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1. Motivation

• Modern deep learning methods involve dis-
crete sequence of transformations including
DNNs, state-space models among others.

• We propose a paradigm of continuous-
time learning with probabilistic non-linear
transformations using SDEs.

• The proposed model is an approximation to
infinitely deep Gaussian process with in-
finitesimal increments.

2. Model
(1)

We warp observed inputs X
through a stochastic differential
system defined by

dxt = µ(xt)dt +
√

Σ(xt)dWt,

where µ(xt) and Σ(xt) are the
mean and covariance functions
of GP prior on the differential
function f

f(x) ∼ GP(0, K(x, x′))
f(x)|Uf , Zf ∼ N (µ(x), Σ(x)).

(2)
We then classify or regress the
final data points XT after T
time of an SDE flow with a pre-
dictor Gaussian process

g(xT ) ∼ GP(0, K(xT , x′
T )).

The framework reduces to a
conventional Gaussian process
with zero flow time T = 0.

3. Inference

(a) Deep GP

(b) DiffGP (our method)

• We follow the SVI framework for GPs [1]

• Model is fully parameterized by two sets of in-
ducing points for f(·) and g(·) respectively, as
well as, kernel and likelihood parameters.

• We integrate out the state distributions using
Euler-Maruyma solver for the posterior SDE

xk+1 = xk + µq(xk)∆t +
√

Σq(xk)∆Wk,

where, drift µq and diffusion Σq are defined by
the posterior parameters of latent process f .

4. Characterizing DiffGP prior

(a) Samples from a 2D deep GP prior exhibit a pathology wherein representa-
tions in deeper layers concentrate on low-rank manifolds. (b) Samples from a
diffGP prior result in rank-preserving representations. (c) Continuous trajec-
tories are formed with smooth drift and structured diffusion (d).

5. Experiments
Step function estimation

Observed input space (a) is transformed through stochastic continuous-time
mappings (b) into a warped space (c). The stationary Gaussian process in the
warped space gives a smooth predictive distribution corresponding to highly
non-stationary predictions in the original observed space.

UCI regression benchmarks

boston energy concrete wine_red kin8mn power naval protein
N 506 768 1,030 1,599 8,192 9,568 11,934 45,730
D 13 8 8 22 8 4 26 9

Linear 4.24 2.88 10.54 0.65 0.20 4.51 0.01 5.21
BNN L = 2 3.01 1.80 5.67 0.64 0.10 4.12 0.01 4.73

Sparse GP
M = 100 2.87 0.78 5.97 0.63 0.09 3.91 0.00 4.43
M = 500 2.73 0.47 5.53 0.62 0.08 3.79 0.00 4.10

Deep GP
M = 100

L = 2 2.90 0.47 5.61 0.63 0.06 3.79 0.00 4.00
L = 3 2.93 0.48 5.64 0.63 0.06 3.73 0.00 3.81
L = 4 2.90 0.48 5.68 0.63 0.06 3.71 0.00 3.74
L = 5 2.92 0.47 5.65 0.63 0.06 3.68 0.00 3.72

DiffGP
M = 100

T = 1.0 2.80 0.49 5.32 0.63 0.06 3.76 0.00 4.04
T = 2.0 2.68 0.48 4.96 0.63 0.06 3.72 0.00 4.00
T = 3.0 2.69 0.47 4.76 0.63 0.06 3.68 0.00 3.92
T = 4.0 2.67 0.49 4.65 0.63 0.06 3.66 0.00 3.89
T = 5.0 2.58 0.50 4.56 0.63 0.06 3.65 0.00 3.87

The results are comparable with the other popular Bayesian approaches in-
cluding BNNs and DGPs. The above table shows test RMSE values of 8
benchmark datasets (reproduced from [2]). Our method performs equal to
very deep Gaussian process with a much simpler inference scheme.

6. Flow time

Increasing the flow time T improves the train and test errors (a,c), likelihoods
(b,d) and model convergence (e).

• Increasing time can lead to an increase in the model capacity without
over-fitting.

• Diffusion acts as regularization.

7. Contributions and conclusions
• We propose replacing discrete composition of ‘layers’ with a

continuous-time composition of ‘flows’.
• We propose differentially deep Gaussian processes, a novel Bayesian

deep learning model with a simple variational inference scheme.
• We empirically show excellent results in various regression tasks.
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