cannot be taken
into account when descending to the child nodes, so it is
not possible to process the nearer node before the farther
node. Boulos and Haines [BH06] discuss the extension of
this technique by storing skip nodes for a number of traver-
sal orders to allow some sensitivity to ray direction at the
expense of increased per-node storage cost.

In this paper, we present restart trail that enables restart-
ing hierarchy traversal in BVH ray casts. This allows stack-
less and short stack traversal techniques to be applied in
BVH ray casts where using a full stack or constraining the
traversal order have so far been the only options.

2. Restart trail

The restart trail method is based on explicitly storing which
part of the hierarchy has been processed during the traversal
using one bit per hierarchy level. A similar approach was
used by Hughes and Lim [HL09] for traversing implicit kd-
trees where pointers to ancestor nodes can be derived from
current node address. In a general tree we cannot directly

jump to the next unprocessed node, but instead we use the
stored bits to guide the traversal to it when a restart occurs.
We utilize the following properties of the ray cast operation
in a BVH:

∙ Each node is visited at most once.
∙ There is an unambiguous order in which the children of

each node are to be traversed, letting us label one of the
children as the "near child" and the other "far child". This
order does not change during the traversal.

∙ It is possible that some nodes become culled during the
traversal, but it is not possible that the near child is culled
while the far child is not.

The last property requires some clarification. When a prim-
itive intersection is found, we cannot immediately terminate
the traversal as in kd-trees, because there might be unvisited
nodes that contain primitives that are closer than the one that
was found. However, the ray can be shortened from the end
so that nodes farther away than the closest found intersection
are not visited. This optimization is crucial, because without
it we could never terminate the ray before it exits the scene.

Therefore, at some point of the traversal we might want
to visit both children of a node, but after processing the near
child, we may find that it is not necessary to process the far
child any more. This could be problematic for restarts, be-
cause the set of nodes to be traversed changes during the
traversal. As we will see in a moment, it is possible to han-
dle this situation as long as nodes can only be culled during
the traversal, but never added.

Given these prerequisites, we define the semantics of the
bit in the restart trail as follows:

∙ bit=0: Node has not been visited yet OR node has two
children to be traversed and the subtree under near child
has not been fully traversed yet.

∙ bit=1: Node has one child to be traversed OR node has
two children to be traversed and the subtree under near
child has already been fully traversed.

The pseudocode of BVH ray cast algorithm with restart trail
is given in Figure 2. Lines 2 and 3 initialize the trail to all
zeros and make level point to the first element in the trail.
The first element trail[0] acts as a sentinel and does not cor-
respond to any hierarchy level, so trail[1] holds the bit for
the root node. Variable level therefore points to the bit corre-
sponding to the parent of the current node (sentinel bit for
root node). On line 4 we initialize variable popLevel that
keeps track of level where the last stack pop would have
taken us. The overall algorithm follows the conventional
while-while [AL09] type scheduling for simplicity, but other
loop structures could be implemented as well.

The branch in lines 9–17 handles the situation where both
children of a node are intersected by the ray. The trail is con-
sulted on line 12, where a set bit causes the traversal to skip
the near child and proceed directly to the far child (line 13).

c⃝ The Eurographics Association 2010.



Laine / Restart Trail for Stackless BVH Traversal

CAST-RAY(ray)
1 node← ROOT

2 trail← (0,0, . . .)
3 level← 0
4 popLevel← NONE

5 while true
6 while node is not leaf do
7 intersect ray against children of node
8 if both children were intersected then
9 near← child with smaller tmin along the ray

10 far← child with greater tmin along the ray
11 level← level+1
12 if trail[level] = 1 then
13 node← far
14 else
15 node← near
16 PUSH(far)
17 end if
18 else if one child was intersected then
19 level← level+1
20 if level ∕= popLevel then
21 trail[level]← 1
22 node← the child that was intersected
23 else
24 POP()

25 end if
26 else
27 POP()
28 end if
29 end while
30 intersect ray against primitives in node
31 shorten ray at end if closer primitives found
32 POP()

33 end while

POP()

34 level← largest i where i≤ level and trail[i] = 0
35 trail[level]← 1
36 trail[i]← 0 for all i > level
37 if trail[0] = 1 then terminate traversal
38 popLevel← level
39 if short stack is exhausted then
40 node← ROOT

41 level← 0
42 else
43 node← pop short stack
44 end if

Figure 2: Pseudocode of BVH ray cast with restart trail and
short stack. See text for discussion.

If the bit in the trail is not set, the traversal proceeds in a nor-
mal fashion to the near child, pushing the far child into short
stack if one is available (lines 15–16). Note that we do not
need to specifically know if a restart is taking place, because
we ensure that the trail always contains zeros for unvisited
nodes.

The single-child branch in lines 19–28 is somewhat more
involved. On line 20 we test if this is the parent of the node
where the previous pop operation would have taken us. In
the common case it is not, so we set the corresponding bit
in the trail (line 21) following the semantics defined above,
and proceed to the child node. However, if level is equal to
popLevel, we know that this is a node that originally had
two children intersecting the ray, and the near child has been
completely processed, as stack pop would have taken us to
the far child. But the ray now intersects only one child, and
the only explanation is that during the processing of the near
child the ray has been shortened so that the far child is not
intersected anymore. In this case, we must invoke POP (line
24) to avoid re-entering the near branch.

Finally, if no children were intersected, we execute POP

(line 27). When we encounter a leaf node, the node inter-
section loop (lines 6–29) is terminated and we process the
primitives in the leaf (line 30). If we find a primitive inter-
section that is closer than what we have already found, we
shorten the ray to avoid traversing unnecessary nodes (line
31). After processing the primitives in the leaf node, we ex-
ecute POP (line 32) and resume node traversal.

Subroutine POP updates the restart trail to reflect the situa-
tion where the current node has been completely processed.
First, the level where the next unprocessed node resides is
determined by finding the nearest zero bit in the trail above
the current level (line 34). This zero bit corresponds to the
node whose far child is the next node in the short stack. By
letting level point to the zero bit, it is therefore in sync with
the node popped from the short stack. After finding the zero
bit, we must make the trail consistent with the fact that the
branch under the near child pushed in the correponding node
has been processed. This is done by changing the zero bit to
one (line 35). We must also clear the remaining bits to indi-
cate that all nodes in the far branch of the node are unvisited
(line 36).

Line 37 checks if the sentinel bit was flipped, which indi-
cates that the root node—i.e., the entire tree—has been fully
processed, and if so, terminates the traversal. To prepare for
restart, the level of the node whose near child was marked
as fully processed is saved in popLevel (line 38). This en-
sures that even if we are forced to restart the traversal, we
know when we have reached the node that the pop operation
would have given us, and handle the case of culled far child
appropriately. Finally, if short stack cannot be popped, the
traversal is restarted (lines 40–41). If short stack pop suc-
ceeds (line 43), trail and level are in accordance with the
popped node, and the traversal may continue from there.

Figure 3 illustrates an example traversal with restart trail.
At each point in traversal, restart could be initiated, because
the trail always leads to the next unprocessed node.

c⃝ The Eurographics Association 2010.



Laine / Restart Trail for Stackless BVH Traversal

(a) (b) (c) (d)

(e) (f) (g)

Figure 3: An example of restart trail contents during traversal. The circles represent hierarchy nodes where traversal continues
down, whereas squares represent nodes where POP is executed. These can be either leaf nodes or internal nodes where the ray
does not intersect either child. The tree is ordered so that near child is always on the left. The arrows pointing down the tree
indicate where the trail points after each traversal step. Trail contents are shown to the left of the tree, sentinel bit at the top.
(a) After initialization trail leads to node A. (b) After updating trail in POP in node A, trail leads to node B. (c) After updating
trail in POP in node B, trail leads to node D. (d) Traversing through node C sets the fourth bit in trail. (e) After updating trail
in POP in node D, trail leads to node F. (f) Traversing through E sets the third bit in trail. (g) Updating the trail in POP in node
F flips the sentinel bit, therefore terminating the traversal.

2.1. Practical implementation

The bits in trail can be most conveniently stored in a single
32 or 64-bit register, and it turns out that the required ma-
nipulations can be performed very efficiently using bit oper-
ations available in current CPUs and GPUs. For maximum
efficiency, variable level needs to be stored as a register with
exactly one bit set corresponding to the bit being pointed to.

Let us denote these registers as trailReg and levelReg.
popLevel can be encoded analogously to level and will not
be elaborated on further. The bits in trailReg are ordered
so that the most significant bit is used for the sentinel, and
therefore levelReg should be initialized with bit configura-
tion 10000...

Restart trail related operations in the main routine CAST-
RAY (Figure 2) are trivial to realize with this representation.
Incrementing level (lines 11 and 19) corresponds to shift-
ing levelReg right by one bit, and testing if trail[level] is
set (line 12) can be done by performing bitwise AND be-
tween trailReg and levelReg, and testing if the result is
nonzero. Setting the bit in trail (line 21) is achieved by logi-
cal OR between trailReg and levelReg.

The updating of trail in POP is more interesting. To set the
next highest zero bit in trailReg above or at levelReg, we
can simply add levelReg to trailReg. This has the effect
of clearing all set bits above and at the bit set in levelReg

until the first zero bit, which is flipped to one. To clear the

bits below levelReg, we can use a bitwise AND operation.
Consequently, lines 34–36 can be implemented as

trailReg &= -levelReg;

trailReg += levelReg;

in C and variants such as CUDA. However, we also need
to make levelReg point to the lowest set bit in trailReg.
Unlike finding the highest set bit, which some processors
offer as a native instruction, extracting the lowest set bit can
be performed efficiently using standard bitwise operations as
follows:

temp = trailReg >> 1;

levelReg = (((temp-1) ˆ temp) + 1);

where ˆ is the bitwise XOR operation.

3. Results and discussion

We tested how much the short stack traversal with restart
trail affects the number of nodes processed in BVH ray casts
using two common test scenes: Fairy Forest and Conference
room (Figure 4). For both scenes, we constructed one BVH
with the usual SAH heuristics and one with the SBVH algo-
rithm of Stich et al. [SFD09].

In our tests, stackless traversal visited approximately 2.2–
2.4 times as many nodes as ordinary traversal with full stack.
This is in line with kd-tree results of Horn et al. [HSHH07].
Notably, a short stack with just one entry dropped the mul-
tiplier to 1.3–1.4. A three-entry short stack yielded 5–8%

c⃝ The Eurographics Association 2010.



Laine / Restart Trail for Stackless BVH Traversal

Fairy Forest, 174K tris Conference room, 282K tris

Figure 4: Test scenes used in the evaluation of the number
of additional nodes visited due to BVH restarts. The images
show one of the multiple viewpoints used for both scenes.

extraneous node visits, compared to 3% for kd-trees as re-
ported by Foley and Sugerman [FS05]. We hypothesize that
the slight increase is caused by rays intersecting both chil-
dren more frequently in BVHs than in kd-trees, causing
more stack pushes and hence more restarts due to exhaus-
tion of short stack.

Preliminary tests with the CUDA ray cast kernels of Aila
and Laine [AL09] indicate that on G80 and GT200 NVIDIA
hardware, the memory bandwidth benefits of using a short
stack do not quite outweigh the additional costs caused by
restarts, increased SIMD execution divergence, and addi-
tional instructions required by restart trail operations. How-
ever, the amount of memory traffic caused by a full stack is
substantial, and effects such as cache thrashing may change
the situation in the near future.

Avoiding the storage of a full stack could also be use-
ful for a hardware hierarchy traversal unit. Restart trail and
a small short stack can be stored locally in registers, but a
full stack most probably cannot. The net effect on memory
bandwidth is positive as long as the traffic caused by addi-
tional node fetches in restarts is less than the traffic caused
by full stack. It should be noted that stack entries are gener-
ally small, making them comparably expensive to access in
systems with wide memory buses such as GPUs.

Extending the method to larger-radix trees is left as future
work. An interesting avenue for future research would be
examining if restart trails could be used to avoid the use of
full stack in other kinds of traversals such as closest-point
and kNN searches that are involved in photon mapping and
density estimation tasks.

Acknowledgements Many thanks to Timo Aila for dis-
cussions and help in developing the technique. Fairy Forest
model courtesy of Ingo Wald, University of Utah. Confer-
ence room scene courtesy of Anat Grynberg and Greg Ward.

References
[AL09] AILA T., LAINE S.: Understanding the efficiency of ray

traversal on GPUs. In Proceedings of High-Performance Graph-
ics 2009 (2009), pp. 145–149. 2, 5

[BH06] BOULOS S., HAINES E.: Notes on efficient ray tracing.
Ray Tracing News 19, 1 (2006). 2

[FS05] FOLEY T., SUGERMAN J.: KD-tree acceleration struc-
tures for a GPU raytracer. In Proceedings of Graphics Hardware
2005 (2005), pp. 15–22. 1, 5

[HL09] HUGHES D. M., LIM I. S.: Kd-jump: a path-preserving
stackless traversal for faster isosurface raytracing on GPUs. IEEE
Transactions on Visualization and Computer Graphics 15 (2009),
1555–1562. 1, 2

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M., HAN-
RAHAN P.: Interactive k-D tree GPU raytracing. In I3D ’07:
Proceedings of the 2007 symposium on Interactive 3D graphics
and games (2007), pp. 167–174. 1, 4

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LUEBKE D., MANOCHA D.: Fast BVH construction on GPUs.
Computer Graphics Forum 28, 2 (2009), 375–384. 1

[SFD09] STICH M., FRIEDRICH H., DIETRICH A.: Spatial
splits in bounding volume hierarchies. In Proceedings of High-
Performance Graphics 2009 (2009). 1, 4

[Smi98] SMITS B.: Efficiency issues for ray tracing. J. Graph.
Tools 3, 2 (1998), 1–14. 2

[Wal07] WALD I.: On fast construction of SAH-based bounding
volume hierarchies. In RT ’07: Proceedings of the 2007 IEEE
Symposium on Interactive Ray Tracing (2007), pp. 33–40. 1

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Transactions on Graphics 26, 1 (2007). 1

[WFM∗05] WALD I., FRIEDRICH H., MARMITT G.,
SLUSALLEK P., SEIDEL H.-P.: Faster isosurface ray trac-
ing using implicit kd-trees. IEEE Transactions on Visualization
and Computer Graphics 11, 5 (2005), 562–572. 1

c⃝ The Eurographics Association 2010.


