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How to use this book

We have collected hundreds of stories, class-participation activities, computer demonstrations, and

discussion problems for a semester-long or year-long statistics course on applied regression and

causal inference, including readings, homework assignments, in-class activities, and exams. The

goal is to have a course that is modern both in form (student-centered learning) and content (applied

statistics with a computational edge). The material is set up in a modular way so that students and

instructors can adapt to their own goals and interests.

The core of this book is Part 2, starting on page 31, with stories, activities, demonstrations, and

problems for active learning of statistics. Part 1 of the book discusses how to use this material as part

of a course or self-learning program, and appendixes include exam questions and an outline of the

active learning tools in the book.

For students. You can use this book as a supplement to Regression and Other Stories or as part of a

course on applied statistics. We go through every week of a two-semester class on applied regression

and causal inference, and for each week we have homework assignments, stories, activities, computer

demonstrations, drills, and discussion questions. You can read these on your own as the topics come

up in the textbook and go through the computer demonstrations yourself.

The goal of this material for students is to connect statistical ideas and methods, especially

involving regression and causal inference, to real-world applications. To this end, the stories, activities,

demonstrations, and problems in this book are connected to each week’s readings, which correspond

to chapters in the textbook. If you are studying on your own or using another book, you should put in

the effort to match the items to the topics.

For instructors. This book provides a ready-made two-semester course, and it can also be used as a

source of classroom activities and a template for you to compile your own recipe book of stories,

class-participation activities, computer demonstrations, and problems to facilitate active learning.

Our goal for instructors is to make it as easy as possible to teach statistical ideas and methods

using real-world examples and active learning. An instructor can directly tell these stories in class, do

these activities, and work through these live demonstrations; can adapt this material to the appropriate

level and pace of the students; or can use this material as inspirations for developing completely new

activities.

Adapting to your own needs

If you are using software other than R, adjust the demonstrations accordingly. Again, what is

important is not to reproduce all the details but rather to get practice with simulating, analyzing, and

plotting models and data.

The materials here are for a course in statistics with a focus on regression and causal inference. If

you are a student or teacher of an introductory course or one with a different emphasis, you can adapt

our activities and demonstrations accordingly.

This book might well have more material than you think you need. That’s fine. We purposely

created an overstuffed course with lots of possibilities for student involvement on each topic, to make

it easy for you to dip in and use what you can. We encourage you to integrate active learning and real

examples into every step of your statistical education.
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VIII HOW TO USE THIS BOOK

Statistics is hard. It should not feel tricky.

Many of the stories and class-participation activities in this class have twists, and many of the

problems have solutions that are not at first apparent. Indeed, we picked these examples because

they are engaging and sometimes surprising. It makes sense to learn through stories—surprises in

a narrative represent upending of expectations and are valuable for two reasons: first because they

reveal problems with default assumptions, and second because they reveal these implicit assumptions

in the first place. Assumptions and models are not bad things in quantitative reasoning; rather, they

are a way to move forward in the presence of uncertainty and variation. And it is important to

understand the models that we use.1

In giving fun stories and activities that feature surprises, we are not trying to send the message

that statistics is tricky, always with one more pitfall around the corner; rather, we want the models

and methods of statistics to feel more natural and intuitive in applied settings.

Online resources

Further material for this book is on the webpage for Regression and Other Stories,2 including data

and code for all the examples for both books and slides for material to be displayed during classroom

activities.3

1For discussion of the connection between statistical thinking and surprise in storytelling, see Andrew Gelman and

Thomas Basbøll (2014), When do stories work? Evidence and illustration in the social sciences, Sociological Methods and

Research 43, 547–570.

2http://www.stat.columbia.edu/~gelman/regression/.

3We thank the U.S. Institute of Education Sciences and Office of Naval Research for partial support of this project and

Jonah Gabry, Johannes Hallermeier, Sam Houskeeper, Manu Singh, Diana Lee, Merlin Heidemanns, Jennifer Hill, Elena

Llaudet, Greg Mayer, Raghuveer Parthasarathy, Julie Mueller, Joe Blitzstein, Rich Gonzalez, Rohan Alexander, Pam Davis-

Keen, Lauren Cowles, Holly Monteith, two anonymous reviewers, the students in our applied regression classes, and especially

Beth Chance for many helpful suggestions and conversations. We also thank everyone who helped us with Regression and

Other Stories. Above all, we thank our families for their love and support.
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Part 1: Organizing a plan of study
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Chapter 1

Active learning

This book supplies material for a course or self-study program in regression and causal inference,

aimed at students who have already taken an introductory statistics course or have the need to use

statistics and want to jump right into applied methods. But the principles of active learning can be

applied at any level, from introductory to advanced courses.

1.1 Flipped classroom and collaborative learning

Here is a description of the “flipped classroom” idea:1

“Binding credit for student participation to pre-class preparatory work enables class time to

be spent in answering informed student questions and participating in in-depth discussions.

Ensuring that students are prepared for class maximizes engagement during class time: the

session becomes an interactive and dynamic experience where student pedagogical needs and

reflections are explored.”

That’s how we think a course should go. Before each class, the students are supposed to read the book

and do warmup assignments and homeworks. During class time, students are involved in activities

and discussions and work together on problems—kind of like a high school math class, with the

instructor as a leader and a coach, not a lecturer.

Much has been written on the benefits of active learning—classroom interactions that involve

students doing things, talking with each other, and solving problems together.2 Here are some key

features of cooperative learning:3

• “Positive interdependence, that is, all members of a learning team are responsible for the learning

of other members.”

• “The teacher designs the learning activities and monitors the groups as they are engaged in team

learning. Rather than functioning solely as an expert, dispensing knowledge to students, the

teacher in collaborative learning serves as a facilitator.”

• “Explicit attention to social skills. Students are required to cooperate with one another and are

often given explicit rules and guidelines for appropriate social skills.”

• “Face-to-face verbal problem solving, which holds advantages for both skilled and less skilled

1From Massachusetts Institute of Technology Office of Digital Learning (2022), https://openlearning.mit.edu/mit-faculty/

residential-digital-innovations/student-pre-class-preparation-enhances-class-time/.

2Regarding teaching in general, see, for example, Robert Slavin (1980), Cooperative learning, Review of Educational

Research 50, 315–342, Donald Bligh (1990), What’s the Point in Discussion, and Catherine Crouch and Eric Mazur (2001),

Peer Instruction: Ten years of experience and results, American Journal of Physics 69, 970–977. Regarding statistics

education more specifically, see George Cobb (1992), Teaching statistics, in Heeding the Call for Change: Suggestions for

Curricular Action, edited by Lynn Steen, 3–34, Deborah Nolan and Terence Speed (2000), Stat Labs: Mathematical Statistics

Through Applications, and Allan Rossman and Beth Chance (2001), Teaching contemporary statistics through active learning,

http://www.rossmanchance.com/pbs/pbs.html.

3From Jim Cooper and Randall Mueck (1990), Student involvement in learning: Cooperative learning and college

instruction, Journal of Excellence in College Teaching 1, 68–76.
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4 1. ACTIVE LEARNING

students. Good students benefit from serving as tutors to the other members of the group; less

proficient students receive diagnostic and remedial help from their teammates.”

• “Students who are reluctant to participate in large class discussion are often quite comfortable

contributing to small group interactions.”

There is evidence that students learn more with active learning but feel like they learn less,4 and this

can be reflected in teaching evaluations.

So it can make sense for an instructor to get students prepared for the flipped classroom. This

should start before the semester begins by making the structure clear in the course description, and it

should continue on the first day of class with active student participation in the story and activity, as

explained in Section 1.2 below. New teachers should also discuss the instructional plan with their

supervisors or department chairs.

1.2 What happens during the semester?

First day of class

The instructor should not begin with, “Welcome to Statistics 200. I’m Professor Vehtari and in this

course we will . . . .” It is better to just start the story for the first class (see Section 3.1 or, for first

class of the second semester, Section 4.14), with lots of student involvement, stopping at various

places to ask questions and have students work in pairs to think about them, and conclude with a path

of how the story relates to the week’s reading. Then continue with the class-participation activity for

the first class. All this will set a norm of student participation throughout the semester.

After going through the story and activity, the instructor can take a breath and introduce the

course, explaining while writing on the board the components of the course (readings, homeworks,

feedback sheet, classes, and final exam) and the structure of each class period (story, activity, discuss

reading and homework, computer demo, drill, discussion problem). Emphasize that the class period

is all about motivation, exploration, problem solving, and answering questions. There will be no

“lectures” and no slides, beyond certain images and instructions displayed as an aid to discussion.

Go over students’ responsibilities: they are expected before class to do the reading and homework

assignment and to contribute to the shared document, and to show up and participate during every

class. Discuss the goals of the course and what students will be expected to be able to do once the

semester is over. Discuss the roles of mathematics, computing, and applications in the course. Pause

to give students a chance to ask questions about the content or structure of the course.

Then is the time to go back and do the computer demo, the drill, and the discussion problem

for the first class. At the end of the class, each student can be given a hard copy of the syllabus and

reminded of the course website. Throughout the course, the most important things should still be

written down for students. Don’t assume that everything said in class is “heard,” and also establish

early for students that they will be responsible for being aware of online material.

Later classes

The other classes during the semester should have a similar structure, except that, in the middle of

class, instead of giving an overview of the course, the instructor can talk about some aspect of the

week’s reading. This mini-lecture can be prepared ahead or in response to students’ questions on the

shared document, or the instructor can simply answer some questions in an unstructured fashion.

Most of each class period can be spent on the prepared material: the story, activity, computer

demonstration, drill, and discussion problem. Instructors can use what is in this book or develop their

own materials that more directly capture their experiences and perspectives, as well as the interests

4Louis Deslauriers, Logan McCarty, Kelly Miller, and Greg Kestin (2019), Measuring actual learning versus feeling

of learning in response to being actively engaged in the classroom, Proceedings of the National Academy of Sciences 116,

19251–19257.
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1.2. WHAT HAPPENS DURING THE SEMESTER? 5

and goals of the students. For example, many of our activities have a political science focus but could

be changed to work with other subjects. In any case, the instructor should repeatedly explain the

connections to the week’s reading and homework. Students will not necessarily see these connections

without being told, and it’s important for these not to just be fun stories, activities, and so forth, but

also to advance understanding of the core material.

Projector and slides

We don’t like slides with bullet points, but we use the projector for stories, computer demonstrations,

and class discussions. For computer demonstrations we set up an RStudio window and then go

through code line by line, typing code into the text editor window and then copy-pasting it into the

console to execute the R code.

For each semester of our course we have prepared an accompanying pdf slide deck, which includes

all the images we display in our stories, class-participation activities, drills, and discussion problems.

By design, the slides are minimal: they present material for the instructor to point to, but that is

all.5 More detailed slides can be helpful if this allows the instructor to better structure the course.

We do not, however, recommend that slides be so detailed that they would be used by students as a

replacement or shortcut to reading the textbook. The purpose of the slides should be to help the class

period go more smoothly, not to present the material. When adapting the course, for example by

introducing new examples, instructors can separately prepare what needs to be said in class and keep

the slides minimal.

Blackboard or whiteboard

We find a blackboard or whiteboard to be helpful in discussions. Here are some tips:

• Start at the upper-left corner of the board and use the space efficiently; don’t just start writing

from the middle outward. Whatever’s on the board should be organized: students aren’t always

paying attention at all times, so when they look up, what’s on the board should make sense.

• When speaking, write key words on the board. For example, when outlining the structure of

the course on the first day, as discussed in Section 1.2, write a list on the board: Story, Activity,

Discuss reading, etc. When asking students to do a task together, write that task on the board so

they don’t have to memorize what they need to do.

• Conversely, when typing code into the computer or writing on the board—for example, sketching

a graph or working through formulas—talk it through at the same time. Don’t write silently.

Provide that second channel of communication.

• If the setup allows projecting images onto the board, the course can include some fun things such

as projecting a scatterplot and then having students go to the board to draw the regression line.

• If the classroom doesn’t have a proper board, or switching between the board and the projector is

inconvenient, you can simulate the board by typing with a big font.

What should students be doing in class?

Students should be working in pairs, talking with each other, and participating in class discussions.

The instructor should keep an eye on the students to make sure they are focused. If necessary, ask

them to put away their phones or computers (although computers can also be used in many in-class

activities for making notes or computations). After asking students to work in pairs, make sure they

all pair up. If any students are sitting alone or staring into space, connect them with existing pairs

and ask them to move over if needed. When students are working together, walk around the room

5These are posted at http://www.stat.columbia.edu/~gelman/regression/ along with the rest of the material for the course.
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6 1. ACTIVE LEARNING

taking a look at what they are doing. Make sure they have pens and paper out so they can write out

their ideas while talking. Ask them if they understand what they’re being asked to do, and feel free to

intervene in their conversations to point them in useful directions.

1.3 Active learning in class

Stories

Stories are fun to tell and can be fun to listen to. We recommend beginning each class with a story.

Whether instructors use the stories presented here or choose their own, they should explain the source

of every story; consider its difficulty level; include student involvement during the storytelling process;

and conclude by connecting to the week’s reading, the themes of the course, and the assumptions

implicit in the storyline.

To get a sense of these general principles, stop and read the story for our first class period, the

Wikipedia example in Section 3.1.

The source of that particular story was a consulting experience of ours, a serendipitous event that

illustrates the principle that just about every problem is of statistical interest when looked at carefully.

Reality is fractal. There is a tendency in textbooks to smooth over real-life difficulties; here we go

into some of the hairy details.6

The difficulty level of the story is mixed. There are some quantitative steps involved in computing

standard errors, and this uses formulas and concepts that aren’t covered until several weeks later in

the course, but the main points of the story should be clear even to students who hadn’t seen those

topics before.

When telling the story, the point is to give a sense of the use of experimentation and statistical

analysis to attack an applied problem (in this case, increasing donations to Wikipedia) and then

to see how we reacted when things went wrong. Student involvement comes when you stop the

story at various places and ask questions to the students. After showing students Figures 2 and 3

and explaining that the estimated treatment effect is implausibly large, we ask them to look at the

screenshot carefully and discuss in pairs to figure out what went wrong. Then we display Figure 4

and ask how this explains the large treatment effect. After going over this error, we ask the students

to discuss in pairs how the problem could be fixed.

We conclude each story by connecting to the week’s reading and to the themes of the course. For

the story on the first day of class, the relevant topics come in Chapter 1 of Regression and Other

Stories, and after finishing the story and class discussion, we ask the students to discuss in pairs the

specific concerns in this example regarding generalizing from sample to population, from control to

treatment, and from observed data to underlying constructs of interest. We then mention the larger

themes of the connection between data collection and analysis, the importance of looking at data and

checking assumptions and the relevance of mathematical calculations (in this case, the standard error

of estimated proportions).

We also recommend the book, Telling Stories with Data by Rohan Alexander, which covers a

wide range of topics on statistical communication, programming, and modeling to supplement any

statistics course or self-learning program.7

Class-participation activities

For each class period we have constructed an activity that involves active student participation. Some

of these activities involve collecting and analyzing data from the students in the class; others require

students to estimate numbers or assess uncertainty. As with the stories, each of these activities has a

6For some examples of confusion and misrepresentation of data even in well-regarded texts, see Andrew Gelman (2011),

Going beyond the book: Towards critical reading in statistics teaching, Teaching Statistics 34 (3), 82–86.

7Rohan Alexander (2022), Telling Stories with Data, CRC Press, https://tellingstorieswithdata.com.
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1.3. ACTIVE LEARNING IN CLASS 7

direct point, but it is important also to draw the connection to the week’s readings and homeworks.

We often use the trick of throwing questions back at the students, asking them why they think we did

a particular activity and how it relates to the larger themes of the course. By doing active learning

every class period, we try to establish the norm of student participation. On the occasion when we

throw a question to students and no one responds, we call on individual students, giving them the

option to go along to the line to others if they are not ready to participate.

When teaching the course, we have not required students to hand in any responses to stories and

class discussion. The instructor should do make sure that everyone is involved and participating

while these activities are happening, talking to individual students as necessary to keep them active.

Hands-on computer demonstrations

A short demonstration is a great way to demonstrate the feel of live data analysis while providing

an opportunity to field questions about programming, statistical analysis, and graphics using R (or

whatever software is being used in the course). There is no need for the examples to be elaborate:

even a few lines of code can be enough, and remember that this is just a single component of a

75-minute class. Everything is projected on the screen or board, and the instructor should speak the

code aloud while typing it, stopping after each paragraph (as indicated by a blank line in the code) to

explore and answer questions. For example, after reading in or simulating a vector called x, we might

type print(x) into the console to take a look at its values. We post the code on the course website

so that students can see it ahead of time or review it after class if they would like.

As part of the demonstration it is important that the instructor types the code live, or, if you are

doing self-study, that you type the code rather than just copying it from an online source. For class

the instructor should get the code working ahead of time so that the main part of the demonstration

goes smoothly. Then there should be some time for improvisation, at which point some errors can

arise. Some of the mistakes that we and our colleagues have made in class include forgetting how

basic functions work (even some of those functions that we wrote!), not finding a data file where we

expect, and messing up brackets or variable assignments and spending five minutes searching for the

error. When these and other mistakes happen, watching the instructor resolve the problem is one of

the most important lessons of the activity. Students need to learn not just how to do things right but

also how to identify and fix mistakes.

Discussion of questions related to readings and homeworks

There is much more in any textbook than can realistically be covered in class, especially given

that we are not following a lecture format. Regression and Other Stories includes discussion of

general principles and methods, stories, worked examples, and code. During each class period we

remind students of the week’s reading and take some time to clarify points that confuse them, while

recognizing that we can select only a subset of topics for discussion.

Before each class, students are required to contribute to a shared online file such as a Google

doc, either asking a question on the readings or homework assignment due for that class, asking

a more general question about the topics of the course, or responding to a question that another

student has already asked. Before the class we quickly scan the day’s document and choose a few

questions to discuss during class. This is yet another way to promote student involvement as well as

an opportunity to resolve confusion. And, when in doubt, use the tactic of asking rather than telling.

When a student asks a question, we can reply, What do you think? Eventually we have to answer the

question (or admit we don’t know), and we don’t want to drag this out too much, but occasionally

bouncing a question back can help clarify what the student’s question really is.

When responding to questions or getting into discussions, we avoid digressions that don’t advance

the main thread of the course. It’s fine to skip a question or to put it off until later, and, again, when

answering questions and leading discussions it is a good idea to repeatedly touch back to the week’s

readings and homeworks. Connections might seem obvious to the instructor but not so clear to
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8 1. ACTIVE LEARNING

students. If the class has a teaching assistant, these questions can also serve as the basis for further

clarification in section meetings.

Mini-lecture

Responses to student questions will often include a mini-lecture during which the instructor works out

a problem on the blackboard. For example, an important but challenging skill in logistic regression is

to go back and forth between the coefficients (0, 1) and the curve, logit−1 (0 + 1G). When we reach

logistic regression in the course, we demonstrate this activity in both directions: given the coefficients,

drawing the curve, and given the curve, extracting the coefficients; see for example Figure 13.1 in

Regression and Other Stories. We do this on the board, drawing the curves freehand and performing

the computations approximately, emphasizing that these are skills we expect the students to be able to

perform themselves for the exams and more generally when interpreting fitted models in the literature.

Drills

In past years we have often found students to have difficulties with what we had considered to be

basic concepts routine computations. In response, we try to spend some time every class on a drill: a

set of short easy problems that we write on the board and ask students to work on in their notebooks

and then discuss in pairs. This book has a set of drill questions for each class period, with a solution

given for the first problem in each group.

Sometimes a drill is just a series of related questions; other times the questions build up in

complexity to get at different angles of a problem. In presenting a drill, we solve the first problem on

the board, and students can use this as a template to solve the remaining problems on the list. After

the drill is done, we can discuss its relevance to the week’s readings and the course more generally.

Discussion problems

Finally, we like to conclude each class with a prepared discussion problem on which students can

work together in pairs or small groups. These are similar to “concept tests” in peer instruction.8 A

discussion problem should be challenging, so that students can work for a few minutes together to

think about it. Some discussion problems are open ended; others have precise answers. Often the

challenge is not in solving the problem but more in setting it up. And, again, end the discussion by

tying the problem back to the day’s readings and also situated it within the larger plan of the course.

Substitutions

This book presents material for 52 class periods, with warmup assignments, homework assignments,

a story, a class-participation activity, a computer demonstration, drills, and a discussion problems for

each. There is not always a sharp division between all of these. The stories should be told with many

pauses for student participation, the activities have aspects of storytelling, the demonstrations often

connect to the stories and activities, and the discussion problems often also include stories, as well as

being opportunities for students to work together, often with coding. The warmup and homework

assignments and drills represent different ways to practice the course material.

1.4 Scheduling

Think of the course as presented here as a template: instructors can teach it as is or swap in alternative

readings, warmup and homework assignments, stories, activities, computer demonstrations, drills,

8See, for example, Eric Mazur and Jessica Watkins (2009), Just-in-time teaching and peer instruction, Just in Time

Teaching: Across the Disciplines, Across the Academy, edited by Scott Simkins and Mark Maier, 39–62, Sterling, Va.: Stylus.
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and discussion problems. The key is for all these pieces to fit together, providing a framework for

teaching and learning.

Workload

The course as designed here is intended to average 10 hours per week, roughly divided as:

• 1 hour reading the textbook

• 0.5 hours on pre-class warmup assignments

• 2.5 hours in the classroom

• 6 hours on homework.

The semester concludes with a 3-hour final exam for which students are expected to study for about a

week, that is, another 10 hours.

The point of giving these estimates is not to dictate how other courses should go but rather to

provide a baseline: if students are expected to devote more or less than 10 hours each week, the

workload should be adjusted accordingly. In addition, in describing in-class plans in this book, we

have erred in the direction of providing more details, and realistically it will not be possible to do

all the stories, activities, demonstrations, drills, and discussion problems given here for each class.

Depending on how the class is going and how much time is needed to go over student questions, it

will be necessary to skip some of the listed material. This is fine: the key points are to keep students

actively involved and working together during the entire class period and to connect each week’s

material with real-world examples.

It’s also important to control the workload of the instructor and any teaching assistants for the

course. Indeed, one of our motivations in preparing this book is to make active learning accessible to

busy instructors: we have put together these stories, activities, demonstrations, and problems so that

instructors can be freed to spend their time helping students learn. In a large class, a big challenge is

grading, especially if there are no teaching assistants to help. In that setting, it can make sense to set

up a peer grading system with some subset of assignments checked directly by the instructor. The

other challenge in a large class is meeting with students; here the scalable solution is scheduled help

sessions where the instructor can help students figure things out together, rather than frustrating and

time-consuming one-on-one meetings.

Fitting active learning into a busy class period

We have arranged the activities in this book to fit into a series of 75-minute classes, following roughly

this plan:

1. (10 minutes) Story

2. (15 minutes) Class-participation activity

3. (15 minutes) Class discussion of questions related to readings and homeworks

4. (15 minutes) Computer demonstration

5. (10 minutes) Drill

6. (10 minutes) Small-group discussion problems.

These timings are only approximate, as the stories, activities, and demonstrations in this book vary in

how much class time they require, and the time allocated for discussion of readings and homeworks is

flexible. Sometimes a story can take 20 minutes of class time, especially if it is used as a springboard

for class discussion. Realistically, we rarely include all the above segments in every class, as usually

one piece or another takes longer than expected. Instructors can adapt based on the progress and

struggles the students show in class each week.

Many of the stories, activities, and demonstrations in this book could take a lot more class time if

you let them. These are fun examples—we only included things in this course that were interesting to
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10 1. ACTIVE LEARNING

us—and so, indeed, any single piece contains depths that there would not be time to explore without

elbowing out other topics for the week.

With that in mind, you should consider the material here as resources more than as scripts. If a

story would take too long to go through in detail, or if an activity has so many steps that it would feel

like a distraction, then feel free to use shorter versions that will fit your needs. It’s good to switch up

activities every 10 to 20 minutes rather than getting stuck too long doing the same thing, even active

learning. Similarly with the computer demonstrations: you can start one, entering and altering code

until you feel that you’ve learned something, and then stop, with no requirement to go to the end. In

this book we would rather include more detail than less, with the understanding that instructors and

students will take what they need, and then the rest is always available for later study.

Pre-class warmup assignments

We have prepared a few quick questions due before each class to keep students on track regarding the

week’s reading. Instructors should feel free to adapt these to the needs of their classes. The warmup

assignments are intended to be straightforward for students who have read the relevant textbook

material (in other words, when the students look at the questions they are guided to read the relevant

material).

Homework assignments

Everything that students are expected to learn should be in homework assignments and drills. There

is no point in doing a derivation on the board, for example, if students are not required to reproduce it

in some form by themselves. But with this realization comes a challenge, as it is difficult to include

homework problems on all the important topics covered in the course while still respecting the limited

time that students have to spend on any course. We suspect that the best solution here is to limit what

is covered in class—better to cover one key concept and set of skills and make sure that students can

do them well, than to hit several topics shallowly. For now, though, we’ll just say that the instructor

should affirmatively decide on what skills the students are expected to learn, give practice in these

skills, and not to expect learning on topics that are mentioned in class or the textbook but not included

in homework assignments and exams. It can be helpful to provide guidance on readings to help

students decide where to focus their effort. Also it’s important for the instructor to monitor progress

during the semester to see which assignments are giving students trouble, to give a chance to reinforce

these lessons.

We assign homework assignments with a range of difficulty levels. It’s valuable to nail down key

skills that can be used as building blocks, to have more involved problems that challenge students and

promote independent thinking, and to give students practice collaborating on some of the computing

challenges involved in working with real applications.

1.5 Assessment and feedback

Tracking students during the semester

Warmup assignments and homeworks are due for every class, and students should be actively involved

during the class period, so there are many opportunities to observe and evaluate them and to talk with

them when they run into trouble. If the class is large and the instructor does not have the time or

resources to grade the warmup and homework assignments, they can be graded using peer grading. It

is important that students try these problems so they can follow the discussions in class and learn

from their mistakes.
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Final exams and practice final exams

We have prepared several multiple-choice exam questions for each chapter covered in the course.

Having created this test bank, we sample one question at random from each chapter and put these

together to form a practice exam to give to the class a few weeks ahead of time. We then create the

exam itself by taking a new sample of two questions per chapter. The exam questions we prepared

for the two semesters corresponding to Chapters 1–12 and 13–22 of Regression and Other Stories

are in Appendices B.1 and B.2 of this book. Instructors can use these questions directly, create new

questions by making small changes to the ones here, or write entirely new questions. The exam

question bank can be open to the students, which guides the students to learn what is also tested.

When creating new exam questions, it is good to think are what the learning objectives and how

student learning is guided by these new questions.

Grading

Grading should be transparent and efficient. We use a weighted average of scores on pre-class

assignments (graded based on completion rather than correct answers), homeworks, class participation,

and the final exam.

At each stage, we recommend that grading be clear and simple. We grade each homework

problem as 1 (correct), 0.5 (attempted but wrong), or 0 (not attempted), with no partial credit beyond

that. Class participation for each period is a 1 (contributed meaningfully to the shared document)

or 0 (did not contribute). The final exam is multiple choice, so each problem gets a grade of 0 or

1, with no partial credit. From a statistical point of view, this works because the grade is averaged

over multiple homework problems for each class period, many class periods, and many final exam

questions, so it is not necessary to make fine-grained decisions for each problem. Simple grading

also makes it more feasible to have students correct and resubmit their homework assignments.

1.6 Some general issues in teaching and communication

We recommend How to Talk So Kids Will Listen and Listen So Kids Will Talk by Adele Faber and

Elaine Mazlish.9 That book, which originally appeared in 1980, is not explicitly about teaching, but

we find its themes and techniques to be directly relevant to working with students and communication

more generally. A lot of the ideas involve being direct about your goals and obstacles.

When communicating with students about the course itself, we have to be careful: we want

students’ feedback, but we don’t want to turn them into theater critics either. We try to elicit their

reactions and suggestions while making it clear that this is all within the bounds of the course as we

have designed it.

There’s also general advice for communication that works in class too, such as using people’s

names, answering questions with questions such as “What do you think?” that motivate students

to stay focused in the conversation, and never describing a task as easy. Instead of saying, “We’ll

start with a simple example,” or “Here’s an easy problem for you,” say, “Here’s a problem that’s

challenging but doable, if you go about it the right way.”

Pair discussion gives students a space to consider ideas they might not be ready to share with the

whole class, and working in pairs gives them a chance to explain things to each other. Teaching can

be an effective way to learn.

9Adele Faber and Elaine Mazlish (1980), How to Talk So Kids Will Listen and Listen So Kids Will Talk, New York: Simon

and Schuster.
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Chapter 2

Setting up a course of study

There are two key questions when designing a course: What to teach? and How to teach it? Or, from

a student’s perspective, What to learn? and How to learn it?

2.1 What to learn and how to learn it

The importance of structure

Stories, group activities, and computer demonstrations are great tools for learning applied statistics—

not on their own, but as part of a structured course. At the time scale of the semester, the instructor

should be aware of what are the learning objectives, and these should be conveyed to the students. A

starting point is to put together the final exam before the course begins so that it’s clear what specific

skills the students will need to learn. Then as the class goes on, the instructor should continue to

connect each aspect of the class to the progress of the semester—no loose ends, and with each lesson

tied to a skill that students can practice.1

If you are a student following this book on your own, we encourage you to pay attention to the

placement of the stories, activities, and demonstrations within the schedule of the course so that you

can see statistical concepts in action while getting practice in specific techniques.

What to learn

There are a million possible things to learn in statistics and adjacent fields such as mathematics,

programming, and numerical analysis. Statistics is in the overlap of data description and mathematical

and probabilistic modeling, and from that perspective it makes sense for a first course in applied

statistics to be centered on linear regression, which is both a mathematical model and a tool for data

description and causal inference.

Here we present a two-semester course on applied regression and causal inference that we have

taught to political science students at Columbia University. The first semester of the course goes

through Chapters 1–12 of Regression and Other Stories, covering the following topics:

• Applied regression: measurement, data visualization, modeling and inference, transformations,

and linear regression.

• Simulation, model fitting, and programming in R.

The second semester covers Chapters 13–22 of Regression and Other Stories, including the following

topics:

• Applied regression: logistic regression, generalized linear models, poststratification, and design

of studies.

1See Andrew Gelman (2019), Here’s why you need to bring a rubber band to every class you teach, every time,

https://statmodeling.stat.columbia.edu/2019/09/08/rubber-band/.
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• Causal inference from experiments and observational studies using regression, matching,

instrumental variables, discontinuity analysis, and other identification strategies.

• Simulation, model fitting, and programming in R.

Throughout we touch on the key statistical problems of adjusting for differences between sample and

population, adjusting for differences between treatment and control groups, extrapolating from past

to future, and using observed data to learn about latent constructs of interest.

We follow the usual practice of centering the course around a textbook, in this case our own

Regression and Other Stories. The homework assignments come from the book, and the classroom

activities relate to each week’s readings. If a different book is being used, the other aspects of the

course should be changed accordingly. As a precursor to warm up before getting into the details of

regression modeling we recommend Data Analysis for Social Science by Elena Llaudet and Kosuke

Imai, a compact introduction to statistical analysis, computing, and causal inference.2

When the year is over, students are expected to be able to graph scatterplots and regression lines,

simulate data (that is, program the computer to generate synthetic or “fake” data), interpret linear and

logistic regressions, and use them to make causal inferences when appropriate. When designing a

course, an instructor may have different goals; whatever they are, it is important to make them clear

to the class.

How to learn it

Student-centered learning is an approach to instruction in which students play an active role. In a

fully student-centered course, the student would choose what topics to learn and how best to learn

them. Our proposed course could perhaps best be described as teacher-centered in its structure but

student-centered in the classroom. The instructor decides ahead of time the material to be learned,

along with homework assignments and exams, which are the same for all students. But the class

periods are structured to facilitate active student involvement.

Here are the components of the course, beyond what is in the textbook:

• Final exam and homework assignments. These determine what the students will be expected to

learn.

• Pre-test to be given at the beginning of the course, so that instructors and students can find out

students’ level of preparation and get a sense of what that they have learned during the semester.

• In-class instruction. We assume two 75-minute classes per week, with each class proceeding as

follows:

– A statistics story related to the class topic.

– A class-participation activity.

– Discussion of student questions related to the most recent readings and homeworks.

– A demonstration on the computer, in which the instructor goes through each step and fields

questions from the students.

– A set of drills: quick problems that reinforce key skills.

– A discussion problem: a harder problem that students work on in pairs.

We divide the students into groups of two or three at different times during the class to facilitate

discussion and to ensure that they stay focused during the entire class period. When students

are working in small groups, the instructor should walk around the classroom to make sure the

students are making progress, to get a sense of what they are doing, and to help as needed.

Our in-class schedule is busy, and we recognize that it might not always be possible to get through

all these activities listed above in 75 minutes. If the discussion takes longer than anticipated, it’s

2Elena Llaudet and Kosuke Imai (2023), Data Analysis for Social Science, Princeton University Press.
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fine to skip some of the planned activities. The point is to keep students engaged and thinking

about statistics during the entire class.

In the present book we go through the 26 weeks of the two-semester course, listing all the above

components for the two classes each week.

2.2 Computing

We don’t expect you, as a student being introduced to applied statistics, to learn the mathematical

derivations of linear regression or related points of statistical inference. But you should learn how to

perform these statistical procedures on the computer, and you also will need to learn how to use the

computer as an experimental tool, simulating fake data as well as plotting and fitting models.

Programming is a key part of our course for three reasons:

• To truly engage with data you need to be able to work flexibly, that is by programming rather

then just clicking through options in a menu. This goes for data manipulation, visualization,

modeling, and post-processing of inferences.

• Computer experimentation allows you to work directly with probability models, for example by

simulating data and then checking that the underlying parameters can be recovered in a model fit.

• Visualizing data and fitting models are core skills that you should learn in any applied statistics

course.

So the instructor needs to choose some statistical programming language to use in the course. In

Regression and Other Stories, we use R and RStudio, along with the rstanarm package.3 Depending

on the students in the class and what they plan to do next, it could make sense instead to use Python,

Stata, or some other software. In any case, it is important to allocate enough time at the beginning

and throughout the semester for learning and practicing computing skills.

Even after choosing a computer language for the course, the instructor will need to make some

decisions on how to teach it. We use what is called “base R,” which is derived from the statistical

programming language S which we learned many years ago. Base R has a benefit that the code looks

similar to other programming languages students might have learned. Nowadays, many of the best

practitioners of R use the ggplot2 and tidyverse R packages for graphics and data analysis. These

have great benefits when working with data frames but use a different programming paradigm.

We suggest instructors use software with which they are comfortable and which they think will

serve students’ future needs.

Key computing tasks include downloading or entering data, manipulating data, graphing data,

simulating data from probability models, fitting models to data, and plotting fitted models. For this

course, some of the datasets are collected from students in class and typed directly into files or read

from online forms, and we also access many datasets that we have prepared and put online. We

purposely have kept these data online and not included them as prepared datasets within an R package,

because we want students to gain experience of downloading data that have not been prepackaged.

Similarly, much of our code for data manipulation, plotting, simulation, and fitting is unpolished: we

are modeling how a student or applied researcher might work through an analysis in real time, rather

than presenting publishable code in final form.

2.3 Course material

We follow the sequence laid out in the preface to Regression and Other Stories. That book is

structured through models and examples, with the intention that after each chapter the student should

3See these websites: https://www.r-project.org/, https://posit.co/products/open-source/rstudio/, and https://mc-stan.org/

rstanarm/.
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have certain skills in fitting, understanding, and displaying models. The list of topics is long, and for

your course or self-study program you might just choose a relevant subset.

• Part 1: Review key tools and concepts in mathematics, statistics, and computing.

– Chapter 1: Have a sense of the goals and challenges of regression.

– Chapter 2: Explore data and be aware of issues of measurement and adjustment.

– Chapter 3: Graph a straight line and know some basic mathematical tools and probability

distributions.

– Chapter 4: Understand statistical estimation and uncertainty assessment, along with the

problems of hypothesis testing in applied statistics.

– Chapter 5: Simulate probability models and uncertainty about inferences and predictions.

• Part 2: Build liner regression models, use them in real problems, and evaluate their assumptions

and fit to data.

– Chapter 6: Distinguish between descriptive and causal interpretations of regression, under-

standing these in historical context.

– Chapter 7: Understand and work with simple linear regression with one predictor.

– Chapter 8: Gain a conceptual understanding of least squares fitting and be able to perform

these fits on the computer.

– Chapter 9: Perform and understand probabilistic prediction and simple Bayesian information

aggregation, and be introduced to prior distributions and Bayesian inference.

– Chapter 10: Build, fit, and understand linear models with multiple predictors.

– Chapter 11: Understand the relative importance of different assumptions of regression models

and be able to check models and evaluate their fit to data.

– Chapter 12: Apply linear regression more effectively by transforming and combining

predictors.

• Part 3: Build and work with logistic regression and generalized linear models.

– Chapter 13: Fit, understand, and display logistic regression models for binary data.

– Chapter 14: Build, understand, and evaluate logistic regressions with interactions and other

complexities.

– Chapter 15: Fit, understand, and display generalized linear models, including the Poisson and

negative binomial regression, ordered logistic regression, and other models.

• Part 4: Design studies and use data more effectively in applied settings.

– Chapter 16: Use probability theory and simulation to guide data-collection decisions, without

falling into the trap of demanding unrealistic levels of certainty.

– Chapter 17: Use poststratification to generalize from sample to population, and use regression

models to impute missing data.

• Part 5: Implement and understand basic statistical designs and analyses for causal inference.

– Chapter 18: Understand assumptions underlying causal inference with a focus on randomized

experiments.

– Chapter 19: Perform causal inference in simple settings using regressions to estimate treatment

effects and interactions.

– Chapter 20: Understand the challenges of causal inference from observational data and

statistical tools for adjusting for differences between treatment and control groups.

– Chapter 21: Understand the assumptions underlying more advanced methods that use auxiliary

variables or particular data structures to identify causal effects, and be able to fit these models

to data.

• Part 6: Become aware of more advanced regression models.

– Chapter 22: Get a sense of the directions in which linear and generalized linear models can

be extended to attack various classes of applied problems.
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• Appendixes:

– Appendix A: Get started in the statistical software R, with a focus on data manipulation,

statistical graphics, and fitting and using regressions.

– Appendix B: Become aware of some important ideas in regression workflow.

After working through the book, students should be able to fit, graph, understand, and evaluate linear

and generalized linear models and use these model fits to make predictions and inferences about

quantities of interest, including causal effects of treatments and exposures.

In a two-semester course we cover Chapters 1–12 in the first semester and Chapters 13–22 in the

second semester. In a single-semester course for better-prepared students, we cover most of the book,

skipping a few topics as necessary for the schedule.

2.4 Real data and simulated data

The stories, activities, and demonstrations in this book take on two different forms: real data and

simulated data.

• Real-data examples are valuable most directly in demonstrating how statistical methods are

relevant to live problems. In addition, as the saying goes, God is in every leaf of every tree: look

closely enough at any real example and you will come across something unexpected, an anomaly

that, if you allow it, can recenter how you think about statistics.

We demonstrate using the examples from the first two weeks of the course. The Wikipedia

story (page 33) demonstrates how clean experiments can fail, and also how careful study of

available data can raise suspicion. The story of the Literary Digest poll (page 36) first shows how

things can go wrong with a non-randomly-sampled survey and then expands into a story of how

problems with data can partially be fixed using modeling and adjustment. The United Nations

peacekeeping story (page 45) introduces the use of pre-treatment measurements to adjust for

selection bias in causal inference. The story about girls’ participation in sports (page 47) shows

how we can look carefully into a published claim and figure out where it is coming from.

Each of these stories involves methods that go beyond what is covered in the course. The stories

are aspirational and represent what statistics can do; they also reveal pitfalls from naive uses of

statistical methods.

• Simulated data can come from the computer or simple data-collection activities involving

students in the class. In either case, the most direct lesson is how to write the code to create the

simulated data or go through the steps to collect data from students. More generally, simulating

data is the statistical equivalent of laboratory experimentation in science: you can control the

conditions and see what comes out, then vary the conditions and see how things change. All

of this is crucial to understanding. Statistics is not just a set of tools for analyzing data; it also

includes models for generating data. Often real data don’t look like we expect, and we can train

our expectations by understanding what is implied by our probability models.

It is valuable to demonstrate both sorts of examples—real data and simulated—as they represent

different aspects of statistical workflow.

2.5 Two kinds of computer demonstrations

This book includes some demonstrations where the code is simple and the focus is on reading the

output, and some where the lesson is in the coding itself. Here is an example of the first kind:

library("rstanarm")

# Read in the data

hibbs <- read.table(paste0("https://raw.githubusercontent.com/avehtari/",
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"ROS-Examples/master/ElectionsEconomy/data/hibbs.dat"), header=TRUE)

# Plot the data

plot(hibbs$growth, hibbs$vote,

xlab="Average recent growth in personal income",

ylab="Incumbent party's vote share")

# Estimate regression and display fitted model

M1 <- stan_glm(vote ~ growth, data=hibbs, refresh=0)

print(M1)

plot(M1)

The code here is straightforward, and students can focus on interpreting the results.

In contrast, here is an example of a computer demonstration that focuses on the code:

library("rstanarm")

n <- 50

a <- 2

b <- 3

sigma <- 4

n_loop <- 100

inside_68_interval <- rep(NA, n_loop)

for (loop in 1:n_loop) {

print(loop)

x <- runif(n, 0, 10)

y <- rnorm(n, a + b*x, sigma)

fake <- data.frame(x, y)

fit <- stan_glm(y ~ x, data=fake, refresh=0)

b_hat <- coef(fit)["x"]

b_se <- se(fit)["x"]

inside_68_interval[loop] <- abs(b_hat - b) < b_se

}

print(mean(inside_68_interval))

This example has statistical content—it’s a check that approximately 68% of the estimates fall within

±1 standard error of the true value—but the main challenge here for students will be the programming.

We recommend that, when going through in this book, you adapt the computer demonstrations to

your needs, focusing more on interpreting output or on coding depending on your goals and where

you are in any particular week.

When doing either sort of demonstration, we often take the opportunity to perturb the code in

different ways and see what happens. This is also a great way to involve students. We can ask

questions of the form, What would happen if you try this?, or What could you do to cause this code to

break?, and then discuss various possibilities before trying them out live.

The computer demonstrations in this book are not intended to show best practices for R, or for

programming more generally. The code we present here is messy, representing the way that we

program in real time as we are trying to figure something out, either analyzing existing data or

simulating fake data as a way to better understand our models. So take the demonstrations in that

spirit, and consider our code as examples of what can be done, a set of starting points rather than an

ideal.

2.6 Challenges in learning particular topics

There are some important topics in statistics that are particularly difficult to learn. We offer no silver

bullets here, just some scattered thoughts.

Programming, statistical software, andworking with data. To do all but the most basic data analysis

requires programming. This is fine, as programming, like mathematics, is a useful skill in itself. But

many students do not know how to program, or have difficulty generalizing their understanding of
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programming to R or whatever other language is used in the course. So time must be scheduled at the

beginning of the course to getting up to speed on data manipulation and graphics on the computer.

This can include help sessions every week and an online bulletin board for students to help each other.

You can get started by working through Appendix A of Regression and Other Stories; in addition

we reinforce the importance of coding with a computer demonstration during every class period, with

each demonstration being self-contained enough that the instructor can explain it while typing in the

code live in class.

You might need extra help on coding during the first few weeks, so the instructor should arrange

help sessions and encourage students to work together to get each other unstuck.

Logarithms. Exponential and power-law relationships (for example, a population that increases 5%

per year, or an elasticity function by which a 1% increase in price leads to a 0.6% decrease in sales) are

fundamental to serious quantitative reasoning. Unfortunately, students are typically uncomfortable

with logarithms and exponential functions, which are the mathematical building blocks of these

curves.

When teaching statistics and quantitative reasoning, the instructor needs to choose: cover

logarithms or don’t. Either way, commit to the choice. If the course includes logarithms, this could

take a week or more of the semester. If the course does not cover logarithms, then it’s good to be

clear to students what they are missing, so they can go back later and learn the topic. We include

some examples and activities on logarithms, exponentials, and power laws; see Sections 3.4, 3.13,

4.17, and 4.21.

Probability. The traditional introductory undergraduate or high school statistics class includes a

few weeks of probability: the laws of probability, probability trees, conditional probability, random

variables, expectations, and variances. This all has two purposes: First, probability is an important

application of mathematics in its own right, relevant for decision making, forecasting, and other

problems involving uncertainty. So there is value in teaching probability, even setting aside its use

in the theory of statistical inference. Second, probability theory and probability models underlie

central ideas in applied statistics, including standard errors, uncertainty intervals, hypothesis testing,

prediction, and Bayesian information aggregation.

A challenge in an applied statistics course is how much probability to include. Mathematical

derivations of the law of large numbers and central limit theorem: that’s way too much. It is possible,

though, to teach probability trees and conditional probability and to demonstrate these ideas on the

computer. It’s fine to devote a week or two to this or just to skip it entirely. It’s just a decision for

the instructor to make, what to include and what to leave out of the course. Even if there is time to

teach the basics of probability, there will not be time in an applied statistics course to fully connect

probability theory to statistical inference. So you have to accept ahead of time that estimation and

uncertainty will be handled non-rigorously.

Sampling distributionofmeans, differences, and regression coefficients. Even simpler derivations,

for example the proof that E(G + ~) = E(G) +E(~) or that var(G + ~) = var(G) +var(~) for independent

variables G and ~, are really too much to fit in a one-semester statistics course. It also doesn’t

work just to state these relationships and then try to use them in further reasoning. One thing we

don’t like that we’ve seen in some introductory courses is a sort of pseudo-derivation, where the

expressions for E(G + ~) and var(G + ~) as given and then used to derive the sampling distribution

of the sample mean, using reasoning such as, E(~̄) = E( 1
=

∑=
8=1 ~8) =

1
=

∑=
8=1 E(~8) = E(~) and

var(~̄) = var( 1
=

∑=
8=1 ~8) = 1

=2

∑=
8=1 var(~8) = var(~)/=. These algebraic steps may seem simple and

intuitive to an instructor with a solid background in probability theory but will go over the heads of

students coming in without that mathematics.

That said, the formulas for the means and variances of sums, differences, and weighted averages

are important in applications, so we need to teach them, even if we can’t really derive them. The

idea that the standard deviation of the average often declines like 1/
√
=: that’s important, but it just

needs to be taught directly as a fact that students need to learn. It’s not just an empirical pattern—it

can be proved mathematically—but the proof is beyond the scope of the course, and we give drills,
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homework exercises, and exam problems for which students need to apply this idea. Similarly for

expressions such as the standard deviation of a weighted average and the behavior of uncertainty

intervals as sample size increases.

The multiple regression estimate and its derivation. In class we do not present the expression for

the least-squares estimate; indeed we do not even discuss the idea of inverting a matrix or solving a

linear system. Much depends on the level of the course and the background of students; at some

universities, applied statistics comes after calculus and linear algebra, while at other universities, such

mathematical knowledge might be in the course’s official prerequisite but is not actually expected

of the students. In the applied regression and causal inference material discussed in this book, an

understanding of matrix algebra is not expected, but in a course where students have such knowledge,

these connections can be made during class. Even in the most applied version of the course, we do

discuss the concept of least squares (see Sections 8.1–8.3 of Regression and Other Stories) but we

neither derive nor explain the estimate itself. As with other topics at this mathematical level, for this

course we would rather forthrightly not cover it than present a sort of fake proof that would just take

time away from material that students will actually be prepared to learn and use. If they are interested

in the topic they can study it in a theoretical statistics course.

Bayesian inference. We had a difficult time with Bayesian inference when writing Regression and

Other Stories. On one hand, a Bayesian perspective is pretty much necessary for the computational

approach that we want to use for inference and prediction: we summarize uncertainty in any fitted

model using simulations of possible values of the unknown parameters, and we propagate that

uncertainty when making predictions. On the other hand, the mathematics of Bayesian inference for

regression models requires calculus, and we do not expect students to be performing integration or

multivariate analysis in this course. Even students who have taken calculus do not always find it easy

to apply these ideas to distributions without learning probability theory, which is beyond the scope of

our applied statistics class.

As with other aspects of mathematical statistics, we walk a fine line here, using Bayesian methods

and trying to develop some intuition while making it clear that we do not attempt to derive the results.

It’s similar to how you can learn to drive a car and have some sense how it works without a full

understanding of the physics or the ability to build a car yourself.

Informative prior distributions. We have a tough choice when introducing and using priors in

regression. As discussed above, we definitely want to use a Bayesian approach—at least implicitly, in

the sense of summarizing inferences and predictions using simulations from a probability distribution—

even if we have no plans to derive the relevant formulas or fully explain the Bayesian approach

mathematically in terms of a joint distribution of parameters and data.

But even within this implicit Bayesian framework, we have a choice of what prior distribution to

use on the regression coefficients. Three options naturally present themselves:

1. Uniform prior distribution. This has the virtue of yielding the same point estimate as least-squares

regression but has the practical problem of yielding noisy estimates when data are sparse relative

to the number of predictors.

2. Default weakly-informative prior distribution. This is what we recommend as a starting point in

applied work, but it requires more explanation when introducing the topic.

3. Informative prior distribution tailored to the problem at hand. This is ideal but it goes beyond the

scope of the course. Also, even when informative priors are recommended, it is good to have a

basic default regression as a starting point.

When writing Regression and Other Stories we chose the second option above, using a default weakly

informative prior and repeatedly explaining how to set the software to use a flat prior if that is desired;

see Sections 1.5, 8.4, and 9.5 of that book.

In retrospect, perhaps it would have been better to have started with simple least-squares

regression and then later introducing weakly-informative and strongly-informative priors in the
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context of Bayesian inference. Such an approach would have the drawback of requiring a shift

of software (from lm to stan_glm) and conceptual framework (from least squares and maximum

likelihood to Bayes) midstream, but with the advantage of more clearly connecting to standard

non-Bayesian practice.

Standard errors, uncertainty intervals, and the C distribution. A more subtle difference between

classical and Bayesian regression arises with small-sample uncertainty. With least-squares regression

comes the standard error, and then the 95% confidence interval is approximately the estimate ±2

standard errors, but with a larger factor when sample size is small, using the C distribution. The

standard error is the estimated sampling variation of the estimate, but because the standard error

is itself estimated with uncertainty, you need the C distribution. With Bayesian inference, all the

uncertainty gets swallowed up in the simulation, and you can simply report the posterior mean ±2

times the posterior standard deviation (or the approximate equivalent based on median and median

absolute deviation, as explained in Section 5.3 of Regression and Other Stories), without having to

worry about the C distribution. This is a place where Bayesian inference makes things simpler, but,

again, it might be necessary to explain what’s going on here to fully link to the classical approach.

Generalized linear models. Our course focuses on linear regression, with a couple of weeks on

logistic regression as well. These models are part of a larger mathematical class of generalized linear

models. We use that term as the title of Chapter 15 of Regression and Other Stories but not exactly

following the formal definition in statistics.4 In particular, we include ordered logistic regression,

which is a useful generalization of linear modeling and feels like what should be called a “generalized

linear model” but does not formally fall into that category. This is no big deal; we just need to be

careful when teaching negative binomial regression, ordered logistic regression, and the other models

in Chapter 15 that we are using an informal definition of generalized linear model.

Poisson regression. Poisson regression is a generalized linear model that is used for count data,

where the outcome can take on values 0, 1, 2, etc., for example predicting the number of car crashes

in different intersections in a city, given information such as local traffic levels and speed limits. As

discussed in Section 15.2 of Regression and Other Stories, the Poisson model has serious limitations

and we almost always recommend using negative binomial regression instead. We mention this here

only because it is standard for texts on generalized linear models to present Poisson regression as the

go-to method for count data, and we don’t want you to fall into that trap.

Causal inference. We cover causal inference—estimating treatment effects—informally throughout

the course and Regression and Other Stories and then formally in Part 5 of the book and the final weeks

of the course. The informal coverage begins on the first page of Chapter 1, where we characterize

one of the three challenges of statistics as, “generalizing from treatment to control group, a problem

that is associated with causal inference, which is implicitly or explicitly part of the interpretation of

most regressions we have seen.” We continue throughout with examples of regressions for causal

inference and also examples for which direct causal interpretations are inappropriate. This causal

thread runs throughout, and then students should be ready near the end of the course for a more

formal treatment of the topic.

Data collection and design. Introductory statistics courses often emphasize the importance of

careful data collection, most notably random sampling in surveys and random assignment of

treatments in experiments. In the course laid out here, we also do this, with two additions. First, we

discuss the challenges of measurement; see Chapter 2 of Regression and Other Stories and Section

3.3 of this book. Second, we discuss adjustments for imbalanced comparisons and non-representative

samples; see Sections 17.1 and 19.4 of Regression and Other Stories and various examples in this

book. Indeed, the two stories included here for the first week of classes (Section 3.1) concern biases in

real-world experiments and surveys, and how to adjust for these biases. We hold random sampling and

4See John Nelder and Robert Wedderburn (1972), Generalized linear models, Journal of the Royal Statistical Society A

135, 370–384.
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experimentation as ideal without implying that it is hopeless to analyze data collected nonrandomly

or with incomplete randomization.

Hypothesis testing and ?-values. There is a cluster of ideas in classical statistical theory and

practice that we do not like, including null hypothesis significance testing, ?-values, and type 1 and

type 2 errors. We define all these in Chapter 4 of Regression and Other Stories—and we explain there

why we do not find these concepts useful. We do not cover them in class, nor do we include them in

homeworks or exams. We do include the related concepts of standard errors, uncertainty, and interval

estimation; we just do not frame these in terms of hypothesis testing, significance levels, or ?-values.

If these methods are to be included in the course—and we recognize that there are good reasons to

do so, including keeping up with other statistics classes and much of the applied literature, along with

being able to communicate with researchers who have received classical statistical training—then we

recommend assigning drills, homework exercises, and exam questions on these methods.

2.7 Adapting to your goals and learning style

Background and speed of the course. We taught this course in 2021–2022 to about 40 political

science students at Columbia University. When teaching to statistics majors or more quantitatively-

focused social science students, we teach this material at twice the speed, thus compressing a year-long

course with 26 weeks of classroom time to a single 13-week course. This book presents materials

for one week at a time; to double the speed, just change each week to a single class (assuming two

classes per week) and choose one of the two stories, one of the two class-participation activities, and

so on, for each class. If your background is different, you have to think carefully about your aims.

The flipped classroom described here works best with students who have similar backgrounds and

interests. There are many alternative ways of how to encourage active learning, for example group

work, peer grading, and asynchronous online chats.

Applied focus. Our book has an applied focus and substitutes computing for mathematics. If your

intended learning trajectory is more theoretical, then it would make sense to use stories and computer

demonstrations that are more theory-focused, for example a counterexample to linear regression

where there is no unique least-squares solution5 and a simulation showing the central limit theorem

as decreasing discrepancies from the normal distribution as sample size increases. We focus on

examples in political science and related fields. If you are adapting the course for psychology, biology,

or some other subject, it would make sense to look for stories and discussion problems from these

fields. The point is to keep a coherent focus so as to achieve the larger goal of developing skills and

understanding.

In addition, Regression and Other Stories has many examples not included in this course plan

that can be used in class, and any end-of chapter exercises that are not assigned as homework can

be adapted to become discussion problems or drills. Again, the particular items in the plan can be

considered as a starting point. It is easier to construct a course by adapting an existing model than to

create an entirely new course from scratch. What we are offering here is intended to serve as that

starting point, allowing self-learners or instructors to spend less time on course planning and more

time on direct interactions with students.

Student interests. Many of the homework assignments and in-class activities require students to

pick topics of interest to them. This can work great in a statistics class in an applied field such as

biology or political science, but students in a general introductory course might feel they have no

specific topics of interest. When this happens, the instructor should work with them, asking what they

are interested in outside of statistics. Topics could include business, sports, personal relationships,

entertainment and the arts, health, . . . , just about anything. An important theme of applied statistics

is the generality of the subject, and it’s worth spending some time with students, individually or in

5This can be done by simulating data points (G, ~) where all the G-values are equal, so that there is no leverage to estimate

the slope.
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pairs, to connect statistical ideas to some of their interests in life. You can also look at web pages

such as the Data and Story Library6 with data sets that are likely to have some general interest.

Class size. We have used the active-learning approach in classes of up to 50 students. With

increasing number of students, time needed for the class activities increases, and a smaller portion

of the students can be active in the discussion. For larger classes it might work to monitor pairs or

small groups of students using teaching assistants and also to have weekly section meetings. With

increasing number of students, resources needed to check the pre-class assignments and homeworks

increases. Instead of using a teaching assistant to check these, it can be better to use peer grading

to manage the flow of homeworks, and use a bigger portion of the teaching assistant resources for

having more teachers per student during the class activities. During class, students should be able to

work in pairs even in a large lecture hall, as long as there is room for instructors and assistants to walk

around the room and keep them on task.7

We do not recommend lecturing during the class period. Material in a large passive lecture can

just as well be learned from a textbook, as long as such a book is available. When adapting a textbook

for a particular course, an instructor can also assign additional reading or short videos.

Remote teaching and self-learning. If students are not sitting in the same room together, it can be

a challenge to do some of the class-participation activities described in this book. But we still think it

is valuable to work in pairs, so ideally remote learners should be connected so they can work together,

discuss, and ask and answer each others’ questions.

This sort of collaborative learning can be done without requiring special features of a remote

learning platform. Each pair or small group of students can set up their own shared online document

where they can work together on problems and communicate privately while the class is going on.

What we have here and what’s still missing

We have a solid textbook, a workable modular structure for the course, and a full set of activities for

student-centered learning in the classroom.

We still lack a clear set of priorities—a list of what are the most important skills to be learned,

and in what order—and a path toward using these skills to understand the world. The textbook has

many real-world examples, and our in-class stories provide motivation by relating technical material

to real-world questions, but we remain concerned that our classes are too focused on the details of

math and coding.

Consider the analogy of learning statistics to learning a new language. We tell our students

that the class is particularly difficult because they’re learning two foreign languages—statistics and

R—both of which can be challenging without a strong background in math and programming. The

challenge is to learn how to engage in and understand conversations, not merely memorize stock

phrases and rules of grammar.

The bad news is that you might have only one or two semesters of formal statistics instruction.

The good news is that there are many opportunities for statistics immersion, just by reading empirical

papers in social science.

2.8 Using these materials in introductory or more advanced courses

The stories, activities, and examples in this book can be adapted to fit the interests of students and

the goals of the class. We demonstrate this here using an activity we have developed based on the

6https://dasl.datadescription.com/.

7See Rhonda Magel (1996), Increasing student participation in large introductory statistics classes, American Statistician

50, 51–56, and Rhonda Magel (1998), Using cooperative learning in a large introductory statistics class, Journal of Statistics

Education 6 (3).
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“two truths and a lie” game.8 Before reading the discussion here, please read the description of the

class-participation activity on page 179.

The activity should be fun for any group of students, but the relevant statistical lesson will depend

on the level of the course being taught: it connects to several important topics, including measurement,

uncertainty, prediction, calibration, and logistic regression. Because of its social aspect, it makes

sense to do this during the first or second week of the semester, but it is also always important to

explicitly connect classroom activities to the material being covered that week, as well as to the

course as whole. We give some details about how this could go at a few different levels.

Introductory statistics. For an introductory course, the focus can be on probability and uncertainty.

Before the activity begins, the instructor should ask students to speculate on how accurate their

guesses will be. On average, will they be able to guess the lie every time? 90% of the time? 50%?

More than 33%, we hope, right? This can be an opportunity to introduce the concept of a null

hypothesis: from pure random guessing, the number of correct guesses would have the binomial

distribution with probability 1
3
. Depending on when during the semester this activity is done, the

instructor can follow up with an estimate of average probability of guessing correctly, along with a

standard error, confidence interval, and hypothesis test comparing to the reference level of 1
3
. At

the same time it is important to keep the larger perspective of the sampling distribution, so when

presenting these results we should engage the students in discussion of how these numbers would all

change if the data were different: with the given =, how many successful guesses would be needed for

the null hypothesis to be rejected at the 5% level or the 95% interval for the success rate to exclude 1
3
,

and so forth.

This can be connected to other problems of probability estimation such as weather forecasting or

election forecasting. The instructor can display the fitted curve without going into detail on logistic

regression, just giving this as an example of an advanced statistical method. For an example during

the first weeks of an introductory class, the lesson here is not any particular technique, but rather the

way that statistical analysis can be used to learn information from subjective certainty statements.

Statistical modeling bridges between qualitative and quantitative worlds.

Bayesian statistics. For a course on Bayesian statistics, the activity can be used to demonstrate the

principle of calibration. In this activity, the certainty judgments represent prior information but not

prior distributions, and the step of fitting a model to predict accuracy of guesses ~ given certainty

judgments G can be seen as a data-based construction of a prior distribution. For example, suppose

the model is Pr(~ = 1) = logit−1 (−0.6 + 0.3G); this corresponds to a probability of correct guess

ranging from 0.35 when G = 0 to 0.92 when G = 10, and for a new guess with certainty judgment G,

the value logit−1 (−0.6 + 0.3G) can be taken as the prior probability that this guess is correct. The

point here is that priors for real problems can be calibrated based on the accuracy of past guesses;

this is, for example, how point spreads for sporting events can be translated into betting odds.9

These points can be placed in the context of a class discussion via a series of prompts. As always,

it is best to start the discussion before the data have been revealed. To start, students can consider in

pairs their prior probability that a particular guess is correct: at what odds would they be willing

to bet that they actually caught the lie? The next question is how this prior probability varies with

G. From this they can see the certainty judgments as a device for constructing an empirical prior

distribution. We can then ask how large a dataset might be needed for this prior to be useful in

practice. It is easiest to get a sense of this using simulation, starting with some assumption about the

function E(~ |G), trying out a sample size, simulating data, and seeing what the plot of E(~ |G) vs. G

looks like. The connection of all this to the class-participation activity is that, by giving the certainty

statements and guesses themselves, students should get a picture of the challenges of constructing

empirically-based priors.

8This discussion is taken from Andrew Gelman (2023), “Two truths and a lie” as a class-participation activity, American

Statistician 77, 97–101.

9See Hal Stern (1997), How accurately can sports outcomes be predicted?, Chance 10 (4), 19–23.
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Generalized linearmodels ormachine learning. For a class on generalized linear models or machine

learning, the “two truths and a lie” activity can be used as an introduction to logistic regression,

showing the details of fitting and graphing a model, interpreting coefficient estimates and standard

errors, and using predictions to make probabilistic forecasts for new cases. Here the activity ties

directly into the material taught in the class, and after the model has been fit, graphed, and explained,

there is a sequence of logical followups. Students can discuss the range of predicted probabilities:

Will they always fall between 0 and 1? (Yes.) Will they always fall between 1
3

and 1? (Not necessarily.)

How many measurements would be necessary for the slope of the curve to be estimated with some

desired level of accuracy? You can approximately figure this out using the rule that the standard error

scales like 1/
√
= and can also check by simulating fake data.

Depending on the course material, this activity can be followed up in different ways. For example,

a simulation can be performed to assess the statistical power of the study given sample size =, the

distribution of observed certainty scores G in the observed data, and assumed values of the intercept

0 and slope 1 of the logistic regression; in R:

n_loop <- 1000

slope_est <- rep(NA, n_loop)

slope_se <- rep(NA, n_loop)

for (i in 1:n_loop){

x_sim <- sample(x, n, replace=TRUE)

y_sim <- rbinom(n, 1, invlogit(a + b*x_sim))

sim <- data.frame(x_sim, y_sim)

fit <- glm(y_sim ~ x_sim, family=binomial(link="logit"), data=sim)

slope_est[i] <- summary(fit)$coefficients["x_sim", "Estimate"]

slope_se[i] <- summary(fit)$coefficients["x_sim", "Std. Error"]

}

power <- mean(abs(slope_est)/slope_se > 2)

Here we have computed the power following the conventional rule that the estimated slope is

statistically significant if it is more than two standard errors from zero. There is no need to perform

this particular calculation; we are just illustrating how the data collected in this activity can be used

as a starting point for relevant lessons.

Psychometrics andmultilevel modeling. Another direction is to turn this into a lesson on reliability

and validity of measurement. What is meant by that certainty score? How useful would you expect

the certainty score to be in making a probabilistic forecast? This sort of calibration problem arises

in many areas of science and policy. For example, consider a hiring setting where interviewers

give numerical ratings for the candidates, and then later when there are data on job performance,

the ratings can be retrospectively calibrated. One direction is to set up some comparison points,

for example by asking respondents to give certainty scores for other outcomes such as weather or

sporting events. There is a large literature in psychology on challenges with assessing the accuracy of

subjective guesses.10

For a class on psychometrics or multilevel modeling, this discussion of measurement can serve

as an entry point to the design and analysis of repeated measures data. What if the confidence of

the guess is highly predictive of accuracy at the individual level, but with an effect that disappears

when aggregated across guessers? Students can discuss in pairs how such a pattern can arise, if

less accurate guessers tend also to be overconfident. To learn this pattern we would need to gather

multiple measurements on each guesser, for example by having students make guesses and certainty

statements individually rather than via consultation, and then the resulting data could be fit using a

multilevel model with intercept and perhaps slope that vary by guesser. There is also clustering in the

data, with four measurements per group. We have no strong reason to expect group effects (i.e., some

10See, for example, Richard Nisbett and Timothy Wilson (1977), Telling more than we can know: Verbal reports on mental

processes, Psychological Review 84, 231–259, and Annelies Vredeveldt and James Sauer (2015), Effects of eye-closure on

confidence-accuracy relations in eyewitness testimony, Journal of Applied Research in Memory and Cognition 4, 51–58.
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groups guessing more accurately than others, more than would be expected from chance variation

alone), but it would be easy to look for this by fitting a multilevel model.

Debriefing. A key part of any class-participation activity is what happens after the activity ends.

The instructor should not just stop and leave students to ponder. It is fun when an activity has a twist,

but it is not a magic trick; the point is not to amaze students but to bring them closer to the material

being taught. We want the activity not to mystify but to de-mystify. So it is important to follow up

the activity with explicit discussion, both of its connection to the material being taught in the class

and its relevance to real-world applications of statistics in areas such as education, business, politics,

or health, depending on the interests of the students.

We can also consider what lessons students might take away from this activity. “Statistics is fun”:

that’s a good memory. “I got fooled by Jason’s lie: he’s not really adopted”: that’s fine too, as it serves

the goal of students getting to know each other. “You can use logistic regression to convert a certainty

score into a predicted probability”: that’s good because it’s a vivification of a general mathematical

lesson. “The estimated slope was smaller than the standard error so we couldn’t distinguish it from

zero”: that’s not a bad lesson either. The instructor should think about what memories to aim to

create, and keep the discussion focused. For example, the details of the truths and lies are fun, and

there could be a temptation to share some of the most successful lies with the class—but for a class on

statistics or research methods, those sorts of details could be counterproductive, reinforcing memories

that would distract from the statistical lessons. We want the activity to be vivid and memorable but

for the right reasons.

Relatedly, having students make predictions in advance helps them confront misconceptions and

be convinced to change, but it’s also possible for students to remember their initial naive guesses

more than the right answer, so it’s important to have these clarifying discussions to reinforce clear

thinking about the point of the activity and its larger message.

Fitting the activity into the course as awhole. In our experience we have seen three kinds of positive

outcomes associated with this sort of activity, especially when performed near the beginning of the

semester. The first is that students get used to the idea that attendance is active, not passive, and we

hope the alertness required to perform these activities translates into better participation throughout

the class period. The second is that people typically find data more interesting and relatable when

they can see themselves in the scatterplot. The third valuable outcome is that the “two truths and a

lie” activity is a social icebreaker. It is our hope that in laying out this activity—not just the general

concepts but also the details of implementation, including instructions, Google form, sample data

and analysis, and post-analysis discussion points—we have lowered the barrier of difficulty so that

instructors in a wide range of statistics courses can try it out in their own classes, at minimal cost in

classroom time and with the potential to get students more involved in their learning process.

That said, we do not have direct empirical evidence of the effectiveness of this activity on

student learning. As is typically the case in education, it is easier to develop a new idea than it is to

quantitatively evaluate its effects in the classroom.11 We can still learn from experience, but such

learning tends to be qualitative, from observing student reactions and discussions. We do not expect

miracles from these activities. We are satisfied if they motivate students to participate in class and

think about each week’s material.

The biggest risk or opportunity cost in introducing a new class-participation activity is that time

spent in the activity could be spent working on lecturing or problem solving. For this reason, the

activity should be closely tied to the course material and performed efficiently, with instructions and

Google form prepared ahead of time and with code all set up to analyze the data when they come in.

Instructors can also use the material in this book as a template for designing and implementing their

own class-participation activities.

11For some discussions of the difficulties of evaluating teaching innovations in statistics, see Beth Chance, Joan Garfield,

Elsa Medina, and Dani Ben-Zvi (2008), Assessment in statistics education, in Developing Students’ Statistical Reasoning:

Connecting Research and Teaching Practice, edited by Joan Garfield and Dani Ben-Zvi, and Andrew Gelman and Eric Loken

(2012), Statisticians: When we teach, we don’t practice what we preach, Chance 25 (1), 47–48.
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2.9 Balance between challenges and solutions

In the first week of class we tell the story of the 1936 Literary Digest pre-election poll from 1936,

a famous example of a large prestigious survey that was done without using random sampling and

which yielded really bad inference; see the story on page 36 of this book. This episode is traditionally

presented in statistics classes as a cautionary tale: the primary message here is to use random

sampling and the secondary message is to not trust surveys that don’t use random sampling. These

are not terrible messages—but statisticians Sharon Lohr and J. Michael Brick took the next step and

found that, using information that was available at the time, it is possible to adjust the survey to get an

improved, although not perfect, estimate.

This example illustrates the balance we seek to strike between challenges and solutions. Statistics

is hard. It should not be tricky. Our stories and activities often include twists that reveal hidden

assumptions. In the Literary Digest polling story, there was a mistaken mathematical assumption that

a large sample will automatically be representative of the population, and a mistaken sociological

assumption that a well-publicized project would be done well. Recognizing these assumptions gets

you thinking, if a large sample size is not enough, what is actually necessary for a survey to be

accurate?

A quick answer is that random sampling will do the job. But we do not want to stop there, for two

reasons. First, real-world surveys of people are not random samples, and we do not want to send the

unrealistic message that samples must be random to be useful. Yes, the Literary Digest survey had

big problems, but modern political surveys are very accurate, despite response rates below 10% and

respondents who do not look like a random sample of the population.12

The second reason for not ending the story in failure is that statistical methods in general, and

regression modeling in particular, are valuable in large part by bridging between data and underlying

models of the world. The mathematics of random sampling, with its unbiased estimates and standard

errors, is one such bridge. Regression adjustment and poststratification for nonrepresentative samples

is another bridge. Survey adjustment, is an important practical tool in statistics as well as being an

application of linear regression. Ending the story with adjustment is a way to pull back the curtain

and demonstrate that statistics is difficult but not tricky: the adjustment steps are transparent and

intuitive. That said, we do not want the solution to seem too clean, as it is still imperfect and depends

on strong, false, assumptions. This is part of the balance required in any science teaching, as we go

back and forth between using models and questioning them.

12For more background, see Andrew Gelman (2021), Failure and success in political polling and election forecasting,

Statistics and Public Policy 8, 67–72.



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

Part 2: Stories, activities, problems, and

demonstrations
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Chapter 3

Week by week: the first semester

Our course has two 75-minute classes per week; here we share two sets of readings and homework,

two stories, two class-participation activities, two computer demonstrations, and so forth, for each of

the 13 weeks of the first semester. Chapter 4 has the corresponding material for the second semester.

3.1 Introduction to quantitative social science

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Wikipedia Design a study Collect and Design a study Find the

experiment to measure some analyze to estimate a hidden

quantity of interest simulated data causal effect assumption

Literary Design an experiment Predict Generalize Find the

Digest poll to distinguish between elections hidden

of 1936 two hypotheses from economy assumption

Reading

Chapter 1 of Regression and Other Stories: Overview

Pre-class warmup assignments

1. No assignment before the first class.

2. Overview of statistics

(a) What are the three challenges of statistical inference?

(b) What are the key skills you should learn from the textbook?

(c) What is the URL of the website with data and examples from the textbook?

Homework assignments

1. No homework assignment due for the first class.

2. From design to decision (Exercise 1.1 of Regression and Other Stories)

Figure 1 displays the prototype for a paper “helicopter.” The goal of this assignment is to design a

helicopter that takes as long as possible to reach the floor when dropped from a fixed height, for

example 8 feet. The helicopters are restricted to have the general form shown in the sketch. No



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

32 3. WEEK BY WEEK: THE FIRST SEMESTER

Helicopter_ID width length time

1 1.8 3.2 1.64

1 1.8 3.2 1.74

1 1.8 3.2 1.68

1 1.8 3.2 1.62

1 1.8 3.2 1.68

2 1.8 3.2 1.62

2 1.8 3.2 1.65

2 1.8 3.2 1.66

2 1.8 3.2 1.63

2 1.8 3.2 1.66

Figure 1 (a) Diagram for making a “helicopter” from half a sheet of paper and a paper clip. The long segments

on the left and right are folded toward the middle, and the resulting long 3-ply strip is held together by a paper

clip. One of the two segments at the top is folded forward and the other backward. The helicopter spins in the

air when dropped. (b) Example data file showing flight times, in seconds, for 5 flights each of two identical

helicopters with wing width 1.8 inches and wing length 3.2 inches dropped from a height of approximately 8 feet.

additional folds, creases, or perforations are allowed. The wing length and the wing width of the

helicopter are the only two design parameters, that is, the only two aspects of the helicopter that

can be changed. The body width and length must remain the same for all helicopters. A metal

paper clip is attached to the bottom of the helicopter.

Here are some comments from previous students who were given this assignment:

Rich creased the wings too much and the helicopters dropped like a rock, turned upside down, turned

sideways, etc.

Helis seem to react very positively to added length. Too much width seems to make the helis unstable.

They flip-flop during flight.

Andy proposes to use an index card to make a template for folding the base into thirds.

After practicing, we decided to switch jobs. It worked better with Yee timing and John dropping. 3 –

2 – 1 – GO.

Each group of students will need 25 half-sheets of paper and 2 paper clips. The body width will

be one-third of the width of the sheets, so the wing width can be anywhere from 1
6

to 1
2

of the

body width; see Figure 1a. The body length will be specified by the instructor. For example, if

the sheets are U.S.-sized (8.5 × 5.5 inches) and the body length is set to 3 inches, then the wing

width could be anywhere from 0.91 to 2.75 inches and the wing length could be anywhere from

0 to 5.5 inches. In this assignment you can experiment using your 25 half-sheets and 2 paper

clips. You can make each half-sheet into only one helicopter. But you are allowed to design

sequentially, setting the wing width and body length for each helicopter given the data you have

already recorded. Take a few measurements using each helicopter, each time dropping it from the

required height and timing how long it takes to land.

(a) Record the wing width and body length for each of your 25 helicopters along with your time

measurements, all in a file in which each observation is in its own row, following the pattern

of helicopters.txt in the folder Helicopters, also shown in Figure 1b.1

(b) Graph your data in a way that seems reasonable to you.

1Data for examples and assignments are at http://www.stat.columbia.edu/~gelman/regression/.
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(c) Given your results, propose a design (wing width and length) that you think will maximize the

helicopter’s expected time aloft. It is not necessary for you to fit a formal regression model

here, but you should think about the general concerns of regression.

Stories

1. Wikipedia experiment

We were contacted by two people working for the Wikimedia Foundation, the organization that

funds Wikipedia.2 They had supervised a large number of online experiments in an attempt to

increase the rate of donations to the project. Figure 2 shows an example of a manipulation of

the request screen: the “control” or existing condition used a box with rounded corners, and

the “treatment” or alternative used square corners. The experiment was performed to see if this

treatment had any effect on donations.

This is an example of what is called “randomized experimentation” in statistics or “A/B testing”

in industry—here, option A was the control condition and option B was the new version with

rounded corners, with each potential donor randomly assigned to one of the two options. The idea

is that if the treatment has a large enough effect, it can be detected experimentally, with the random

assignment ensuring approximate comparability of the groups receiving the two conditions. A

large set of such tests can potentially reveal which of various proposed small improvements would

increase the donation rate.

The Wikimedia team had contacted us because some of the effects they’d estimated were

implausibly large. As an example, they shared the screenshot shown in Figure 3 giving the result

from the experiment comparing square to round corners.

Reading Figure 3 from the bottom up: In the experiment, donations were 15% lower in the

square-corners condition than in the control condition (an estimated effect of −15%), and

the data are compatible with effects in the range [−19%,−11%]—that is the 95% confidence

interval shown in the lower right of the display. Moving up, the success rate was 0.51% for

the controls and 0.43% for the square corners, with the relative effect size being estimated at

(0.0043 − 0.0051)/0.0051 = −0.15 or −15%. And the top of the display shows the raw data:

4861 successes out of 954 630 trials for the control group and 4695 successes out of 1 082 180

trials for the treatment group, an impressive sample size given that the experiment only ran for 12

hours. Wikipedia has a lot of users!

Is it possible the large estimated effect of 15% was just due to chance? No, as we can see because

the 95% confidence interval is well away from zero. The sample size of two million trials is

huge, and we would not see a difference of 15% just by chance. We can also see this using a

quick calculation: if the true success rate is 0.0051, then the standard deviation of the estimated

success rate from a million trials is
√

0.0051 ∗ 0.9949/1 000 000 = 0.00007, and so the standard

deviation of the difference between two success rates is
√

0.000072 + 0.000072
= 0.0001. This is

an absolute difference in proportions. To convert this to a percentage scale, divide by the baseline

of 0.0051 to get 0.0001/0.0051 = 0.02, or 2%. A 95% interval is an estimate ±2 standard errors,

hence in this case [−15% ± 2 ∗ 2%] = [−19%,−11%], which is indeed what we saw. This is a

standard calculation which shows that with this sample size we would not expect to see such a

large effect by chance alone.

When telling the story, we perform the above calculations on the blackboard without slowing down

and trying to explain each step. The point here is not to teach inference for proportions—this will

be covered a few weeks later in the course—but rather to model the use of statistical analysis in

understanding a real-world problem.

2https://en.wikipedia.org/wiki/Wikimedia_Foundation.



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

34 3. WEEK BY WEEK: THE FIRST SEMESTER

Figure 2 Wikipedia messaging: control (round corners) and treatment (square corners) were compared to see

which led to higher donation rates. This was one of many experiments (“A/B tests”) done by Wikipedia, notable

because of the surprisingly large observed difference; see Figure 3.

Figure 3 Output from the Wikipedia experiment. The display shows the estimated effect of the new treatment

(square corners on the donation box) compared to the control condition (the status quo of round corners). The

treatment is estimated to decrease donation rates by an implausibly large amount of 15%. Followup is in Figure

4.

Continuing with the narrative: Having established that the observed difference in success rates

between the treatment and control group could not plausibly have arisen by chance, we suggested

that perhaps the effect in the range [−19%,−11%] was real but not stable. Perhaps square corners

could have an effect of −15% on weekdays, when many people are accessing Wikipedia from work

or school, and a positive effect of +10%, say, on weekends. Maybe square corners are perceived

as friendlier in some countries than in others. Or the effect could vary with other contextual

factors, such as what was in the news? An effect in a single 12-hour experiment might not be

representative of general conditions.
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12 hours of a Wikipedia experiment

Time
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Control condition

Square corners

Figure 4 Further information from the Wikipedia experiment, following up on Figure 3. After about 7 pm, there

were big differences in the number of people given the treatment and control, suggesting there was some flaw in

the randomization.

Our correspondents were doubtful. They said that the proportion of solicitations that yield a

donation varies a lot—for example, it is higher in days and evenings than in the middle of the

night—but that in their history of A/B tests, they haven’t found the effects of any particular

treatment to vary so much. They were skeptical about my idea that the effect that could be −15%

at some times and +10% in other settings.

So we decided to look more carefully at Figure 3. And we noticed something. In a simple

randomized experiment, you expect to see approximately 50% of cases in the control group and

50% in the treatment group. Not exactly an even split—if you flip a coin # times, it’s unlikely

you’ll see exactly #/2 heads and #/2 tails—but close. In this experiment, however, there are

950 000 control trials and 1 080 000 with the treatment. That sort of split can’t just happen by

chance.

To do a quick calculation: the proportion of trials in the treatment group is 1 082 180/(954 630 +
1 082 180) = 0.53, or 53%. If we to flip 2 million coins, the proportion of heads is a random

variable with mean 0.5 and standard deviation
√

0.5 ∗ 0.5/2 000 000 = 0.0004, or 0.04%. Using

the ±2 standard deviation rule, we’d expect the percentage of heads to be somewhere in the range

[50% ± 2 ∗ 0.04%] = [49.92%, 50.08%]. No way we’d see anything like 53%. So something

seemed wrong. Our guess was that not all the data from the experiment had been recorded, perhaps

some of the data from the control group got lost somewhere in the pipeline?

The Wikipedia team got back to us and shared the data plotted in Figure 4, which shows the

number of trials during each minute for each of the two conditions during the period of the

experiment. Something happened between 7 and 8 pm; we’re not sure what, but all of a sudden

the treatment group was consistently getting more action than the control group.

And this in turn explains the different success rates! Remember how they said that conversion

rates were higher during the daytime and early evening than during the middle of the night? Due

to the botched randomization, the control condition was mostly applied during the daytime and

the early evening, whereas the square-corners intervention had relatively more nighttime exposure.

Hence the observed drop.

This story relates to the week’s reading on the goals of statistics: generalizing from sample to

population, from control to treatment, and from observed data to underlying constructs of interest.

Here, the people in the study are the sample and Wikipedia users in general are the population, the
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control is round corners and the treatment is square corners, and the observed data are whether

these particular people donated. The underlying goal is . . . perhaps to get more people to give, or

to get existing donors to give more? It’s good to think about these questions even if we don’t have

clear answers.

The Wikipedia story also illustrates some recurring themes of the course regarding data collection

and data exploration, the importance of checking the assumptions underlying our inferences, and

the role of probability models and mathematical calculations (in this case, the standard error of

estimated proportions).

2. Literary Digest poll of 1936

Statisticians Sharon Lohr and J. Michael Brick write:3

“The Literary Digest poll of 1936 is a byword for bad survey research. Textbooks have long

used it as a prime example of how sampling goes bad . . .

The story of the 1936 poll is well known. Ten million ballots were sent out . . . The

mailing list was ‘drawn from every telephone book in the United States, from the rosters of

clubs and associations, from city directories, lists of registered voters, classified mail-order

and occupational data.’ Of these, almost 2.4 million ballots were returned. The final results

from the poll predicted that Republican Alfred Landon would win with 54 percent of the

popular vote and 370 electoral votes. In the election, Franklin Roosevelt won more than 60

percent of the popular vote and 523 electoral votes, carrying every state except Maine and

Vermont.

Gallup (1938) blamed the poll’s inaccuracy on the sampling frame, which was constructed

largely from lists of telephone and automobile owners and thus overrepresented the well-

to-do. . . . Other postmortems . . . pointed to nonresponse as a primary factor in the poll’s

inaccuracy, relying on a survey taken by Gallup in 1937 that asked respondents whether

they had participated in the 1936 LD poll. These analyses concluded that telephone and

automobile owners both supported Roosevelt (though not to the same extent as persons

without telephones and automobiles), and that the low response rate combined with the

flawed sample produced the inaccurate forecast . . .

But the 24 percent response rate of the 1936 LD poll is much higher than the response

rate in many of today’s polls. One difference is that today’s polls weight the data to attempt

to compensate for nonresponse bias. Typically, the weights of the respondents are adjusted

so that weighted estimates match the voting population demographics; some polls also

weight by political party.

Demographic weighting could not have been used for the 1936 LD poll because those data

were not collected from the respondents. But the ballot [see Figure 5] did ask respondents for

whom they voted in the 1932 election. This information could have been used to weight the

data using techniques that were known at that time and involved simple computations. . . . ”

And here’s what Lohr and Brick found:

“If information collected by the poll about votes cast in 1932 had been used to weight the

results, the poll would have predicted a majority of electoral votes for Roosevelt in 1936,

and thus would have correctly predicted the winner of the election. We explore alternative

weighting methods for the 1936 poll and the models that support them. While weighting

would have resulted in Roosevelt being projected as the winner, the bias in the estimates is

still very large.”

3Sharon Lohr and J. Michael Brick (2017), Roosevelt predicted to win: Revisiting the 1936 Literary Digest poll, Statistics,

Politics and Policy 8, 65–84. For further discussion, see Andrew Gelman (2021), The Xbox before its time: Using the famous

1936 Literary Digest survey as a positive example of statistical adjustment rather than a negative example of non-probability

sampling, https://statmodeling.stat.columbia.edu/2021/07/16/literary-digest/.
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Figure 5 Ballot from the 1936 Literary Digest poll. A better estimate could have been obtained by using the

“Mark How You Voted For President in 1932” question to adjust the survey results.

This provides an important lesson for statistics learning. The usual way the Literary Digest poll is

used in statistics textbooks is as a warning: Use random sampling, or the boogeyman will get

you! That’s pretty silly, actually, given that all polls use non-random sampling if you consider

nonresponse as part of the sampling procedure, which in effect it is. We much prefer the positive

message: All samples of humans are flawed, but we can do our best to adjust for those flaws, while

also recognizing the imperfections of our adjustments.

This example relates to two ideas in the week’s reading: first, the problem of generalizing from

sample to population; second, the use of regression modeling to adjust for differences between

sample and population.

Class-participation activities

1. Design a social science study to measure some quantity of interest

For the very first class-participation activity, we have students work together to design a hypothetical

study involving social measurement. They start by discussing possible research topics in social

science: each pair of students should come up with a proposed topic, then a few students share

their ideas, and then the entire class decides on a topic. We then take them through similar steps to

choose a quantity to be measured. Possible examples include political polarization, gentrification,

life satisfaction, the spread of misinformation, friendship networks, or all sorts of other things.

Once the quantity has been picked, the students can work in pairs to consider how to measure it.

To do so they will need to define the underlying quantity of interest, consider what data they could

gather to construct a measure, decide how they would collect the data, make a plan for estimating

the measure given the data, and then come up with specifics such as sample size and details of the

measurement. Finally, once we have all that, we can discuss how to measure variation over time

or across states and countries.

While the class is having this conversation, we write the items in Figure 6 on the board, one at a

time, to structure the discussion.

As always, this activity should be concluded by tying it to the reading. Chapter 1 of Regression

and Other Stories discusses the three tasks of statistics: generalizing from sample to population,

from control to treatment group, and from observed data to underlying construct of interest. This

activity focuses on the third of these generalizations, a topic that is often neglected in statistics

classes. Pointing toward topics to be covered later in the course, the instructor can also discuss the

use of simulation to explore possible designs of data collection.
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1. Topic

2. Quantity to measure

3. Definition

4. Data

5. Data collection

6. Estimation

7. Specifics

8. Variation

Figure 6 Steps for the class-participation activity designing a study to measure a quantity of interest in social

science. As each step is introduced and discussed, the instructor should write it on the board, and students can

then follow along as they work on the activity.

1. Topic

2. Two hypotheses

3. Ideal data that would establish hypothesis 1 or 2

4. Scenario of ambiguous data

5. Scenario of data consistent with neither hypothesis

6. Data collection and measurement

7. Inference

8. Specifics

Figure 7 Steps for the class-participation activity designing an experiment to distinguish between two hypotheses

in social science. As each step is introduced and discussed, the instructor should write it on the board, and

students can then follow along as they work on the activity.

2. Design an experiment to distinguish between two social science hypotheses of interest

The first week of our course introduces statistics in the context of quantitative social science,

and in the student-participation activity for the second class of that week we lead a collaborative

design of a hypothetical experiment. We start by having students work in pairs to discuss possible

topic areas and hypotheses. For example, in the problem of encouraging low-income villagers

to use bed nets to reduce malaria risk, one hypothesis is that it is better to give the nets for free

to increase availability, while a competing hypothesis is that selling them for a small amount of

money will encourage middlemen to promote their use. For another example, there is a hypothesis

in education that a technique called mindset interventions will increase student performance,

and a competing hypothesis that this intervention distracts from learning. Another example in

education is the controversy over the importance of peer effects: what educational benefits, if

any, do children get from being in the same class as high-performing pupils? If students are stuck

coming up with a topic and hypotheses, the instructor can give one or two of these examples, but

in our experience it is not difficult for students to come up with interesting ideas, so all that is

needed is to keep the discussion focused on a specific research question.

Once the two hypotheses have been chosen, the instructor can lead a discussion of how to use

data to distinguish between them. The first step is to consider ideal data that would establish one

hypothesis or the other, then equivocal data which would be consistent with both hypotheses, and,

from the other direction, hypothetical data that would be consistent with neither hypothesis. The

next step is to work with the class to come up with a plan for data collection and measurement,

inference (how to use the data to distinguish between the hypothesis), and specifics of sampling,
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1. Reading

2. Homework

3. Feedback sheet

4. Classes

5. Final exam

Figure 8 Components of the course. The instructor should project these onto the screen or write them on the

board on the first day of class.

treatment assignment, and measurement. While this discussion is going on, the instructor can

write the items in Figure 7 on the board, one at a time, to structure the conversation.

This activity connects to the reading in Chapter 1 of Regression and Other Stories on the use

of statistics to learn about scientific theories. In this case the topic is experimentation, which

involves generalizing from control to treatment group, so it is a good time for the instructor to

explicitly introduce some ideas of causal inference and potential outcomes (what would happen

if X were done instead of Y, and how that could be measured), topics that recur throughout the

course and to which we return more formally near the end of the second semester.

Discussion of reading and homework

1. For the first day of class, the instructor should discuss the course plan (see Section 1.2):

(a) Goals of the course

(b) Components of the course; discuss Figure 8

(c) Structure of each class period; discuss Figure 9

(d) Students’ responsibilities

(e) Roles of mathematics, computing, and applications

(f) Also discuss questions from final exam

2. For later classes, this is a time to discuss issues that students raised in the shared document for

that class; see Section 1.3 of this book. For example, here are some issues that came up for the

second day of class when we were teaching:

(a) Helicopter homework assignment

(b) Bayesian aspect of the course

(c) What sample size is necessary? Different sources of error

(d) United Nations vs. gun control studies: importance of asking a focused question

(e) Questions about R

(f) Selection bias in what gets reported: Why does it say in the textbook that the estimate in the

Jamaica study wouldn’t have been published if it had not been at least 2 standard errors from

zero?

(g) Jamaica experiment: If that study really is too noisy to be useful, then what should be done?

Increase the sample size? Just give up?

(h) Xbox study: At what point does a convenience sample become too far removed from the

desired sample to no longer be considered effective?

(i) How do social scientists minimize selection bias in a study where you can’t just experimentally

assign treatments?

(j) Do you always need both a treatment and a control group?
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1. Story

2. Activity

3. Discussion of reading and homework

4. Computer demo

5. Drill

6. Discussion problem

Figure 9 Structure of each class period. The instructor should project these onto the screen or write them on the

board on the first day of class.

Computer demonstrations

1. Collect and analyze simulated data

The computer demonstrations at the beginning of the semester are intended to introduce R and the

idea of working in a script-based, rather than point-and-click, computing environment, and also to

demonstrate how we use simulation to understand statistical data collection and analysis.

For the first computer demonstration of the course, we constructed a fairly elaborate simulation

that the instructor, or student working in self study, can perform in real time. At this point as a

student at the beginning of the course we do not expect you to follow the details of the code or the

underlying statistical reasoning; rather, the point of the demonstration is to show directly how

computing can be used to simulate statistical data collection, visualization, and analysis. In this

particular demonstration, we simulate before-after data, then fit and display a linear regression,

then simulate an experiment with constant treatment effect, fit that linear regression, and display it.

This demonstration connects to the week’s reading, which presents an overview of applied statistics.

This example shows a randomized experiment such as discussed in Section 1.3 of Regression and

Other Stories. As with all the computer demonstrations, we recommend typing the code directly

into the text editor (not cutting and pasting) and saying the code aloud while entering it, as this

more closely models the process of problem solving on the computer. When copying the code into

the console to be executed by R (or whatever software is being used), the instructor has another

chance to explain what the code is doing. And, as always, if the demonstration below seems too

long, just go through part of it.

# Load package

library("rstanarm")

# Generate 50 data points

N <- 50

midterm <- runif(N, 0, 100)

a <- 20

b <- 0.5

error <- rnorm(N, 0, 5)

final <- a + b*midterm + error

fake <- data.frame(midterm, final)

# Plot data

plot(midterm, final)

# Fit regression

fit <- stan_glm(final ~ midterm, data=fake, refresh=0)

print(fit)
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# Add fitted regression line to data

a_hat <- coef(fit)[1]

b_hat <- coef(fit)[2]

curve(a_hat + b_hat*x, add=TRUE)

# Add a treatment effect

treatment <- sample(c(0,1), N, replace=TRUE)

theta <- 10

final <- a + b*midterm + theta*treatment + error

fake <- data.frame(midterm, treatment, final)

# Plot data

plot(midterm, final, type="n")

points(midterm[treatment==0], final[treatment==0], col="blue")

points(midterm[treatment==1], final[treatment==1], col="red")

# Fit regression

fit_2 <- stan_glm(final ~ treatment + midterm, data=fake, refresh=0)

print(fit_2)

# Add fitted regression line to data

a_hat <- coef(fit_2)[1]

theta_hat <- coef(fit_2)[2]

b_hat <- coef(fit_2)[3]

curve(a_hat + b_hat*x, add=TRUE, col="blue")

curve(a_hat + theta_hat + b_hat*x, add=TRUE, col="red")

2. Regression predicting election outcome from the economy

For this demonstration, we go through the steps of graphing data and understanding a fitted

regression.4 There are no surprises here; it’s just a straightforward example of a basic and

important data analysis procedure.

# Load package

library("rstanarm")

# Read data from here: https://github.com/avehtari/ROS-Examples

hibbs <- read.table(paste0("https://raw.githubusercontent.com/avehtari/",

"ROS-Examples/master/ElectionsEconomy/data/hibbs.dat"), header=TRUE)

# Plot the data

plot(hibbs$growth, hibbs$vote,

xlab="Average recent growth in personal income",

ylab="Incumbent party's vote share")

# Estimate regression and display fitted model

M1 <- stan_glm(vote ~ growth, data=hibbs, refresh=0)

print(M1)

# Add fitted line to graph

abline(coef(M1), col="gray")

# Predict for a new election where growth = 2.0

prediction <- coef(M1)["(Intercept)"] + coef(M1)["growth"] * 2

4Example from Section 1.2 of Regression and Other Stories.
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1. Treatments

2. Population

3. Sample

4. Treatment assignment

5. Pre-test measurement

6. Outcome measurement

Figure 10 Steps for the drill on designing a study. These should be projected onto the screen in preparation for

the drill so that students can follow these steps while answering the drill questions.

Drills

1. Design a study

Below is a series of research questions regarding estimation of causal effects. For each, the exercise

is to suggest a hypothetical experiment and then fill in the details by going through the following

steps listed in Figure 10: decide on the treatments, population, sample, treatment assignment,

pre-test measurement, and outcome measurement. There will be no single correct answer.

In doing this drill, you should not overthink each problem. The goal is to be able to go quickly

through the six steps of Figure 10.

(a) Estimate the effect of a tennis class.

Solution: For example, (1) Treatment is a particular tennis class, control is no class; (2)

Population is all adults who are inexperienced tennis players and are interested in the sport; (3)

Sample is the group of people who volunteer to participate in the experiment; (4) Treatments

are assigned by flipping a coin; (5) Pre-test measurement is a tennis skill test; (5) Post-test

measurement is the same skills test.

(b) Estimate the effect of doubling the number of polling places.

(c) Estimate the effect of campaign contributions.

(d) Estimate the effect of the flipped classroom.

(e) Estimate the effect of remote teaching.

Each of these examples is, in statistics jargon, a controlled experiment. Causal effects can also

be estimated from observational studies (where treatments or exposures are not assigned by the

experimenter), and, as discussed in Chapter 1 of Regression and Other Stories, there are also

non-causal studies where the goal is measurement, prediction, or discovery.

2. Generalize

Below is a series of hypothetical social science studies. For each, the exercise is to state how it is

generalizing from sample to population, from treatment to control group, and from measurement

to underlying construct. See Figure 11.

(a) A survey of political participation.

Solution: (1) Sample is people in the study, population is all potential voters in the country;

(2) No treatment or control groups for this problem; (3) Measurement is how participation is

recorded (for example a survey response or checking the voter registration records), underlying

construct is actual participation (for example, did you actually vote).

(b) An experiment measuring the effect on political attitudes of watching a TV news show.

(c) A study of time trends of voter turnout in several countries.

(d) A focus group on attitudes toward military intervention in Haiti.
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1. From sample to population

2. From treatment to control group

3. From measurement to underlying construct

Figure 11 Steps for the drill on generalizing. These should be projected onto the screen in preparation for the

drill so that students can follow these steps while answering the drill questions.

(e) An experiment measuring patterns of social interaction among a group of students playing a

strategy game.

Discussion problems

1. Find the hidden assumption and error in a naive empirical claim

Assume that all the facts and assertions in the paragraph below are correct. Why do the

conclusions not follow? (This does not mean that the conclusions are actually false.) What are

alternative explanations for the facts? What data could be gathered to confirm or disconfirm these

explanations? This is not a trick question.5

“Many theorists claim that domestic instability tends to lead to foreign aggression. Others

have made the claim that domestic instability makes it less likely that a country will engage

in an aggressive foreign policy. The posited linkages are obvious. Suppose you develop a

good measure of both variables, and for each year you compute the total amount of domestic

instability in all countries in the international system and correlate this with the total amount

of external aggression by all countries. You find no correlation at all and conclude that,

contrary to both theories, there is no connection between domestic instability and war.”

2. Find the hidden assumption and error in a naive empirical claim

Assume that all the facts and assertions in the paragraph below are correct. Why do the

conclusions not follow? (This does not mean that the conclusions are actually false.) What are

alternative explanations for the facts? What data could be gathered to confirm or disconfirm these

explanations? This is not a trick question.5

“There is a positive correlation between the per capita GDP of a country and the degree to

which it is democratic. Therefore as poor countries get richer, they will also become more

democratic.”

5From Robert Jervis; see Andrew Gelman (2021), Statistical fallacies as they arise in political science (from Bob Jervis),

https://statmodeling.stat.columbia.edu/2021/03/03/fallacies-jervis/.



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

44 3. WEEK BY WEEK: THE FIRST SEMESTER

3.2 Prediction as a unifying theme in statistics and causal inference

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

United Nations Bag of candies Graph of Describe a Height and

peacekeeping and sampling data and regression earnings

bias fitted line slope

Girls and Gather and Tinker Simple Graph

sports plot data with an coding hypothetical

from students example data

Reading

Appendix A: Computing in R, Sections A.1–A.3

Pre-class warmup assignments

1. Simple coding: sequences and sampling

For each question below, give R code.

(a) Generate and print the sequence (0, 0.2, 0.4, . . . , 20).
(b) Generate and print one random number, uniformly distributed between 0 and 10.

(c) Generate and print ten random numbers, uniformly distributed between 0 and 10.

2. Simple coding: sampling, looping, and vectors

For each question below, give R code.

(a) Write a loop to generate and print 10 uniformly-distributed numbers, five times.

(b) Create a vector a that contains the names of four celebrities.

(c) Pick one of the names from vector a with equal probability.

(d) Repeat with unequal probabilities by setting up a vector p that specifies the probabilities, and

including it in your sample function.

Homework assignments

1. (a) Sketching a regression model and data (Exercise 1.2 of Regression and Other Stories)

Figure 1.1b of Regression and Other Stories shows data corresponding to the fitted line

~ = 46.3 + 3.0G with residual standard deviation 3.9, and values of G ranging roughly from 0

to 4%.

i. Sketch hypothetical data with the same range of G but corresponding to the line ~ = 30+10G

with residual standard deviation 3.9.

ii. Sketch hypothetical data with the same range of G but corresponding to the line ~ = 30+10G

with residual standard deviation 10.

(b) Goals of regression (Exercise 1.3 of Regression and Other Stories)

Download some data on a topic of interest to you. Without graphing the data or performing

any statistical analysis, discuss how you might use these data to do the following things:

i. Fit a regression to estimate a relationship of interest.

ii. Use regression to adjust for differences between treatment and control groups.

iii. Use a regression to make predictions.
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(c) Problems of statistics (Exercise 1.4 of Regression and Other Stories)

Give examples of applied statistics problems of interest to you with challenges in:

i. Generalizing from sample to population.

ii. Generalizing from treatment to control group.

iii. Generalizing from observed measurements to the underlying constructs of interest.

Explain your answers.

2. (a) Goals of regression (Exercise 1.5 of Regression and Other Stories)

Give examples of applied statistics problems of interest to you in which the goals are:

i. Forecasting/classification.

ii. Exploring associations.

iii. Extrapolation.

iv. Causal inference.

Explain your answers.

(b) Causal inference (Exercise 1.6 of Regression and Other Stories)

Find a real-world example of interest with a treatment group, control group, a pre-treatment

predictor, and a post-treatment predictor. Make a graph like Figure 1.8 using the data from

this example.

(c) In pairs: Working through your own example (Exercise 1.10 of Regression and Other Stories)

Download or collect some data on a topic of interest to you. You can use this example to work

though the concepts and methods covered in the book, so the example should be worth your

time and should have some complexity. This assignment continues throughout the book as the

final exercise of each chapter. For this first exercise, discuss your applied goals in studying

this example and how the data can address these goals.

Stories

1. United Nations peacekeeping

Several years ago, political scientist Page Fortna conducted a study on the effectiveness of

international peacekeeping. She analyzed data from countries that had been involved in civil wars

between 1989 and 1999, comparing countries with and without United Nations peacekeeping.

The outcome measure was whether there was a return to civil war in the country and, if so, the

length of time until that happened. Data collection ended in 2004, so any countries that had not

returned to civil war by the end of that year were characterized as being still at peace. The subset

of the data summarized here contains 96 ceasefires, corresponding to 64 different wars.6

A quick comparison found better outcomes after peacekeeping: 56% stayed at peace, compared

to 34% of countries without peacekeeping. When civil war did return, it typically came soon:

the average lag between ceasefire and revival of the fighting was 17 months in the presence of

peacekeeping and 18 months without. Figure 12 shows the results.

There is, however, a concern about selection bias: perhaps peacekeepers chose the easy cases.

Maybe the really bad civil wars were so dangerous that peacekeepers didn’t go to those places,

which would explain the difference in outcomes.

To put this in more general terms: in this study, the “treatment”—peacekeeping—was not randomly

assigned. In statistics jargon, Fortna had an observational study rather than an experiment, and in

an observational study we must do our best to adjust for pre-treatment differences between the

treatment and control groups.

6Page Fortna (2008), Does Peacekeeping Work? Shaping Belligerents’ Choices after Civil War, Princeton University

Press. The discussion here is taken from Section 1.4 of Regression and Other Stories.
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With peacekeeping:  56% of countries stayed at peace.
For others, histogram of time until civil war returned:

Years until return of war
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5

Without peacekeeping:  34% stayed at peace.
For others, histogram of time until civil war returned:

Years until return of war
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Figure 12 Outcomes after civil war in countries with and without United Nations peacekeeping. The countries

with peacekeeping were more likely to stay at peace and took on average about the same amount of time to

return to war when that happened. However, there is a concern that countries with and without peacekeeping

may differ in their pre-existing conditions; see Figure 13.

0
5

1
0

1
5

Pre−treatment measure of problems with the country

D
e
la

y
 (

in
 y

e
a
rs

) 
b
e
fo

re
 r

e
tu

rn
 o

f 
c
o
n
fl
ic

t
(o

p
e
n
 c

ir
c
le

s
 w

h
e
re

 c
o
n
fl
ic

t 
d
id

 n
o
t 
re

tu
rn

)

not so bad really bad

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

● ●

With U.N. peacekeeping
0

5
1
0

1
5

Pre−treatment measure of problems with the country

not so bad really bad

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

Without U.N. peacekeeping

Figure 13 Outcomes after civil war in countries with and without United Nations peacekeeping, plotted vs. a

measure of how bad the situation was in the country. After adjusting for this pre-treatment variable, peacekeeping

remains associated with longer periods without war.

Fortna adjusted for how badly off the country was before the peacekeeping-or-no-peacekeeping

decision was made, using some objective measures of conditions within the country. The analysis

was further complicated because in some countries we know the time until return to civil war,

whereas in other countries all we can say is that civil war had not yet returned during the period

of data collection. In statistics, this sort of incomplete data process is called “censoring,” which

does not mean that someone has refused to provide the data but rather that, due to the process of

data collection, certain ranges of data cannot be observed: in this case, the length of time until

resumption of civil war is inherently unknowable for the countries that remained at peace through

the date at which data collection had concluded. Fortna addressed this using a “survival model,” a

complexity that we will ignore here. For our purposes here we summarize the combination of

pre-treatment predictors as a scalar “badness score,” which ranges from 1.9 for the Yemen civil

war in 1994 and 2.0 for India’s Sikh rebellion in 1993, to the cases with the highest badness scores,

6.9 for Angola in 1991 and 6.5 for Liberia in 1990.

Figure 13 shows outcomes for treated and control countries as a function of badness score, with

some missing cases where not all the variables were available to make that assessment. According
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to these data, peacekeeping was actually performed in tougher conditions, on average. As a result,

adjusting for badness in the analysis (while recognizing that this adjustment is only as good as the

data and model used to perform it) increases the estimated beneficial effects of peacekeeping, at

least during the period of this study.

This example is relevant to the week’s reading and to the course as a whole as it introduces ideas

of comparison and causal inference with observational data that are important in many areas of

social science.

2. Girls and sports: error of individual-level claim from state-level correlations

A claim was made in a research paper published in 2014 that “sports participation [in high

school] causes women to be less likely to be religious . . . . more likely to have children . . . more

likely to be single mothers.”7 And the advertised effects were huge: “a ten percentage-point

increase in state-level female sports participation generates a five to six percentage-point rise in

the rate of female secularism, a five percentage-point increase in the proportion of women who

are mothers, and a six percentage-point rise in the proportion of mothers who, at the time that

they are interviewed, are single mothers.” This is, as the saying goes, “big if true”—elasticities of

50% for things that have nothing (apparently) to do with the treatment—and are even larger when

you consider that the outcomes are binary and, for example, sports participation can’t make you

secular if you were already going to be secular anyway, it can’t cause you to have a child if you

were already going to have a child anyway, and so forth.

But, as the authors explain in their blog posts and the scholarly article, they were not measuring

the effects of sports participation directly. Rather, they were using aggregate statistics, “comparing

women in states with greater levels of 1971 male [high school] sports participation . . . to women

in states with lower levels of 1971 male sports participation.” The outcomes are state-level average

responses to General Social Survey questions for “respondents who completed tenth grade and

who either attended high school before Title IX was passed in 1972 or after it came into full effect

in 1978.” Title IX is a law requiring equal treatment of males and females in schools.

The people who did this study were doing their best to a target their analysis on the group of

women who’d be affected by the treatment. Then they ran individual-level regressions on binary

variables (just as a minor point, we think it would have been better to keep the original ordered

responses so as not to throw away information), but the action is all coming from the state-level

predictor, the measure of male athletic participation in 1971, by state.

The trouble is that (a) the treatment is at the group, not the individual, level, and (b) it’s not a

clean “natural experiment.” Think of it this way. Suppose some states were randomly selected to

get the Title IX treatment and some were not. This would be the ideal scenario—but, even there,

you’re measuring the effect of an aggregate policy, not the effect on individual participation. But

it’s much worse than that. Actually, the treatment was applied to all the states, so all that could be

studied was an interaction—that is, a treatment effect that was different in some states than others.

Finally, the interaction being studied is not random; there are systematic differences between

states with higher and lower boys’ high school sports participation in 1971. The highest rates are

reported in North Dakota, Nebraska, Minnesota, Iowa, Kansas, Montana, Arkansas, South Dakota,

Vermont, Idaho, Oregon, and Wyoming.

How do we think about this? We can start from the two ends: the published claims and the

observed data pattern.

Start with the implausibility of the reported estimates. As noted above, if a ten percentage-point

increase in state-level female sports participation is associated with a five percentage-point increase

7Phoebe Clarke and Ian Ayres (2014), The Chastain effect: Using Title IX to measure the causal effect of participating

in high school sports on adult women’s social lives, Journal of Socio-Economics 48, 62–71. The discussion here is taken

from Andrew Gelman (2014), How much can we learn about individual-level causal claims from state-level correlations?,

https://statmodeling.stat.columbia.edu/2014/05/16/individual-level-causation/.
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in the proportion of women who are mothers, there’s no way that most of this can be coming from

a direct effect. The implication would be that there’s this huge group of girls who (i) will have

children if they do sports, and (ii) will not have children if they do not do sports. These estimated

elasticities have to be driven by big differences between states that possibly have nothing to do

with high school sports. One step would be to look at lots of different state-level predictors (not

just boys’ 1971 high school sports participation) and lots of different state-level outcomes. We put

this on our blog, and a commenter remarked that “high state level sports participation by boys is

associated with a high proportion of small (presumable rural) high schools in those states.” Many

of the states listed above have relatively low levels of religious participation.

We’d also suggest, for each outcome, to make a scatterplot of the state-level aggregate outcomes

vs. boys’ sports participation in 1971. If the researchers on this project want to make the causal

leap, go for it—but make clear that it’s a leap. In the meantime, the scatterplot, with the 50 states

labeled by their convenient two-letter abbreviations, could give a lot of insight.

As is generally the case with these mismatches between correlation and causation, we don’t want

to say that the research hypotheses are false; rather, we’d say that the claims are not demonstrated

from the data and that we think that any true effects are smaller and less consistent than implied

by the researchers. It may still be true that, at the individual level, “sports participation causes

women to be less religious, more likely to have children, and, if they do have children, more likely

to be single mothers,” even if the actual effects are an order of magnitude lower than claimed.

Any effects could also go in the opposite direction. State-level correlations don’t tell us much

about this. Recall that if we were studying state-level correlations of income and voting, we’d

come to the false conclusion that poor people are more likely to vote Republican. In the present

example, the Title IX story helps, but only a little.

This example relates to the week’s reading for two reasons. First, it’s an example of the

generalization from treatment to control group and an example of an observational study. Second,

it demonstrates the difficulty of interpreting coefficients in a predictive model. You have to learn

how to say things accurately: instead of “sports participation [in high school] causes women to

be less likely to be religious” or even“girls who participate in sports are, on average, less likely

to be religious,” it’s something like, “in states with greater levels of male sports participation in

1971, girls in 1978 were less likely to be religious, compared to girls in 1978 in states that were

comparable in 1971 but with lower levels of male sports participation.” It’s a mouthful to say all

this—but that’s kind of the point: that’s what can be learned from these data! The example also is

relevant to the course as a whole in demonstrating quantitative reasoning about causal claims.

Class-participation activities

1. Bag of candies and sampling bias

We illustrate the challenges of sampling and inference using an activity in which students attempt

to grab candies at random from a bag. The challenge is that the candies are of different sizes, and

it is difficult to draw a representative sample.8

Preparation

The instructor should buy 100 candies of different sizes and shapes and put them in an opaque bag.

Get something like 20 large full-sized candy bars, 20 or 30 smaller items like mini Snickers bars

and mini Peppermint Patties, and then 50 or 60 really little things like tiny Tootsie Rolls, lollipops,

and individually-wrapped Life Savers. Make sure it’s exactly 100.

The activity also requires a digital kitchen scale that reads out in grams. This all takes some

8See Andrew Gelman (2008), The candy weighing demonstration, or the unwisdom of crowds, https://statmodeling.

stat.columbia.edu/2008/05/08/doing_the_candy/, and Section 9.1 of Andrew Gelman and Deborah Nolan (2017), Teaching

Statistics: A Bag of Tricks, second edition, Oxford University Press.
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1. Pull 5 candies out of the bag

2. Weigh the candies

3. Write down the weight

4. Put the candies back in the bag!!

5. Pass the scale and bag to your neighbors

6. Silently multiply the weight of the 5 candies by 20

Figure 14 Instructions for the candy-weighing activity. This should be projected on the screen or written on the

board, and students can then follow along as they work on the activity.

preparation but we think it’s worth it in creating a memorable learning experience that includes

many statistical lessons.

The instructor should bring a note inside a sealed envelope (details below). Before class starts, the

instructor should unobtrusively put the envelope somewhere, for example between two books on a

shelf or behind a window shade.

Setup

The instructor should hold up the bag of candy, then project or write onto the board the instructions

in Figure 14, saying these instructions aloud while writing or projecting them.

The students should work in pairs. Their goal is to estimate the total weight of all the candies

in the bag. They can choose their 5 candies using any method–systematic sampling, random

sampling, whatever. Whichever pair guesses closest to the true weight, they get the whole bag!

After demonstrating how to zero the scale, the instructor should give the scale and the bag of

candies to a pair of students in the front row, and let them go.

Action

The activity will proceed silently while the rest of the class proceeds. So the instructor should

continue on with the class, keeping track that the scale and bag are moving slowly through the

room. After about 30 or 40 minutes, it should reach the back and the students will be done.

At this point, the pairs, one at a time, can call out their estimates, which the instructor should

write on the board. They will be numbers like 3080, 2400, and 4340. Once all the numbers are

written, a crude histogram (for example, bins for 1000–2000 grams, 2000–3000, 3000–4000, and

4000–5000) can be drawn. This represents the sampling distribution of the estimates.

Two students from the class (but not from the same pair) should then come to the board and look

at all the estimates and give their best guess, having seen this information. The instructor should

ask the class if they agree with these two students and then give the bag to the two students in the

front of the room and have them weigh it.

Punch line

The weight of all 100 candies will be something like 1658. Every time we have done this activity,

this true weight has been lower than all or almost all of the sampling-based estimates produced by

students. The instructor should write this true weight as a vertical bar on the histogram on the

blackboard. If this activity is used later in the course, it could be used to illustrate the concepts of

bias and standard error of an estimate, but at this point in the semester we are focusing on data

collection and the general challenges of statistics.

The instructor can then call out to the students who are sitting near the hidden envelope: “Um, uh,

what’s that over there . . . Is it an envelope??? Really? What’s inside? Could you open it up?” A

student opens it and reads out what’s written on the sheet inside: “Your guesses are too high!”
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It is possible for students to have anticipated this bias and corrected for it in their sampling, by

very carefully including many smaller candies in their sample, but in a large class there should

only be a few students who will have thought things through so carefully, and so most of the

guesses will be much higher than the true weight.

Aftermath

Now’s the time to talk about sampling. Students should work in pairs to try to figure out what

happened. The explanation is that large candies are easy to see and to grab, while small candies

fall through the gaps between the large ones and end up at the bottom of the bag. Consider the

analogy to conduct a survey by going to a shopping mall or by sending out an email survey and

seeing who responds. Students can work in pairs to figure out how to take a random sample of 5

out of 100 candies. It won’t be obvious to many of them that the way to do a random sample is to

number each of the candies from 1 to 100 and pick numbers at random. Also, as noted above, this

is an example that can be used later in the semester to illustrate bias and standard error.

This example connects to the week’s readings because it demonstrates the challenge of gathering

data that allows generalization from sample to population.

2. Gather, plot, and discuss data from students

This activity begins with the instructor discussing with students what they would be interested

in learning from each other. These can be questions about politics, school, relationships, family,

. . . things you’d like to share, or more neutral topics if the group is more shy. You will be making

scatterplots, so for this activity, it is best if the measurements are continuous or approximately

continuous. For example, a question on political identification (left, center, or right) will only have

three values which will be hard to show in a scatterplot, so it would be better in that case to take a

continuous measure on a 0–100 scale, in which case it would be necessary to calibrate the scale in

some way. Once the class has decided on a few questions, they should enter their responses on a

Google form; Figure 15 provides an example.

After the data are entered, the instructor can download the Google data as a .csv file and give it a

header with a name for each question; for example, with the questions shown in Figure 15, these

names might be Biden_feeling, salary, and music_talent. Then the instructor should read

the data into R and make a scatterplot of a randomly chosen pair of variables (with blank axes).

Here is some code to plot two randomly-selected columns of the data:

students <- read.csv("students.csv")

K <- ncol(students)

k <- sample(K, 2)

x <- students[,k[1]]

y <- students[,k[2]]

plot(students[,k[1]], students[,k[2]], xaxt="n", yaxt="n", xlab="", ylab="")

With the plot displayed on the screen, students should to try to figure out which two variables have

been plotted. Once students have made their guesses, the instructor can display a plot including

numbers on the axes:

plot(x, y, xlab="", ylab="")

And then include the variable names:

plot(x, y)

This activity connects to the week’s reading as an example of generalization from observed

measurements to underlying constructs of interest, and this activity concerns some of the real-world

challenges of measurements, such as accuracy, confidentiality, and, most fundamentally, defining
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Figure 15 Example of a short survey form for the class using questions based on student input and discussion.

the ultimate goal: Why are these questions being asked in first place, What is the underlying

quantity being measured?

In addition, it relates to the upcoming week’s reading on data exploration and graphics, and the

class can discuss the challenge of displaying these data, for example in dealing with discreteness.

Computer demonstrations

1. Graph of data and fitted regression lines

Here you make a graph similar to Figure 1.8 of Regression and Other Stories, showing a regression

with imbalance between treatment and control group. This simple example demonstrates

simulation, model fitting, comparison and adjustment, and graphics.

library("rstanarm")

# Simulate data from two groups

N <- 100

z <- sample(c(0,1), N, replace=TRUE)

x <- ifelse(z==0, rnorm(N, 2, 2), rnorm(N, 6, 2))

y <- 20 + 5*x + 15*z + rnorm(N, 0, 10)

data <- data.frame(x, z, y)

# Estimate regression

fit <- stan_glm(y ~ x + z, data=data, refresh=0)

print(fit)

# Display data and fitted model

plot(x, y, xlab="Pre-treatment predictor", ylab="Outcome measurement", bty="l",

main="Continuous pre-treatment predictor and binary treatment", type="n")

points(x[z==0], y[z==0], pch=20, col="blue")
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points(x[z==1], y[z==1], pch=20, col="red")

abline(coef(fit)[1], coef(fit)[2], col="blue")

abline(coef(fit)[1] + coef(fit)[3], coef(fit)[2], col="red")

# Try simple comparison

diff <- mean(y[z==1]) - mean(y[z==0])

print(diff)

In this simulation, the true value of the intercept and the coefficients for G and I are 20, 5, and 15,

respectively, and the estimates from the fitted regression will be close to that. The treatment effect,

or coefficient of I, is 15.

But the raw difference between the mean of ~ when I = 1 (the red dots) and the mean of ~ when

I = 0 (the blue dots) is large That’s from the imbalance.

The demonstration fits into the week’s reading as an example of regression to adjust for differences

between treatment and control groups, which is one of the main themes of the course. Later we

will conduct more elaborate simulations in which the regression model is itself wrong.

2. Tinker with an example

You can continue the previous demonstration by playing around with the numbers to change the

result. A key part of the above code is this line, which creates imbalance between treatment and

control groups:

x <- ifelse(z==0, rnorm(N, 2, 2), rnorm(N, 6, 2))

To see the imbalance, just type:

print(mean(x[z==0]))

print(mean(x[z==1]))

If you change the simulation and increase the imbalance between the two groups, this will

propagate into a greater error in the simple comparison, compared to the regression. If you lower

the imbalance to zero, you’ll get a better estimate of the treatment effect.

This demonstration connects to the week’s reading by showing the concepts of balance in causal

inference, and it is relevant to the course as a whole by introducing the idea of learning by

experimenting with code.

Drills

1. Describe a regression slope in words

A continuing theme in the course is precision in language. All the mathematical rigor in the world

won’t help a researcher who is sloppy in the interpretations of results.

For each example below, explain the meaning of the underlined number, first wrongly and then

correctly.

(a) final = 30 + 0.8 ∗ midterm + 10 ∗ math_major + error

Solution: Wrong summary: Increasing the midterm score by 10 points increases the final

score by 8 points. Correct summary: Under the fitted model, the average difference in final

exam scores, comparing two people with the same math major status but differing by 10 points

in the midterm, is 8. Or, comparing two students who are identical in their math major status,

on average you’d predict the student who scored 10 points higher on the midterm to score 8

points higher on the final.

The correct summary differs from the wrong summary in three ways, first by using the

language of comparison rather than intervention, second by explicitly stating that the number

is an average, and third by stating that the number is an attribute of the fitted model.
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(b) final = 30 + 0.8 ∗ midterm + 10 ∗ math_major + error

(c) vote_share = 0.13 + 0.11 ∗ incumbency + 0.65 ∗ previous_vote_share + error

Assume here that this is a model of elections, where incumbency is coded as 1 for incumbents

running for reelection and 0 for open seats.

(d) vote_share = 0.13 + 0.11 ∗ incumbency + 0.65 ∗ previous_vote_share + error

2. Simple coding: computing and graphing functions

For each question below, give R code.

(a) Compute the values of ~ = 2 + 3G for the values G = 1, 2, 3, 4, 5.

Solution:

x <- 1:5

y <- 2 + 3*x

(b) Compute the values of ~ = 2 + 3G for the values G = −2,−1.5,−1, . . . , 1.5, 2.

(c) Compute the values of ~ = |2 + 3G | for the values G = −2,−1.5,−1, . . . , 1.5, 2.

(d) Graph the function, ~(G) = 2 + 3G, for G in the range (−2, 2).
(e) Graph the function, ~(G) = 2 + 3 exp(−4G + 5), for G in the range (−2, 2).
(f) Graph the function, ~(G) = 1/G, for G in the range (−2, 2).

Discussion problems

1. Height and earnings

Consider the following model that has been fit to data from a survey taken in 1990:

earnings = −26000 + 600 ∗ height + 10600 ∗ male + error.

Sketch this fitted line and interpret each coefficient in words.9

2. Graph hypothetical data

Consider an experiment performed on 50 people, in which each person gets a pre-test, then half

the people get the treatment and half get the control, and then later everyone gets a post-test. You

will make series of graphs, plotting post-test vs. pre-test, using different symbols for treatment and

control. Examples of such plots are in Figure 1.4 of Regression and Other Stories. The challenge

of this discussion problem is to make such plots under different scenarios.

In each scenario, assume that the pre-test is a strong but not perfect predictor of the post-test. The

scenarios will differ regarding the treatment effect and the balance between treatment and control

group.

(a) Sketch a graph of hypothetical data arising from an experiment in which the treatment

assignment is balanced with respect to the pre-test and the treatment has a positive effect.

(b) Sketch a graph of hypothetical data arising from an experiment in which people with lower

pre-test scores are more likely to get the treatment, and the treatment has a positive effect.

(c) Sketch a graph of hypothetical data arising from an experiment in which people with lower

pre-test scores are more likely to get the treatment, and the treatment has no effect.

Once you have these scatterplots, you can discuss the role of regression in causal inference. In

the second and third scenarios, the simple difference comparing post-test averages of treatments

and controls will be misleading, as it is necessary to adjust for pre-treatment differences between

treatment and control groups.

9From Section 6.3 of Regression and Other Stories.
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3.3 Data collection and visualization

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Political Measure Download All graphs Tell stories

leanings of handedness and work are with graphs

sports fans with data comparisons

Use Scatterplot Make plots Graph Plots of

comparisons to charades clearer criticism baby names

redraw a graph

Reading

Chapter 2 of Regression and Other Stories: Data and measurement

Pre-class warmup assignments

1. Plots

(a) In R, create data G taking on the values 0, 0.5, 1, . . . , 10, then create ~ =

√
G and make a

scatterplot of ~ vs. G.

(b) In R, create a plot of the line ~ =

√
G, for G ranging from 0 to 10.

2. Overlaying colors

(a) In R, create datasets (G, ~) corresponding to two groups of people. First, create the data for

group 1, with G taking on the values 0, 0.5, 1, . . . , 10, and ~ =

√
G. Then create the data

for group 2, with G taking on the values 0, 2, 4, . . . , 20, and ~ = 2.5 +
√
G. Make a single

scatterplot showing the points (G, ~) with data from group 1 in blue and data from group 2 in

red.

(b) In R, create a single plot with two lines: the line ~ =

√
G in blue, and the line ~ = 2.5 +

√
G in

red, for G ranging from 0 to 20.

Homework assignments

1. (a) Statistics as generalization (Exercise 1.7 of Regression and Other Stories)

Find a published paper on a topic of interest where you feel there has been insufficient attention

to:

i. Generalizing from sample to population.

ii. Generalizing from treatment to control group.

iii. Generalizing from observed measurements to the underlying constructs of interest.

Explain your answers.

(b) Statistics as generalization (Exercise 1.8 of Regression and Other Stories)

Find a published paper on a topic of interest where you feel the following issues have been

addressed well:

i. Generalizing from sample to population.

ii. Generalizing from treatment to control group.

iii. Generalizing from observed measurements to the underlying constructs of interest.

Explain your answers.

(c) A problem with linear models (Exercise 1.9 of Regression and Other Stories)
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Consider the helicopter design experiment in Exercise 1.1 of Regression and Other Stories.

Suppose you were to construct 25 helicopters, measure their falling times, fit a linear model

predicting that outcome given wing width and body length,

time = V0 + V1 ∗ width + V2 ∗ length + error,

and then use the fitted model, time = V0 + V1 ∗ width + V2 ∗ length, to estimate the values of

wing width and body length that will maximize expected time aloft.

i. Why will this approach fail?

ii. Suggest a better model to fit that would not have this problem.

2. (a) Composite measures (Exercise 2.1 of Regression and Other Stories)

Following the example of the Human Development Index in Section 2.1 of Regression and

Other Stories, find a composite measure on a topic of interest to you. Track down the individual

components of the measure and use scatterplots to understand how the measure works, as was

done for that example in the book.

Stories

1. Political leanings of sports fans

In January, 2009, political commentator Brad Miner wrote:10

“With the Super Bowl coming up this weekend, I want to write about sports, which I consider

a key to building a larger conservative coalition in America. . . .

If you did a survey of the political philosophies of 75,000 randomly selected Americans

you’d expect the usual—if somewhat mystifying—results: ‘Only about one-in-five Americans

currently call themselves liberal (21%), while 38% say they are conservative and 36%

describe themselves as moderate.’ So said the folks at Pew Research, and this was after

the November election. Do that same poll among the fans at Raymond James Stadium in

Tampa on Sunday and the results would likely be more like 15% liberal, 30% moderate, and

50% conservative. And a bunch of those liberals would probably be gun owners. Obviously

those numbers are just speculation on my part, but I guarantee that Steelers fans are more

conservative than all Pennsylvanians and ditto Cardinals devotees and the rest of Arizona.

Which is not to say that these folks cast their ballots in November more for McCain than

Obama. That’s the problem.”

What do the data say? We looked up the “attended sporting event in the past year” item on the

General Social Survey. Unfortunately, the question was only asked once, in the 1993–1996 survey,

at which time 56% of respondents said they attended an “amateur or professional sports event”

during the past twelve months. Figure 16 shows how they differed from the 44% who didn’t.

At least in the mid-1990s, sports attenders were a bit more Republican than other Americans

(the categories in Figure 16 are Strong Democrat, Democrat, lean Democrat, Independent, lean

Republican, Republican, strong Republican), but not much different in their liberal-conservative

ideology.

So these data do not appear to support Miner’s claim. Miner expected sports fans to label

themselves as more conservative but maybe not to be more likely to vote Republican; actually,

sports fans were more likely to call themselves Republican but no more likely to describe themselves

as conservative.

10See Andrew Gelman (2009), Sports fans as potential Republicans?, https://statmodeling.stat.columbia.edu/2009/01/27/

sports_fans_as/, and Andrew Gelman (2010), Political leanings of sports fans, https://statmodeling.stat.columbia.edu/2010/04/

07/political_leani/.
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Figure 16 From the General Social Survey in 1993–1996, distribution of political ideology and party identification

scores from respondents who answered Yes or No to the question of whether they attended a sporting event

during the past year. There was not much difference between the two groups in political ideology, but sports fans

were more Republican, on average, than non-fans.

That said, the sporting event attended could be anything between the Super Bowl and a kids’

soccer game. Maybe more dramatic results would be obtained by considering a more restricted

group of sports fans. There are lots of surveys of TV watching, so there should be data that would

give more detail on ideology, voting, and spectator sports watching. And, more generally, we

never want to rely too strongly on just one survey. Still, you have to start somewhere.

A year later, political reporter Reid Wilson shared a graph showing reported political attitude and

voter turnout among watchers of different TV sports. The National Football League was in the

middle but with a bit more Republican than Democratic viewers. You can find the graph online.11

The graph at that link is excellent. In particular, its use of red and blue coloring (indicating points

to the left or right of the zero line) and light/dark shading (indicating points above or below the

center line on the vertical axis) are good ideas, we think, despite that they convey no additional

information, in that they draw attention to key aspects of the data. The sizes of the circles in that

graph appear to be proportional to the number of fans of the different sports. The only thing that

bothers us is that we don’t see any definition of the “Republican Index,” “Democrat Index,” or

“Voter Turnout Index.” We understand the relative positions of the different circles on the graphs

but not the absolute numbers. For example, the National Football League has a GOP Index of

111, a Dem Index of 103, and a Voter Turnout Index of 111. We don’t know what these numbers

represent, exactly.

This story is relevant to the week’s reading because it shows how open questions can be addressed

through data, indeed often through data that have already been collected. The example also

demonstrates what we can learn from simple data exploration and graphics, and the difficulty

understanding the details in the second figure reveals the challenges of interpreting processed data.

11Reid Wilson (2010), Sports viewers largely Republican, National Journal, https://web.archive.org/web/20100402234855/

http://hotlineoncall.nationaljournal.com/archives/2010/03/sports_viewers.php/.
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Figure 17 Graph from a published paper summarizing the results of a psychology experiment. We think this

graph can be improved; see Figure 19.

Going further, we might ask what new data could be collected to assess the potential value of

future political pitches aimed at sports fans.

2. Use the “graphs as comparisons” principle to redraw a graph

Figure 17 shows a pair of bar plots that take up half a page in a published article in psychology.12

We project this onto the screen and ask the class how these plots could be improved.

We could start with the details. To read the graph, you need to go back and forth between the

legend and the bars to keep the color scheme fresh in your mind. The negative space in the middle

of each plot looks a bit like a white bar, which is not directly confusing but makes the display

harder to follow. And we had to do a double-take to interpret the infinitesimal blue bar of zero

height on the left plot. Also, it’s not clear how to interpret the ~-axes: 25 participants out of how

many? And what’s up with the ~-axis on the second graph? The 15 got written as a 1, which

makes us suspect that the graph was re-drawn from an original, which then leads to concern that

other mistakes may have been introduced in the re-drawing process.

But that’s not the direction we want to go. There are problems with the visual display, but going

and fixing them one by one would not resolve the larger problem. To get there, we need to think

about goals.

To structure the discussion, we write on the board the text on Figure 18—ordinarily we would

project pre-written material onto the screen, but in this case the screen is occupied by Figure 17.

A graph is a set of comparisons, and the two goals of a graph are:

(a) To understand and communicate the size and directions of comparisons that you were already

interested in, before you made the graph.

(b) To facilitate discovery of new patterns in data that go beyond what you expected to see.

Both these goals are important. We want to understand and communicate what we think we know,

and we also want to put ourselves in a position where we can learn more.

The question, when making any graph, is: what comparisons does it make it easy to see? After all,

if you just wanted the numbers you could put them in a table.

Now let’s apply these principles to the bar plots in Figure 17. In that display it is easy to compare

12From Alison Gopnik, Thomas Griffiths, and Christopher Lucas (2015), When younger learners can be better (or at least
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Graphs as comparisons. Two goals:

1. Understand and communicate the size and directions of comparisons

that were already of interest

2. Discovery of new patterns

Figure 18 Two goals of a graph. The instructor should write these on the board in preparation for the discussion

of redrawing the graph in Figure 17.

the heights of two bars right next to each other—for example, you can see that the black bars all

higher than the blue bars, except for the pair on the left . . . hmmmm, which are blue and which are

black, again? Finally, the graph lacks an overall title that would point us to the most important

comparisons it is presenting.

We’re not trying to rag on the authors here. This sort of Excel-style bar graph is standard in so

many presentations. We just think they could do better.

So, how to do better? Let’s start with the goals.

(a) What are the key comparisons that the authors want to emphasize? From the caption, it seems

that the most important comparisons are between children and adults. We want a graph that

shows the following patterns:

i. In the Combination scenario, children tended to chose multiple objects (the correct

response, it seems) and adults tended to choose single objects (the wrong response).

ii. In the Individual scenario, both children and adults tended to choose a single object

(the correct response). Actually, we would re-order these and first look at the Individual

scenario, which seems to be some sort of baseline, and then go to Combination which is

displaying something new.

(b) What might we want to learn from a graph of these data, beyond the comparisons listed just

above? This one’s not clear, so we’ll guess. Who were those kids and adults who got the

wrong answer in the Combination scenario? Did they have other problems? What about the

adults who got the wrong answer in the Individual scenario, which was presumably easier?

Did they also get the answer wrong in the other case? There must be some other things to

learn from these data too—it’s hard to get people to participate in a psychology experiment,

and once you have them there, it makes sense to give them as many tasks as can be done. But

from this figure alone, we’re not sure what these other questions would be.

We next consider how to make the revised graph. Given that we don’t have the raw data, and we’re

just trying to redo the figure above, we’ll focus on the first task: displaying the key comparisons

clearly.

Hey—we just realized something! The two outcomes in this study are “Single object” and

“Multiple object”—that’s all there is! And, looking carefully, we see that the numbers in each

graph add up to a constant: it’s 25 children and, ummm, let’s read this carefully . . . 28 adults!

This simplifies our task considerably, as now we have only four numbers to display instead of

eight.

We can easily display four numbers with a line plot. The outcome is percentage who give the

“Single object” response, and the two predictors are Child / Adult and Individual Principle /

Combination Principle.

more open-minded) than older ones, Current Directions in Psychological Science 24, 87–92, https://cocosci.princeton.edu/

tom/papers/LabPublications/GopnicketalYoungLearners.pdf. The discussion here is taken from Andrew Gelman (2017),

Graphs as comparisons: A case study, https://statmodeling.stat.columbia.edu/2017/07/16/graphs-comparisons-case-study/.
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Figure 19 Redrawn graph conveying the same information as in Figure 17, but using less space, and with the key

comparisons easier to see.

One of these predictors will go on the G-axis, one will correspond to the two lines, and the outcome

will go on the ~-axis.

In this case, which of our two predictors goes on the G-axis?

Sometimes the choice is easy: if one predictor is binary (or discrete with only a few categories)

and the other is continuous, it’s simplest to put the continuous predictor as G, and use the discrete

predictor to label the lines. In this case, though, both predictors are binary, so we need to think

more carefully to decide what to do.

We would like to use logical or time order, as that’s easy to follow. There are two options:

• Time order in age, thus Children, then Adults; or

• Logical order in the experiment, thus Individual Principle, then Combination Principle, as

Individual is in a sense the control case and Combination is the new condition.

We tried it both ways and we think the second option was clearer. So we’ll show this graph and

the corresponding R code. The first option could work too.

Figure 19 shows the result, which we think is better than the bar graphs from the original article,

for two reasons. First, we can see everything in one place: as the title says, “Children did better

than adults, specially in the combination condition.” Second, we can directly make both sorts of

comparisons: we can compare children to adults, and we can also make the secondary comparison

of seeing that both groups performed worse under the combination condition than the individual

condition.

We also threw in ±1 and 2 standard error bars, using the formula based on (~ + 2)/(= + 4) for the

uncertainty of a proportion; see page 52 of Regression and Other Stories. The one thing this graph

does not show is whether the adults who got it wrong on the individual condition were more likely

to get it wrong in the combination condition, but that information wasn’t in the original graph

either.

On the whole, we are satisfied that the replacement graph contains all the information in less space

and is much clearer than the original. Again, this is not a slam on the authors of the paper. They

were not working within a tradition in which graphical display is important.
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This example connects to the week’s reading as an example of thinking about graphs as comparisons.

It relates to the course as a whole in that it is about communication and learning from data.

Class-participation activities

1. Measure handedness

One way to explore the surprises of real-world statistics is to look carefully at data collected from

students. Before displaying the collected data, it can be instructive to ask students to share their

guesses of what the data look like. An example that has worked with us is a simple survey of

handedness.13

Please indicate which hand you use for each of the following activities by putting a + in the

appropriate column, or ++ if you use would never use the other hand for that activity. If in any case

you are really indifferent, put + in both columns.

Task Left Right

Writing

Drawing

Throwing

Scissors

Toothbrush

Spoon

Total

Right − Left: Right + Left:
Right − Left
Right + Left

:

Create Left and Right scores by counting the total number of + signs in each column. Your

handedness score is (Right − Left)/(Right + Left): thus, a pure right-hander will have a score of

(12 − 0)/(12 + 0) = 1, and a pure left-hander will have a score of (0 − 12)/(0 + 12) = −1.

Figure 20 Handedness inventory. Each student should fill out this form and report the total score. Students can

then divide into pairs and sketch their guesses of the histogram of these scores for the students in the class, as

illustrated in Figure 21.

Figure 21 After completing their handedness forms (see Figure 20), students should work in pairs to guess and

draw the distribution of responses for students their class. (a) A guess from a group of students of the histogram

of handedness scores in their class; (b) actual data. As in this example, students’ guessed distributions typically

show a sharp division into left- and right-handers; depending on the questions used in the survey, actual data

can show a smoother distribution including mixed-handers.

13From Section 3.3.2 of Teaching Statistics: A Bag of Tricks.
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Figure 22 Example of scatterplot charades, using Figure 1.1b of Regression and Other Stories. Show one graph

at a time, first displaying just the scatterplot, then axes, then axis labels. In this case, the data show results from

recent U.S. presidential elections. Further scatterplot charades examples appear in Figures 23–25.
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Figure 23 Another example of scatterplot charades, using Figure 2.4 of Regression and Other Stories. Show one

graph at a time, first displaying just the scatterplot, then axes, then axis labels, then labels on the points. Further

scatterplot charades examples appear in Figures 24–25.

The instructor should print copies of Figure 20 for all students and have them compute their

handedness scores, which range from −1 to 1; see Figure 20. The next step is to collect these

forms and ask one student to enter the scores into the computer (just the final (Right − Left)/(Right

+ Left) score, no need to type in all the other information on the forms). While this is happening,

the students should pair up, and each pair should take two minutes to draw their guess of the

distribution of the handedness scores of the students in the class.

Then one pair should present their histogram on the board—it typically looks like Figure 21a—and

invite comments from the class. Since they have all just worked on the problem, many students

should be eager to participate. The instructor should adjust the drawn histogram following the

suggestions of the class, and then display the actual data that by now the student has typed in and

read into R. An example from a recent class appears in Figure 21b.

This example fits into the week’s reading on the challenges of measurement. Is the Handedness

Inventory a good way to measure handedness? Are there other skills (for example, texting) that

should be added to the survey?

2. Scatterplot charades

Students do this activity in pairs. Each student should come to class with a scatterplot on some

interesting topic printed on paper or visible on their computer or phone, and then reveal the plot

to the other student in the pair, a bit at a time, starting with the dots only and then successively

uncovering units, axes and titles. At each stage, the other student should try to guess what is being

plotted, with the final graph being the reveal.

Then the two students should switch roles. Once they’ve gone through both examples, the students

in each pair should then discuss why it was easy or difficult to guess each plot’s content and

message, and then they can discuss how it might be possible to improve each plot to make its

visual patterns easier to grasp.
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Figure 24 Another example of scatterplot charades, using Figure 22.1 of Regression and Other Stories. Show

one graph at a time, first displaying just the scatterplot, then axes, then axis labels. This graph shows data on

the success rate of putts in professional golf. A final scatterplot charades example appears in Figure 25.

To give a sense of how this works, Figures 22–25 demonstrate with some examples from Regression

and Other Stories. At the end of the class period before we plan to do this activity, we go through

one or two of these examples with students ahead of time, to give a sense of what sort of graphs

they could bring to class.

Computer demonstrations

1. Download and work with data

It is useful to be able to grab data online and work with these data. We demonstrate the steps of

data cleaning, manipulation, and plotting, using an example from one of the datasets from the

website of Regression and Other Stories.

# Read data from here: https://github.com/avehtari/ROS-Examples

library("foreign")

library("dplyr")

pew_all <- read.dta(paste0(

"https://raw.githubusercontent.com/avehtari/",

"ROS-Examples/master/Pew/data/",

"pew_research_center_june_elect_wknd_data.dta"))

# Look at data

pew_all

names(pew_all)

pew_all$age

table(pew_all$age)

pew_all$party

as.numeric(pew_all$party)

table(pew_all$party)

table(as.numeric(pew_all$party))

table(pew_all$sex)

table(pew_all$marital)

# Recode party into 3 categories:

# -1 for Democrat, 1 for Republican, 0 otherwise

pew_all$party_simple <- recode(pew_all$party, "missing/not asked" = 0,

"republican" = 1, "democrat" = -1, "independent" = 0, "no preference" = 0,

"other" = 0, "dk" = 0)

# Extract a few questions, remove NA's, and remove data with weird ages

pew <- pew_all %>% select(c("age", "sex", "marital", "party_simple")) %>%

na.omit() %>% filter(age < 97)

plot(pew$age, pew$party_simple)
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Figure 25 Another example of scatterplot charades, using Figure 22.5 of Regression and Other Stories. Show

one row of plots at a time, first displaying just the scatterplot, then with axes, then with axis labels. The final row

shows the fully labeled graphs based on a U.S. public opinion survey from 2004.
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# Plot with jitter

n <- nrow(pew)

plot(pew$age + runif(n, -0.1, 0.1), as.numeric(pew$party_simple) +

runif(n, -0.1, 0.1), xlab="Age", ylab="Party")

This final graph is ugly! Some data are not meant to be scatterplotted.

The main point of this demonstration is to give a hands-on feeling for downloading and working

with data, but this example also shows that sometimes the natural-seeming graph won’t be useful.

More work could be done to make a better graph of these data, but we won’t do that here.

2. Make plots clearer

In this demonstration we simulate some data, plot them using the default settings in R, and then

go through some steps to make the graph more readable. This is not the only way to make clean

graphs in R—many users recommend the ggplot2 package. The point here is just that it is

possible to put in some effort and make cleaner, more informative plots.

# Generate 50 data points

N <- 50

midterm <- runif(N, 0, 100)

a <- 20

b <- 0.5

error <- rnorm(N, 0, 5)

treatment <- sample(c(0,1), N, replace=TRUE)

theta <- 10

final <- a + b*midterm + theta*treatment + error

fake <- data.frame(midterm, treatment, final)

# Plot data

plot(fake$midterm, fake$final)

# Improved plot

plot(fake$midterm, fake$final, main="Comparing teaching plans",

xlab="Midterm", ylab="Final", col=ifelse(fake$treatment==1,

"red", "blue"), pch=20, xlim=c(0, 100), ylim=c(0, 100))

There are other ways to effectively plot data, just as there are many ways to express a thought in

human language. The point is that a programming language such as R allows us to improve a

graph, step by step, as necessary.

Drills

1. All graphs are comparisons

For each of a series of graphs, identify at least one implicit or explicit comparison that is facilitated

by the graph. You can pick graphs from the internet or just use the ones below.14

(a) Dot plot:15

14For a few more examples, see Andrew Gelman (2021), Making better data charts: From communication goals to graphics

design, https://statmodeling.stat.columbia.edu/2021/09/23/design-charts/.

15From Andrew Gelman, Daniel Lee, and Yair Ghitza (2010), Public opinion on health care reform, The Forum 8 (1), 8.



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

3.3. DATA COLLECTION AND VISUALIZATION 65

Solution: This graph displays several comparisons. First, for each predictor, the solid dot and

the open circle are compared to each other. Second, the dots for different predictors are being

compared. Third, all the dots are compared to zero.

(b) Scatterplot:16

(c) Multiple time series:17

16From Andrew Gelman and Jonathan Katz (2007), Moderation in the pursuit of moderation is no vice: The clear

but limited advantages to being a moderate for Congressional elections, http://www.stat.columbia.edu/~gelman/research/

unpublished/moderation5.pdf.

17From Andrew Gelman and Antony Unwin (2013), Infovis and statistical graphics: Different goals, different looks (with

discussion), Journal of Computational and Graphical Statistics 22, 2–49.
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2. Graph criticism

For each of a series of graphs, identify at least one criticism. You can pick graphs from the internet

or simply use the ones here:

(a) Multiple time series:18

Solution: This graph is good, but it has a couple of small flaws. First, rather than using a

legend at the top of the graph, it would be better to label the lines directly, which would convey

the information without the reader needing to go back and forth. Second, the G-axis can be

improved by putting year labels every ten years and tick marks every five years, which again

gives the information without the reader needing to work to decode the G-axis.

(b) Line plot:19

18From Signe-Mary McKernan, Caroline Ratcliffe, C. Eugene Steuerle, Caleb Quakenbush, and Emma Kalish, Nine charts

about wealth inequality,” Urban Institute, https://apps.urban.org/features/wealth-inequality-charts/.

19From Matthew Bramlett and William Mosher (2022), Cohabitation, marriage, divorce, and remarriage in the United

States, Vital Health Statistics 23 (22), National Center for Health Statistics.
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(c) Bar plot:20

(d) Pie charts:21

Discussion problems

1. Tell stories with graphs

Find an example that interests you, and mock up a series of graphs to display what you’d like

to see. For example, if you are interested in tracking the progress of students in a school and

compare grades of students in different years of the program, you might make a set of time-series

graphs and scatterplots.

2. Name Grapher and plots of baby names

Go online to Name Grapher and play with some names.22 This dynamic visualization, whose

construction is far beyond the scope of this course, is a great demonstration of the possibilities of

data exploration. Students should go on their computers in pairs and play with Name Grapher and

see what interesting patterns they can find. We also point out that this program, while wonderful,

does not do everything, and sometimes some coding is needed to extract and display aspects of

the data, for example when graphing the trends of last letters of baby names shown in Section 2.1

of Regression and Other Stories.

20From Philip Bump (2020), Older Americans are more worried about coronavirus—unless

they’re Republican, Washington Post, 14 Mar, https://www.washingtonpost.com/politics/2020/03/14/

older-americans-are-more-worried-about-coronavirus-unless-theyre-republican/.

21See Andrew Gelman (2017), You’ll never guess this one quick trick to diagnose problems with your graphs and then

make improvements, https://statmodeling.stat.columbia.edu/2017/06/02/quick-trick/.

22See https://namerology.com/baby-name-grapher/. For further background, see Andrew Gelman (2022), The Baby Name

Voyager is back!, https://statmodeling.stat.columbia.edu/2022/03/13/the-baby-name-voyager-is-back/.
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3.4 Review of mathematics and probability

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Death rate Amoebas and Matrix Graphs of College

in the exponential growth manipulations straight admissions

pandemic and decline lines

Galton’s Squares, cubes, Compute Normal Probability

giants a power-law weighted distribution of a rare

growth averages event

Reading

1. Chapter 3 of Regression and Other Stories: Some basic methods in mathematics and probability.

2. Appendix A of Regression and Other Stories: Computing in R, Sections A.4–A.5

Pre-class warmup assignments

1. Weighted averages

In R, create three vectors each of length 10, the first being the number 1 repeated 10 times, the

second being the numbers 1 to 10, and the third being the sequence 1, 4, 9, . . . , 100. Compute the

following weighted averages of these three vectors. In each case, your output should be a vector of

length 10.

(a) Weights 1/3, 1/3, 1/3
(b) Weights 1, 1, 1

(c) Weights 1, 2, 3

(d) Weights 0, 1, 2

2. Simulate from the binomial distribution

Express each of these lines of code in story form. For example, the first example could be the

number of shots made by a basketball player who takes 20 shots and has a 30% chance of making

each shot. Run each line of code in R on your computer to check that your story interpretation

makes sense.

(a) rbinom(1, 20, 0.3)

(b) rbinom(1, 20, 0.4)

(c) rbinom(2, 20, c(0.3, 0.4))

(d) rbinom(2, c(30, 20), c(0.3, 0.4))

Homework assignments

1. (a) Data visualization (Exercise 2.6 of Regression and Other Stories)

Take data from some problem of interest to you and make several plots to highlight different

aspects of the data, as was done in the baby names example in Figures 2.6–2.8 in Regression

and Other Stories.

(b) Reliability and validity (Exercise 2.7 of Regression and Other Stories)

i. Give an example of a scenario of measurements that have validity but not reliability.

ii. Give an example of a scenario of measurements that have reliability but not validity.
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2. (a) Weighted averages (Exercise 3.1 of Regression and Other Stories)

A survey is conducted in a certain city regarding support for increased property taxes to fund

schools. In this survey, higher taxes are supported by 50% of respondents aged 18–29, 60%

of respondents aged 30–44, 40% of respondents aged 45–64, and 30% of respondents aged

65 and up. Assume there is no nonresponse. Suppose the sample includes 200 respondents

aged 18–29, 250 aged 30–44, 300 aged 45–64, and 250 aged 65+. Use the weighted average

formula to compute the proportion of respondents in the sample who support higher taxes.

(b) Weighted averages (Exercise 3.2 of Regression and Other Stories)

Continuing the previous exercise, suppose you would like to estimate the proportion of all

adults in the population who support higher taxes, so you take a weighted average as in Section

3.1 of Regression and Other Stories. Give a set of weights for the four age categories so that

the estimated proportion who support higher taxes for all adults in the city is 40%.

(c) Probability distributions (Exercise 3.3 of Regression and Other Stories)

Using R, graph probability densities for the normal distribution, plotting several different

curves corresponding to different choices of mean and standard deviation parameters.

(d) In pairs: Working through your own example (Exercise 2.10 of Regression and Other Stories)

Continuing the example from Exercise 1.10 of Regression and Other Stories, graph your data

and discuss issues of validity and reliability. How could you gather additional data, at least in

theory, to address these issues?

Stories

1. Death rate in the pandemic

In April, 2021, the New York Times claimed that “the U.S. death rate in 2020 was the highest

above normal since the early 1900s—even surpassing the calamity of the 1918 flu pandemic.”23

Really? No. The death rate increased by 15% from 2019 to 2020, but it jumped by 40% from

1917 to 1918. But, if so, why would anyone claim differently? Therein lies a tale.

Here’s the background, again from the news article:

“In the first half of the 20th century, deaths were mainly dominated by infectious diseases.

As medical advancements increased life expectancy, death rates also started to smooth out in

the 1950s, and the mortality rate in recent decades—driven largely by chronic diseases—had

continued to decline.”

To continue the discussion, we follow the link to the news article and show three graphs.24 By

looking at these graphs, we will be able to figure out what is going on, how the wrong claim came

to be, and why it is mistaken.

The first of the three graphs is labeled “Death rate above and below normal in the U.S.” and shows

a time series from 1910 through 2020, with a peak at about +11% during the 1918 flu pandemic

and another peak at +16% during the 2020 covid pandemic.

The second graph is labeled “Death rate in the U.S. over time” and shows a gradual decline in

death rate from slightly above 2000 deaths per 100 000 at the beginning of the century to a level

below 1000 in recent decades. We don’t know why they give deaths per 100 000, which is a scale

that we have little intuition on. For some people, reporting the death rate as 2.6% (that is, 2.6 per

hundred) would be more interpretable than a death rate of 2600 per 100 000.

23Denise Lu (2021), How COVID upended a century of patterns in U.S. deaths, New York Times, 23 Apr, https:

//www.nytimes.com/interactive/2021/04/23/us/covid-19-death-toll.html. The discussion here is taken from Andrew Gelman

(2021), Is it really true that “the U.S. death rate in 2020 was the highest above normal since the early 1900—even surpassing

the calamity of the 1918 flu pandemic”?, https://statmodeling.stat.columbia.edu/2021/04/25/is-it-really-true/.

24https://www.nytimes.com/interactive/2021/04/23/us/covid-19-death-toll.html.
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The third graph is labeled “Total deaths in the U.S. over time” and shows a baseline level of 1

million in 1917 with a jump to 1.4 million in the flu year of 1918, and baseline level of 2.8 million

in 2019 with a jump to 3.3 million in 2020.

To summarize, here’s 1917 and 1918, reading roughly off the posted graphs:

• 1917: 2300 deaths per 100 000 and a total of 1 million deaths,

• 1918: 2600 deaths per 100 000 and a total of 1.4 million deaths.

This is an increase of 13% in the rate but an increase of 40% in the total. But we looked up the

U.S. population and it seems to have been roughly constant between 1917 and 1918, so these

above numbers can’t all be correct!

According to Wikipedia, the United States had 103 million people in 1917 and 1918. One million

deaths divided by 103 million people is 1%, not 2.3%. So it’s not clear what is meant by “death

rate” in that article.

The problem also arises in other years. For example, the article says that 3.4 million Americans

died in 2020. Our population is 330 million, so, again, that’s a death rate of about 1%. But the

2020 death rate in their “Death rate in the U.S. over time” chart is less than 1%.

We can guess that their death rate graph is some sort of age-adjusted death rate . . . ummmm, yeah,

OK, there it is at the bottom of the page:

“Death rates are age-adjusted by the C.D.C. using the 2000 standard population.”

Compared to 1918, the 2000 population has a lot of old people, and we have an even older

population today. So the age-adjusted death rate overweights the olds compared to 1918 and

slightly underweights the olds compared to 2020. The age adjustment to the 2000 population

makes 1918 look not so bad because the 1918 flu was killing lots of young people, and young

people are a relatively small proportion of the 2000 population.

To put it another way, it seems wrong for them to say that the 1918 flu wasn’t so bad because it

killed lots of young people, and young people get downweighted in their adjustment. To use the

2000 population to assess the impact of the 1918 flu would be like using a modern weighting of

the Consumer Price Index and then saying that inflation in 1918 was really low because the prices

of airline flights weren’t going up at all back then.

Also, one other thing. The note at the bottom of the article says, “Expected rates for each year

are calculated using a simple linear regression based on rates from the previous five years.” One

reason why 1918 is not more above normal than it is, is that there happens to be an existing upward

trend during the five years preceding 1918, so the implicit model would predict a further increase

even in the absence of the flu. It’s not clear how to think about that.

Age adjustment can be tricky, as we’ve already seen in Section 2.4 of Regression and Other Stories.

In this case, there may also have been a political motivation to stress the seriousness of covid in

comparison to earlier pandemics.

This example relates to the week’s reading because we are looking at the properties of weighted

averages, which are discussed in Section 3.1 of Regression and Other Stories. It is relevant to

the course more generally because it demonstrates the importance of understanding exactly how

data summaries are formed; as noted above, the same issues of weighting arise in constructing the

Consumer Price Index and other measures of the economy and society.

25Francis Galton (1869), Hereditary Genius, London: Macmillan, https://galton.org/books/hereditary-genius/text/pdf/

galton-1869-genius-v3.pdf. The discussion here is taken from Andrew Gelman (2006), Galton was a hero to most,

https://statmodeling.stat.columbia.edu/2006/10/23/galton_was_a_he/. For more on historical trends in height and body size,

see, for example, Roderick Flood (1988), Height, weight, and body mass of the British population since 1820, National Bureau

of Economic Research historical working paper 1018, https://www.nber.org/papers/h0108/.
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Assumed normal distribution of heights

4' 4'6" 5' 5'6" 6' 6'6" 7'

Figure 26 (a) From Francis Galton’s 1869 book Hereditary Genius, a visualization of the hypothesized distribution

of heights of 1 million British men. The graph does not seem consistent with reality; it turned out that the problem

was that Galton was unfamiliar with the tail properties of the normal distribution. (b) Normal distribution with

mean 5′6′′ and standard deviation 3.23′′. Shaded areas show ±1, 2, and 3 standard deviations from the average.

Under this distribution, fit to Galton’s claim that 100 men per million would be below 5′6′′ and 100 per million

above 6′6′′, we would not expect the extremes seen in the picture to the left.

2. Galton’s giants

Figure 26a shows a graph from a classic book by Francis Galton, one of the fathers of applied

statistics.25 Galton, a cousin of Charles Darwin, is now controversial because of his racism and

advocacy of eugenics; here, however, we focus on the more innocuous topic of the distribution of

heights.

Figure 26a may look reasonable at first—it is centered at 5 feet 6 inches, the average height of

men in Britain at that time—but a careful look shows problems. In particular, according to the

picture, approximately one man in a million should be 9 feet tall! This doesn’t make sense: if

there were about 6 million men in England in Galton’s time,26 that would lead us to expect six

9-footers. As far as we know, there were no such giants roaming the land, and we assume Galton

should have considered this when he was making the graph.

We asked two experts on the history of statistics to explain what happened. Antony Unwin wrote:

“Galton was postulating a hypothetical population with a normal distribution . . . he should

have thought about the extreme values. On the other hand information in those days ways

not so readily available as it is now. Might Galton have believed there were such people, he

26The population of the British Isles was about 30 million in 1869; excluding Ireland takes us to approximately 25 million;

counting just males takes us down to about 12 million, and we can roughly assume half these were adult men.
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just hadn’t heard anything of them yet? The lower classes were not acknowledged and who

knows what oddities might have been found amongst them?”

Stephen Stigler wrote:

“Galton was describing a hypothetical population, and he specifies for the illustration that

the mean is 66 inches and that 100 per million exceed 78 inches. By my rough calculation

that gives a standard deviation of about 3.2 inches. This was his earliest statistical book

and Galton had more faith in the normal than later, but without good tables available (even

though Laplace had given a continued fraction that would have given acceptable results)

Galton did not appreciate how fast the tail comes down at the extremes. His view might

have been colored by the fact that in the 1850s he had spent a couple of years in Africa,

where there were and still are peoples of a quite wide variety of heights.”

You can work out the calculations using R. Start with the claim that 100 men per million exceed

78 inches. To convert this into the normal distribution, we compute qnorm(1e-4), which returns

−3.71. The claim, then, is that 78 inches is 3.71 standard deviations higher than the mean of 66

inches; thus the standard deviation of heights would be (78 − 66)/3.71 = 3.23, as illustrated in

Figure 26b. In that case, plugging in 9 feet (that is, 108 inches) yields (108 − 66)/3.23 = 13.0, so

that a 9-footer would be 13 standard deviations above the mean. The probability of this occurring

under the normal distribution is essentially zero: in R, pnorm(-13.0), which returns the value

6e-39, or 6 ∗ 10−39.

What about seven-footers? If British men’s heights were truly normally distributed with mean 66

inches and standard deviation 3.2 inches, then the proportion more than 7 feet tall would be 1 -

pnorm((84-66)/3.23), or 1.2 ∗ 10−8, which is still less than 1 in a million! In contrast, Galton’s

graph shows 20 men who are about 7 feet tall. This suggests that Galton did not know the tails of

the normal distribution; he was just guessing and gave a distribution with tails that were too wide.

In addition, his dots are too uniform in the range between 5 feet 10 inches and 6 feet 6 inches; in

reality, there would be many more men at the lower end of that band and a lot fewer at the high

end.

At this point, you might say we’re just being picky, as Galton was just making his graph (using

technology of the 1860s!) to make a general point about variation. The message we want to convey

here is that assumptions have consequences. The normal distribution for men’s heights might be a

reasonable approximation (depending on your purpose); if you use this distribution, it has specific

implications. Comparing the model’s predictions to data can reveal problems with the model but

only if we are careful about getting the predictions right.

The connection of this example to this week’s reading is the use of R to calculate properties of the

normal distribution. We did several calculations, first using the average and a quantile to deduce

the standard deviation of the distribution, then using the average and the standard deviation to

compute tail probabilities. The connection to the larger themes of the course is that probability

models make specific predictions that can be checked.

Class-participation activities

1. Amoebas and exponential growth and decline

Suppose you have an amoeba that takes an hour to divide, and then the two amoebas each

divide in one more hour, and so forth.27 What is the equation of the number of amoebas, ~,

as a function of time, G (in hours)? It can be written as ~ = 2G or, on the logarithmic scale,

log ~ = (log 2) ∗ G = 0.69G.

Suppose you have the same example, but the amoeba takes three hours to divide at each step.

27From Section 3.8.1 of Teaching Statistics: A Bag of Tricks.
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Then the number of amoebas ~ after time G has the equation, ~ = 2G/3
= (21/3)G = 1.26G or, on

the logarithmic scale, log ~ = (log 1.26) ∗ G = 0.23G. The slope of 0.23 is one-third the earlier

slope of 0.69 because the population is growing at one-third the rate.

We then ask students to work in pairs to come up with other examples of exponential growth

or decline. They should come up with reasonable values for the parameters �, 1 or 0, 1 in

the equations ~ = � exp(1G) or log ~ = 0 + 1G. They should also come up with examples of

exponential decline.

For example, consider an asset that is initially worth $1000 and declines in value by 20% each year.

Then its value at year G can be written as ~ = 1000 ∗ 0.8G or, equivalently, ~ = 1000 4log(0.8)G
=

1000 4−0.22G . Taking the log of both sides yields log ~ = log 1000 − 0.22G = 6.9 − 0.22G.

2. Squares, cubes, and power-law growth

The formula log ~ = 0 + 1 log G represents power-law growth if 1 > 0 or decline if 1 < 0:

Equivalently this model can be written as ~ = �G1, where � = exp(0). The parameter � is the

value of ~ when G = 1, and the parameter 1 determines the rate of growth or decline. A one-unit

difference in log G corresponds to an additive difference of 1 in log ~.

Here are two examples:28

• Power law. Let ~ be the area of a square and G be its perimeter. Students should visualize this

in pairs by sketching a square on paper. Then ~ = (G/4)2, and you can take the log of both

sides to get log ~ = 2 (log G − log 4) = −2.8 + 2 log G.

• Non-integer power law. Let ~ be the surface area of a cube and G be its volume. Students

should in pairs sketch a cube. If ! is the length of a side of the cube, then ~ = 6!2 and G = !3,

hence the relation between G and ~ is ~ = 6G2/3; thus, log ~ = log 6 + 2
3

log G = 1.8 + 2
3

log G.

We then ask students to work in pairs to come up with social-science examples of power-law

growth or decline. They should come up with reasonable values for the parameters �, 1 or 0, 1 in

the equations ~ = �G1 or log ~ = 0 + 1 log G. An example is elasticity in economics. Suppose that

if you increase the price of an item by 1%, its sales decline by 2%. That’s log ~ = 0 − 2 log G. You

can understand this further by graphing hypothetical data consistent with this or other elasticities.

The next step is for each student in a pair to make up and graph an example of power-law growth

or decline and for the other student to figure out the mathematical relationship. Then they switch

roles, giving each student the opportunity to simulate and decode the pattern.

Computer demonstrations

1. Matrix manipulations

You can predict the national popular vote in a presidential election conditional on economic

growth, using the fitted the ElectionsEconomy model, using vectors and matrices.29

# Vectors

a_hat <- 46.3

b_hat <- 3.0

x <- c(-1, 0, 3)

y_hat <- a_hat + b_hat * x

print(y_hat)

# Matrices

X <- cbind(c(1, 1, 1), c(-1, 0, 3))

28From Section 3.8.1 of Teaching Statistics: A Bag of Tricks and Section 3.4 of Regression and Other Stories.

29From Section 3.2 of Regression and Other Stories.
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coef_hat <- c(46.3, 3.0)

y_hat <- X %*% coef_hat

print(y_hat)

2. Compute weighted averages using vectors and matrices

One way to better understand weighted averages is to compute them in different ways.30

## Example 1: age in North America

population <- c(310, 112, 34) # US, Mexico, Canada

average_age <- c(36.8, 26.7, 40.7)

# Approach 1 (using raw quantities)

weighted_average <- sum(population * average_age) / sum(population)

print(weighted_average)

# Approach 2 (using relative weights and dot product)

weights <- population / sum(population)

weighted_average <- sum(weights * average_age)

print(weighted_average)

# Approach 3 (using matrix multiplication)

weighted_average <- weights %*% average_age

print(weighted_average)

## Example 2: age in the U. S. (using dot product)

weights <- c(0.51, 0.49) # female, male

average_age <- c(38.1, 35.5)

weighted_average <- sum(weights * average_age)

print(weighted_average)

## Example 3: teachers' salary in the U.S. (using matrix multiplication)

weights <- c(0.79, 0.21) # female, male

average_income <- c(45865, 49207)

weighted_average <- weights %*% average_income

print(weighted_average)

## Example 4: age, height, and weight in the U.S.

weights <- c(0.51, 0.49) # female, male

attributes <- cbind(c(38.1, 35.5), c(63.5, 69.1), c(170.6, 197.9))

# age, height, weight

weighted_average <- weights %*% attributes

print(weighted_average)

Drills

1. Graphs of straight lines

(a) Write R code to graph the line, ~ = 250 + 0.35G, for G in the range 0 through 10.

Solution:

curve(250 + 0.35x, from=0, to=10)

(b) Write R code to graph the three lines, ~ = 250 + 1G, for G in the range 0 through 10, and for 1

taking on the values 0.1, 0.2, and 0.3.

30From Section 3.1 of Regression and Other Stories.
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(c) Do the previous problem, using different colors for the three lines.

(d) Repeat the previous problem, now making sure that your ~-axis ranges from 249 to 255.

2. Normal distribution

For each of the following questions, graph the distribution of ~, estimate roughly the probability

that ~ falls in the specified interval, and give R code to compute the probability that ~ falls in the

specified interval. All distributions are normal distributions.

(a) Distribution: mean 500 and standard deviation 100. Interval: (−∞, 600)
Solution: Sketch the normal distribution. 600 is 1 standard deviations above the mean, so the

probability of ~ being more than 600 is 16%, hence the probability that ~ is less than 600

must be 84%.

In R, pnorm(600, 500, 100)

(b) Distribution: mean 500 and standard deviation 100. Interval: (500,∞)
(c) Distribution: mean 500 and standard deviation 100. Interval: (300, 500)
(d) Distribution: mean 0 and standard deviation 2. Interval: (−2, 2)
(e) Distribution: mean 0 and standard deviation 2. Interval: (−∞,−4)
(f) Distribution: mean 0 and standard deviation 2. Interval: (−4,−2)

Discussion problems

1. College admissions and weighted averages

Admissions to university are based on many factors, two of which are the most important are the

score on a standardized admissions test and high school grade point average. Suppose you want

to combine these into a single score, using a weighted average of the form 0 ∗ (Test score) + 1 ∗
(Grade point average), where test scores range from 400 to 1600 and grade point averages range

from 0 to 4. What would be reasonable values of 0 and 1 so that the two factors counts somewhat

equally in the average?

2. Estimate the probability of a rare event

Section 3.6 of Regression and Other Stories discusses how to estimate the probability of a tied

election. Elections are sometimes close but are rarely exactly tied, and so the best way of estimating

this probability is not purely empirically but rather using a combination of empirical frequencies

and mathematical modeling to connect the rare event of interest to a more frequent “precursor

event” which occurs more frequently. Instead of directly counting the number of times an election

has been tied, you can see how often an election is decided within 10 000 votes and then divide

that frequency by 10 000 to get an estimated probability of an exact tie.

For this discussion problem, give another example like this, estimating the probability of some

rare event by connecting it to a more common precursor.
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3.5 Statistical inference

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

They got Design a Simulate fake Binomial Confidence

the wrong bogus study data and model for intervals and

standard error conf interval basketball true values

Claims of Think about Proportions, Sample size Standard error

implausibly effect sizes means, and and standard for “feeling

large effects differences errors thermometers”

Reading

Chapter 4 of Regression and Other Stories: Statistical inference

Pre-class warmup assignments

1. Confidence intervals from the binomial distribution

A sample of = people are selected at random from a large population and are asked a question,

to which ~ reply Yes and = − ~ reply No. For each example below, give a 95% interval for the

proportion in the population who would answer Yes if asked.

(a) = = 1500, ~ = 750

(b) = = 1500, ~ = 900

(c) = = 100 000, ~ = 51 000

(d) = = 10, ~ = 6

(e) = = 3, ~ = 3

2. Coverage of confidence intervals

Based on the normal approximation, the estimate ± 2 standard errors gives an approximate 95%

interval. Similarly:

(a) What is the coverage of the estimate ±1 standard error?

(b) For what value G does the estimate ±G standard error have 50% coverage?

(c) For what value G does the estimate ±G standard error have 80% coverage?

Homework assignments

1. (a) Probability distributions (Exercise 3.5 of Regression and Other Stories)

Using a bar plot in R, graph the binomial distribution with = = 20 and ? = 0.3.

(b) Linear transformations (Exercise 3.6 of Regression and Other Stories)

A test is graded from 0 to 50, with an average score of 35 and a standard deviation of 10. For

comparison to other tests, it would be convenient to rescale to a mean of 100 and a standard

deviation of 15.

i. Labeling the original test scores as G and the desired rescaled test score as ~, come up with

a linear transformation, that is, values of 0 and 1 so that the rescaled scores ~ = 0 + 1G

have a mean of 100 and a standard deviation of 15.

ii. What is the range of possible values of this rescaled score ~?

iii. Plot the line showing ~ vs. G.
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(c) Linear transformations (Exercise 3.7 of Regression and Other Stories)

Continuing the previous exercise, there is another linear transformation that also rescales the

scores to have mean 100 and standard deviation 15. What is it, and why would you not want

to use it for this purpose?

2. (a) Comparison of proportions (Exercise 4.1 of Regression and Other Stories)

A randomized experiment is performed within a survey. 1000 people are contacted. Half the

people contacted are promised a $5 incentive to participate, and half are not promised an

incentive. The result is a 50% response rate among the treated group and 40% response rate

among the control group. Give an estimate and standard error of the average treatment effect.

(b) Choosing sample size (Exercise 4.2 of Regression and Other Stories)

You are designing a survey to estimate the gender gap: the difference in support for a candidate

among men and women. Assuming the respondents are a simple random sample of the voting

population, how many people do you need to poll so that the standard error is less than 5

percentage points?

(c) Comparison of proportions (Exercise 4.3 of Regression and Other Stories)

You want to gather data to determine which of two students is a better basketball shooter. One

of them shoots with 30% accuracy and the other is a 40% shooter. Each student takes 20

shots and you then compare their shooting percentages. What is the probability that the better

shooter makes more shots in this small experiment?

(d) Designing an experiment (Exercise 4.4 of Regression and Other Stories)

You want to gather data to determine which of two students is a better basketball shooter. You

plan to have each student take # shots and then compare their shooting percentages. Roughly

how large does # have to be for you to have a good chance of distinguishing a 30% shooter

from a 40% shooter?

Stories

1. A consulting project where they got the wrong standard error

We once worked on a consulting project on a legal case involving sampling of insurance claims.

We were asked to review a report written by a consultant on the other side. After a quick read of

that other report, we realized its numbers were wrong, but it took us a few hours to figure out how

they made the mistake that they made. It was important for us when writing our report to not just

see the mistake that was made but to understand how it had happened, because without that full

understanding we could not be sure that we hadn’t missed anything.

The report involved a sample of 152 claims from a larger population, and the results were presented

as a series of proportions with margins of error (that is, ±2 standard errors); Figure 27 shows

some of the results. For example, one of the estimates was 45.7% with a margin of error of 1.9%,

thus a standard error of 0.9% or 1.0%. We knew this was wrong because the standard error of ~/=
for a simple random sample of size 130 with proportion 0.457 is 0.5/

√
152 = 0.041, that is, 4.1

percentage points. The reported standard error of 0.009 or 0.010 was too low by a factor of 4. The

actual survey was more complicated, as it involved stratified sampling—we will not go into the

details of the sampling here, except to say that in this case we would actually expect the standard

error to be a bit higher, not lower, than 0.041.

So how did they get a standard error of 0.009 or 0.010 in that report? That sample of = = 152 was

taken from a larger population of size # . It seems they had mistakenly divided by
√
# instead of√

= when computing the standard error, and we trace this error to the blind use of a formula, along

with a lack of experience. It is standard in opinion polls to sample 1000–1500 people, which

yields a margin of error (2 standard errors) of 3 percentage points; we’ve seen enough of these to

know that a margin of error of 1.9 percentage points from a sample of 152 did not look right.
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Figure 27 Snapshot from a report summarizing inferences from a sample of 152 insurance claims. The “margin

of error” is intended to represent 2 standard errors; given the sample size, the numbers in this column are

suspiciously low.

This story is relevant to the week’s reading as an example of computing uncertainty in an estimated

proportion, and it relates to the course as a whole as a demonstration of the risks of mindless use

of formulas.

2. Claims of implausibly large effects

Recent decades have seen many high-profile claims in the social and biological sciences that, in

retrospect, would represent implausibly large effects. Figure 28 gives several examples.31 Quickly

going over these four stories can give some insight into effect sizes, statistical significance, and

selection bias.

The first example is a study comparing a group of toddlers from low-income families who received

psychosocial stimulation to a comparable group who received no such treatment. Both groups

were followed up for twenty years. The study reports that early educational intervention increased

average earnings by 42% when the participants were young adults. Moreover, the earnings of the

stimulated underprivileged group caught up with those of their better-off peers, suggesting that

early intervention is a key driver in reducing inequality. There are sweeping political implications

here—namely, how much should a government invest in early childhood education? There

remains a lot of controversy in education research about what works and what doesn’t, and for

which students. Long-term experiments on children’s lives are costly in time, money, and human

resources. As a result, major decisions on education policy can turn on the statistical interpretation

of small, idiosyncratic data sets—in this case, a study of 129 Jamaican children.

Before considering the politics, though, we need to look at the methodology. The problem is that

there are many ways of looking at the data in this sort of study, and this leads to overestimates of

effect sizes. It’s just the nature of scientific reporting: estimates near zero remain unpublished or

get adjusted higher (based on decisions arising from reasonable scientific judgments), while high

31Paul Gertler, James Heckman, Rodrigo Pinto, Arianna Zanolini, Christel Vermeerch, Susan Walker, Susan Chang, and

Sally Grantham-McGregor (2013), Labor market returns to early childhood stimulation: A 20-year followup to an experimental

intervention in Jamaica, National Bureau of Economic Research working paper 19185, https://www.nber.org/papers/w19185;

see discussion in Section 1.5 of Regression and Other Stories and at Andrew Gelman (2013), Childhood intervention

and earnings, Symposium, http://www.symposium-magazine.com/childhood-intervention-and-earnings/. Alec Beall and

Jessica Tracy (2013), Women are more likely to wear red or pink at peak fertility, Psychological Science, 24, 1837–

1841; see discussion at Andrew Gelman (2013), Too good to be true, Slate, 24 July, https://slate.com/technology/2013/

07/statistics-and-psychology-multiple-comparisons-give-spurious-results.html. Lysann Damisch, Barbara Stoberock, and

Thomas Mussweiler (2010), Keep your fingers crossed!: How superstition improves performance, Psychological Science 21,

1014–1020; see discussion at Andrew Gelman (2021), The so-called “lucky golf ball”: The Association for Psychological

Science promotes junk science while ignoring the careful, serious work of replication, https://statmodeling.stat.columbia.

edu/2021/12/20/not-replicable-but-citable/. Kristina Durante, Ashley Rae, and Vladas Griskevicius (2013), The fluctuating

female vote: Politics, religion, and the ovulatory cycle, Psychological Science 24, 1007–1016; see discussion in Section 4.5 of

Regression and Other Stories and at Andrew Gelman (2015), The connection between varying treatment effects and the crisis

of unreplicable research: A Bayesian perspective, Journal of Management 41, 632–643.
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(a) “Labor Market Returns to Early Childhood Stimulation”:

“We find large effects . . . from a randomized intervention that gave psychosocial stimulation to stunted

Jamaican toddlers living in poverty. The intervention consisted of one-hour weekly visits from community

Jamaican health workers over a 2-year period that taught parenting skills . . . We re-interviewed the study

participants 20 years after the intervention. Stimulation increased the average earnings of participants by

42 percent . . . ”

(b) “Women are More Likely to Wear Red or Pink at Peak Fertility”:

“Across two samples (# = 124), women at high conception risk were more than 3 times more likely to

wear a red or pink shirt than were women at low conception risk . . . ”

(c) “Keep Your Fingers Crossed!: How Superstition Improves Performance”:

“Experiments 1 through 4 show that activating good-luck-related superstitions via a common saying

or action (e.g., ‘break a leg,’ keeping one’s fingers crossed) or a lucky charm improves subsequent

performance in golfing, motor dexterity, memory, and anagram games . . . ”

(d) “The Fluctuating Female Vote: Politics, Religion, and the Ovulatory Cycle”:

“Building on theory suggesting that political and religious orientation are linked to reproductive goals,

we tested how fertility influenced women’s politics, religiosity, and voting in the 2012 U.S. presidential

election. Ovulation led single women to become more liberal, less religious, and more likely to vote for

Barack Obama. In contrast, ovulation led women in committed relationships to become more conservative,

more religious, and more likely to vote for Mitt Romney. . . . ”

Figure 28 Titles and extracts from four published studies claiming to find implausibly large effects: (a) a claim

that a weekly intervention on preschool children increases their later adult income by an average of 42%; (b) a

claim that women are three times more likely to wear red or pink during certain times of the month; (c) a claim

that a “lucky golf ball” increases putting accuracy by 35%; (d) a claim that single women were 20 percentage

points more likely to support Barack Obama during certain times of the month. We project this onto the screen

during a discussion of inflated estimates and forking paths in statistical analyses.

estimates remain. We have every reason to think the effect of childhood stimulation is positive for

most children, but we can only assume that the 42% number is an overestimate.

There are two issues with this study. First, given the uncertainty in the study, the bias in the

estimate could be huge. Consider that published results typically are required to be “statistically

significant,” that is, at least 2 standard errors from zero, and the estimated effect of 0.42 has a

standard error of approximately 0.20.32 Thus, in an experiment with this level of uncertainty, any

statistically-significant estimate would have to be at least 0.40, that is, an estimated effect of at

least 40% on adult earnings.

The second problem is that, given the selection involved in how to code and analyze the data

and what summaries to report, it would not be difficult for the researchers to find a “statistically

significant” result even in the absence of any effect. Just to be clear: we’re not saying we believe

the treatment had no effect, just that, given the design of the study and the flexible analysis plan,

we do not learn much from reading that a particular comparison is more than two standard errors

away from zero. For example, if the true effect size—the average gain in adult earnings from the

intervention—is 5%, then any estimate from this study will be essentially noise. We explain this

point in further detail in Chapter 16 of Regression and Other Stories.

The next example in Figure 28 is a claim that women were three times more likely to wear red or

pink during certain times of the month. The claimed effect is implausibly large, especially given

that some people in this study might not regularly wear any red or pink clothing at all, others

might be restricted in clothing choices by their regular routines. Even if clothing choices vary

32This sort of analysis would typically be done on the logarithmic scale so that the uncertainty would be multiplicative, not

additive, a point we discuss on the top of page 15 of Regression and Other Stories, but this technical issue does not affect the

point of this story, so we for simplicity set it aside here.
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during the month for some subset of women, there is essentially no way to get to an average effect

of a factor of 3. However, it is easy to obtain an estimated effect of this size with a noisy study.

It goes like this. First, the sample size is small and the measurement is highly variable, thus the

estimated ratio has a high standard error, so just by chance it is possible to observe a ratio as high

as 3. Second, there were several inconsistencies in the rules for which data to use in the analysis.

For one of the samples in the study, 9 of the 24 women did not not meet the inclusion criteria of

being more than five days away from onset of menses, but they were included anyway. And even

though another sample was supposed to be restricted to women younger than 40, the ages of the

women included ranged up to 47. Out of all the women who participated across the two samples,

31% were excluded for not providing sufficient precision and confidence in their answers.

In addition, the authors found a statistically significant pattern after combining red and pink, but

had they found it only for red, or only for pink, this would have fit their theories too. In their

words: “The theory we were testing is based on the idea that red and shades of red (such as the

pinkish swellings seen in ovulating chimpanzees, or the pinkish skin tone observed in attractive

and healthy human faces) are associated with sexual interest and attractiveness.” Had their data

popped out with a statistically significant difference on pink and not on red, that would have been

news too. And suppose that white and gray had come up as the more frequent colors? One could

easily argue that more bland colors serve to highlight the pink colors of a (European-colored) face.

This sort of study is like a lottery in which there are many different ways to win, and the winning

conditions are not specified ahead of time. Combine this research flexibility with the variability in

the estimate, and you obtain an estimate that is more than two standard errors away from zero,

and thus will be unrealistically huge and provide essentially no information about any possible

underlying effect. Indeed, a later study by the same authors failed to replicate the effect.

We are not saying that the scientific claims in these papers are necessarily wrong. What we

are saying is that the evidence in these research papers is not as strong as stated. The scientific

hypotheses in the papers at hand are general enough that they could have some validity even if the

particular published claims do not hold.

We go through the third and fourth examples in Figure 28 more quickly, as they have the same

issues as discussed above.

The “lucky golf ball” experiment posits an effect that could possibly be real (golfers performing

better when they have more confidence) but could also plausibly be zero or even negative

(golfers are already trying their best, and it is not clear that any positive effect of confidence

is overwhelmed by negative effects of overconfidence), hence it seems reasonable to study the

question experimentally. The problem is that the study in question is too small: the standard error

of the resulting estimate is large (recall that the standard error scales like 1/
√
= and so will be

large when = is small), so the noise overwhelms any realistically-sized signal. In the event, the

estimated effect was to improve the probability of success by 35%, an implausible amount given

the difficulty of the task. Again, there is no reason to believe this as an estimate of the true effect,

but it is easy to see how this estimate can arise from noise, given that there were only 28 people

in the study. A later study failed to replicate the finding. We return to this example later in the

course; see page 216.

The final example is the claim that 20% of women change their political views during their monthly

cycle. This raises our skepticism, given that in polls that survey people more than once, the

percentage of people who change their opinion during the final weeks of a campaign is closer

to 2%.33 As with the other examples we have just discussed, the way this unrealistically large

estimate arose was that the study was small and noisy, hence the estimated effect was highly

variable. And, again, there were so many options in the data coding and analysis that it would be

33See, for example, Andrew Gelman, Sharad Goel, Douglas Rivers, and David Rothschild (2016), The mythical swing

voter. Quarterly Journal of Political Science 11, 103–130.
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Rolf Zwaan’s steps to produce a clickbait research finding:

1. The idea, based on some popular saying.

2. Theoretical background. Find some remotely relevant connection.

3. The manipulation. Take the expression literally.

4. Outcome measure. Use something fun like candy.

5. Participants in your experiment. Can be anyone.

6. Run experiment 1.

7. Analyze the results. Look for something big in the data.

8. Design experiment 2. Pick a new manipulation.

9. Pick a fun new outcome measure.

10. Repeat steps 5–7.

11. Write your general discussion.

12. Add a quirky celebrity quote.

13. Come up with an amusing title.

14. Hype your findings by overgeneralizing.

Figure 29 Compressed version of satirical advice for designing a successful social science experiment. The

instructor should display this on the screen and then talk through the “half empty or half full” example, in

preparation for students working together to come up with their own pseudoscience studies.

possible to find some comparison that is two standard errors away from zero. We discuss this in

detail in Section 4.5 of Regression and Other Stories.

These examples are relevant to the week’s reading in showing how context can limit what can

be learned from any given study; this connects statistical modeling and scientific modeling for

causal inference, as will be discussed later in the course. It relates to the course as a whole in

demonstrating the challenges of extrapolating from data analysis to the real world, even in the case

of randomized experiments. We give four different examples so as to get a sense of the generality

of the problem.

Class-participation activities

1. Design a bogus social science study

In 2013, researcher Rolf Zwaan came up with a facetious plan to design and conduct a bogus

psychology experiment.34 The instructor can display Figure 29, which gives an abbreviated

version of his list, and then explain that students will be asked to follow this template to come

up with their own ideas for bogus research projects. To give them a sense of how to do this, the

instructor can talk through the particular example used by Zwaan:

1, The idea. “All you need to do is take an idiomatic expression and run with it. Here we go:

the glass is half-full or the glass is half-empty.”

2. Theoretical background. “Surely there is some philosopher (preferably a Greek one) who has

said something remotely relevant about optimists and pessimists while staring at a wine glass.

Include him. . . . Google is your friend here.”

3. The manipulation. “All you need to do is take the expression literally. . . . The subject is in a

room. In the glass-full condition, a confederate comes in with an empty glass and a bottle

34Rolf Zwaan (2013), How to cook up your own social priming article, https://rolfzwaan.blogspot.com/2013/09/

how-to-cook-up-your-own-social-priming.html.
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of water. She then pours the glass half full and leaves the room. In the glass-half-empty

condition, she comes in with a full glass and a bottle. She then pours half the glass back into

the bottle and leaves.”

4. Outcome measure. “Let’s say the subjects get to choose ten pieces of differently colored

pieces of candy from a container that has equal numbers of orange and brown M&Ms. Your

prediction here is that people in the half-full condition will be more likely to pick the cheery

orange M&Ms than those in the half-empty condition, who will tend to prefer the gloomy

brown ones.”

5. Participants in your experiment. “About 30 students from a nondescript university will do

nicely.”

6. Run experiment 1. “Don’t fuss about . . . details of the procedure; you won’t be reporting

them anyway.”

7. Analyze the results. “Normally, you’d worry that you might not find an effect. But this is

social priming remember? You are guaranteed to find an effect. In fact, your effect size will

be around 0.8. That’s social priming for you!”

8. Design experiment 2. “Come up with a new manipulation. What’s wrong with the glass and

bottle from Experiment 1?, you might wonder. Are you kidding? . . . How about balloons? In

the half-full condition, the confederate walks in with an inflated balloon and lets half the air

out in front of the subject. In the half empty condition, she half-inflates a balloon.”

9. Pick a fun new outcome measure. “Why not have the subjects list their favorite TV shows?

Your prediction here is that the half-full condition will list more sitcoms like Seinfeld and Big

Bang Theory than the half-empty condition, which will list more crime shows like CSI and

Law & Order. . . . How about having subjects indicate how much they identify with Winnie

the Pooh characters? Your prediction here is obvious: the half full condition will identify

with Tigger the most while the half empty condition will prefer Eeyore by a landslide.”

10. Repeat steps 5–7.

11. Write your general discussion. “Don’t be shy here. Talk about the major implications for

business, health, education, and politics this research so evidently has.”

12. Add a quirky celebrity quote. “Just go to www.goodreads.com to find a quote. Here, I already

did the work for you: ‘Some people see the glass half full. Others see it half empty. I see a

glass that’s twice as big as it needs to be.’—George Carlin. Just say something clever like:

Unless you are like George Carlin, it does make a difference whether the glass is half empty

or half full.”

13. Come up with an amusing title. “Just use the expression from Step 1 as your main title,

describe your (huge) effect in the subtitle and your done: ‘Is the glass half empty or half full?

The effect of perspective on mood.’”

14. Hype your findings by overgeneralizing. “Like all social priming research, your work has

profound consequences for all aspects of society.”

Zwaan concludes, “Once you’ve worked through this example, you might try your hand at more

advanced topics like coming out of the closet. Imagine all the fun you’ll have with that one!”

After hearing the half-full/half-empty story, it’s time for the students to pair up and come up with

their own examples. The instructor can walk around the room, listening to the students’ ideas and

helping them get unstuck as needed, and then choose one pair’s plan and go through it with the

entire class. Yes, such a study would be a joke, but the point is to understand how it is possible to

construct an experiment with no scientific value but which could still get publication and publicity.

The class can follow up with a discussion of the ways in which these bogus studies differ from

serious research.
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1. Consider a topic of interest

2. Consider an outcome measure and hypothesize a treatment effect

3. Construct a hypothetical experiment

4. Specify sample size

5. Hypothesize distribution of outcomes under control and treatment

5. Figure out estimate and standard error

6. Will the experiment give a reliable estimate?

Figure 30 Steps for the activity on quantitative thinking about effect sizes. This should be projected on the

screen or written on the board to guide students in constructing their examples.

This activity relates to the week’s reading as an explanation of how misinterpretation of statistical

significance, as discussed in Section 4.5 of Regression and Other Stories, can lead to problems in

the scientific literature. It relates to the course as a whole by connecting statistical design and

analysis to practices of scientific and popular communication.

2. Think about effect sizes in the context of a social science example

The point of this activity is to get students thinking about effect sizes and statistical parameters in

a quantitative way: not just that an effect is positive or negative, but how large it is and how large a

study would be needed to estimate it reliably. To do this, the instructor should project Figure 30

on the screen and explain that students will be expected to do this sequence of steps in pairs.

First it is best to go through for a simple example. Consider a new way to teach reading to

first-graders, where the hypothesized effect is to raise test scores by 2 points on a 0–100 scale. A

simple experiment would randomly assign students into the treatment or control group. Suppose

an experiment were to be conducted on 100 students, with 50 in each group.

Will this be enough data to reliably estimate the effect? To answer this question we need some

sense of the distribution of test scores. Suppose that, under the control, scores have a distribution

with mean 60 and standard deviation 15 (so that approximately two-thirds of students have scores

between . . . ask the students to figure this out . . . it’s “between 45 and 75”), and further suppose

scores under the treatment will follow a distribution with mean 62 and standard deviation 15.

Then the difference between the average of 50 treated students and 50 control students will be

approximately normally distributed with mean 2 and standard deviation
√

152/50 + 152/50 = 3.

In this case, the standard error of the estimate is larger than the effect size, which tells us that the

experiment is not precise enough to reliably estimate the treatment effect.

As discussed in Chapter 16 of Regression and Other Stories, the usual rule is that the treatment

effect should be more than 2.8 standard errors away from zero. In addition, we would recommend

that such an experiment begin with a pre-test on each student, which can then be included in

a regression model to allow the treatment to be estimated more precisely. But here is no need

to go into all this at this point in the course; the point of this exercise is, first, to get students

thinking quantitatively about effect sizes, averages, and standard deviations; and second, to use

and understand the distribution of the difference between two averages.

Once the instructor has gone through an example, the students can work in pairs to construct their

own examples of realistic effect sizes and distributions, following the steps in Figure 30.

This activity relates to the discussions of statistical inference in Chapter 4 of Regression and Other

Stories, and it is relevant to the course as a whole in connecting statistical methods to substantive

questions.
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Computer demonstrations

1. Simulate fake data and compute confidence interval, plus looping

This demonstration teaches three lessons: simulation from the binomial distribution, computing

the standard error and confidence interval from a proportion, and looping, as discussed in Section

4.2 of Regression and Other Stories.

# Generate fake data

p <- 0.3

n <- 20

data <- rbinom(1, n, p)

print(data)

# Estimate proportion and calculate confidence interval

p_hat <- data/n

se <- sqrt(p_hat * (1-p_hat) / n)

ci <- p_hat + c(-2, 2) * se

print(ci)

# Put it in a loop

reps <- 100

for (i in 1:reps){

data <- rbinom(1, n, p)

p_hat <- data/n

se <- sqrt(p_hat * (1-p_hat) / n)

ci <- p_hat + c(-2, 2) * se

print(ci)

}

2. Statistical inference: proportions, means, and differences of means

We use a Pew Research survey to estimate a proportion, a mean, and a difference in means.

# Read data from here: https://github.com/avehtari/ROS-Examples

library("foreign")

library("dplyr")

pew_pre <- read.dta(paste0(

"https://raw.githubusercontent.com/avehtari/",

"ROS-Examples/master/Pew/data/",

"pew_research_center_june_elect_wknd_data.dta"))

pew_pre <- pew_pre %>% select(c("age", "regicert")) %>%

na.omit() %>% filter(age != 99)

n <- nrow(pew_pre)

# Estimate a proportion (certain to have registered for voting?)

registered <- ifelse(pew_pre$regicert=="absolutely certain", 1, 0)

p_hat <- mean(registered)

se_hat <- sqrt((p_hat * (1 - p_hat)) / n)

round(p_hat + c(-2, 2) * se_hat, 4) # ci

# Estimate an average (mean age)

age <- pew_pre$age

y_hat <- mean(age)

se_hat <- sd(age) / sqrt(n)

round(y_hat + c(-2, 2) * se_hat, 4) # ci

# Estimate a difference of means
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age2 <- age[registered==1]

age1 <- age[registered==0]

y_2_hat <- mean(age2)

se_2_hat <- sd(age2) / sqrt(length(age2))

y_1_hat <- mean(age1)

se_1_hat <- sd(age1) / sqrt(length(age1))

diff_hat <- y_2_hat - y_1_hat

se_diff_hat <- sqrt(se_1_hat^2 + se_2_hat^2)

round(diff_hat + c(-2, 2) * se_diff_hat, 4) # ci

Drills

1. Binomial distribution (example of basketball shots)

A basketball player takes = shots. The shots are independent and she has a 30% chance of making

each shot. Let ~ be the number of shots she makes. What are the mean and standard deviation of

~? Sketch the distribution of ~.

(a) = = 20

Solution: Mean is 0.3 ∗ 20 = 6, standard deviation is
√

0.3 ∗ 0.7 ∗ 20 = 2.0. Sketch a bell-

shaped curve centered at 6 with standard deviation 2, then sketch the bar graph corresponding

to the discrete distribution with possible values 0, 1, 2, etc.

(b) = = 50

(c) = = 100

(d) = = 0

(e) = = 1

(f) = = 2

2. Sample size and standard errors

(a) In a national survey of = people, how large does = have to be so that you can estimate

presidential approval to within a standard error of ±3 percentage points?

Solution: Standard error is 0.5/
√
=. Try = = 100, then the standard error is 0.5/

√
100 = 0.05.

We want 0.03, so we need to increase sample size by a factor of (0.5/0.3)2
= 2.78 So we need

a sample size of 278.

(b) ±1 percentage point?

(c) How large does = have to be so that you can estimate the gender gap in approval to within a

standard error of ±3 percentage points?

(d) ±1 percentage point?

(e) What if you’re estimating something more rare, such as the percentage of people who have

ever run for office?

Discussion problems

1. Confidence intervals and true parameter values

Suppose you do 1000 experiments and, from each, you get a 95% interval. You’d expect 950 of

these intervals to contain the true parameter values. Assuming your statistical model is correct,

would it be a surprise if only 925 of these intervals contained the true parameter values?

2. Approximate standard error for average “feeling thermometer” ratings

The American National Election Study and other surveys ask this sort of “feeling thermometer”

question: “I’d like to get your feelings toward some of our political leaders and other people who

are in the news these days. I’ll read the name of a person and I’d like you to rate that person using
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something we call the feeling thermometer. Ratings between 50 degrees and 100 degrees mean

that you feel favorable and warm toward the person. Ratings between 0 degrees and 50 degrees

mean that you don’t feel favorable toward the person and that you don’t care too much for that

person. You would rate the person at the 50 degree mark if you don’t feel particularly warm or

cold toward the person.”

In a survey of 1500 people, what might you expect the standard error for the average feeling

thermometer rating to be, approximately? You should figure this out in three steps: first, sketch a

plausible distribution of feeling thermometer ratings among survey respondents; second, estimate

the standard deviation of this distribution using the rule that approximately two-thirds of the

responses should be in the range of the mean ± one standard deviation; third, compute the standard

error of the average as the standard deviation divided by
√
=. This standard error is a relevant

baseline when comparing average ratings from surveys taken at different times.
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3.6 Simulation

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Proportion Real vs. fake Break Random Discrete /

of identical coin flips R functions sampling and continuous

twins looping in R distribution

Simulate a Simulate a Simulate Propagate Simulate

process of probability 100 uncertainty clustering

innovation process coin flips of buses

Reading

1. Chapter 5 of Regression and Other Stories: Simulation

2. Appendix A of Regression and Other Stories: Computing in R, Sections A.6–A.7

Pre-class warmup assignments

1. Simulate from probability models

Write R code to do the following:

(a) Simulate a random number representing the number of shots that a basketball player makes in

10 tries, if the results of the shots are independent and she has a 40% chance of making each

shot.

(b) Simulate a random number representing the number of shots that a basketball player makes in

10 tries, if the results of the shots are independent and her chance of making a shot is 10% for

the first shot, 20% for the second shot, 30% for the third, etc.

(c) Suppose the distance that you throw a ball has a normal distribution with mean 20 meters and

standard deviation 5 meters. Simulate the results of three independent throws.

2. Simulate data collection

Write R code to do the following:

(a) 100 people are asked how many pets they have. The respondents are randomly sampled from

a population where 30% of the people have no pets, 40% have one pet, 20% have two pets,

and 10% have three pets. Simulate the 100 responses and compute the average number of pets

among the respondents.

(b) 100 students are randomly divided into two groups: 50 take a new experimental math course

and 50 take the usual class. They are then all given a test. Suppose that test scores are

normally distributed with mean 60 and standard deviation 10 after taking the usual class, or

mean 70 and standard deviation 15 after taking the experimental course. Simulate the 100 test

scores from the experiment and compute the estimated treatment effect and standard error.

Homework assignments

1. (a) Inference from a proportion with ~ = 0 (Exercise 4.7 of Regression and Other Stories)

Out of a random sample of 50 Americans, zero report having ever held political office. From

this information, give a 95% confidence interval for the proportion of Americans who have

ever held political office.
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(b) Survey weighting (Exercise 4.10 of Regression and Other Stories)

Compare two options for a national opinion survey: (a) a simple random sample of 1000

Americans, or (b) a survey that oversamples Latinos, with 300 randomly sampled Latinos and

700 others randomly sampled from the non-Latino population. One of these options will give

more accurate comparisons between Latinos and others; the other will give more accurate

estimates for the total population average.

i. Which option gives more accurate comparisons and which option gives more accurate

population estimates?

ii. Explain your answer by computing standard errors for the Latino/other comparison and the

national average under each design. Assume that the national population is 15% Latino,

that the items of interest are yes/no questions with approximately equal proportions of

each response, and (unrealistically) that the surveys have no problems with nonresponse.

2. (a) Discrete probability simulation (Exercise 5.1 of Regression and Other Stories)

Suppose that a basketball player has a 60% chance of making a shot, and he keeps taking

shots until he misses two in a row. Also assume his shots are independent (so that each shot

has 60% probability of success, no matter what happened before).

i. Write an R function to simulate this process.

ii. Put the R function in a loop to simulate the process 1000 times. Use the simulation to

estimate the mean and standard deviation of the total number of shots that the player will

take, and plot a histogram representing the distribution of this random variable.

iii. Using your simulations, make a scatterplot of the number of shots the player will take

and the proportion of shots that are successes.

(b) Continuous probability simulation (Exercise 5.2 of Regression and Other Stories)

The logarithms of weights (in pounds) of men in the United States are approximately normally

distributed with mean 5.13 and standard deviation 0.17; women’s log weights are approximately

normally distributed with mean 4.96 and standard deviation 0.20. Suppose 10 adults selected

at random step on an elevator with a capacity of 1750 pounds. What is the probability that

their total weight exceeds this limit?

Stories

1. The proportion of identical twins in the population

In Section 5.1 of Regression and Other Stories, we state that the probability of a girl birth is

48.8%. It’s clear enough how to estimate this from population data; for example in 2020 there

were 3,745,540 babies born in the United States, of whom 48.9% were girls. The percentage

varies a bit over time, and we took 48.8% as a reasonable consensus value.35

We also say there’s a 1/125 chance of fraternal twins and a 1/300 chance of identical twins, with

about 49.5% of twins being girls. Where we get those numbers is a bit more interesting. To start

with, we’re working with old data, before the advent of fertility treatments which have resulted in

a near-doubling of the rate of twins in recent decades.36 In the data we saw, 1.13% birth events

(thus, approximately 2.26% of babies) were twins, and 49.5% of those twin babies were girls.

Fine. But how can we estimate the proportion of identical and fraternal twins? We let the students

discuss this in pairs for two minutes. Here’s a relevant piece of information: back in the day,

35T. J. Mathews and Brady Hamilton (2005), Trend analysis of the sex ratio at birth in the United States, National Vital

Statistics Reports 53 (20), Centers for Disease Control, https://www.cdc.gov/nchs/data/nvsr/nvsr53/nvsr53_20.pdf.

36U.S. Centers for Disease Control and Prevention (2016), Assisted reproductive technology and multiple births,

https://www.cdc.gov/art/key-findings/multiple-births.html, and Joyce Martin, Brady Hamilton, Michelle Osterman, and Anne

Driscoll (2021), Births: Final data for 2019, National Vital Statistics Reports 70 (2), https://www.cdc.gov/nchs/data/nvsr/

nvsr70/nvsr70-02-508.pdf.
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approximately 65% of twins were same-sex pairs and 35% were opposite-sex pairs. Why this

imbalance?

We can make use of the fact that identical twins must be of the same sex. On the board, we draw a

probability tree, showing the options for a birth—single birth (b or g), identical twin (bb or gg), or

fraternal twin (bb, bg, gb, or bb)—and the probabilities for each. Let the relative probabilities of

identical and fraternal twins be - and 1 − - , respectively. Then, if you have twins, the probability

of a same-sex pair is - + 0.5 ∗ (1 − -) and the probability of an opposite-sex pair is 0.5 ∗ (1 − -).
Setting these to 0.65 and 0.35 yields - = 1 − 0.35/0.5 = 0.3. Multiplying this by a 1.13%

rate of twins yields a 0.34% rate of identical twins and a 0.79% rate of fraternal twins. Finally,

0.0034 = 1/294.1 and 0.0079 = 1/126.6, which we rounded to 1/300 and 1/125 for convenience.

This example relates to the week’s reading because it shows where the data came from in an

example in the book. It relates to the course as a whole in demonstrating an example of statistical

estimation that is not a simple average, difference, or regression.

2. Simulate a process of innovation and improvement

In medicine, there are new drugs and new treatments; in education, improved teaching methods; in

business, new techniques to improve sales and market share. In all these arenas, policymakers will

have a stream of possible new ideas to be tested and possibly implemented on a large scale. When

possible, they will do controlled experiments—called “clinical trials” in medicine or “A/B tests”

in industry. In such an experiment, a group of people are randomly assigned either the existing

treatment (the “control”) or the new treatment that is being tested. The experiment is done, data

are collected and analyzed, and the result is an estimate (with uncertainty) of the efficacy of the

treatment compared to the control.

We discuss a simulation we did to estimate the effect, not just of a single intervention, but of

a system with a stream of potential interventions. In this story, we won’t give the code for our

simulation but we’ll go through the steps of setting it up.

The scenario is a hypothetical company with a stream of potential interventions coming at the

average rate of one per month over a period of two years. Each intervention is tested in a

randomized experiment, the result of which is used to decide whether to implement the new idea

in production. The goal is to increase profitability, so the outcome being measured is projected

total sales minus costs. This could just as well be put in a medical context, where the outcome is

survival probability; sports, where the outcome is expected wins; or any other setting where there

is a clearly-defined target for improvement.

To perform this simulation it is necessary to have a random process for interventions to come in

(similar to the sorts of models used for waiting times at a bus stop, where we know the average rate

at which buses arise, but each bus arrives at a random time) and a distribution of effect sizes of the

treatments. This distribution will include the possibility of positive or negative effects. If effects

were always positive, we would just implement every proposed intervention, and there would be

no need to run any experiments. The purpose of gathering experimental data is to estimate the

treatment’s effect relative to control, and this effect could be either positive or negative.

Next we need to be able to simulate data from the experiments. A single simulation of the process

produces a series of times when interventions appear, a true effect size for each intervention, and

an estimated effect size and uncertainty from each experiment. Simulating this process will then

require us to specify certain “hyperparameters” describing the system, including the average rate

of innovations and the mean and standard deviation of the distribution of effect sizes.

Once the process has been simulated, we can look at the effect on total profitability over the

two-year period, given different decision rules about when to implement proposed interventions.

The simplest decision rule is to do nothing, in which case profitability (which we have defined

relative to the control or status quo) would be constant. The next simplest rule is to do all
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interventions, in which case profitability goes up or down as new interventions come in. The ideal

strategy would be to implement only the interventions that have positive effects; such a strategy is

unattainable in practice because the decision maker would observe the estimate, not the true value,

of each intervention. In the simulation, we can show what would happen under the unattainable

ideal, but we can also show the result under the strategy of implementing all interventions with

positive estimates. The result would show some instances of improvement and some instances of

decline, but hopefully more pluses than minuses. Finally, the whole simulation can be repeated to

get a sense of different possibilities.

The relevance of to the week’s reading is that it demonstrates the use of simulation to address an

applied problem. It is relevant to the course more generally in being an example where we need

to speculate and hypothesize many details about a process in order to simulate it. Even before

coding the simulation, a key part of the problem is setting up its assumptions in the first place.

Class-participation activities

1. Real vs. fake coin flips

Students often have difficulty thinking about summary statistics as random variables with

probability distributions. This demonstration, which also alerts students to misconceptions about

randomness, motivates the concept of the sampling distribution.37

People generally believe that a sequence of coin flips should have a haphazard pattern, including

frequent (but not regular) alternations between heads and tails. In fact, it is common for sequences

of random coin flips to have long runs of heads and tails.

The demonstration proceeds as follows. The instructor picks two students to be “judges” and one

to be the “recorder” and divide the others in the class into two groups. One group is instructed to

flip a coin 100 times, or flip 10 coins 10 times each, or follow some similarly defined protocol,

and then to record the results, in order, on a sheet of paper, writing heads as “1” and tails as “0”

(because “H” and “T” look similar and can be confused when reading them off a sheet of paper).

The second group is told to create a sequence of 100 “0”s and “1”s that are intended to look like the

result of coin flips—but they are to do this without flipping any coins or using any randomization

device (or consulting with the other group of students)—and to write this sequence on a sheet of

paper. The recorder is then to copy these sequences onto two separate places on the board.

The instructor and the two judges leave the room for five minutes while the two groups of students

in the class create their sequences, and then they return and guess which sequence is from actual

coin flips and which was made up; see Figure 31 for an example. After the judges guess, the

instructor should try guessing. When we do this, we almost always correct, and the students are

impressed.

How did we do it? Unless the students are particularly clever, well informed, or lucky, the sequence

of fake coin flips will look “random” in an orderly sort of way, with frequent switches between

0’s and 1’s, and the sequence of real coin flips will have a “streaky” look to it, with one or more

long runs of successive 0’s or 1’s. One could distinguish between real and fake sequences using a

formal rule based on the longest run length, but we find that we can make the distinction more

effectively based on a visual inspection of the sequences, which implicitly takes into account much

more information.

We can reliably pick out the real sequence using our collective experience and knowledge of coin

flips and human guesses. How can this reasoning be formalized? For each of the two sequences

on the board, one can count the number of runs (sequences of 0’s and 1’s) and the length of

the longest run. If there is interest in formal testing, the instructor can project on the screen or

37From Section 8.3.2 of Teaching Statistics: A Bag of Tricks.
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00111000110010000100 01000101001100010100

00100010001000000001 11101001100011110100

00110010101100001111 01110100011000110111

11001100010101100100 10001001011011011100

10001000000011111001 01100100010010000100

Figure 31 Two binary sequences from a demonstration of real and fake coin flips. After two groups of students

produced these data, a pair of students who had not been involved was asked to figure out which of these is an

actual sequence of 100 random coin flips and which is fake. The answer is that the sequence on the left is real

and the one on the right is fake. The left sequence has a few long sequences of 0’s and 1’s, which are typical in

real coin flips but are rarely produced by students trying to produce realistic fake sequences.

Figure 32 Length of longest run (sequence of successive heads or successive tails) vs. number of runs (sequences

of heads or tails) in each of 2000 independent simulations of 100 coin flips. Each dot on the graph represents a

sequence of 100 coin flips; the points are jittered so they do not overlap. When plotted on this graph, the results

from an actual sequence of 100 coin flips will most likely fall in an area with a large number of dots. In contrast,

a sequence of heads and tails that is artificially created to look “random” will probably have too many switches

and no long runs, hence will fall on the lower right of this graph.

hand out copies of Figure 32, which shows the probability distribution of these two statistics, as

simulated from 2000 independent computer simulations of 100 coin flips. Students should circle

on the scatterplot the locations of the values for the sequences on the board. Most of the times we

have used this example in class, the sequence of real coin flips is near the center of the scatterplot,

and the sequence of fake coin flips has too many runs and too short a longest run, compared to

this distribution.

This demonstration illustrates an important point for the interpretation of data: seemingly surprising

patterns (long sequences of heads or tails) can occur entirely at random, with no external cause.

Long runs in real coin-flip data surprise students because they expect that any part of a random

sequence will itself look “random”—that is, typical of the whole. This can motivate a discussion

of the general phenomenon that small samples can be unrepresentative of a population. Familiar

examples include biological data (for example, a family can have several boys or girls in a row)

and sports (a player can have hot and cold streaks that are consistent with random fluctuation).38

38But see Joshua Miller and Adam Sanjurjo, Surprised by the hot hand fallacy? A truth in the law of small numbers,

Econometrica 86, 2019–2047, and the discussion in Andrew Gelman (2015), Hey—guess what? There really is a hot

hand!, https://statmodeling.stat.columbia.edu/2015/07/09/hey-guess-what-there-really-is-a-hot-hand/, and Andrew Gelman

(2018), A couple of thoughts regarding the hot hand fallacy fallacy, https://statmodeling.stat.columbia.edu/2018/12/14/

couple-thoughts-regarding-hot-hand-fallacy-argument/.
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The demonstration doesn’t always work—sometimes it’s hard to tell the two sequences apart—so

more recently when doing this activity we have made our odds easier by dividing into four groups,

creating two sequences of real coin flips and two of fake coin flips, and having them write both real

sequences on one board and both fake sequences on the other. Now it’s easier to figure out which

sequences are which—all that is necessary is to identify one of the four sequences that is clearly

real and one that is clearly fake, and with two of each there are more chances to figure this out.

After surprising students by identifying the real and fake sequences of coin flips, it is useful to

develop their intuition as to why real sequences would be expected to have some long runs of

heads or tails, as is indicated by Figure 32. We ask the students what is the probability of having

six straight heads? They quickly calculate that it is 1/2 to the sixth power, or 1/64. A sequence of

100 coin flips includes 95 sequences of length six, and thus one would expect to see one or two

runs of six heads, as well as one or two runs of six tails. A sequence of seven heads occurs with

probability 1/128, which is certainly a possibility given that there are 94 chances.

This activity relates to the week’s readings because the real sequences are a product of random

simulation—using coins rather than a computer, but simulation nonetheless. The relevance to the

course as a whole is that the simulation shows how simple randomness can yield surprising and

counterintuitive patterns.

2. Simulating a probability process

For this activity, the class will together come up with an example of simulating a process and its

measurement. Students should begin by working in pairs to come up with a real-world example of

interest to them. Then the instructor should pick one of the ideas, take some interesting aspect of

the problem and discuss what to simulate and how it would be measured, and then go into R and

program it. During the programming process, the instructor should discuss and perturb to give a

sense of what each line of code is doing. This activity demonstrates the open-ended nature of

programming and how coding can be used to explore.

For example, in a recent class a pair of students came up with the problem of studying the

percentage of people who own guns in each of the 50 states. We picked this as our example and

started by asking what sort of graphs they might use to display the process we will be simulating.

One student suggested a plot of gun ownership rate vs. time, which could look like a graph showing

50 time series. To keep things simple, we asked how one might make a scatterplot with 50 dots

showing gun ownership in each state for a single year. If gun ownership rate is plotted on the

~-axis, what would we show on the G-axis? A student suggested Joe Biden’s vote share in the

2020 presidential election. From that we made a rough sketch, with G ranging from 0.3 to 0.7 (the

rough range of Biden’s share of the two-party vote in the states) and ~ ranging from 0.2 to 0.4

(based on the assumption that approximately 30% of American adults own guns, and that this

percentage varies a bit from state to state). We then put a bunch of dots on the graph showing a

negative correlation with states like Wyoming on the upper left (high gun ownership rate, low

Biden vote share) and states like New York on the lower right.

We stated our goal as being able to simulate this pattern and then simulate hypothetical survey

data to produce estimated rates of gun ownership.

We started by simulating Biden’s vote share in the states. We could just look this up, but for

demonstration purposes we’d like to simulate the whole thing. What’s a good distribution to use

that matches our sketched graph? We entered the following code snippet into the R text window

that is projected onto the screen:

J <- 50

biden <- rnorm( , , )

We explained that we use � for the number of states becasuse we are reserving = for the sample
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size of our survey. We then asked the students to spend a minute in pairs figuring our the correct

numbers to put in for the three arguments of the rnorm function. Reasonable values are:

biden <- rnorm(J, 0.5, 0.1)

This simulates 50 values from a distribution with mean 0.5, about 68% of the cases falling within

one standard deviation (that is, between 0.4 and 0.6), and about 95% falling in the range (0, 3, 0.7),
so that seems reasonable.

We next did the same thing for rates of gun ownership:

guns <- rnorm(J, 0.3, 0.6)

This simulates 50 values centered around 0.5, with 95% of the points within two standard

deviations, that is, the range (0.2, 0.3). There’s nothing magic about these numbers; we were just

trying to come up with values that roughly matched the range in the scatterplot we’d drawn on the

board.

We then took a look at the simulated values:

plot(biden, guns)

The resulting scatterplot doesn’t look right at all: there’s no downward correlation as in our

sketch, and students realized the problem: G and ~ were simulated independently. We moved the

discussion along by suggesting that we simulate G first and then set ~ accordingly to get the desired

pattern.

We went to the scatterplot on the board and drew a downward-sloping line going through the

points (0.4, 0.3) and (0.2, 0.6), roughly capturing the pattern of lower gun-ownership rates among

states that showed more support for Biden. We can write this line as ~ = ___ + ___ G. We gave the

students two minutes in pairs to work out the intercept and slope of this line.

The way to do it is to first figure out the slope: the line drops by 0.1 in ~ while G increases by 0.2,

so the slope is −0.1/0.2 = −0.5. We can then use the fact that the line goes through (0.4, 0.3) and

has a slope of −0.5 to write it as ~ = 0.4 − 0.5(G − 0.3), which comes to ~ = 0.4 − 0.5G + 0.15, or

~ = 0.55 − 0.5G, which we then code and check:

guns <- 0.55 - 0.5*biden

plot(biden, guns)

The resulting graph still looks wrong! The 50 points all fall exactly on the line, which doesn’t

look right. So we add some variation and check the plot again:

guns <- 0.55 - 0.5*biden + rnorm(J, 0, 0.03)

plot(biden, guns)

This looks more like it. Again, there’s nothing magic about the value 0.03; decrease it and the

points will be closer to the line, or increase it to see more spread.

We then continued with the second step, which was to simulate surveys in each of the 50 states.

First we need to pick a sample size:

n <- 1000

Then we simulated a random sample survey in each state:

y <- rbinom(J, n, guns)

This code is a bit tricky for newcomers to R, as rbinom is taking a mixture of scalar and vector

arguments. To clarify the output, we printed J, n, guns, and y on the R console so students could

see what was produced. We have simulated for each state the number of Yes responses to the

hypothetical survey; to get estimated gun ownership rates we divide by sample size in each state:
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guns_estimate <- y/n

And then we could finally make our plot:

plot(biden, guns_estimate)

Computer demonstrations

1. Break R functions

We start with basic simulations:

rbinom(5, 10, 0.5)

rnorm(5, -3, 2)

Then we play around with each of these, trying different numbers, and we go through some

experimentation, each time asking students to discuss in pairs and guess what will happen before

we try it out. What does it take to get the functions to produce errors or meaningless results? Try

setting some of the arguments to fractional or zero or negative values. What happens if you set the

probability for the binomial distribution to be greater than 1?

2. Simulate 100 coin flips

We first simulate a series of coin flips and display and summarize them. When that is clear, we

loop it 1000 times to get a sense of what is possible, what might happen with 100 flips. When

we prepared this for our class, we wanted to be able to quickly compute the length of the runs in

the simulated coin flips, and it seemed mildly annoying to code this ourselves, so we googled r

longest run of coin flips, which led us to a blog from 2009 that presented the R function

rle (Run Length Encoding), which does exactly what we wanted.39 So here goes:

n <- 100

flips <- rbinom(n, 1, 0.5)

print(flips)

print(rle(flips))

print(rle(flips)$lengths)

longest_run <- max(rle(flips)$lengths)

print(longest_run)

# Loop it and print

for (i in 1:20){

n <- 100

flips <- rbinom(n, 1, 0.5)

longest_run <- max(rle(flips)$lengths)

print(longest_run)

}

# Loop it and show distribution

n_loop <- 1000

longest_run <- rep(NA, n_loop)

for (i in 1:n_loop){

n <- 100

flips <- rbinom(n, 1, 0.5)

39See Erik Iverson (2009), R function of the day: rle, https://blogisticreflections.wordpress.com/2009/09/22/

r-function-of-the-day-rle/, and rle, Run length encoding, R Documentation, https://stat.ethz.ch/R-manual/R-devel/library/

base/html/rle.html.
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longest_run[i] <- max(rle(flips)$lengths)

}

hist(longest_run)

hist(longest_run,

breaks=seq(min(longest_run) - 0.5, max(longest_run) + 0.5, 1))

This demonstration relates to the earlier class-participation activity, to the week’s reading on

simulation, and more generally to the practice of understanding random processes by simulating

multiple realizations on the computer.

Students can explore the different statistics (numbers of switches, longest streak, etc.), analytically

and visually. They can also come up with their own questions and then modify the analysis

accordingly.

Drills

1. Random sampling and looping in R

(a) Write an R function to simulate the outcome of two basketball players shooting =1 and =2

baskets, with probability ?1 and ?2 of success. The function should take =1, =2, ?1, and ?2,

as arguments, simulate the shots, calculate the proportions of shots made for each player, and

return the difference in proportions.

Solution:

shots <- function(n1, n2, p1, p2){

y1 <- rbinom(1, n1, p1)

y2 <- rbinom(1, n2, p2)

y1/n1 - y2/n2

}

(b) Write R code for running the above function with ?1 = 0.3, ?2 = 0.4, and =1 = =2 = 20.

(c) Write a loop to evaluate this 1000 times, and plot the distribution of results.

2. Simulate propagation of uncertainty

(a) A man applies for = jobs. For each job he has a ?1 chance of getting an interview. If he

is interviewed, he has a ?2 chance of getting an offer. Write an R function to simulate this

process and compute the number of offers he gets. The function should take =, ?1, and ?2 as

inputs and return a single number.

Solution:

offers <- function(n, p1, p2){

interviews <- rbinom(1, n, p1)

offers <- rbinom(1, interviews, p2)

offers

}

(b) Write R code for running the above function with ?1 = 0.2, ?2 = 0.4, and = = 10.

(c) Write a loop to evaluate this 1000 times and plot the distribution of results.

Discussion problems

1. Simulate a mixed discrete/continuous distribution

Simulate the incomes of a hypothetical set of 100 people where there is a probability of zero

income and a lognormal distribution otherwise.
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# Simulate 100 people

n <- 100

p <- 0.1 # Set probability of zero income

zero_income <- rbinom(n, 1, p) # Generate cases with zero income

income <- ifelse(zero_income == 1, 0,

exp(rnorm(n, log(50e3), 0.5))) # Generate income for nonzero cases

# Display results

hist(income, breaks = 40)

print(mean(income==0))

# Simulate probability of getting max income higher than 300K

n_rep <- 1000

max_income <- rep(NA, n_rep)

for (i in 1:n_rep) {

zero_income <- rbinom(n, 1, p)

income <- ifelse(zero_income == 1, 0, exp(rnorm(n, log(50e3), 0.5)))

max_income[i] <- max(income)

}

print(mean(max_income > 300e3))

Now play around with the numbers in this simulation and see how the results change.

2. Simulate clustering of buses

A famous real-world example of a stochastic process is the clustering of buses along a route.

Suppose that buses start out equally spaced in time and then have to stop for passengers. The

bus in front will pick up the first set of passengers, allowing the next bus to skip some stops if

no new passengers arrive. This random process will, on average, lead to the clumping of buses:

that annoying phenomenon whereby you have to wait a long time for a bus, and then two or three

arrive together.

How can this process be simulated on the computer? You need some schedule of buses, a sequence

of stops, and a process by which passengers arrive at the bus stops at random. The program would

track positions of the buses over time, and you can see how long it would take for the buses to start

clumping. Setting up a full simulation of this process would be be too difficult for 10 minutes in

class, but something can be learned from discussing how each of the steps could be programmed,

how these steps could be put together in a big loop, and how the program could be evaluated.
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3.7 Background on regression modeling

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Slope when Simulate fake Play with Regression Examples of

predicting elections data and fit a simulated to the mean regression

from the economy a regression regression to the mean

Clinton/Trump Memory quiz Challenges in Scatterplots, Uniform

vote vs. polls, and regression setting up lines, and partisan

and predictions to the mean a simulation regression swing

Reading

Chapter 6 of Regression and Other Stories: Background on regression modeling

Pre-class warmup assignments

1. Fit a regression to fake data

(a) Write R code to simulate 100 data points from a linear model with intercept 1, slope 2, and

residual standard deviation 3, where the predictors are sampled at random uniformly from the

range (0, 4). Fit and print a linear regression to these data, and report whether the true values

of the intercept and slope fall within 1 standard error of the true parameter values.

(b) Make a plot with the simulated data and the fitted regression line, including the formula for

the fitted line as in Figure 6.1 of Regression and Other Stories.

2. Choose reasonable parameter values

For each of the following examples, sketch with pen on paper a rough graph of a plausible

scatterplot of ~ vs. G (include axes on your sketch) and then come up with reasonable values of

0, 1, f, where 0 is the intercept of the regression of ~ on G, 1 is the slope, and f is the residual

standard deviation.

(a) G = midterm exam scores (on a 0–50 scale), ~ = final exam scores (on a 0–100 scale) for a class

(b) G = year (from 1900 to 2000), ~ = United States population

(c) G = age in years, ~ = vote in recent election (coded as 1 for Republican, −1 for Democrat, 0

for other)

(d) G = education level (coded as 1 for less than high school, 2 for high school graduate, 3 for

some college, 4 for college graduate, 5 for postgraduate degree), ~ = vote in recent election

(coded as 1 for Republican, −1 for Democrat, 0 for other)

Homework assignments

1. (a) Binomial distribution (Exercise 5.3 of Regression and Other Stories)

A player takes 10 basketball shots, with a 40% probability of making each shot. Assume the

outcomes of the shots are independent.

i. Write a line of R code to compute the probability that the player makes exactly 3 of the

10 shots.

ii. Write an R function to simulate the 10 shots. Loop this function 10 000 times and check

that your simulated probability of making exactly 3 shots is close to the exact probability

computed in (a).
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2. (a) Data and fitted regression line (Exercise 6.1 of Regression and Other Stories)

A teacher in a class of 50 students gives a midterm exam with possible scores ranging from 0

to 50 and a final exam with possible scores ranging from 0 to 100. A linear regression is fit,

yielding the estimate ~ = 30+ 1.2 ∗ G with residual standard deviation 10. Sketch (by hand, not

using the computer) the regression line, along with hypothetical data that could yield this fit.

(b) Programming fake-data simulation (Exercise 6.2 of Regression and Other Stories)

Write an R function to: (i) simulate = data points from the model, ~ = 0 + 1G + error, with

data points G uniformly sampled from the range (0, 100) and with errors drawn independently

from the normal distribution with mean 0 and standard deviation f; (ii) fit a linear regression

to the simulated data; and (iii) make a scatterplot of the data and fitted regression line. Your

function should take as arguments, 0, 1, =, f, and it should return the data, print out the

fitted regression, and make the plot. Check your function by trying it out on some values of

0, 1, =, f.

(c) In pairs: Working through your own example (Exercise 5.13 of Regression and Other Stories)

Continuing the example from the final exercises of the earlier chapters, construct a probability

model that is relevant to your question at hand and use it to simulate some fake data. Graph

your simulated data, compare to a graph of real data, and discuss the connections between

your model and your larger substantive questions.

Stories

1. Slope when predicting elections from the economy

Figure 33 is an update of Figure 7.2 from Regression and Other Stories including data through

2020, showing a prediction of U.S. presidential election outcomes (incumbent party’s percentage

of the two-party vote) given a measure of recent economic growth. Unsurprisingly, stronger

growth predicts better electoral performance, and here is the fitted model:

Median MAD_SD

(Intercept) 46.7 1.4

growth 2.8 0.6

Auxiliary parameter(s):

Median MAD_SD

sigma 3.7 0.7

This was fit to all the elections since 1948. But something has been changing in American politics.

There has been an increase in political polarization: Democrats vote for Democratic candidates

and Republicans vote for Republican candidates, with not much crossover voting.

The modern era of political polarization has been dated to the post-1990 period, starting with Bill

Clinton’s first election campaign.40 We ask students to discuss in pairs what they would expect

to see if they were to fit separate regression to the elections before and after 1990. They should

sketch in their notebooks and write their guesses of the regression lines.

Figure 34 shows the results. The slope is lower in recent elections, which makes sense in the

context of recent political trends. A more polarized electorate will be less sensitive to the economy.

Here are the numerical results for the regression fit to elections from 1948 through 1988:

Median MAD_SD

(Intercept) 44.8 2.7

growth 3.5 1.0

40See Andrew Gelman, David Park, Boris Shor, and Jeronimo Cortina (2009), Red State, Blue State, Rich State, Poor State:

Why Americans Vote the Way They Do, Princeton University Press.
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Forecasting the election from the economy      
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Figure 33 Forecasting U.S. presidential elections from the economy: an update of Figure 7.2 from Regression

and Other Stories including data through 2020.
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Figure 34 Forecasting U.S. presidential elections from the economy, with separate lines fit to elections before

and after 1990. The dotted line, corresponding to more recent elections, has a shallower slope, which makes

sense in the context of increasing political polarization.

Auxiliary parameter(s):

Median MAD_SD

sigma 4.5 1.2

And here’s the regression fit to elections from 1992 through 2020:

Median MAD_SD

(Intercept) 48.4 1.5

growth 1.6 1.1

Auxiliary parameter(s):

Median MAD_SD

sigma 2.8 0.8
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Figure 35 Donald Trump’s share of the two-party vote, by state, compared to a polls-based forecast constructed

before the election.

This example relates to the week’s reading in that it is about understanding the intercept and slope

of a linear regression. It relates to the course more generally in connecting these models to social

science theory.

2. Clinton/Trump vote vs. polls and predictions

The 2016 and 2020 U.S. presidential elections were similar: both times the Democratic candidate

was leading in the polls, and both times the Democrat unambiguously won the popular vote, but

with a lesser margin than was expected from public polling data. After 2016 we investigated

what went wrong and considered more general implications for politics and polling.41 Here we

talk about one part of these analyses: the comparison of the state-by-state outcome in 2016 to

poll-based forecasts.

Figure 35 shows the results for the 50 states. We ask students in pairs to summarize the main

messages from this graph, which we would take to be, first that the forecasts were highly accurate

for most of the states; second that Trump did better most places than forecast; and finally that the

discrepancies were larger in more Republican-leaning states.

Figure 36 focuses on the differences, and it shows these patterns more clearly. We ask the students

to discuss why this graph is more effective for that purpose.

Then ask about regression lines. If the regression line for the first graph has intercept 0 and

slope 1, then what’s the regression line for the second graph? If ~ = 0 + 1 ∗ G + error, then we

can write (~ − G) = 0 + 0 ∗ G + error. More generally, if the line is ~ = 0 + 1 ∗ G + error, then

(~ − G) = 0 + (1 − 1) ∗ G + error.

What is the regression line for the second graph? Draw a line through the points and see what you

get. You also should notice out that the line doesn’t fit the data! Not all relationships are linear.

41See Andrew Gelman and Julia Azari (2017), 19 things we learned from the 2016 election (with discussion), Statistics

and Public Policy 4 (1), 1–10.
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Figure 36 Trump share of the two-party vote, by state, minus polls-based forecast, plotted vs. the polls-based

forecast. Trump outperformed the forecast the most in highly Republican states.

This example is relevant to the week’s reading because we’re working through a simple regression

model. It’s relevant to the class as a whole because it illustrates the general principle of regression

being a prediction of ~ given G.

Class-participation activities

1. Simulate fake data and fit a regression

In discussion, students come up with a “cover story”—a scenario in which before-after data could

be approximated by a linear model with variation—and then the instructor leads the class through

the process of choosing the parameters (the intercept, slope, and residual standard deviation),

simulating data from the model, graphing the data and seeing if they make sense given the cover

story, and then altering the parameters and checking again.

2. Before-after memory quiz demonstrating regression to the mean

You can use the computer to simulate 20 random nouns.42 Here’s what came up when we did this:

brother house bat theory beginner train boy prose run government experience

art end song wheel nation jeans baseball reward flock

We tell the students that we will be displaying 20 randomly chosen nouns on the screen for 30

seconds; they should try to memorize as many as they can. After displaying the words for 30

seconds, we discuss other things for three minutes (answering questions on the homework or

starting the computer demonstration), and then give the students a minute to individually write

down as many words as they remember. We then display the words again and ask them each to

count how many they got correct.

We tell the students we will be giving them another memory quiz with 20 new words, and ask

them each to predict the score they will get.

We next repeat the exercise with 20 new nouns, again chosen at random; for example,

42For example, https://wordcounter.net/random-word-generator.
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cloth boundary lizard drain hook health wheel wax school car fight lace string

class wave woman garden army division fold

We then gather three pieces of data from each student: score on first quiz, guessed score on second

quiz, actual score on second quiz. Students enter the data on a Google form we have already

prepared. We download the data and make a scatterplot of quiz 2 vs. quiz 1 scores and fit the

regression line. That line can be used to get a prediction for each student of score 2 given score 1,

and students can then compare their guesses with the predicted scores from the regression. The

predicted scores typically are closer than the guesses.

This example is relevant to the week’s reading as it is an example of “regression to the mean.” It

is relevant to the course as a whole as an example of the effectiveness of statistical prediction.

Computer demonstrations

1. Experiment with a simulated regression

Go through the example of Section 6.2 of Regression and Other Stories, which gives a chance to

discuss and play with the code.

library("rstanarm")

x <- 1:20

n <- length(x)

a <- 0.2

b <- 0.3

sigma <- 0.5

y <- a + b*x + sigma*rnorm(n)

fake <- data.frame(x, y)

fit_1 <- stan_glm(y ~ x, data=fake, refresh=0)

print(fit_1, digits=2)

plot(fake$x, fake$y, main="Data and fitted regression line")

a_hat <- coef(fit_1)[1]

b_hat <- coef(fit_1)[2]

abline(a_hat, b_hat)

x_bar <- mean(fake$x)

text(x_bar, a_hat + b_hat*x_bar,

paste("y =", round(a_hat, 2), "+", round(b_hat, 2), "* x"), adj=0)

Some things to do here are to change the sample size, the values of G, the intercept 0 and the slope

1, and the error standard deviation f. Some things to explore: the variation around the line in the

graph, and the discrepancies between the true parameters and their estimate from the regression.

Before doing each change (altering the range of G, increasing the sample size, decreasing the

sample size, shifting the intercept, changing the slope, changing the standard deviation of the

errors), the instructor can write the change on the board, then ask the students in pairs to write

what they expect to see, and then run the code to see what happens. We like this general strategy

of having students guess the results of a computation before seeing it appear.

2. Challenges in setting up the regression-to-the-mean simulation

When setting up the fake data example in Section 6.5 of Regression and Other Stories, our original

plan was to (i) start with random pre-test data, (ii) hypothesize a regression model linking pre-test

and post-test results, and (iii) create post-test data using the regression model.

However, it seemed to make more sense to model the underlying process by starting with a latent

ability variable, and to generate pre-test as well as post-test data based on it. We do that here.
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# Setup

library("rstanarm")

# Simulate fake data

n <- 1000

true_ability <- rnorm(n, 50, 10)

noise_1 <- rnorm(n, 0, 10)

noise_2 <- rnorm(n, 0, 10)

midterm <- true_ability + noise_1

final <- true_ability + noise_2

exams <- data.frame(midterm, final)

# Run linear regression

fit_1 <- stan_glm(final ~ midterm, data=exams, refresh=0)

print(fit_1)

# Plot midterm and final exam scores

par(mar=c(3, 3, 2, 1), mgp=c(1.7, .5, 0), tck=-.01)

plot(midterm, final, xlab="Midterm exam score", ylab="Final exam score",

xlim=c(0,100), ylim=c(0,100), pch=20, cex=.5)

abline(coef(fit_1))

This demonstration relates to the week’s reading by giving insight into linear regression with a

single predictor, and it is relevant to the course as a whole as an example of putting together the

steps of simulating a before-after study.

Drills

1. Regression to the mean

(a) Consider a pre-test, post-test situation where scores on both tests have mean 50, and the

regression of post-test on pre-test has a slope of 0.6. A student scores 70 on the pre-test. What

is that student’s expected score on the post-test?

Solution: ~ = 50+0.6∗(G−50)+error, so if G = 70, the predicted value of ~ is 50+0.6∗20 = 62.

(b) A student scores 80 on the pre-test. What is that student’s expected score on the post-test?

(c) Same, but with a regression slope of 0.1.

(d) Same, but now the average score is 30 on the pre-test and 65 on the post-test.

2. Scatterplots, regression lines, and regression functions

Here are several scatterplots of ~ vs. G. For each, draw the fitted regression line and a curve of

E(~ |G):
(a) Normal with correlation 0.5 (simulate directly from computer).

Solution: We draw the line on the board.

(b) Normal with correlation 0.

(c) Quadratic relationship of E(~ |G) vs. G

(d) Asymptotic relationship of the form, E(~ |G) = 0(1 + e−1G).

Discussion problems

1. Other examples of regression to the mean

Section 6.4 of Regression and Other Stories discusses the classic example of parents’ and children’s

heights. When using mother’s height to predict daughter’s height, the best predictor is to “regress”
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toward the mean. Section 6.5 of the of Regression and Other Stories shares two other examples:

midterm and final exams, and performance in successive maneuvers in a flight school. Can you

come up with another example in which “regression to the mean” arises?

2. Understanding uniform partisan swing (considering regression to the mean)

National elections approximately follow uniform partisan swing at the national and local levels,

typically with only small changes from year to year. But over a 20-year period there can be big

changes. How can these patterns in the United States and elsewhere be understood? Is the concept

of regression to the mean relevant here?
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3.8 Linear regression with a single predictor

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

52 + 122
= 132 African Regression, Sketch a Predict

countries in the transformations, fitted elections given

United Nations and sample size model incumbency

Regression Socioeconomic Take average Probabilities How large

of earnings status and or regress on from was the

on height political ideology a constant term regression sample size?

Reading

Chapter 7 of Regression and Other Stories: Linear regression with a single predictor

Pre-class warmup assignments

1. Check regression using fake-data simulation

(a) Write an R function that does the following: (i) simulate = data points from a linear model

with intercept 0, slope 1, and residual standard deviation f, where the predictors are sampled

at random uniformly from the range (Glo, Ghi); (ii) fit a linear regression to these data; and (iii)

check to see if the estimated slope is within 1 standard error of its true value.

(b) Check your function by running it with the values = = 50, 0 = 10, 1 = −20, f = 30.

(c) Put your function in a loop, run it 100 times, and make a plot with the simulated data and the

fitted regression line, including the formula for the fitted line as in Figure 6.1 of Regression

and Other Stories.

2. Formulate comparisons as regression models

Suppose you have a vector test_scores of exam grades for a class of students, and a vector

level taking on the values 1 for undergraduate and 2 for graduate students.

(a) Explain why the estimated coefficient in the linear regression test_scores ~ 1 gives the

average grade in the class. Give R code to perform this regression and extract the coefficient

estimate.

(b) Write the code for the linear regression that gives the difference between the average grades

for graduate and undergraduates in the class.

Homework assignments

1. (a) Simulating regression with measurement error

i. Simulate 100 data points with measurements G and ~ as follows. Let G be uniformly

distributed between 0 and 10, and simulate ~ from the model, ~ = 0 + 1G + error, where

0 = 2, 1 = 0.5, and the error is normally distributed with mean 0 and standard deviation

f = 2. Give your code.

ii. Use stan_glm to fit a linear regression of ~ on G. Display the result. Discuss the

discrepancies between your estimates of 0, 1, f and the true values, in comparison to the

standard errors from the regression. Give your code as well as your R output.

iii. Plot the data and the fitted regression line. Give your code as well as your graph.

iv. Now suppose G is measured with error: Create a new variable x_obs by taking G and

adding normally distributed errors with mean 0 and standard deviation 5. Now fit the
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linear regression predicting ~ from x_obs. How do the coefficient estimates compare to

the result from regressing ~ on G as you did earlier?

2. (a) Regression predictors (Exercise 7.1 of Regression and Other Stories)

In the election forecasting example of Section 7.1 of Regression and Other Stories, we used

inflation-adjusted growth in average personal income as a predictor. From the standpoint

of economics, it makes sense to adjust for inflation here. But suppose the model had used

growth in average personal income, not adjusting for inflation. How would this have changed

the resulting regression? How would this change have affected the fit and interpretation of the

results?

(b) Fake-data simulation and regression (Exercise 7.2 of Regression and Other Stories)

Simulate 100 data points from the linear model, ~ = 0 + 1G + error, with 0 = 5, 1 = 7, the

values of G being sampled at random from a uniform distribution on the range [0, 50], and

errors that are normally distributed with mean 0 and standard deviation 3.

i. Fit a regression line to these data and display the output.

ii. Graph a scatterplot of the data and the regression line.

iii. Use the text function in R to add the formula of the fitted line to the graph.

Stories

1. 52 + 122
= 132

Many areas of statistics involve adding components of variation. The mathematical rule is

that standard deviations are added on the squared scale; that’s why we have formulas such as

sd(D + {) =
√

sd(D)2 + sd({)2 for independent random variables D and {. We don’t attempt to

explain or derive this Pythagorean formula in class, but we can give several clean examples:

• A survey is done in 2021 to estimate opinion on some issue, and a new group of people is

surveyed in 2022 in order to estimate the change in opinion on some issue. If the sample sizes

of the surveys are =1 and =2, then the standard error of the difference is
√

0.52/=1 + 0.52/=2.

Here we are making the usual assumption that the proportion ? is close to 0.5 so that ?(1− ?)
is close to 0.25; see pages 51–52 of Regression and Other Stories.

• A survey is done of =1 women and =2 men, with the goal being to estimate the gender gap:

the difference in support for some candidate comparing the two sexes. The standard error of

the difference is
√

0.52/=1 + 0.52/=2.

• An A/B test: an experiment is performed in which =1 people get the treatment and =2 get

the control, and some outcome is measured (for example, click-through rate or sales or time

spent on a website). The experimenters then compute the average difference between treated

and control groups; the standard error of this difference is
√
f2

1
/=1 + f2

2
/=2.

All these examples involve two errors that are squared, added, and square-rooted. This mathematical

operation has a diminishing-returns feature that you can see numerically and then with an applied

example.

First the numerical demonstrations.

Start with two independent errors, each with standard deviation 10. Add these up and you get√
102 + 102

= 14.1. What if you start with a standard deviation of 10 and add a standard deviation

of 5? You get
√

102 + 52
= 11.2. This is barely more than the original value of 10. In short: when

adding two numbers in this way, the larger value dominates.

Here’s another example. We write this expression on the board:√
502 + 102
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and ask students in pairs to guess, without direct calculations, what it will be. We ask some

for their guesses and then write the answer on the board. It’s 51, which is lower than typical

guesses. Once you have an error with standard deviation 50, adding a new error term with standard

deviation 10 is pretty much irrelevant.

To put it another way, suppose you start with these two error terms and you have the opportunity

to decrease one of them. You start with
√

502 + 102, and you can either decrease the first

term by one-fifth (so you’ll have
√

402 + 102) or decrease the second term by one-fifth (to get√
502 + 82). Which is better? The answer is that it’s better—much better—to reduce the larger

error:
√

402 + 102
= 41.2, whereas

√
502 + 82

= 50.6. You get much more bang for your buck by

reducing the larger error term than by reducing the smaller one.

This is a principle of diminishing returns: if you have multiple sources of error, you should work

to reduce the largest term.43 As a mnemonic, we summarize this as 52 + 122
= 132.

Here is an example from Section 4.3 of Regression and Other Stories. Consider a survey with

= = 600 respondents and thus a sampling error of ± 0.5/
√

600 = 0.02, or 2 percentage points.

Now suppose you were to redo the survey with 60 000 respondents. What would the standard error

be? With 100 times the sample size, the standard error will be divided by 10, thus the estimated

proportion will have a standard error of 0.002, or ±0.2 percentage points.

But imagine a poll were reported in this way: the support for some issue is 52.5% ± 0.2%. This

would not make sense. Why not?

The problem here is that 0.002 is the scale of the sampling error, but there are many other sources

of error arising from nonresponse, inaccuracy in predicting who will vote, variation in opinion

over time, and inaccurate survey responses.

One way to account for these sources of uncertainty is to add an error term representing

nonsampling error. For example, in state polling for U.S. elections, nonsampling error has been

estimated to have a standard error of approximately 2.5 percentage points. So if we want to

account for total uncertainty in our survey of 600 people, we would use a standard error of√
22 + 2.52

= 3.2 percentage points, and for the survey of 60 000 people, the standard error would

be
√

0.22 + 2.52
= 2.51 percentage points. This formula shows that not much would be gained by

increasing the sample size to 60 000 because it only serves to decrease the first term inside the

square root; it doesn’t effect the second term at all.

This story is relevant to the week’s reading because it helps us put uncertainties and standard

errors in context. It connects to the course more generally by addressing a limitation of the usual

statistical summaries.

2. Interpret the regression of earnings on height

Taller people make more money, on average. We fit this model to survey data from 1990:

fit0 <- stan_glm(earn ~ height, data=earnings, refresh=0)

print(fit0)

And here’s what we saw:

stan_glm

family: gaussian [identity]

formula: earn ~ height

observations: 1816

predictors: 2

------

43Andrew Gelman (2008), The most important formula in statistics, https://statmodeling.stat.columbia.edu/2008/10/25/

the_most_import/.
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Median MAD_SD

(Intercept) -85000 9000

height 1600 100

Auxiliary parameter(s):

Median MAD_SD

sigma 22000 400

The instructor can display this output on the screen and ask the students in pairs to go through

each of the numbers in the output. How to understand the result? One thing we know is that men

make more money than women, on average. So maybe the positive coefficient for height is just

coming from the comparison of women to men.

We tried fitting the model just to men:

fit1 <- stan_glm(earn ~ height, data=earnings, subset=(male==1), refresh=0)

print(fit1)

And here’s what came out:

stan_glm

family: gaussian [identity]

formula: earn ~ height

observations: 675

predictors: 2

------

Median MAD_SD

(Intercept) -39000 26000

height 1000 400

Auxiliary parameter(s):

Median MAD_SD

sigma 29000 800

How to understand this? Students in pairs should sketch, with pen on paper, the fitted regression

line with G in the range (60, 80)—that’s from 5 feet to 6 feet 8 inches tall. They should then sketch

dotted lines at ±f above and below the line. This shows that the predictive value of height is

small compared to the variation in the data.

The instructor can then ask the students to consider some possible explanations for the height-

and-earnings pattern and to consider what data they could gather to explore their hypotheses.

Some theories in the literature include the psychological advantage of being taller as a child,

the advantage of being taller as a young adult, and height being correlated with social class,

intelligence, and other attributes that are predictive of earnings.44

This story is relevant to the week’s reading because it is about the interpretation of a regression

with one predictor (or two, if you count the constant term). It relates to the course more generally

because the first step in understanding any regression is to understand one coefficient at a time.

Class-participation activities

1. African countries in the United Nations

Ahead of time the instructor should prepare survey forms, one for each student in the class, as

shown in Figure 37. When it is time in class to perform the activity, the instructor should pass out

44There’s a large literature on this topic; see for example Andreas Schick and Richard Steckel (2015), Height, human

capital, and earnings: The contributions of cognitive and noncognitive ability, Journal of Human Capital 9, 94–115.
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We assigned a number to you between 0 and 100. It is - = .

1. Do you think the percentage of countries, among all those in the United Nations, that are in

Africa is higher or lower than -?

2. Give your best estimate of the percentage of countries, among all those in the United Nations,

that are in Africa.

Figure 37 Handout for the United Nations activity. The instructor should make copies of this form for all

students in the class and write, by hand, “10” in the blank space for half the forms and “65” on the others. The

instructor should then fold each of the forms, shuffle them, and hand them out to the students, telling them to

answer the survey questions individually, without discussing with their neighbors.

0 20 40 60 80 100

0
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1
2

guessed percentage of African countries in U.N.

mean = 13 
sd = 13 
n = 20

prompted with X = 10

0 20 40 60 80 100

0
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4
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8
1
0

guessed percentage of African countries in U.N.

mean = 21 
sd = 15 
n = 23

prompted with X = 65

Figure 38 Responses of students in a small introductory probability and statistics class to the question, “Give

your best estimate of the percentage of countries, among all those in the United Nations, that are in Africa.” The

students were previously asked to compare this percentage with a specified value -; histogram (a) displays

responses for students given - = 10, and histogram (b) displays responses for students given - = 65. The

students were told that the value of - was chosen at random, and yet it has an effect (on average) on their

responses. Similar results were obtained when the experiment was repeated in other classes.

the folded forms, ask the students to answer the two questions independently (without discussing

it with their neighbors), and then fold the forms back up and return them. Because each student

must separately fill out a survey form, this is one of the few demonstrations in the course in which

the students do not work in pairs or groups.

After the students have answered the questions and returned the forms, the instructor should

explain that only two values of - were actually assigned and that the point of the activity is to

find the relation between - and the students’ responses on the second question. In statistical

terminology, this is an experiment in which the units are the students, the treatments are the

hand-written values of - (10 or 65), and the outcome of interest is the response to the second

question.

This activity is adapted from a published study that reported the median responses to the second

question as 25 or 45, given - = 10 or 65, respectively. This result has been characterized as an

example of the “anchoring heuristic,” in which an estimate of an unknown quantity is influenced

by a previously supplied starting point. In this example, the value of - should not affect the

outcome (after all, the students were told that - was randomly generated), yet it does!45

45Amos Tversky and Daniel Kahneman (1974), Judgment under uncertainty: Heuristics and biases, Science 185, 1124–

1131. The class-participation activity is taken from Section 6.4.1 of Teaching Statistics: A Bag of Tricks.
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Now is a good time to discuss the principles of randomization and blindness in experimentation,

now that the students have been subjects in an experiment. Incidentally, the actual value of the

unknown quantity is irrelevant for this example—we are only studying the differences in responses

between the two groups of students.

In performing this example in our classes, we have replicated the anchoring effect, although its

magnitude has not been so dramatic as in the published literature; for example, histograms of

responses for a class of 43 students are shown in Figure 38. When the data have been collected,

the two groups can immediately be compared graphically using histograms; typically, as in Figure

38, the histograms overlap considerably but clearly differ.

Other examples in which an experiment is embedded in a survey include studies of question

wording, question ordering, and other causes of survey response bias. In addition, the experiment

given here could be made more complex in various ways, for example by randomly ordering the

options “higher” and “lower” in the first question of the survey, thus giving two factors and four

possible experimental conditions.

This activity is relevant to the week’s readings in that the comparison between the two groups

can be framed as a regression on an indicator—a variable that equals 0 or 1 if the anchor was

set to 10 or 65, respectively. If you label that indicator variable as I, then the difference between

the two groups is the slope of the regression of ~ on I. The activity is relevant to the course as a

whole because it is an example of a controlled experiment, a form of data collection we often see

in social and medical sciences.

2. Socioeconomic status and political ideology, studied using a class-designed questionnaire

Various socioeconomic variables are known to be predictive of political attitudes.46 The instructor

can ask students to list some of these variables (for example, race/ethnicity, sex, age, income,

education, and marital status). For this activity, students should consider a variable that would

predict political ideology in this class. First we need an outcome measure. For a class at Columbia

University, simple party identification would not have worked well because there are so few

Republicans at the university, so instead we used a left-right ideology score on a scale from −5

(far left) to +5 (far right). Students then need to come up with a good socioeconomic predictor. A

challenge for our class was to come up with a measure that would work for students coming from

many different countries.

The instructor can set up a Google questionnaire (see Figure 39a for an example), write the URL

on the board, and have students fill out the form on their phones or computers. Save the data as a

.csv file, read it into R, and fit a regression. Before they see the result, students should work in

pairs to guess what the data and regression output will look like. They can then be shown the

regression fit, along with a scatterplot and fitted line, and have students discuss how this differed

from their expectations. Figure 39b illustrates.

Next the class can consider how this could be done better. What would be a stronger predictor of

the outcome? How could you know it was stronger? Do you compare the intercepts? The slopes?

The residual standard deviation? '2?

This activity is relevant to the week’s readings because it is about the interpretation and

understanding of a linear regression. This time, instead of starting with the data and moving to the

interpretation, students starting with the problem and then guess what might happen in the data.

This is how things go when you are designing a study rather than analyzing existing data. The

activity relates to the course as a whole as it is an example of using a survey to address a social

science question.

46See, for example, Andrew Gelman, David Park, Boris Shor, and Jeronimo Cortina (2009), Red State, Blue State, Rich

State, Poor State, Princeton University Press.
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Figure 39 (a) A Google form we created in class for students to enter data on socioeconomic status (SES) and

sociology. The SES measure was created by adding four items, each on a 0–4 scale, representing private

education, parents’ education, parents’ income, and size of city where the student grew up. The political

ideology measure was anchored by the positions of various politicians (Bernie Sanders at −30, Hillary Clinton

at −10, Mitt Romney at +10, and Ted Cruz at +30), with responses restricted to fall between −40 and +40. (b)

Data and fitted regression line. Before displaying this graph, we asked students to guess the intercept, slope,

and residual standard deviation of the regression line. For the data shown, it is ~ = −28 + 0.6G with residual

standard deviation 18.

Computer demonstrations

1. Regression, linear transformation, and sample size

Here you can work out some basic operations on a fitted regression, using the example of height

and earnings for men, as before using data from the 1990 Work, Family, and Well-being Survey. To

get to the data, start with the webpage for Regression and Other Stories,47 then click on Examples,

Examples alphabetically, Earnings, data, earnings.csv, Raw, and then copy and paste the URL.48

library("rstanarm")

earnings <- read.csv(paste0(

"https://raw.githubusercontent.com/avehtari/",

"ROS-Examples/master/Earnings/data/",

"earnings.csv"

))

head(earnings)

fit0 <- stan_glm(earn ~ height, data=earnings, refresh=0)

print(fit0)

earnings$earnk <- earnings$earn/1000

fit1 <- stan_glm(earnk ~ height, data=earnings, refresh=0)

Before showing the result, we ask students in pairs to fill in the regression output. They should be

able to do this. We then continue:

print(fit1)

par(mar=c(3,3,1,1), mgp=c(1.5,.5,0), tck=-.01)

plot(earnings$height, earnings$earnk,

pch=20, cex=.5)

47http://www.stat.columbia.edu/~gelman/regression/.

48https://raw.githubusercontent.com/avehtari/ROS-Examples/master/Earnings/data/earnings.csv.
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abline(coef(fit1))

R2 <- 1 - sigma(fit1)^2 / sd(earnings$earnk)^2

print(R2)

What would the results look like with a different sample size? Repeat the above steps on a random

sample of 1/4 of the data points:

n <- nrow(earnings)

earnings$select <- sample(c(0,1), n, replace=TRUE, prob=c(0.75, 0.25))

fit2 <- stan_glm(earnk ~ height, data=earnings, refresh=0,

subset=(select==1))

print(fit2)

The sample size is divided by 4, so the standard errors should be about twice as large.

2. Take the average or regress on a constant term

As discussed in Section 7.3 of Regression and Other Stories, performing a regression with just the

constant term is equivalent to estimating a mean. We demonstrate here with a simulation.

library("rstanarm")

# Create fake data

n <- 30

y <- rnorm(n, 40, 20)

# Estimate mean by hand

y_bar <- mean(y)

se <- sd(y) / sqrt(length(y))

print(c(y_bar, se))

# Estimate mean using regression on constant term

data <- data.frame(y)

fit <- stan_glm(y ~ 1, data=data, refresh=0)

print(fit)

Drills

1. Sketch a fitted regression model

For each example, sketch the regression line and data that match both the fitted model and the

residual standard deviation.

(a) ~ = 2.5 + 0.4G + error, and f = 3 (from G = 0 to 10)

Solution: Draw the axes and the range of G, then figure out the range of ~ (from 2.5 + 0.4*0 to

2.5 + 0.4*10, that is, from 2.5 to 6.5, so draw a ~-axis roughly from 0 to 10), then draw the

line, then draw dotted lines parallel to the regression line at ±f, then sketch a bunch of points,

with about two-thirds within the dotted lines and one-third outside.

(b) ~ = −150 + 20G + error, and f = 100 (from G = 10 to 20)

(c) ~ = 80 + 3 ∗ (G − 1900) + error, and f = 10 (from G = 1900 to 2000)

2. Predict probabilities using regression

The following regression output describes the relationship of midterm and final exam scores,

based on fake data (compare Section 6.5 of Regression and Other Stories).

Calculate the predicted final score given the stated midterm score; and calculate the probability

that the student will score in the range specified.
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Median MAD_SD

(Intercept) 24.8 1.4

midterm 0.5 0.1

Auxiliary parameter(s):

Median MAD_SD

sigma 11.6 0.3

(a) Midterm score 60; probability to score higher than 50?

Solution: Prediction is 24.8 + 0.5 ∗ 60 = 54.8, and errors have standard deviation 11.6, so

probability of scoring higher than 50 is 1 - pnorm(50, 54.8, 11.6), which comes to

0.66, or 66%. Or, equivalently, 1 - pnorm((50 - 54.8)/11.6). We also graph the normal

distribution centered at 54.6 and with standard deviation 11.6, then draw a vertical line at 50

and shade the area on the right.

(b) Midterm score 100; probability to score higher than 50?

(c) Midterm score 60; probability to score lower than 60?

(d) Midterm score 100; probability to score lower than 90?

(e) Midterm score 50; probability to score between 40 and 60?

Discussion problems

1. Regression line and modeling for future elections given incumbency

The biggest U.S. presidential electoral landslides in modern memory (see Figure 33 in this book or

Figure 7.2 in Regression and Other Stories) came in 1964, 1972, and 1984, years when incumbents

were running for reelection. More generally, we might expect the model predicting election

outcomes from the economy to be different when incumbents are running for reelection, compared

to when new candidates are running. How might this change the regression line? How might you

model this?

2. How large was the sample size?

Consider this regression predicting final exam scores on midterm exam scores:

Median MAD_SD

(Intercept) 24.8 1.4

midterm 0.5 0.1

Auxiliary parameter(s):

Median MAD_SD

sigma 11.6 0.3

In the output, we didn’t include =. How can you approximately figure out = here? You should be

able to attack this problem by simulating data and a regression in R and playing around with the

inputs until you get something that looks roughly like the result above.
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3.9 Least squares and fitting regression models

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Ronald Reagan Simulate Play with the Sample size From

and the and recover regression and standard inference

evangelical vote regression lines errors estimate to decision

Does having a girl Move a point Compare lm Averages and Sample size

make you more and shift the and stan_glm comparisons and statistical

conservative? regression line as regressions significance

Reading

Chapter 8 of Regression and Other Stories: Fitting regression models

Pre-class warmup assignments

1. Linear regression fit to three data points

(a) Without using the computer, figure out the slope, 1, of the least-squares line, ~ = 0 + 1G, for

the three points (G, ~) = (0, 0), (1, 2), (2, 2).
(b) Without using the computer, figure out the intercept, 0, of this fitted line.

(c) Suppose you fit a linear regression to world population during the twentieth century, using

the following data points: 1.5 billion in 1900, 2.5 billion in 1950, 6 billion in 2000. Without

using the computer, figure out the least-squares line, ~ = 0 + 1G, for these three data points.

2. Compare lm and stan_glm

(a) Simulate 100 data points from a linear regression model with two predictors (that is,

~ = 10 + 11G1 + 12G2 + error). Fit the model to the simulated data using lm and then fit it using

stan_glm with its default settings. Compare the results and discuss how they differ.

(b) Repeat, but just simulating 10 data points instead of 100.

Homework assignments

1. (a) Fake-data simulation and fitting the wrong model (Exercise 7.3 of Regression and Other

Stories)

Simulate 100 data points from the model, ~ = 0 + 1G + 2G2 + error, with the values of G being

sampled at random from a uniform distribution on the range [0, 50], errors that are normally

distributed with mean 0 and standard deviation 3, and 0, 1, 2 chosen so that a scatterplot of

the data shows a clear nonlinear curve.

i. Fit a regression line stan_glm(y ~ x) to these data and display the output.

ii. Graph a scatterplot of the data and the regression line. This is the best-fit linear regression.

What does “best-fit” mean in this context?

(b) Formulating comparisons as regression models (Exercise 7.6 of Regression and Other Stories)

Take the election forecasting model and simplify it by creating a binary predictor defined as

G = 0 if income growth is less than 2% and G = 1 if income growth is more than 2%.

i. Compute the difference in incumbent party’s vote share on average, comparing those two

groups of elections, and determine the standard error for this difference.

ii. Regress incumbent party’s vote share on the binary predictor of income growth and check

that the estimate and standard error are the same as your earlier result.
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2. (a) Least squares (Exercise 8.1 of Regression and Other Stories)

The folder ElectionsEconomy in the repository at https://avehtari.github.io/ROS-Examples/

examples.html contains the data for the example in Section 7.1 of Regression and Other

Stories. Read in these data, type in the R function rss() from page 104 of the book, and

evaluate it at several different values of (0, 1). Make two graphs: a plot of the sum of squares

of residuals as a function of 0, with 1 fixed at its least squares estimate given in Section 7.1 of

the book, and a plot of the sum of squares of residuals as a function of 1, with 0 fixed at its

least squares estimate. Confirm that the residual sum of squares is indeed minimized at the

least squares estimate.

(b) In pairs: Working through your own example (Exercise 7.10 of Regression and Other Stories)

Continuing the example from the final exercises of the earlier chapters, fit a linear regression

with a single predictor, graph the data along with the fitted line, and interpret the estimated

parameters and their uncertainties.

Stories

1. No, Ronald Reagan did not win “overwhelming support from evangelicals”

We were reading an article in the New Yorker magazine and noticed the following claim that made

us suspicious:49

“[In 1980], Ronald Reagan won the Presidency, with overwhelming support from evangelicals.

The evangelical vote has been a serious consideration in every election since.”

Figure 40 shows the support of Republican presidential candidates across different religious

groups.50 According to the National Election Study, Reagan did a bit worse among evangelical

Protestants than among voters as a whole—no surprise, really, given that Reagan was not

particularly religious and his opponent, Jimmy Cater, was an evangelical himself.

It was 1992, not 1980, when evangelicals really started to vote Republican.

Numbers are important, and we worry about misconceptions of American politics—for example,

the idea that Reagan won “overwhelming support from evangelicals.” A big motivation of our

research in political science is to show people how all sorts of things they thought they knew about

politics were actually false.

Perhaps the New Yorker and other similar publications should hire a statistical fact checker or copy

editor? Maybe this is the worst time to suggest such a thing, with the collapsing economics of

journalism and all that. Still, we think the magazine could hire someone at a reasonable rate who

could fact check their articles. This would free up their writers to focus on the storytelling that

they are good at without having to worry about getting the numbers wrong.

Reagan did do well among white evangelicals, though.

To connect to the week’s reading on least squares regression: Figure 40 shows how regression can

be useful for purely descriptive purposes. In this case, the expression ~ = 0 + 1G + error (where

G is year and ~ is Republican vote share relative to the national average, with a separate model

fit to each denomination) does not represent any sort of model of the world—it’s not like we’re

saying that the gods of elections compute 0 + 1G and then add an error to determine the election

outcome—but the fitted lines are convenient summaries.

49Ariel Levy (2010), Prodigal son: Is the wayward Republican Mike Huckabee now his party’s best hope?, New

Yorker, https://www.newyorker.com/magazine/2010/06/28/prodigal-son/. The discussion here is taken from Andrew Gelman

(2010), Statistical fact checking needed, or, No, Ronald Reagan did not win “overwhelming support from evangelicals,”

https://statmodeling.stat.columbia.edu/2010/07/12/statistical_fac/.

50Figure 6.9 from Andrew Gelman, David Park, Boris Shor, and Jeronimo Cortina (2009), Red State, Blue State, Rich

State, Poor State.
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Figure 40 Time series plots of Republican vote share within various religious denominations. In each year,

we have subtracted the national vote so that the graph shows each denomination compared to the national

average. Points that are above the zero line correspond to groups that are more Republican than the country as

a whole. Over these decades, mainline Protestants became less Republican, evangelical Protestants moved from

the Democrats to the Republicans, and Catholics lost their Democratic affiliation.

To connect with some of the larger themes in the class, this example shows the value of looking at

data, which then allows us to refine our understanding of the world.

2. Does having a girl make you more conservative or more liberal?

In 2010 a study was released involving children and political orientation.51 From a study in the

United States, sociologists Dalton Conley and Emily Rauscher wrote:52

“Using nationally-representative data from the [1994] General Social Survey, we find that

female offspring induce more conservative political identification. We hypothesize that this

results from the change in reproductive fitness strategy that daughters may evince.”

This surprised us, because an earlier study by economists Andrew Oswald and Nattavudh

Powdthavee had come out with the exact opposite finding:53

“We document evidence that having daughters leads people to be more sympathetic to

left-wing parties. Giving birth to sons, by contrast, seems to make people more likely to vote

for a right-wing party. Our data, which are primarily from Great Britain, are longitudinal.

We also report corroborative results for a German panel.”

This is a fun problem: we have two different studies, both by reputable researchers, with opposite

51The discussion here is taken from Andrew Gelman (2010), Having daughters makes you more liberal. No, it

makes you more conservative. No, it . . . ??, https://statmodeling.stat.columbia.edu/2010/04/06/having_daughter_1/, Andrew

Gelman (2013), Don’t douthat, man! Please give this fallacy a name, https://statmodeling.stat.columbia.edu/2013/12/20/

discovered-new-fallacy-now-need-name/, Andrew Gelman (2014), Into the thicket of variation: More on the political

orientations of parents of sons and daughters, and a return to the tradeoff between internal and external validity in design and

interpretation of research studies, https://statmodeling.stat.columbia.edu/2014/01/31/thicket-variation/, and Andrew Gelman

(2014), One-way street fallacy again! in reporting of research on brothers and sisters, https://statmodeling.stat.columbia.edu/

2014/02/03/one-way-street-fallacy-reporting-research-brothers-sisters/.

52Dalton Conley and Emily Rauscher (2013), The effect of daughters on partisanship and social attitudes toward women,

Sociological Forum 28, 700–718.

53Andrew Oswald and Nattavudh Powdthavee (2010), Daughters and left-wing voting, Review of Economics and Statistics

92, 213–227.
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results! We took a look at both papers and couldn’t immediately see a resolution, but we will offer

some speculations, followed by some scattered comments.

From a political perspective, we can see the sense in either of these results. Start with the finding

that having a girl makes you, on average, more conservative. Having a child should make you much

more focused on family issues, and perhaps having a daughter (as compared to a son) might make

this effect even larger. To the extent that the Republicans were seen as the family-values party,

this could swing some votes (or, at least, some party identification). From the other direction,

having a daughter could make you more sympathetic to left-wing views on reproductive rights

and economic redistribution and thus push you to the left. In either case we’re only talking about

average behavior; individuals could go in either direction.

Perhaps unsurprisingly, Oswald and Powdthavee, being economists, focus on economic issues:

“The interesting recent work of Campbell (2004) documents systematic gender differences

in modern British political attitudes. The author tabulates answers given in the British

Election Survey of 2001. She shows that the single most important concern to males is that

of low taxes. For females, by contrast, it is the quality of the National Health Service.

Similarly, left-wing parties tend to be more supportive of women-friendly policies such

as family leave; and right-wing parties tend to favor increased spending on the military,

which is of course mostly staffed by men.”

Conley and Rauscher, being sociologists, center their story on social issues:

“Males’ optimal reproductive strategy is to sire many offspring with a range of mates and

push the parenting requirements onto the mothers. Meanwhile, the mother seeks to maximize

not only the genetic fitness of the sire, but also to induce more post-conception investment

in rearing the offspring from the father. Seen in this light, more conservative policies that

increase the cost of promiscuity—particularly for males—will enhance the reproductive

bargaining power of women. . . . The conservative emphasis on family, traditional values

and gender roles, and prolife/anti-abortion sentiments all stress investment in children—for

both men and women. Conservative policies mirror the genetic interests of women, writ

large. They attempt to promote paternal investment in offspring.”

To us, this seems to be a lot to hang on a fragile thread. When it comes to economic policy,

Democrats are pushing higher taxes and public services while Republicans want lower taxes and

public services—and we don’t see how these map at all on to Conley and Rauscher’s categories.

Even when you come to the particular issue of abortion, we don’t see how how an anti-abortion

policy is an “attempt to promote paternal investment in offspring.” There are some deadbeat-dad

laws out there, but we didn’t think of them as being associated more with one party than the other.

Conley and Rauscher seem to have found a real pattern, so we don’t want to dismiss their

explanations too quickly. But we see their discussions of “reproductive bargaining power” and

the like to be a bit of a distraction. To us it’s simpler and clearer to think of liberalism and

conservatism, or Democratism and Republicanism, to be linked to general attitudes about the

family.

How did the two studies end up with opposite findings? Our guess is that it’s differences between

different countries, or maybe just noise in the data. Conley and Rauscher suggest that it’s data

issues (in particular, the inclusion or exclusion of adopted children or children who are no longer

living at home), but both of the articles here consider various alternative specifications and the

results don’t change, so we doubt this is what’s going on.

But for a completely different angle on the problem, consider how these findings were reported in

the news media:

“The Effect of Daughters on Partisanship and Social Attitudes Toward Women”
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“Does Having Daughters Make You More Republican?”

“Parents With Daughters Are More Likely To Be Republicans, Says New Study”

“Parents Of Daughters Lean Republican, Study Shows”

“The Daughter Theory: Does Raising Girls Make Parents Conservative?”

To their credit, the study’s authors and many of the journalists make it clear the claims are

speculative (consider, for example, the question marks in two of the above headlines).

But here’s our question: Why is it all about “the effect of daughters”? Why not “Does having

sons make you support the Democrats?” Having sons is considered the default. Okay, sure, a

bit over 51% of babies are boys. Really, though, you can have a boy or a girl, and the whole

discussion of these claims in the media is a bit distorted by the implicit attitude that the boy is a

default. Lots of discussion about how you, as a parent, might change your views of the world if

you have a girl. But not so much about how you might change your views if you have a boy. Lots

of discussion of how having a girl might affect your attitudes on abortion, not so much discussion

about how having a boy might affect your attitudes on issues such as gun control or war, which

disproportionately involve young men. This is a real problem, when issues of girls and boys, men

and women, are treated asymmetrically.

An example of this asymmetry came from New York Times columnist Ross Douthat, who expressed

pleasure about the headline, “Study: Having daughters makes parents more likely to be Republican,”

and wrote:54

“Why pleasure? Well, because previous research on this question had suggested the reverse,

with parents of daughters leaning left and parents of sons rightward. And those earlier

findings dovetailed neatly with liberal talking points about politics and gender: Republicans

make war on women, Democrats protect them, so it’s only natural that raising girls would

make parents see the wisdom of liberalism . . .

But the new study undercuts those talking points. Things are more complicated than

you thought, liberals! You can love your daughters, want the best for them, and find yourself

drawn to . . . conservative ideas! Especially if you’re highly educated, which is where the

effect was strongest!”

Douthat gets credit for referring to the earlier study and writing that things are complicated, but

the fallacy is that he is thinking unidirectionally. He’s all about what happens if you have a girl.

But what happens if you have a boy? Parents of boys are drawn to . . . liberal ideas! Especially if

you’re highly educated, which is where the effect was strongest! This would seem to contradict

theories of the feminization of America, the “war on men,” and so forth.

This fallacy is not special to Douthat or to conservative columnists. Indeed, the political “gender

gap” in America is typically framed as an advantage for Democrats who get these extra votes from

women. It could be just as well be framed as a male gender gap in favor of the Republican party,

but you don’t usually hear it that way. For another example, liberal columnist Charles Blow wrote

about yet another study, this one by Andrew Healy and Neil Malhotra, finding that “men with

sisters are more likely to be Republican. . . . A report from Stanford about the study concluded,

‘Watching their sisters do the chores “teaches” boys that housework is simply women’s work, and

that leads to a traditional view of gender roles—a position linked to a predilection for Republican

politics.’”55

In all these cases, the fallacy is that the comparison could go either way, but people think about it

only in one direction, thus not fully understanding the implications (in this case, thinking that a

54Ross Douthat (2013), The daughter theory, New York Times, 14 Dec, https://www.nytimes.com/2013/12/15/opinion/

sunday/douthat-the-daughter-theory.html/.

55Charles Blow (2014), The masculine mistake, New York Times, 31 Jan, https://www.nytimes.com/2014/02/01/opinion/

the-masculine-mistake.html/.
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connection between daughters and Republican voting is good news for conservatives, because

having sons is implicitly considered as the default case).

This story connects to the previous week’s reading in the idea of a regression being a comparison.

When comparing two groups using an indicator that takes on the value 0 or 1, the coefficient

compares the 1 case to the default 0 case. Switching the labels on the indicator flips the coefficient.

The story connects to the course more generally through the steps we take to understand regression

coefficients and the implicit causal implication. There is a symmetry in causal effects: the

effect of the treatment is relative to the control, and we could just as well speak of the effect of

control relative to the treatment. In the case of the sex of a baby’s sex—which is, essentially, a

randomly-assigned treatment—it does not makes sense to think of either sex as the default; the 0/1

labeling is arbitrary and we should recognize that.

Class-participation activities

1. Simulate and recover regression lines

Students will work in pairs. The first student should open R and simulate data from a regression

line, creating a data frame with predictor G and outcome ~. After creating the data, the student

should type control-L to clear the R console and then print out the range of G. Then the computer

is passed to the other student, who should fit the regression in R and then with pen on paper sketch

a guess of the data that is consistent with this fitted model and range of G. Instructions for the

activity are in Figure 41.

• Student #1:

(a) Create fake data from the model, ~ = 0 + 1G + error

(b) Put x and y in a data frame called data

(c) Type library("rstanarm")

(d) Type ctrl-L to clear the R console

(e) Type range(data$x)

• Student #2:

(a) Take the computer

(b) Fit the regression of y on x using stan_glm

(c) Sketch (not on the computer) your guess of the scatterplot of G and ~

Figure 41 Instructions for the activity of simulating and recovering regression lines. We project this on the

screen or write on the board, and students can then follow along as they work on the activity.

This activity relates to the week’s readings by decomposing the information in the fitted model. It

is relevant to the course as a whole in that, in the real world, we often need to reconstruct the story

without access to raw data, just based on a model that someone else has fit.

2. How much do you have to move a point to shift the fitted line by a specified amount?

In the first part of this demonstration, students work in pairs. One student simulates data from a

regression model and plots the data and fitted line. The other student shifts individual data points

up and down to see what happens to the regression line. What does it take to make the slope

change sign?

We project the following code onto the screen so that students can focus on the concepts of

regression fitting and not have to struggle with coding up the simulation and graphs:

n <- 9

x <- 1:n

y <- 5 + 3*x + rnorm(n, 0, 10)
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fake <- data.frame(x, y)

fit <- stan_glm(y ~ x, data=fake, refresh=0)

plot(fake$x, fake$y, ylim=c(0,100))

abline(coef(fit))

fake$y[9] <- fake$y[9] + 50

fit_2 <- stan_glm(y ~ x, data=fake, refresh=0)

points(fake$x[9], fake$y[9], col="blue")

abline(coef(fit_2), col="blue")

This activity relates to the week’s reading on the influence of a data point in a regression, and it is

relevant to the class more generally in allowing an example where we apply linear regression to

data that do not fit the model.

Computer demonstrations

1. Play with the linear regression estimate

Here you can see how the regression line changes if you move points around in the data. Start

with data in a straight line with no error:

# Prepare a plotting grid

par(mfrow=c(2,2))

# Generate fake data

n <- 11

x <- 1:n

y <- 0 + 1*x + rnorm(n, 0, 0.1)

fake <- data.frame(x, y)

# Plot the data

par(mar=c(3,3,2,1), mgp=c(1.5,.5,0), tck=-.01)

plot(fake$x, fake$y, pch=20, bty="l")

# Fit the model

fit <- stan_glm(y ~ x, data=fake, refresh=0)

abline(coef(fit), col="blue")

print(fit)

a_hat <- coef(fit)[1]

b_hat <- coef(fit)[2]

mtext(paste("y =", round(a_hat, 1), "+", round(b_hat, 1), "x"),

side=3, line=1, col="blue")

Next we put the plotting code into a function:

simple_plot <- function(fake){

plot(fake$x, fake$y, pch=20, bty="l")

fit <- stan_glm(y ~ x, data=fake, refresh=0)

abline(coef(fit), col="blue")

a_hat <- coef(fit)[1]

b_hat <- coef(fit)[2]

mtext(paste("y =", round(a_hat, 1), "+", round(b_hat, 1), "x"),

side=3, line=1, col="blue")

}

And now you can see what happens when you add 20 to the first point in the data:

new <- fake

new$y[1] <- new$y[1] + 20
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simple_plot(new)

Let’s try adding 20 to all the points:

new <- fake

new$y <- new$y + 20

simple_plot(new)

What would it take to get the line to have a negative slope? How much would you need to pull

down one of the points to get that to happen? What happens if you move up or down the point in

the middle? The instructor should ask these questions aloud and try these and other experiments,

fielding different suggestions from students. In doing this, keep the values of G fixed, as there’s

enough to learn just from manipulating ~.

This demonstration is relevant to the week’s reading on the influence of individual points in a

fitted regression (Section 8.3 of Regression and Other Stories), and it relates to the course more

generally in showing the connection between individual data points and the fitted line. This

demonstration also shows how it is possible to fit a linear regression to data that do not follow any

linear pattern (as occurs when we move individual data points up and down).

2. Compare lm and stan_glm

In Regression and Other Stories, we use the stan_glm function to fit linear regression. As

discussed in Section 8.4 of that book, we use this Bayesian method for two reasons: first because

it automatically returns simulations that we can use to summarize and propagate uncertainty in

the fit, and second because it allows the use of prior information, a topic discussed further in

Chapter 9 of Regression and Other Stories. The more standard approach is least squares regression,

implemented in R using the lm function. In this demonstration, you can compare the two fitting

functions using a simulated-data example:

library("rstanarm")

n <- 10

x <- 1:n

y <- 2 + 0.3*x + rnorm(n, 0, 1)

fake <- data.frame(x, y)

fit <- stan_glm(y ~ x, data=fake, refresh=0)

print(fit, digits=3)

fit_lm <- lm(y ~ x, data=fake)

print(fit_lm, digits=3)

fit_flat <- stan_glm(y ~ x, data=fake, prior_intercept=NULL, prior=NULL,

prior_aux=NULL, algorithm="optimizing", draws=0)

print(fit_flat, digits=3)

There are essentially no differences.

Next try with just 3 data points: just change n <- 10 in the above code to n <- 3 and re-run. The

differences between the estimates are larger, although in this case there are still no real practical

consequences. The differences become more important when using stan_glm with strong priors.

This demonstration is relevant to the week’s reading on understanding the differences between

least squares and Bayesian inference, and it is useful for the course as a whole in connecting to

other regression software.

Drills

1. Sample size and standard errors

Here’s a fitted regression:
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stan_glm

family: gaussian [identity]

formula: earn ~ height

observations: 1816

predictors: 2

------

Median MAD_SD

(Intercept) -85000 9000

height 1600 100

Auxiliary parameter(s):

Median MAD_SD

sigma 22000 400

(a) Suppose this model were re-fit with a sample size of 7000 people, that is, approximately four

times the sample size above. What would you expect the standard errors to look like?

Solution: Standard errors are proportional to 1/
√
=, so you’d expect them to be multiplied by

1/2: so, 4500, 50, and 200.

(b) Suppose this model were re-fit with a sample size of 1000 people. What would you expect the

standard errors to look like?

(c) 100 people?

(d) 1 million people?

2. Averages and comparisons as regression models

For each statement, express it as a regression in R code and algebra, and give the estimated

regression coefficients.

(a) 42% of people approve of the president’s job performance.

Solution: Data points are survey respondents, and the outcome is ~ = 1 if respondent approves

or 0 if respondent does not approve. The regression is stan_glm(y ~ 1), or ~ = 0, with the

estimate 0 = 0.42.

(b) 46% of women and 38% of men approve of the president’s job performance.

(c) Average height is 63.7 inches for women and 69.1 inches for men.

(d) 59% of Americans have received at least two covid vaccines.

Discussion problems

1. From inference to decision

You run a regression on 100 students studying the effect of an educational intervention on a

test score that has a population mean of 500 and standard deviation 100. You get an estimated

treatment effect of 20 points with a standard error of 15 points. What does this tell you? Would

you do the intervention? What might you do next?

2. Sample size and statistical significance

You run an experiment on 200 people and get an estimated treatment effect of 0.20 with standard

error 0.15—so, not “statistically significant.” What might you expect to see if you re-ran with 400

people? Would you expect statistical significance then?
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3.10 Prediction and Bayesian inference

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Fairness of Coverage of Different forms Fairness of Coverage of

random exams prediction of predictive random prediction

intervals uncertainty exams intervals

Uncertainties Prior for Bayes estimate Uncertainties Prior for

in election a real-world of childhood in election a real-world

forecasts parameter intervention forecasts parameter

Reading

Chapter 9 of Regression and Other Stories: Prediction and Bayesian inference

Pre-class warmup assignments

1. Different sorts of predictive uncertainty

(a) Simulate 100 data points from the regression model, ~ = 0.2 + 0.3G + error, with G drawn at

random from the range (10, 20) and errors drawn from a normal distribution with mean 0 and

standard deviation 0.4. Make a plot that includes the simulated data and a fitted regression

line.

(b) Do predict, posterior_linpred, and posterior_predict for a new data point at the

value G = 20. For the last two of these, summarize the distribution of predictions by their

median and 50% predictive intervals. Discuss how these intervals differ.

(c) Do the same thing but for a new data point at the value G = 100.

2. Regression with informative priors

A randomized experiment is performed in a number of cities, estimating the effect of an

experimental program to increase quality of life. At the beginning of the study, a survey is

conducted in each city measuring residents’ satisfaction on a 1–10 scale. Label G8 as the average

satisfaction of residents surveyed in city 8. Then some cities get the program (I8 = 1) and some do

not (I8 = 0), and a year later the quality-of-life survey is repeated. Label ~8 as the result for this

new survey. A regression is fit predicting ~ given G and I.

(a) Write R code for fitting the regression using default priors.

(b) Write R code for fitting the regression with a flat prior on the effect of I.

(c) Write R code for fitting the regression with a prior that says the effect of I to be equally likely

to be positive or negative, with an approximate 68% chance that the effect is in the range

(−1.5, +1.5).

Homework assignments

1. (a) Influence of individual data points (Exercise 8.5 of Regression and Other Stories)

A linear regression is fit to the data below. Which point has the most influence (see Section

8.2 of Regression and Other Stories) on the slope?
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2. (a) Prediction for a comparison (Exercise 9.1 of Regression and Other Stories)

A linear regression is fit on high school students modeling grade point average given household

income. Write R code to compute the 90% predictive interval for the difference in grade

point average comparing two students, one with household incomes of $40 000 and one with

household income of $80 000.

(b) Predictive simulation for linear regression (Exercise 9.2 of Regression and Other Stories)

Using data of interest to you, fit a linear regression. Use the output from this model to simulate

a predictive distribution for observations with a particular combination of levels of all the

predictors in the regression.

(c) In pairs: Working through your own example (Exercise 8.11 of Regression and Other Stories)

Continuing the example from the final exercises of the earlier chapters, take your fitted

regression line from Exercise 7.10 of Regression and Other Stories and compute the influence

of each data point on the estimated slope. Where could you add a new data point so it would

have zero influence on the estimated slope? Where could you add a point so it would have a

large influence?

Stories

1. Fairness of random exams

We once did the following experiment in our class.56 Without the knowledge of the students, we

prepared two versions of the midterm examination, identical in all respects except that the order

of the questions was reversed. We prepared equal numbers of the two versions and mixed them

randomly before handing out one to each student for the exam. Each exam question was on a

separate page and we graded the questions one at a time, so there’s no reason to think the grading

was influenced by the order of the questions. We then tallied the grades achieved by the two

groups of students.

After returning the graded exams to the students, we revealed that there were two forms of the

exam, shared the aggregate scores, and then discussed these results with the students. Reactions

varied depending on which exam a student received. For example, suppose the average score was

65 for exam A and 71 for exam B. Should we adjust the scores of the “exam A” students upward

(or adjust the “exam B” grades) to reflect that exam A seems more difficult, in retrospect? A

student who took exam B might object, noting that the two exams had identical questions—just

the order was different. But the order could have an effect, right? What if the two forms had been

randomly given to 1000 students and this difference had been observed—would it be “real” then?

The goal in this discussion was to get the “exam A” students and “exam B” students all fired up

and holding opposite positions, to give them some skin in the game, as it were, in this debate

about statistical uncertainty.

The data from the exams were being used to compare two different hypotheses or models of the

56Section 6.4.2 of Teaching Statistics: A Bag of Tricks.
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world: one hypothesis is that the two exams are functionally identical and the observed difference

was just due to chance, and the other hypothesis is that the order of the questions does make a

difference. The choice of model makes a difference: under the first model, no adjustment should

be made, whereas the second model implies that it’s only fair for the students who took exam A to

get a bonus.

How could we address the question of whether the observed difference is due to the exams or just

because, say, the better students happened to take exam B? We can consider this as an experiment

designed to measure the difference in exam difficulties.

If the true difference between the exams is approximately zero and the standard deviation of exam

scores across students is 15, then with a class of 50 students the observed difference in means

has an expected value of zero and a standard deviation of
√

152/25 + 152/25 = 4.2. An observed

difference of 6 points is then 1.4 standard errors away from zero.

Should we adjust the scores and, if so, how much? One way to handle this is using a Bayesian

analysis, for which we would need a prior distribution on the effect size or population average

difference in scores comparing the two exam forms. What if the exams differed not just in their

ordering, but in the questions themselves? How would/should our statistical methods change?

This is a subtle question with no easy answers. Students have also raised ethical questions about

basing grades on different forms of the exam.

This example is relevant to the week’s reading because it demonstrates the relevance of prior

expectations in interpreting data. It relates to the course as a whole as an example of an experiment

with ambiguous results.

2. Uncertainties in election forecasts

Elections are a high-profile event involving uncertainty, data, and probabilistic forecasting. Back

in the old days, each pre-election poll would be reported on its own (for example, Reagan has 56%

support with a margin of error of 3%), but in recent years there have been so many public polls

that analysts and news organizations have performed “poll aggregation,” whereby a series of polls

are plotted and averaged to give a sense of public opinion and how it is changing over time. For a

presidential election, national and state polls can be combined with the so-called “fundamentals”

(such as the state of the economy; see Section 7.1 of Regression and Other Stories) to produce a

state-by-state forecast of the election.

For this story you do not need to talk about how these forecasts are constructed; instead, the topic

is how their uncertainties are displayed in graphics.

Figure 42 shows several visualizations of election forecasts from the Economist magazine.57 We

were involved in the Economist forecast, but we’re not claiming that its uncertainty display is

better than those of other media outlets.58 Rather, the point of this story is that there is no unique

way to display forecast uncertainty, and it can be useful to visualize it in different ways.59

In particular, when considering an election campaign, we need to juggle three sources of uncertainty

and variation:

• Uncertainty in the national election outcome (as expressed both by popular and electoral vote)

• Variation over time as new information comes in

• Variation across the 50 states.

57https://projects.economist.com/us-2020-forecast/president/.

58See, for example, https://www.nytimes.com/interactive/2020/11/03/us/elections/results-president.html and https://

projects.fivethirtyeight.com/2020-election-forecast/.

59Andrew Gelman, Jessica Hullman, Christopher Wlezien, and George Elliott Morris (2020), Information, incentives, and

goals in election forecasts, Judgment and Decision Making 15, 863–880.
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Figure 42 Four visualizations of uncertainty in the Economist’s 2000 presidential election forecast. Top row:

Forecast of possible electoral vote outcomes and time series of Biden’s and Trump’s win probabilities during the

course of the campaign. Bottom row: Time series of popular vote projections and an interactive display for

examining between-state correlations in the forecast. No single visualization captures all aspects of uncertainty,

but a set of thoughtful graphics can help readers grasp uncertainty and learn about model assumptions over time.

Different displays get at different aspects of this uncertainty. It’s hard to visualize all of the

variation at once, hence the value of multiple visualizations.

The upper-left plot in Figure 42 shows the predictive distribution of Donald Trump’s electoral

votes for the 2000 election, with 270 needed to win. The histogram represents forecast uncertainty:

either candidate had a chance of winning, but Biden’s chance was bigger, and he was likely to win

by a lot of electoral votes.

The upper-right plot shows the time series of Biden and Trump’s win probabilities, as estimated

from the Economist’s model during the course of the campaign. We placed the slider of this

interactive graph to the start of September, 2020, to show the two candidates’ modeled chances of

winning at that point.

The lower-left plot shows the corresponding time series forecast of the two-party popular vote.

Each dot on the graph shows Biden’s or Trump’s support from a national poll, and the lines show

the estimated path of vote intentions during the months leading up to that point, along with the

forecast of the election outcome. Shaded areas and dotted lines show 80% uncertainty bounds;

that is, according to this forecast, there was an 80% chance that Biden would receive between

49.5% and 58% of the popular vote. (He ended up with about 52%.) This plot is appealing in that

it presents predictive uncertainty, changes over time, and (some of the) data used to construct the

forecast. It does not, however, show what is happening in each state, and for that the Economist

had similar state-by-state plots showing the polls and the forecast time series for each state.

They also included an interactive plot, one setting of which is shown in the lower right of Figure

42, showing the correlations between the predictions in different states. These correlations are a

sort of insider knowledge that won’t be of interest to most readers but can help build trust and

understanding among the most sophisticated people in the audience.
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As this story demonstrates, different graphs display different aspects of data and uncertainty and

can also serve different readers. This example is relevant to the week’s reading because of the

focus on predictive uncertainty: the model used to construct these forecasts is more complicated

than simple linear regression, but the principles of propagation of uncertainty still apply. The

story relates to the course more generally as a real-world example of statistical modeling and

communication.

Class-participation activities

1. Coverage of prediction intervals

This is an activity demonstrating the challenge of expressing uncertainty.60 We start by asking a

student to guess some unknown quantity, for example the number of active duty U.S. military

personnel. The actual value is 1.35 million,61 but we do not reveal this number until the class has

gone through an iterative guessing procedure as described below.

It is important to use a quantity whose true value can be looked up ahead of time. For example, in

preparing this activity many years ago at Smith College, we first counted the number of people

named Smith in the local telephone book. Then in class we asked the students to guess this number

out loud. We wrote the first several guesses on the board: 156, 250, 72, 210, 150, 120, 200, 35,

76, 49, 50. Substantial differences were revealed.

We then asked one student to give a 50% probability interval (more precisely, the 25% and 75%

quantiles) for the uncertain quantity—as we explained, this is an interval for which the student

believes there is a 1
2

chance the true value is inside the interval, a 1
4

chance the interval is too

high, and 1
4

chance the interval is too low. This interval is intended to summarize the student’s

uncertainty. For example, when we did the demonstration at Smith, a student volunteered the

interval [100, 200].

At this point, we invited the other students to comment. When students in the class would place

more or less than 50% probability on the stated interval, we pointed out the opportunity for a

bet that both parties should accept. We discussed with the class and altered the interval on the

board until the students generally consider it reasonable. For example, most of the students in the

class at Smith thought [100, 200] was too high, so we considered [75, 175]. There was a general

consensus that 75 was too low—that is, the class judged that there was less than a 1
4

chance that

the true value was below 75—so we adjusted again to [85, 175], which most of the class found

reasonable.

We then revealed that the local telephone book had 458 listings of people named Smith. This

result—a true value that was well outside the 50% interval—is typical. People’s uncertainty

intervals tend to be too narrow—that is, they are overconfident. Again, when doing this activity,

just about any unknown quantity will do, as long as it is something that students can guess and

which the instructor can reveal the true value. The students may be reassured to see the well-known

example displayed in Figure 43, in which a set of internationally known geotechnical engineers

show overconfidence (in retrospect) in their probabilistic forecasts of the failure height of an

embankment.62

We continue with an adaptation of a classic classroom demonstration of subjective probability

intervals.63 We hand out Figure 44 and ask each of the students to fill out the form, giving a

60Section 17.2.2 of Teaching Statistics: A Bag of Tricks.

61See U.S. House of Representatives Committee on Appropriations (2021), Appropriations com-

mittee releases fiscal year 2022 defense funding bill, https://appropriations.house.gov/news/press-releases/

appropriations-committee-releases-fiscal-year-2022-defense-funding-bill/.

62Mary Ellen Hynes and Erik Vanmarcke (1977), Reliability of embankment performance predictions, in Mechanics in

Engineering, 367–384. University of Waterloo Press.

63Marc Alpert and Howard Raiffa (1982), A progress report on the training of probability assessors, in Judgment Under

Uncertainty: Heuristics and Biases, edited by Daniel Kahneman, Paul Slovic, and Amos Tversky, 294–305, Cambridge

University Press.
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Figure 43 Classic example of overconfidence: experts’ predictions and 50% predictive intervals of the height at

which an embankment would fail, along with the true value. None of the predictions included the true value.

Uncertain quantity 25% lower bound 75% upper bound

% Black

# eggs

# airline deaths

% girl births

# babies born

# abortions

% degrees in CS

# degrees

# Super Bowl watchers

$ median income

Give 25% and 75% probability bounds for each of these quantities. You should specify the bounds

so that, for an unknown quantity G, there should be a 50% chance that G is between your upper

and lower bounds. Fill in all the blanks on the table. You will then be told the true values of these

quantities.

(a) The percentage of people in the United States identifying as Black or African American (from

the 2020 Census)

(b) The total egg production in the United States in 1965 (in number of eggs)

(c) The number of airline passengers worldwide who died in plane crashes in 2020

(d) The percentage of babies born in the United States in 2000 that were girls

(e) The number of babies born in the United States in 2000

(f) The number of abortions in the United States in 2000

(g) The percentage of bachelor’s degrees in the United States in 2019 that were in the fields of

computer and information sciences

(h) The number of bachelor’s degrees awarded in the United States in 2019

(i) The number of people in the United States who watched the Super Bowl in 2020

(j) The median household income in the United States in 2020

Figure 44 A handout for demonstrating the difficulty of calibrating subjective probability intervals. The true

values of the uncertain quantities are 12.4, 64.6 billion, 299, 48.8, 4.06 million, 857 000, 4.4, 2.01 million, 101.3

million, and 67 500. There is nothing special about this list; we encourage you to pick questions on topics that

interest you.



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

3.10. PREDICTION AND BAYESIAN INFERENCE 129

50% subjective probability interval for each of the 10 unknown quantities on the list. Before

announcing the true values of the 10 quantities, we ask each student to guess how many of the

values fell within their intervals. If their uncertainty statements are calibrated, you’d expect to see

approximately 5 out of 10 intervals contain the true values. We then announce the true values and

ask students to count the number of their intervals that contains the truth. Invariably, the coverage

is less than 50%; it is typically more like one-third, which is what has been seen in the literature.

This example demonstrates two points that are relevant both for the week’s reading and for the

course more generally. First, it is hard to give calibrated uncertainties: our bounds are typically

too narrow. Second, it’s better to try to express uncertainty than just to give point estimates.

2. Prior distribution for a real-world parameter

How does one come up with a prior distribution for a parameter in a real-world social science

model? You can do this together with the class, using some example of interest. Our class had

many political science students, and so we considered a hypothetical experiment of a treatment to

increase voter turnout by knocking on doors. You first need to clearly define the treatment, the

outcome of interest, and how it will be measured. Then, to build a prior distribution, start with

a guess of the treatment effect. Next you need to assess uncertainty. One way to do this is to

consider the prior probability that the treatment will have a positive effect. In our example, if the

prior guess of the treatment effect is 0.01 (an increase in voter turnout of 1 percentage point) and

the prior standard deviation is 0.01 also, then you can graph the prior distribution, and there is an

84% prior probability that the treatment effect is positive. Does this make sense? Sketch on the

board and discuss with the class.

Computer demonstrations

1. Different forms of predictive uncertainty

In this demonstration, based on Section 9.2 of Regression and Other Stories, you simulate fake

data on IQ scores and course grades and then generate a point prediction for a new observation

with IQ of 105:

n <- 100

x <- rnorm(n, 100, 15) # IQ, roughly

y <- 2.5 + 0.02*(x - 100) + rnorm(n, 0, 0.5) # GPA, roughly

fake <- data.frame(x, y)

# Fit regression

library("rstanarm")

fit <- stan_glm(y ~ x, data=fake, refresh=0)

print(fit)

plot(fake$x, fake$y)

abline(fit$coef)

# Generate point prediction

new <- data.frame(x=105)

y_point_pred <- predict(fit, newdata=new)

print(y_point_pred)

# Calculate point prediction by hand

a_hat <- coef(fit)[1]

b_hat <- coef(fit)[2]

y_point_pred_byhand <- a_hat + b_hat * 105

print(y_point_pred_byhand)
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# Predict _average GPA_ among all students with IQ of 105

y_linpred <- posterior_linpred(fit, newdata=new)

hist(y_linpred)

print(c(mean(y_linpred), sd(y_linpred)))

# Predict GPA for a single student with IQ of 105

y_pred <- posterior_predict(fit, newdata=new)

hist(y_pred)

print(c(mean(y_pred), sd(y_pred)))

Then, some questions: What would happen to the predictions if = were increased from 100 to

400, or decreased from 100 to 25? How can we get a predicted probability that the student

will have a GPA of greater than 3? You can answer that question using the simulations from

posterior_predict:

mean(y_pred > 3)

You can also approximate using the regression parameters:

1 - pnorm(3, a_hat + b_hat*105, sigma(fit))

This last bit ignores the uncertainty in the estimated coefficients, which turns out to not be a big

deal in this example.

2. Bayesian estimate of the effect of early childhood intervention

Section 1.5 of Regression and Other Stories discusses a study performed with Jamaican children

that estimated the effect of early childhood intervention on earnings to be 42% with a standard

error of 20%, thus a 95% confidence interval of [2%, 82%] (or something slightly different on the

log scale, but here we will keep things simple and work on the untransformed scale). Here you

can consider how the estimate changes with different priors.

An effect of 42% on earnings sounds pretty large, maybe even implausible. Suppose our prior on

the true effect is normal with mean 0 and standard deviation 10%. Then what are the posterior

mean and standard deviation of the effect?

post_mean <- (0/0.10^2 + 0.42/0.20^2) / (1/0.10^2 + 1/0.20^2)

post_se <- sqrt(1 / (1/0.10^2 + 1/0.20^2))

print(c(post_mean, post_se))

Write this as a function, entering code directly into the text editor (as always, in class the instructor

should read aloud while typing) and then copying code one line at a time into the R console:

post_mean_and_se <- function (prior_est, prior_se, data_est, data_se) {

post_mean <- (prior_est/prior_se^2 + data_est/data_se^2) /

(1/prior_se^2 + 1/data_se^2)

post_se <- sqrt(1 / (1/prior_se^2 + 1/data_se^2))

c(post_mean, post_se)

}

And try it out:

post_mean_and_se(0, 0.10, 0.42, 0.20)

Then try other priors: flat prior, spike near zero, and a prior where the effect is expected to be

positive but small:

post_mean_and_se(0, Inf, 0.42, 0.20)

post_mean_and_se(0, 0.01, 0.42, 0.20)

post_mean_and_se(0.05, 0.10, 0.42, 0.20)
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You can also play around with the data and see how the inferences change.

Drills

1. Prediction

Here’s a fitted regression:

stan_glm

family: gaussian [identity]

formula: earn ~ height

observations: 1816

predictors: 2

------

Median MAD_SD

(Intercept) -85000 9000

height 1600 100

Auxiliary parameter(s):

Median MAD_SD

sigma 22000 400

(a) Approximately what is the predictive distribution from this regression of the earnings of a

person who is 66 inches tall?

Solution: Point prediction is −85 000 + 1600 ∗ 66 = 20 600. Predictive standard deviation is

approximately 22 000 (actually, it’s slightly higher). So from the regression the approximate

predictive distribution is normal with mean 20 600 and standard deviation 22 000.

Actual earnings can’t be negative, though, so the predictive distribution from the linear

regression model is not so realistic in this case.

(b) Approximately what is the predictive distribution from this regression of the earnings of a

person who is 66 inches tall and male?

(c) Approximately what is the predictive distribution from this regression of the earnings of a

man who is randomly sampled from the population? Assume men’s heights are normally

distributed with mean 69.1 inches and standard deviation 2.9 inches.

2. Bayesian combination of information

(a) Using a regression model, you forecast that a certain candidate will have 45% support, with

forecast standard deviation of 5%. You then do a simple random sample survey of 100 people,

of whom 50 support the candidate. What is the Bayesian posterior mean of the candidate’s

support in the population?

Solution: The prior estimate is 0.45± 0.05; the data estimate is 0.50± 0.10. The prior is more

precise than the data, so the weighted average is closer to the prior. In the weighted average,

the prior estimate gets weight 1/0.052 and the data gets weight 1/0.102. So the weights are

in the ratio 4 to 1; the posterior mean is 0.46. Or use the formula,
1

0.052 0.45+ 1

0.102 0.50

1

0.052 +
1

0.102

= 0.46.

The posterior standard deviation is

√
1

1

0.052 +
1

0.102

= 0.044. The posterior probability that this

candidate has at least 50% support is 1 - pnorm(0.50, 0.46, 0.044), equivalently, 1 -

pnorm((0.50-0.46)/0.044); either way, it’s 0.18.

(b) Same problem, but the survey estimate is 55%.

(c) Same problem, but the survey estimate is 50% with a sample size of 1000.

(d) Same problem, but the survey estimate is 50% with a sample size of 1 million.

Then discuss how this last estimate is unreasonable because a survey can have bias.
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Discussion problems

1. Interpreting statistically significant results given huge sample sizes

Suppose you run a regression with a huge sample size, for example a mega-poll with 100 000

respondents or an A/B test at a big company. With a large enough sample size, the standard error

will be small, and even a small effect can be statistically significant. How can you interpret such a

result?

For a related problem, suppose you are using a customer survey to forecast demand for some new

service, and you are concerned that the survey has nonsampling error through some combination

of the sample not being representative of the population and the responses being not completely

trustworthy. How could you account for this in constructing a forecast with uncertainty?

2. Everything that’s not in the model

One of us bought a cheap bathroom scale.64 We took the scale home and zeroed it—there’s a little

gear in front to turn. We tapped our foot on the scale, it went to −1 kg, we turned the gear a bit,

then it went up to +2, then we turned a bit back to get it exactly to zero, and tapped again . . . it was

back at −1.

That was frustrating, but we still wanted to estimate our weight. So we got on and off the scale

multiple times. The first few measurements were 66 kg, 65.5 kg, 68 kg, and 67 kg. A lot of

variation! To get a good estimate in the presence of variation, it is recommended to take multiple

measurements. So we did so. After 46 measurements, we got bored and stopped. The resulting

measurements had mean 67.1 with standard deviation 0.7, hence standard error of 0.7/
√

46 = 0.1.

Do we really believe the resulting 95% confidence interval, 67.1 ± 0.2? Of course not! The whole

scale is off. Even if we could ever consistently zero it—which we can’t—there’s the trust factor. If

your weight can be 66 on one weighing and 68 on another, what can you do with that?

One approach is to calibrate, either using a known object that weighs in the neighborhood of 67

kg or else our own weight measured on an accurate instrument. If that is not possible, then we

would want a wider uncertainty interval to account for the uncertainty in the scale’s bias. This

sort of adjustment is discussed in Section 4.3 of Regression and Other Stories.

Here is the discussion problem. Based on the measurements summarized above, what is a

reasonable uncertainty estimate for our weight? The variation in the measurements should give

some upper bound on the uncertainty in the bias. There is no single correct answer here; it’s a

good example for considering how to handle the gaps between statistical models and reality.

64Andrew Gelman (2023), God is in every leaf of every tree (bathroom scale edition), https://statmodeling.stat.columbia.

edu/2023/01/06/god-is-in-every-leaf-of-every-tree-bathroom-scale-edition/.
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3.11 Linear regression with multiple predictors

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Incumbency Memory quiz Regression Causal Regression

advantage in with treatment with regressions adjustment

elections and pre-test interactions

Beauty and Design a study Adding Interpret What is gained

teaching with regression interactions interaction by looking at

evaluations in mind to a model coefficients a pre-test?

Reading

Chapter 10 of Regression and Other Stories: Linear regression with multiple predictors

Pre-class warmup assignments

1. Indicator variables

A study is done predicting middle-school students’ test scores given pre-test score, sex, and grade

(6, 7, or 8).

(a) Explain why it is better when fitting the regression to code sex as a variable called male that

equals 1 for men and 0 for women, rather than a variable sex that equals 1 for women and 2

for men.

(b) Write R code for fitting the regression, including grade as a linear predictor.

(c) Write R code for fitting the regression, including indicators for each grade.

2. Linear transformations and interactions

Consider the following model predicting earnings given height and sex:

Median MAD_SD

(Intercept) -9.3 15.2

height 0.4 0.2

male -29.3 24.3

height:male 0.6 0.4

Auxiliary parameter(s):

Median MAD_SD

sigma 21.4 0.3

(a) Define the centered variable male_c <- male - 0.5. Give the estimated coefficients from

regressing earnings on height, male_c, and their interaction.

(b) Define the centered variable height_c <- height - 66. Give the estimated coefficients

from regressing earnings on height_c, male, and their interaction.

(c) Give the estimated coefficients from regressing earnings on height_c, male_c, and their

interaction.

Homework assignments

1. (a) Uncertainty in the predicted expectation and the forecast (Exercise 9.3 of Regression and

Other Stories)
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Consider the economy and voting example from Section 7.1 of Regression and Other Stories.

Fit the linear regression model to the data through 2012; these are available in the folder

ElectionsEconomy. Make a forecast for the incumbent party’s share of the two-party vote in

a future election where economic growth is 2%.

i. Compute the point forecast, the standard deviation of the predicted expectation from

formula (9.1) of Regression and Other Stories, and the standard deviation of the predicted

value from formula (9.2) of Regression and Other Stories.

Relevant passage from Regression and Other Stories:

In the regression model ~ = 0 + 1G + error, the standard deviation for the linear

predictor 0 + 1G is

f̂linpred = f̂

√
1

=
+ (Gnew − Ḡ)2∑=

8=1 (G8 − Ḡ)2
. (3.1)

The standard deviation for the predicted value 0 + 1G + n is

f̂prediction = f̂

√
1 + 1

=
+ (Gnew − Ḡ)2∑=

8=1 (G8 − Ḡ)2
. (3.2)

ii. Now compute these using the relevant prediction functions discussed in Section 9.2 of

Regression and Other Stories. Check that you get the same values as in part (i) of this

problem.

2. (a) Regression with interactions (Exercise 10.1 of Regression and Other Stories)

Simulate 100 data points from the model, ~ = 10 + 11G + 12I + 13GI + error, with a continuous

predictor G and a binary predictor I, coefficients 1 = 2(1, 2,−1,−2), and errors drawn

independently from a normal distribution with mean 0 and standard deviation 3, as follows.

For each data point 8, first draw I8 , equally likely to take on the values 0 and 1. Then draw G8
from a normal distribution with mean I8 and standard deviation 1. Then draw the error from

its normal distribution and compute ~8 .

i. Display your simulated data as a graph of ~ vs. G, using dots and circles for the points

with I = 0 and 1, respectively.

ii. Fit a regression predicting ~ from G and I with no interaction. Make a graph with the

data and two parallel lines showing the fitted model.

iii. Fit a regression predicting ~ from G, I, and their interaction. Make a graph with the data

and two lines showing the fitted model.

(b) Regression with interactions (Exercise 10.2 of Regression and Other Stories)

Here is the output from a fitted linear regression of outcome ~ on pre-treatment predictor G,

treatment indicator I, and their interaction:

Median MAD_SD

(Intercept) 1.2 0.2

x 1.6 0.4

z 2.7 0.3

x:z 0.7 0.5

Auxiliary parameter(s):

Median MAD_SD

sigma 0.5 0.0
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i. Write the equation of the estimated regression line of ~ on G for the treatment group and

the control group, and the equation of the estimated regression line of ~ on G for the

control group.

ii. Graph with pen on paper the two regression lines, assuming the values of G fall in the

range (0, 10). On this graph also include a scatterplot of data (using open circles for

treated units and dots for controls) that are consistent with the fitted model.

(c) In pairs: Working through your own example (Exercise 10.11 of Regression and Other Stories)

Continuing the example from the final exercises of the earlier chapters, fit a linear regression

with multiple predictors and interpret the estimated parameters and their uncertainties. Your

regression should include at least one interaction term.

Stories

1. Incumbency advantage in congressional elections

Section 10.6 of Regression and Other Stories considers the problem of estimating the effects of

incumbency in elections for the U.S. House of Representatives. Start with the example from the

book, using incumbency status to predict the election outcome in 1988. Here’s the regression on

incumbency alone:

Median MAD_SD

(Intercept) 0.50 0.00

inc88 0.17 0.01

Auxiliary parameter(s):

Median MAD_SD

sigma 0.08 0.00

The outcome here is the Democratic share of the two-party vote in 1988, and inc88 is equal to 1

if a Democrat is running for reelection, −1 if a Republican is running for reelection, and 0 if the

district is an open seat. The coefficient for incumbency is 0.17: comparing two districts, one with

no incumbent running and one with an incumbent running, on average you’d predict the party with

the incumbent to get 17 percentage points more of the vote. This analysis only includes districts

that were contested by both parties in both elections.

Next we adjust for previous vote:

Median MAD_SD

(Intercept) 0.23 0.02

inc88 0.09 0.01

v86 0.53 0.04

Auxiliary parameter(s):

Median MAD_SD

sigma 0.07 0.00

The coefficient for incumbency has changed! Now it is just 0.09. Figure 45a shows the data and

fitted regression. The regression has three lines corresponding to inc88 equal to 1 (upper line

on the graph), 0 (middle line), or −1 (lower line). Comparing two districts with identical voting

patterns in the previous election, on average the model predicts the party with the incumbent to

get 10 percentage points more of the vote. The estimated incumbency advantage is 10 percentage

points.

How have things changed in the past few decades? We fit the same model to predict the district

results in 2020:
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Figure 45 Contested elections for the U.S. House of Representatives in 1986 and 1988, and 2018 and 2020. Each

graph shows the fitted regression predicting vote share in the second election from vote share in first election and

incumbency status, a variable equal to +1 for Democratic incumbents (the dots on the graphs corresponding

to points with G > 0.5), −1 for Republican incumbents (the dots corresponding to points with G < 0.5), and 0

for open seats (the open circles). The model in each case is a linear regression with no interactions, so the fit

corresponds to parallel lines.

Median MAD_SD

(Intercept) 0.03 0.01

inc2020 0.02 0.00

v2018 0.89 0.02

Auxiliary parameter(s):

Median MAD_SD

sigma 0.03 0.00

Now the estimated effect is only 2 percentage points. Figure 45b shows the results. The differences

are striking. In the modern era of political polarization, there is little variation from election to

election, and incumbency adds little predictive power.

This example relates to the week’s reading as an example of building up from simple to multiple

regression. It is relevant to the course as a whole in demonstrating a way in which we can learn

by re-fitting a model to a new dataset. Statistics texts often focus on how to analyze a single

dataset, but in practice we can make great progress by bringing in new data and looking at what

has changed.

2. Predict teaching evaluations from beauty and other variables

These are data from teaching evaluations in economics classes at the University of Texas.65

Here is a simple regression without interactions; the data and parallel fitted lines are displayed in

Figure 46.

formula: eval ~ beauty + female

observations: 463

predictors: 3

------

65The data come from Daniel Hamermesh and Amy Parker (2005), Beauty in the classroom: Instructors’ pulchritude and

putative pedagogical productivity, Economics of Education Review 24, 369–376; see Exercise 10.6 of Regression and Other

Stories.



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

3.11. LINEAR REGRESSION WITH MULTIPLE PREDICTORS 137

Figure 46 Data and fitted regression predicting teacher evaluations from instructors’ attractiveness and sex,

with no interactions. The fitted model is ~ = 4.09 + 0.15 ∗ beauty − 0.20 ∗ female + error.

Median MAD_SD

(Intercept) 4.09 0.03

beauty 0.15 0.03

female -0.20 0.05

Auxiliary parameter(s):

Median MAD_SD

sigma 0.54 0.02

Each data point is a class, and teaching evaluations are class averages on a 1 to 5 scale, with beauty

of the instructor on a −2 to 2 scale, based on external ratings.

Next comes the model with an interaction:

Median MAD_SD

(Intercept) 4.11 0.03

beauty 0.20 0.04

female -0.21 0.05

beauty:female -0.11 0.06

Auxiliary parameter(s):

Median MAD_SD

sigma 0.54 0.02

Is beauty a more important predictor for male or female instructors? The instructor can ask

students to draw the regression lines and answer the question.

One can then add age as a predictor:

Median MAD_SD

(Intercept) 4.21 0.15

beauty 0.19 0.04

female -0.22 0.05

age 0.00 0.00

beauty:female -0.11 0.06

Auxiliary parameter(s):

Median MAD_SD

sigma 0.54 0.02

What does it mean to have a coefficient of 0 with standard error 0? To aid in interpretability of the

regression, we define a rescaled variable:

beauty$age10 <- beauty$age/10
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Now here is the fit:

Median MAD_SD

(Intercept) 4.21 0.14

beauty 0.19 0.05

female -0.22 0.05

age10 -0.02 0.03

beauty:female -0.11 0.06

Auxiliary parameter(s):

Median MAD_SD

sigma 0.54 0.02

The instructor can display this, then ask students to interpret this result and to draw the fitted

regression lines on paper.

And here is the fit with one more predictor, an indicator for if English is not the instructor’s native

language:

Median MAD_SD

(Intercept) 4.23 0.14

beauty 0.19 0.04

female -0.21 0.05

age10 -0.02 0.03

nonenglish -0.34 0.10

beauty:female -0.11 0.06

Auxiliary parameter(s):

Median MAD_SD

sigma 0.53 0.02

This example is relevant to the week’s reading in that it is about interpretation of coefficients in

multiple regression. It fits into the course more generally as an example of the use of regression to

explore data without there being a particular question of interest.

Class-participation activities

1. Memory quiz with pre-test, treatment, and outcome

This activity returns to a memory-quiz demonstration from earlier in the semester. Before class,

we use the computer to simulate 20 random nouns.66 Here’s what came up for us:

friend verse cloth curtain metal attempt comparison size balloon match tiger

form cable maid dress expansion worm goose mother liquid

We tell the students that we will be displaying 20 randomly chosen nouns on the screen for 30

seconds; they should try to memorize as many as they can. We then do this. When the 30 seconds

are up, we spend three minutes discussing the rest of this activity (see below). When the three

minutes have passed, we give the students a minute to individually write down as many words

as they remember. We then display the words again and ask them to count how many they got

correct.

The next part of the activity is another memory quiz with a new set of 20 nouns. But this time

half the students will get 30 seconds to see the words and half will get 60 seconds. We do

the randomization using the last digits of students’ Social Security numbers: students with odd

numbers get 30 seconds, students with even numbers get 60 seconds. Students without social

66For example, https://wordcounter.net/random-word-generator.



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

3.11. LINEAR REGRESSION WITH MULTIPLE PREDICTORS 139

Figure 47 Google form we created in class for students to enter data from the memory quiz experiment, along

with the first few rows of the spreadsheet of responses.

security numbers can flip coins, with heads corresponding to odd and tails corresponding to even.

We then display the next set of words:

power snail screw cake curve unit writing driving sister hair baby scarecrow

cry discussion collar channel trousers sheep brick ocean

After 30 seconds, we tell the students with odd Social Security numbers to close their eyes. The

students with even numbers get to look for another 30 seconds.

We then spend three minutes discussing the regression models we will fit to these data, first to

predict outcome from pre-test and treatment, then including the interaction of these two predictors.

After three minutes, we give students a minute to individually write down as many words as they

remember. We then display the words again and ask them to count how many they got correct.

Next we ask students to enter their data G, ~, I on a Google form that we create in front of them;

see Figure 47.

Before analyzing the data, we ask students in pairs to sketch the regression lines they might expect

to see and give possible coefficients. We then fit the regressions and discuss how these differed

from students’ guesses.

When we did this in class, students guessed that the coefficients for G and I would both be positive

in the simple regression. They were less clear what would happen with interactions.

Here’s the result from the data we gathered from our class:

formula: y ~ x + z

observations: 25

predictors: 3

------

Median MAD_SD

(Intercept) 3.0 1.2

x 0.6 0.1

z 2.0 0.7

Auxiliary parameter(s):

Median MAD_SD

sigma 1.9 0.3

Whatever result we get, we want to go through the interpretation of each coefficient.

Here’s our result for the model with the interaction:



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

140 3. WEEK BY WEEK: THE FIRST SEMESTER

0 5 10 15 20

0
5

1
0

1
5

2
0

Test 1 score

Te
s
t 
2
 s

c
o
re

y = 3.0 + 0.6x + 2.0z + error

0 5 10 15 20

0
5

1
0

1
5

2
0

Test 1 score

Te
s
t 
2
 s

c
o
re

y =  4.2 +  0.5x + −0.3z +  0.3xz + error

Figure 48 Data and fitted regressions predicting students’ scores (number of words correctly identified) on a

memory quiz, given score on an earlier test and a treatment: students with I = 0 (open circles) were given 30

seconds to memorize the words, and students with I = 1 (dots) were given 60 seconds. The left and right graphs

show fitted regressions with and without interactions.

formula: y ~ x + z + x:z

observations: 25

predictors: 4

------

Median MAD_SD

(Intercept) 4.2 1.7

x 0.5 0.2

z -0.2 2.3

x:z 0.3 0.3

Auxiliary parameter(s):

Median MAD_SD

sigma 1.9 0.3

The uncertainties on the coefficients are large, but in our discussion we focus on the fitted lines

without concerning ourselves with standard errors. To understand these coefficients, separately

work out the lines for I = 0 and I = 1. For example, the above fit can be written as,

For I = 0 : ~ = 4.2 + 0.5G + error

For I = 1 : ~ = 4.0 + 0.8G + error.

Whatever lines we get from the fitted regression, we draw them over the range of G from 0 to 20.

Recall that G and ~ are measures of the number of words guessed correct out of 20, so it is not

possible to see data outside that range.

When we did this demonstration in class, we got an unexpected result. The coefficient for I in the

model with interactions was negative! But did this really represent evidence that the treatment

has a negative effect? (Again, we ignore the standard error for now, as our first challenge is to

understand the fitted model.) Figure 48 shows the data and fitted models. We purposely delayed

showing this graph to students because we want to train them to interpret the table of coefficients.

Given the fitted model, they should be able to sketch the lines.

In the example of Figure 48, the graph on the right shows how tricky it can be to interpret
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coefficients in the presence of interactions. That −0.2 coefficient for I corresponds to a lower

prediction for ~ right at G = 0, but for almost the entire possible range of the data the red line is

actually higher than the blue line, indicating that the prediction is higher under the treatment than

the control.

This activity relates to the week’s reading by demonstrating regression without and with interactions.

It relates to the course as a whole as an example of causal inference adjusting for a pre-treatment

variable.

2. Design a study with regression in mind

Consider the memory quiz experiment from the design perspective. We start with all the options

in the experiment: the number of words, the time given for memorization, the lag time before

writing down the words, the option of other pre-treatment variables, and the treatments. We

discuss with the class how the experiment would go with other settings. Issues that arise include

cost (in class time) of data collection, floor and ceiling effects, and effect size. For example, if the

treatment effect is too small, it will be difficult to detect it in the context of variation in the data.

This activity is relevant to the week’s reading in that we are considering what would happen after

fitting a multiple regression. It relates to the course as a whole in turning the focus from data

analysis to design and data collection.

Computer demonstrations

1. Regression with interactions

Students recorded their data from the memory quiz activity on a Google form (see Figure 47), and

we and saved the spreadsheet of responses in a file that we called memory2.csv. These data can

be used to illustrate some important techniques for regression analysis.

The first step is to read in the data and fit the regression without interactions:

memory <- read.csv("memory2.csv", col.names=c("Time", "x", "z", "y"))

fit <- stan_glm(y ~ x + z, data=memory, refresh=0)

print(fit)

Here is the result:

Median MAD_SD

(Intercept) 3.9 1.3

x 0.6 0.2

z -0.1 0.1

Auxiliary parameter(s):

Median MAD_SD

sigma 2.1 0.3

The coefficient for I is negative—that’s surprising! OK, it has a high uncertainty, but still, one

would have expected the treatment (an extra 30 seconds of memorization time) to improve students’

scores on a memory quiz.

It’s time to look more carefully at the data, first printing out the average values of G, I, and ~:

for (j in 2:4) print(mean(memory[,j]))

And this is what comes out:

[1] 7.72

[1] 1.64

[1] 8.76
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The means of G and ~ seem reasonable enough, given that these are scores on a 0–20 scale. But

how can the mean of I be 1.64? This is a variable that is only allowed to take on the values 0 and 1.

Examine the data more closely:

print(memory[,2:4])

Now you can see the problem. In the 8th row of data, a student entered the value 30 for I. Our

instruction was to give I = 0 if you were given 30 seconds to memorize the words or I = 1 if you

were given 60 seconds; see Figure 47. One of the students mistakenly entered 30 where it should

have been 0.

Go in and fix this:

memory$z[memory$z==30] <- 0

When conducting this demonstration, we pause here to explain to the students that it is safest to

do this sort of correction in the script, rather than to directly edit the raw data file, which can

potentially introduce new errors. We then re-fit the model and also fit the model with interactions:

fit_2 <- stan_glm(y ~ x + z, data=memory, refresh=0)

print(fit_2)

fit_3 <- stan_glm(y ~ x + z + x:z, data=memory, refresh=0)

print(fit_3)

Another thing that can be done is to plot the data and fitted regression lines, as shown in Figure 48.

To keep things simple, we recommend you just go through one of these, the plot for the model

with interactions:

jitt_x <- runif(nrow(memory), -0.2, 0.2)

jitt_y <- runif(nrow(memory), -0.2, 0.2)

par(mar=c(3,3,1,1), mgp=c(1.5,.5,0), tck=-.01, pty="s")

plot(memory$x + jitt_x, memory$y + jitt_y,

col=ifelse(memory$z==0, "blue", "red"),

pch=20, cex=.6, xlim=c(0,20), ylim=c(0,20), xaxs="i", yaxs="i",

xlab="Test 1 score", ylab="Test 2 score")

abline(coef(fit_3)[1], coef(fit_3)[2], col="blue", lwd=.5)

abline(coef(fit_3)[1] + coef(fit_3)[3], coef(fit_3)[2] + coef(fit_3)[4],

col="red", lwd=.5, lty=2)

beta <- fround(coef(fit_3), 1)

mtext(paste("y = ", beta[1], " + ", beta[2], "x + ", beta[3], "z + ", beta[4],

"xz + error", sep=""), side=3, line=-1.5)

The next step is to use the posterior simulations to display uncertainty in the fitted regression

lines. The result is shown in Figure 49. Again, we just show the code for the graph on the right,

corresponding to the model with interactions.

sims_3 <- as.matrix(fit_3)

par(mar=c(3,3,1,1), mgp=c(1.5,.5,0), tck=-.01, pty="s")

plot(memory$x + jitt_x, memory$y + jitt_x, col=ifelse(memory$z==0, "blue", "red"),

pch=20, cex=.6, xlim=c(0,20), ylim=c(0,20), xaxs="i", yaxs="i",

xlab="Test 1 score", ylab="Test 2 score")

for (i in sample(nrow(sims_2), 20)){

abline(sims_3[i,1], sims_3[i,2], col="blue", lwd=.5)

abline(sims_3[i,1] + sims_3[i,3], sims_3[i,2] + sims_3[i,4],

col="red", lwd=.5, lty=2)

}
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Figure 49 Uncertainties in the fitted lines from the models shown in Figure 48 predicting a memory quiz score

from a pre-test and a treatment indicator. Each graph shows 20 random draws from the posterior distribution of

the regression line.

beta <- fround(coef(fit_3), 1)

mtext(paste("y = ", beta[1], " + ", beta[2], "x + ", beta[3], "z + ", beta[4],

"xz + error", sep=""), side=3, line=-1.5)

2. Adding predictors and interactions to a model; comparing regression with interactions with two

separate regressions

Consider the earnings and height example from Sections 10.4 and 12.4 of Regression and Other

Stories:

library("rstanarm")

earnings <- read.csv(paste0(

"https://raw.githubusercontent.com/avehtari/",

"ROS-Examples/master/Earnings/data/",

"earnings.csv"

))

# Regress earnings on height and sex

fit_1 <- stan_glm(earnk ~ height + male, data=earnings, refresh=0)

print(fit_1)

# Plot data and fitted lines

plot(earnings$height, earnings$earnk, pch=20, cex=.3,

col=ifelse(earnings$male==1, "blue", "red"))

abline(coef(fit_1)["(Intercept)"], coef(fit_1)["height"], col="red")

abline(coef(fit_1)["(Intercept)"] + coef(fit_1)["male"], coef(fit_1)["height"],

col="blue")

# Include interaction

fit_2 <- stan_glm(earnk ~ height + male + height*male, data=earnings, refresh=0)

print(fit_2)

# Plot data and fitted lines

plot(earnings$height, earnings$earnk, pch=20, cex=.3,

col=ifelse(earnings$male==1, "blue", "red"))

abline(coef(fit_2)["(Intercept)"], coef(fit_2)["height"], col="red")
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abline(coef(fit_2)["(Intercept)"] + coef(fit_2)["male"],

coef(fit_2)["height"] + coef(fit_2)["height:male"], col="blue")

We go through interpretation of all four coefficients in this model, then fit separate regressions for

each sex and compare these to the fitted regression with interaction:

# Separate regression for women

fit_3a <- stan_glm(earnk ~ height, data=earnings, refresh=0, subset=(male==0))

print(fit_3a)

# Separate regression for men

fit_3b <- stan_glm(earnk ~ height, data=earnings, refresh=0, subset=(male==1))

print(fit_3b)

# Plot data and fitted lines

plot(earnings$height, earnings$earnk, pch=20, cex=.3,

col=ifelse(earnings$male==1, "blue", "red"))

abline(coef(fit_3a)["(Intercept)"], coef(fit_3a)["height"], col="red")

abline(coef(fit_3b)["(Intercept)"], coef(fit_3b)["height"], col="blue")

Drills

1. Causal regressions

Set up each of these problems as a regression model.

(a) Effect of tutoring on test scores.

Solution: post_test ~ treatment + pre_test or y ~ z + x

(b) Effect of a drug that is intended to lower blood pressure

(c) Effect of sanctions on a country’s nuclear weapons program.

2. Interpret interaction coefficients

For each model, describe each coefficient in words.

(a) hourly_earnings = -10.4 + 2.6*educ - 1.7*female - 0.3*female*educ + error

Solution:

• For a man with zero years of education, we predict his hourly earnings to be −$10.40, on

average.

• Comparing two men who differ by one year in education, we expect the man with more

education to have $2.60 higher earnings, on average.

• Comparing a man and a woman who both have zero years of education, we expect the

woman to have $1.70 lower earnings, on average.

• The slope for education is 0.3 lower for women than for men. So, comparing two women

who differ by one year in education, we expect the woman with more education to have

$2.60 − $0.30 = $2.30 higher earnings, on average.

(b) wage = -0.9 + 0.5*yrseduc + 0.3*married + 0.1*yrseduc*married + error

(c) y = 1.2 + 1.6x + 2.7z + 0.7xz + error

Discussion problems

1. Adjusting for pre-treatment variables

Consider an observational study on a topic of interest, comparing exposed to unexposed groups.

Define the units of observation, the treatment and control (exposed and unexposed) conditions,

an outcome of interest, and two pre-treatment predictors. For example, the units could be states



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

3.11. LINEAR REGRESSION WITH MULTIPLE PREDICTORS 145

in election years; the exposure could be a natural disaster in the state during the previous year;

and the outcome could be the incumbent party’s vote share in the election for governor, with

pre-treatment predictors being the party’s vote share in the previous elections for governor and

president. For another example, the units are college students, exposure is taking a political science

class in college, the outcome is a survey response regarding support for democratic institutions,

and background variables are measures of parents’ political attitudes.

For this problem, each pair of students should come up with an example on a topic of interest

to them and write two regression models, first giving the simple comparison between the two

groups and then adjusting for the pre-treatment predictors. The focus here is on how to write these

models in mathematical notation and in R, not to be overly concerned with causal identification,

which we return to in the next semester.

2. What is gained by including a pre-test?

Consider an educational experiment with treatment, I, and outcome being a test score, ~. Now

consider including a pre-test, G, so that you estimate the treatment effect by fitting a regression of

~ on I and G. How will it help to include G in the model? How much will it help?

For this problem, you should address this question by designing a simulation study, where G, I, and

~ are simulated under some assumptions and then the estimates can be compared with and without

adjusting for G. Put that in a loop, and you can calculate how the estimates perform on average.
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3.12 Assumptions, diagnostics, and model evaluation

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Actual vs. Sample size Take difference Assumptions Assumptions

guessed and statistical or regress on and how of regression

exam scores significance an indicator they fail

Model checking Assumptions Simulate How to test Patterns

for baseball of regression and debug regression of residuals

analytics of regression assumptions

Reading

Chapter 11 of Regression and Other Stories: Assumptions, diagnostics, and model evaluation

(Sections 11.1–11.7)

Pre-class warmup assignments

1. '2 and explained variance

(a) Suppose the following regression is fit to the students in a class: post_test = 30 +

0.7*pre_test + error. Explain the coefficient 0.7 in “comparative” or “descriptive” terms

without using causal language.

(b) Suppose a regression is run, predicting students’ post-test from pre-test scores, and the '2 is

1. What does this tell us about the fitted model?

(c) Suppose a regression is run, predicting students’ post-test from pre-test scores, and '2 is 0.

What does this tell us about the fitted model?

2. Linear regression fit to nonlinear data

(a) Simulate 50 data points ~8 from the model ~8 = 0 ∗ exp(−1G8) ∗ exp(error8), with 0 = 0.1,

1 = 0.2, and errors drawn from a normal distribution with mean 0 and standard deviation 0.2.

In your simulation, draw G8 at random from the range (0, 20).
(b) Fit a linear regression to these data. Plot the data and the fitted regression line.

(c) Plot the residuals from the fitted model vs. G. Does the plot show any problems?

Homework assignments

1. (a) Regression modeling and prediction (Exercise 10.5 of Regression and Other Stories)

The folder KidIQ contains a subset of the children and mother data discussed earlier in the

chapter. You have access to children’s test scores at age 3, mother’s education, and the

mother’s age at the time she gave birth for a sample of 400 children.

i. Fit a regression of child test scores on mother’s age, display the data and fitted model,

check assumptions, and interpret the slope coefficient. Based on this analysis, when

do you recommend mothers should give birth? What are you assuming in making this

recommendation?

ii. Repeat this for a regression that further includes mother’s education, interpreting both

slope coefficients in this model. Have your conclusions about the timing of birth changed?

iii. Now create an indicator variable of whether the mother has completed high school.

Consider interactions between high school completion and mother’s age. Also create a

plot that shows the separate regression lines for each high school completion status group.
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iv. Finally, fit a regression of child test scores on mother’s age and education level for the

first 200 children, and use this model to predict test scores for the next 200. Graphically

display comparisons of the predicted and actual scores for the final 200 children.

(b) Regression models with interactions (Exercise 10.6 of Regression and Other Stories)

The folder Beauty contains data (use file beauty.csv) on student evaluations of instructors’

beauty and teaching quality for several courses at the University of Texas. The teaching

evaluations were conducted at the end of the semester, and the beauty judgments were made

later, by six students who had not attended the classes and were not aware of the course

evaluations.

i. Run a regression using beauty (the variable beauty) to predict course evaluations (eval),

adjusting for various other predictors. Graph the data and fitted model, and explain the

meaning of each of the coefficients along with the residual standard deviation. Plot the

residuals versus fitted values.

ii. Fit some other models, including beauty and also other predictors. Consider at least one

model with interactions. For each model, explain the meaning of each of its estimated

coefficients.

2. (a) Assumptions of the regression model (Exercise 11.1 of Regression and Other Stories)

For the model in Section 7.1 of Regression and Other Stories predicting presidential vote

share from the economy, discuss each of the assumptions in the numbered list in Section 11.1

of Regression and Other Stories. For each assumption, state where it is made (implicitly or

explicitly) in the model, whether it seems reasonable, and how you might address violations

of the assumptions.

(b) Descriptive and causal inference (Exercise 11.2 of Regression and Other Stories)

i. For the model in Section 7.1 of Regression and Other Stories predicting presidential

vote share from the economy, describe the coefficient for economic growth in purely

descriptive, non-causal terms.

ii. Explain the difficulties of interpreting that coefficient as the effect of economic growth on

the incumbent party’s vote share.

(c) In pairs: Working through your own example (Exercise 11.11 of Regression and Other Stories)

Continuing the example from the final exercises of the earlier chapters, graph and check

the fit of the model you fit in Exercise 10.11 of Regression and Other Stories and discuss

the assumptions needed to use it to make real-world inferences.

Stories

1. Actual vs. guessed exam scores

We sometimes have included a question at the end of an exam asking students to guess their total

scores on the other questions of the exam.67 As an incentive, students received 5 points extra

credit if the guess was within 10 points of the actual score. When the students completed their

exams, we kept track of the order in which they were handed in, so that we could later check to see

if students who finished the exam early were more or less accurate in their self-assessments than

the students who took the full hour. When grading the exams, we did not look at the guessed score

until all the other questions were graded. We then recorded the guessed grade, actual grade, and

order of finish for each student. We had three reasons for including the self-evaluation question: it

forced the students to check their work before turning in the exam; it taught them that subjective

predictions can have systematic bias (in our experience, students tended to be overly optimistic

about their scores); and the students’ guesses provided us with an example of data and residuals,

as we discuss next.

67From Section 3.5.1 of Teaching Statistics: A Bag of Tricks.
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Figure 50 (a) Actual vs. guessed midterm exam scores for a class of 53 students. Each symbol represents a

student; empty circles are men, solid circles are women, and ? has unknown sex. The 45◦ line represents perfect

guessing, and the dotted line is the linear regression of actual score on guessed score. Both men and women

tended to perform worse than their guesses. (b) Difference between actual and guessed midterm exam scores,

plotted against the order of finishing the exam. The exact order is only relevant for the first 20 or 25 students,

who finished early; the others all finished within five minutes of each other at the end of the class period. The

horizontal line represents perfect guessing. The students who finished early were highly optimistic, whereas the

other students were less biased in their predictions.

Figure 50a displays the actual and guessed scores (out of a possible score of 125) for each student

in a class of 53, with students indicated by solid circles (women), empty circles (men), and ?

for a student with unknown sex. (This student had an indeterminate name, was not known by

the teaching assistants, and dropped the course after the exam.) The points are mostly below the

45-degree line, indicating that most students guessed too high. Perhaps surprisingly, men do not

appear appreciably more overconfident than women. The dotted line shows the linear regression of

actual score on guessed score and displays the typical “regression to the mean” behavior discussed

in Chapter 6 of Regression and Other Stories.

A class discussion should bring out the natural reasons for this effect. Figure 50b shows the

difference between actual and guessed scores, plotted against the order of finish. Many of the first

20 or 25 students, who finished early, were highly overconfident; whereas the remaining students,

who took basically the full hour to complete the exam, were close to unbiased in their predictions.

Perhaps this suggests that students who finish early should take more time to check their results.

(The students who finished early did, however, have higher than average scores on the exam.)

Other studies have found that students’ test performances are overestimated by their teachers as

well.

The data also have a detective-story aspect that can be fun to discuss. For example, why do the

guesses scores max out at 115? Since students got extra credit for a guess within 10 points of their

exam score, and the exam was only worth 125 points, it would not make sense to guess higher

than 115. (In fact, however, all four students who guessed 115 were overconfident about their

grades.) What about the student with uncertain sex who guessed 65 and scored 30? How could

someone guess so poorly? There could be a logical motivation, based on the following reasoning:

if he or she scored below 55 on the exam, he or she would drop the course anyway. The extra

credit points would then only be useful with a score above 55, hence the guess of 65. In fact, the

student did drop the course after the low exam score.

When teaching this course again, we varied the procedure by handing out Figure 50 a week before

the midterm exam, discussing the overconfidence phenomenon, and warning the class that the
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Figure 51 Actual vs. guessed midterm exam scores for students in two terms of introductory statistics classes.

The dots represent students in the first term; the asterisks represent students in the second term, who were shown

the data from the first term (Figure 50) a week before the exam. The students in the second term gave predictions

that were less biased. A square scatterplot is used because the horizontal and vertical axes are on the same scale.

same question would appear on the exam. We were encouraged to find that, thus prepared, the

students’ guesses were less biased than those of the earlier class. Figure 51 displays the results for

the unprepared class (indicated by dots, the same data as displayed in Figure 50a) and the prepared

class (indicated by asterisks).

This story relates to the week’s reading in that we are plotting observed vs. predicted values. It

relates to the course as a whole as an example of learning from exploratory analysis of data.

2. Model checking for baseball analytics

Baseball analyst Bill James had this story criticizing a player evaluation that he had seen in a

different book:68

“Total Baseball has Glenn Hubbard rated as a better player than Pete Rose, Brooks Robinson,

Dale Murphy, Ken Boyer, or Sandy Koufax, a conclusion which is every bit as preposterous

as it seems to be at first blush.

To a large extent, this rating is caused by the failure to adjust Hubbard’s fielding statistics

for the ground-ball tendency of his pitching staff. Hubbard played second base or teams

which had very high numbers of ground balls, as is reflected in their team assists totals. The

Braves led the National League in team assists in 1985, 1986, and 1987, and were near

the league lead in the other years that Hubbard was a regular. Total Baseball makes no

adjustment for this, and thus concludes that Hubbard is reaching scores of baseballs every

year that an average second baseman would not reach, hence that he has enormous value.”

Model checking! This idea is so fundamental to statistics—to science—and yet so many theories

of statistics and theories of science have no place for it.

The alternative to the Jamesian, model-checking approach is exemplified by Pete Palmer’s book,

Total Baseball, mentioned in the above quote. Palmer did a lot of great stuff, and James is a fan

of Palmer, but Palmer followed the all-too-common approach of just taking the results from his

model and then . . . well, then, what can you do? You use what you’ve got.

What makes James special as a founder of modern sports analytics is that he’s not just sifting the

data; he’s interested in getting it right, and he’s interested in seeing where things went wrong.

68Bill James (2001), The New Bill James Historical Baseball Abstract, Free Press. The discussion here comes

from Andrew Gelman (2016), Bill James does model checking, https://statmodeling.stat.columbia.edu/2016/05/09/

bill-james-does-model-checking/.
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A chicken is an egg’s way of making another egg.

To make the analogy explicit: the “egg” is the model and data, and the chicken is the inferences

from the model. The chicken is implicit in the egg, but it needs some growing. The inferences are

implicit in the model and the data, but it takes some computing.

All the effort that went into Total Baseball was useful for baseball analysis, in part for the direct

relevance of the results (a delicious “chicken”) and in part because that book compiled so much

information and made so many inferences that people such as James could come in and see which

of these statements made no sense—and what this revealed about the problems with Palmer’s

model.

Once you have the external counterexample—an implication that doesn’t make sense—you go find

the internal flaw—the assumption in the model that went wrong, often an assumption that was so

implicit in the construction of your procedure that you didn’t even realize it was an assumption at

all. Or, conversely, if you first find an internal assumption that concerns you, you should follow

the thread outward and figure out its external consequences: What does it imply that it does not

make sense?

This story relates to the week’s readings as an example of considering the assumptions of a

statistical model. It relates to the course as a whole in illustrating the connections between data,

assumptions, and conclusions.

Class-participation activities

1. Sample size and statistical significance

We discuss with students the plan of fitting a regression to predict some outcome of interest from

the General Social Survey, for example happiness or trust or behavior or attitude on some social

or political issue. We then download the most recent General Social Survey file and then go

through the codebook to look for relevant questions.69 For example, we might fit a model to

predict happiness given age and sex:

library("haven")

library("rstanarm")

gss2021 <- read_dta("2021_stata/gss2021.dta")

minidata <- gss2021[,c("marital","age","sex","happy")]

minidata$female <- minidata$sex - 1

minidata$age10 <- minidata$age/10

fit <- stan_glm(happy ~ age10 + female, data=minidata, refresh=0)

This recoding of the age and sex variables makes the coefficients more interpretable.

Before displaying the fitted model, we fit to a subset of the data, just the first 100 respondents:

fit_100 <- stan_glm(happy ~ age10 + female, data=minidata, refresh=0,

subset=1:100)

print(fit_100, digits=3)

Here is what we see:

observations: 85

predictors: 3

------

Median MAD_SD

(Intercept) 2.09 0.23

age10 0.02 0.04

69See https://gss.norc.org/ or simply search online for General Social Survey.
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female -0.03 0.15

Auxiliary parameter(s):

Median MAD_SD

sigma 0.65 0.05

The model was fit to just 85 data points because some of the respondents had missing data. Next

we ask students what they expect to see when we fit the model to more data:

fit_1000 <- stan_glm(happy ~ age10 + female, data=minidata, refresh=0,

subset=1:1000)

print(fit_1000, digits=3)

They should expect the standard errors to decline. What about the coefficient estimates? The

standard errors give a sense of how these estimates might change.

observations: 891

predictors: 3

------

Median MAD_SD

(Intercept) 2.226 0.077

age10 -0.029 0.013

female 0.023 0.044

Auxiliary parameter(s):

Median MAD_SD

sigma 0.650 0.016

You can also do it the other way, first fitting the data to the first 2000 respondents and then

considering a “replication study” on the next 1000.

This activity is relevant to the week’s readings in focusing on uncertainty in a fitted model. It

relates to the course as a whole in connecting data analysis and expectations for future data.

2. Assumptions of regression

This activity starts by displaying Figure 52, which lists the assumptions of linear regression.

Students can then discuss in pairs if they have any questions about these. After answering any

questions that arise, we divide the students into seven groups and ask each group to construct an

example of a regression problem violating one of these assumptions. Each group is assigned to

one assumption, and they should do two things: first come up with a real-world example where

the assumption is violated, then consider how to construct a simulation of this on the computer.

We then go through one of these examples and code it live.

1. Validity

2. Representativeness

3. Additivity

4. Linearity

5. Independence of errors

6. Equal variance of errors

7. Normality of errors

Figure 52 Assumptions of linear regression, in decreasing order of importance, as listed in Section 11.1 of

Regression and Other Stories.
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This activity relates to the week’s readings in its coverage of regression assumptions. It is relevant

to the course as a whole in linking real-world concerns, statistical modeling, and simulation.

Computer demonstrations

1. Take the difference or regress on an indicator variable

This demonstration is a bit of a review as it relates to Section 7.3 of Regression and Other Stories.

In this example, you estimate the difference in mean tax rates in two countries (based on fake data).

# Create fake data

n <- 30

z <- sample(c(0,1), n, replace=TRUE, prob=c(0.5, 0.5))

y <- ifelse(z==1, rnorm(n, 30, 20), rnorm(n, 40, 20))

# Estimate difference by hand

y_1 <- y[z==1]

y_0 <- y[z==0]

diff <- mean(y_1) - mean(y_0)

se_1 <- sd(y_1) / sqrt(length(y_1))

se_0 <- sd(y_0) / sqrt(length(y_0))

se_diff <- sqrt(se_1^2 + se_0^2)

print(c(diff, se_diff))

# Estimate difference using regression on indicator variable

data <- data.frame(z, y)

fit <- stan_glm(y ~ z, data=data, refresh=0)

print(fit)

2. Simulate and debug

Simulate the process of experimentation and replication in the context of a hypothetical set of

experiments, for example on political persuasion.

First create the underlying world. For this example, you could assume that a certain political

attitude has 40% support among the general population, and then persuasion campaigns will be

conducted to change opinions. Assume the true effect is 0.02 (shifting opinion, from 40% to 42%

support).

You can simulate the experiment and a possible replication study.

First simulate an experiment on 2000 people: 1000 treated and 1000 controls.

n <- 1000

z <- rep(c(0,1), c(n,n))

y <- rbinom(n, 1, 0.40 + 0.02*z)

fake <- data.frame(y, z)

fit <- stan_glm(y ~ z, data=fake, refresh=0)

print(fit, digits=2)

Here’s what you’ll see:

observations: 2000

predictors: 2

------

Median MAD_SD

(Intercept) 0.41 0.02

z 0.00 0.02
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Auxiliary parameter(s):

Median MAD_SD

sigma 0.49 0.01

The estimate is 0, and the standard error is 0.02. Does this make sense? Sure, it’s possible. The

true effect is assumed to be 0.02, so this estimate is 1 standard error from the true value, which

can easily happen.

Re-run the code to see what happens with a new simulation, and you’ll see something like:

Median MAD_SD

(Intercept) 0.39 0.02

z 0.00 0.02

Auxiliary parameter(s):

Median MAD_SD

sigma 0.49 0.01

The estimated coefficient is still zero! Let’s try again. Same thing. Something is going wrong. Go

back in and look at the simulated data:

print(z)

print(y)

The vector I has 2000 elements—that’s right—but ~ is only of length 1000. The problem was this

line of code:

y <- rbinom(n, 1, 0.40 + 0.02*z)

Go in and fix it:

y <- rbinom(2*n, 1, 0.40 + 0.02*z)

fake <- data.frame(y, z)

fit <- stan_glm(y ~ z, data=fake, refresh=0)

print(fit, digits=2)

Now the results make sense.

This example relates to the week’s readings as an example of checking that inferences make sense.

It relates to the course as a whole in demonstrating debugging of simulation code.

Drills

1. Assumptions of regression and how they can fail

Consider a regression fit to a set of different countries, predicting the rate of some illegal behavior

(for example, tax evasion or speeding) given country-level predictors (per-capita income, average

education level, etc.). For each assumption, give an example of how it can fail:

(a) Validity

Solution: You won’t know the actual rate of the illegal behavior; you only have an estimate of

this outcome measure.

(b) Representativeness

(c) Additivity and linearity

(d) Independence of errors

(e) Equal variance of errors

(f) Normality of errors
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2. How to test the assumptions of regression

For each assumption, give an example of how it can be tested:

(a) Validity

Solution: Taking some approximately measured quantity and measuring it more carefully. For

example, voter turnout from a survey response and validated vote from public records.

(b) Representativeness

(c) Additivity and linearity

(d) Independence of errors

(e) Equal variance of errors

(f) Normality of errors

Discussion problems

1. Assumptions of regression

Consider the implications of regression assumptions for a real-world study. The class should

first pick a topic of interest that could be studied using regression—for example, this could be a

problem of causal inference, or survey sampling and adjustment, or measurement and estimation

of trends—and then go through the list of assumptions in Figure 52 and discuss how they apply to

the example.

2. Patterns of residuals

Anna takes continuous data G1 and binary data G2 and creates fake data ~ from the model,

~ = 0 + 11G1 + 12G2 + 13G1G2 + error. She gives these data to Barb, who, not knowing how the

data were constructed, fits a linear regression predicting ~ from G1 and G2 and makes a plot of ~ vs.

G1, using dots and circles to display points with G2 = 0 and G2 = 1, respectively. The residual plot

indicates to Barb that she should fit the interaction model. Sketch the residual plot that Barb could

have seen when she fit the regression without the interaction.
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3.13 Regression with linear and log transformations

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Logarithm Predictive Centered and Log and When to

of world uncertainties standardized antilog use the

population predictors log scale

Price Combining Regressions Exponential Straight line

elasticity predictors to with logged growth and fit to

of demand create a score variables decline nonlinear data

Reading

Chapter 12 of Regression and Other Stories: Transformations and regression

Pre-class warmup assignments

1. Linear transformations and interactions

Consider the following model predicting earnings given height and sex:

Median MAD_SD

(Intercept) -9.3 15.2

height 0.4 0.2

male -29.3 24.3

height:male 0.6 0.4

Auxiliary parameter(s):

Median MAD_SD

sigma 21.4 0.3

(a) Define the scaled variable height_cm <- 2.54 * height. Give the estimated coefficients

from regressing earnings on height_cm, male, and their interaction.

(b) Define the centered and scaled variable height_c_cm <- 2.54 * (height - 66). Give

the estimated coefficients from regressing earnings on c_height_c_cm, male, and their

interaction.

(c) Defined the scaled variable earnings_dollars <- 1000 * earnings. Give the estimated

coefficients from regressing earnings_dollars on height, male, and their interaction.

2. Correlation and regression

(a) Consider a regression model, ~ = 0 + 1G + error, where G has standard deviation 20 and ~ has

standard deviation 0.2. Suppose the correlation between G and ~ is −0.4. What can you say

about 0 and 1?

(b) Consider a regression model, ~ = 0.2 + 0.3G + error, where G has standard deviation 2 and ~

has standard deviation 0.4. What is the correlation between G and ~?

Homework assignments

1. (a) Plotting linear and quadratic regressions (Exercise 12.1 of Regression and Other Stories)

The folder Earnings has data on weight (in pounds), age (in years), and other information

from a sample of American adults. We create a new variable, age10= age/10, and fit the

following regression predicting weight:
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Median MAD_SD

(Intercept) 148.7 2.2

age10 1.8 0.5

Auxiliary parameter(s):

Median MAD_SD

sigma 34.5 0.6

i. With pen on paper, sketch a scatterplot of weights versus age (that is, weight on ~-axis,

age on G-axis) that is consistent with this information, also drawing the fitted regression

line. Do this just given the information here and your general knowledge about adult

heights and weights; do not download the data.

ii. Next, we define age10_sq= (age/10)2 and predict weight as a quadratic function of age:
Median MAD_SD

(Intercept) 108.0 5.7

age10 21.3 2.6

age10sq -2.0 0.3

Auxiliary parameter(s):

Median MAD_SD

sigma 33.9 0.6

Draw this fitted curve on the graph you already sketched above.

(b) Plotting regression with a continuous variable broken into categories (Exercise 12.2 of

Regression and Other Stories)

Continuing Exercise 12.1 of Regression and Other Stories, we divide age into 4 categories and

create corresponding indicator variables, age18_29, age30_44, age45_64, and age65_up.

We then fit the following regression:

stan_glm(weight ~ age30_44 + age45_64 + age65_up, data=earnings)

Median MAD_SD

(Intercept) 147.8 1.6

age30_44TRUE 9.6 2.1

age45_64TRUE 16.6 2.3

age65_upTRUE 7.5 2.7

Auxiliary parameter(s):

Median MAD_SD

sigma 34.1 0.6

i. Why did we not include an indicator for the youngest group, age18_29?

ii. Using the same axes and scale as in your graph for Exercise 12.1 of Regression and Other

Stories, sketch with pen on paper the scatterplot, along with the above regression function,

which will be discontinuous.

2. (a) In pairs: Working through your own example

Summarize what you have learned about your example from all the analysis you have done

during the semester.

Stories

1. Logarithm of world population

We tell this story to students in stages: first, presenting the time series of world population since

the year 0 in tabular form (the first two columns of Figure 53, which we write on the board before
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Year Population log (population) Residual exp(residual)

1 170 million 18.95 0.67 1.96

400 190 19.06 0.11 1.12

800 220 19.21 −0.42 0.66

1200 360 19.70 −0.60 0.55

1600 545 20.12 −0.86 0.42

1800 900 20.62 −0.69 0.50

1850 1200 20.91 −0.49 0.61

1900 1625 21.21 −0.27 0.76

1950 2500 21.64 0.08 1.08

1975 3900 22.08 0.48 1.61

2000 6080 22.53 0.88 2.41

2020 7795 22.78 1.09 2.99

Figure 53 Time series of estimated world population and residuals from a logarithmic fit, which reveal that the

population was growing even faster than exponentially. After these data are graphed (see Figure 54), students

should try to guess the population in the year 1400; it was 350 million.
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Figure 54 World population over time, graphed on the original and logarithmic scales. This is a subtle example

since the growth is faster than linear, even on the logarithmic scale. We project the log-scale graph on the board

where we then later draw the fitted regression line, ~ = 18.3 + 1.7 ∗ year/1000). The data in the original and

logarithmic scales, and the residuals from the regression, are given in Figure 53.

the class begins), then graphing the raw data (Figure 54a) and on the logarithmic scale (Figure

54b). On the raw scale, all that can be clearly seen is that the population has increased fast in

recent centuries. On the log scale, it is clear that the rate of increase itself increased.70

Next we ask students to guess the population in the year 1400. After collecting some guesses,

we reveal that the world population in that year was 350 million—actually lower than the year

1200 population, because of plague and other factors—just to illustrate that even interpolation can

sometimes go awry.

Another possible discussion topic is the source of the population numbers: for example, how did

they estimate the population of the world for the year 1?

A good way to understand the logarithmic model is with the regression line:

fit <- stan_glm(log_pop ~ year, data=population, refresh=0)

print(fit)

This yields,

70From Sections 3.8.2 and 5.1.3 of Teaching Statistics: A Bag of Tricks.
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Median MAD_SD

(Intercept) 18.3 0.5

year 0.0 0.0

Auxiliary parameter(s):

Median MAD_SD

sigma 0.7 0.2

You can interpret each number in the output: the model predicts a log population of 18.3 in year 0

(which actually is in the range of the data this time, unlike when fitting models to data from 1900

to 2000), an increase in log population of 0.0 per year, and a residual standard deviation of 0.7 on

the log scale . . . Wait! What about that coefficient of 0.0?

You can include more digits in the print output:

Median MAD_SD

(Intercept) 18.276 0.489

year 0.002 0.000

Auxiliary parameter(s):

Median MAD_SD

sigma 0.728 0.163

But really the right thing to do is rescale:

population$year_1000 <- population$year/1000

fit_2 <- stan_glm(log_pop ~ year_1000, data=population, refresh=0)

print(fit_2)

print(fit)

And we get this:

Median MAD_SD

(Intercept) 18.3 0.5

year_1000 1.7 0.3

Auxiliary parameter(s):

Median MAD_SD

sigma 0.7 0.2

We draw this fitted line on the board where the log-scale data (Figure 54b) have been plotted. The

slope is 1.7: according to the line, every 1000 years the log population increases by 1.7, or every

year the log population increases by 1.7 ∗ 10−3, an increase of a factor of 0.17%. The residual

standard deviation implies that you can expect the predictions to be off by about 0.7, and a range

of ±0.7 on the log scale corresponds to a range of [exp(−0.7), exp(0.7)] = [0.5, 2.0] on the scale

of population. So the data are typically within a factor of 2 of the model’s prediction.

2. Price elasticity of demand

How much does the demand for a product go up or down if its price is changed? For most items,

we would expect an increase in price to lead to a decrease in demand: this is called a negative

elasticity. More generally, the elasticity is defined as the derivative of logarithm of demand with

respect to logarithm of price or as the percentage change in demand resulting from a 1% increase

in price. The definition in terms of a 1% change is only approximate because log(1.01) is not

exactly 0.01.

To say this more slowly: consider the model,

log ~ = 0 + 1 log G,
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where G is price and ~ is demand. Here 1 is the elasticity, and we if we exponentiate both sides of

the above model we get ~ = �G1. A price increase of 1% corresponds to multiplying G by 1.01,

hence multiplying ~ by 1.011 or, equivalently, to adding 1 log(1.01) to log ~.

For example, suppose the price elasticity of demand for a particular product is −0.8. Then a 1%

increase in price would result in demand changing by a factor of 1.01−0.8
= 0.992 (more precisely,

0.09921, but we could never measure any of these quantities to that level of accuracy), hence a

decrease in demand of 0.8%. From the other direction, a 1% decrease in price would result in

demand changing by a factor of 1.010.8
= 1.008, an increase of 0.8%.

On the logarithmic scale, the corresponding calculation is that increasing log G by 0.01 would

result in log ~ decreasing by 0.008, and decreasing log G by 0.01 would lead to log ~ increasing by

0.008.

We can better understand the concept of elasticity by considering various possible values:

• Suppose the elasticity 1 in the above expression equals 0. Then demand is completely

inelastic: changes in price do not affect demand for the product. A stylized example here is

refrigerators in wealthy countries. Everyone wants exactly one refrigerator. If the price goes

up, you’ll still want a refrigerator, and if the price goes down, you won’t suddenly want a

second fridge. This is a simplification—if the price of refrigerators changes enough, people

will indeed consider owning zero or two of them—but it gives a sense of what it takes for

demand to be inelastic.

• Suppose the elasticity is −1. Then demand decreases as price increases (and vice-versa) just

enough so that the product, demand ∗ price, is a constant—for example, demand decreasing

by 1% when price increases by 1%. This implies that the dollar value of the demand does not

change with price.

• Suppose the elasticity is −1.5. Then demand decreases faster than the price increases: for

example, an increase in price of 1% leads to a decrease of 1.5% in demand.

• What about a positive elasticity? For example, suppose elasticity is +0.5. Then a 1%

increase in price leads, paradoxically, to more demand. Such behavior can be imagined for

some status-related products where exclusivity itself represents part of the appeal, but it not

something we would usually expect to see.

With all this in mind, we can consider how elasticity could influence a pricing decision. Suppose

you are selling a product with elasticity of zero. What should you do? You should raise its price!

The demand won’t change, so you should be able to sell the same amount, and you’ll just make

more money.

What if you are selling a product with an elasticity of −0.5? Then if you raise the price by 1%,

the demand will drop by only 0.5%, and you’ll make more money. More generally, whenever

the elasticity is larger than −1, it makes sense to raise the price. From the other direction, if the

elasticity of a product you are selling is more negative than −1, it makes sense to lower your price,

as the demand will increase by a higher percentage than your price is dropping, so demand ∗ price

will increase. The elasticity will change as you move along the demand curve, so at some point

there will be diminishing returns from changing the price. Here we are just considering elasticity

in an instantaneous sense.

These statements are idealizations: in the real world, “demand” does not equate to sales, changing

the price can involve costs of its own, there will be competing vendors who can alter their prices

as well, and price elasticity of demand is itself variable and not always so easy to estimate. The

point of this story is not to get into all these qualifications but rather to demonstrate how a linear

model on the log-log scale can be interpreted.

This example relates to the week’s reading as an example of logarithmic transformations for linear
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models. It relates to the course as a whole as an example of interpreting a coefficient in such a

model. Unlike most of our stories, this one does not directly involve data or model fitting; instead

we are focusing on the deterministic part of the model in order to better understand how it works

when both G and ~ are log transformed.

Class-participation activities

1. Predictive uncertainties

Suppose that, using a survey with 500 respondents, a regression is fit predicting a “feeling

thermometer” response on some celebrity on a 0–100 scale,71 given a party identification predictor

(on a −3 to 3 scale). Just describe this problem; do not collect, download, or simulate data.

Suppose the data were to exist, the regression model were fit, and posterior_linpred and

posterior_predict were performed for someone who is strongly Republican (G = 3). What are

plausible values for the point prediction and predictive uncertainties?

Students should work in pairs to come up with reasonable values here, and then the instructor can

write the different guesses on the board as a starting point for class discussion. This relates to

the week’s reading in that to understand transformations you need to understand the scale of a

problem: you need a sense of whether a coefficient is expected to be of order 100 or 10 or 1 or

0.1 or 0.01 or whatever. The activity relates to the course as a whole as an example of thinking

through an understanding a model quantitatively.

2. Combining predictors to create a total score

Though class discussion, the instructor creates a Google form with several questions on some

topic of interest. For example, if the goal is to measure left-right ideology, the questions can

include party identification, political ideology, and a few issue attitudes. Put these together to

create a combined score. When doing this you have to be aware of the scale of the different

measurements. To make the problem interesting, include measurements on different scales, for

example an ideology scale from −3 to 3 and a 0–100 feeling-thermometer scale.

This activity relates to the week’s reading as an example of a custom transformation; it relates to

the course as a whole by connecting ideas of measurement and modeling.

Computer demonstrations

1. Centered and standardized predictors

Here is a series of regressions fit to the same data with different linearly-transformed predictors.72

For each, type in the code and consider what the fitted regression will be, then hit Return and look

at the output. Keep doing this, changing the model in various ways, until you can successfully

predict what the results will be.

# Setup

library("rstanarm")

earnings <- read.csv(paste0(

"https://raw.githubusercontent.com/avehtari/",

"ROS-Examples/master/Earnings/data/",

"earnings.csv"

71For example, the American National Election Study asks, “I’d like to get your feelings toward some of our political

leaders and other people who are in the news these days. I’ll read the name of a person and I’d like you to rate that person

using something we call the feeling thermometer. Ratings between 50 degrees and 100 degrees mean that you feel favorable

and warm toward the person. Ratings between 0 degrees and 50 degrees mean that you don’t feel favorable toward the person

and that you don’t care too much for that person. You would rate the person at the 50 degree mark if you don’t feel particularly

warm or cold toward the person.”

72From Section 12.2 of Regression and Other Stories.
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))

earnings <- na.omit(earnings[, c("earn", "height", "male", "education")])

# Fit regression

fit <- stan_glm(earn ~ height + male + education, data=earnings, refresh=0)

print(fit)

# Re-run regression with centered predictors

earnings$height_c <- earnings$height - mean(earnings$height)

earnings$male_c <- earnings$male - mean(earnings$male)

earnings$education_c <- earnings$education - mean(earnings$education)

fit_2 <- stan_glm(earn ~ height_c + male_c + education_c,

data=earnings, refresh=0)

print(fit_2)

# Re-run regression with standardized predictors (except sex)

earnings$z_height <- earnings$height_c / (2 * sd(earnings$height))

earnings$z_education <- earnings$education_c / (2 * sd(earnings$education))

fit_3 <- stan_glm(earn ~ z_height + male_c + z_education,

data=earnings, refresh=0)

print(fit_3)

2. Regressions with logged variables

Take the familiar dataset earnings. Regress log earnings on height, and plot the model on both

the log and the linear scale. In addition, you could run, plot, and interpret the log-log model.73

# Setup

library("rstanarm")

earnings <- read.csv(paste0(

"https://raw.githubusercontent.com/avehtari/",

"ROS-Examples/master/Earnings/data/",

"earnings.csv"

))

earnings <- earnings[earnings$earn > 0, ]

height_jitter_add <- runif(nrow(earnings), -0.4, 0.4)

# Regression of log earnings on height

logmodel <- stan_glm(log(earn) ~ height, data=earnings, refresh=0)

print(logmodel)

# Plot model on log scale

plot(earnings$height + height_jitter_add, log(earnings$earn),

xlab="height", ylab="log (earnings)", pch=20, col="gray", bty="l", cex=.3)

sims <- as.matrix(logmodel)

curve(coef(logmodel)[1] + coef(logmodel)[2]*x, add=TRUE)

# Plot model on linear scale

plot(earnings$height + height_jitter_add, earnings$earn, xlab="height",

ylab="earnings", pch=20, col="gray", bty="l", cex=.3, ylim=c(0,250e3))

curve(exp(coef(logmodel)[1] + coef(logmodel)[2]*x), add=TRUE)

Drills

1. Log and antilog

73From Section 12.4 of Regression and Other Stories.
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Follow the instructions to either log or exponentiate the following expressions:

(a) Log: ~ = 40431

Solution: log ~ = 0 + 31

(b) Log: ~ = 40+31

(c) Log: ~ = 40.5−3G+error

(d) Log: ~ = 0.3 42G4error

(e) Log: ~ = 0 ∗ 1.01C

(f) Log: ~ = 700 G?

(g) Antilog: log(~) = 0 + 1 log G

(h) Antilog: log(~) = 0 + G log 1

(i) Antilog: log(~) = 4.0 + 17.2 G1 + 3 G2 + error

2. Examples of exponential growth and decline

(a) How do you express ~ = 15 ∗ 3G on the log scale?

Solution: log ~ = log(15) + log(3) ∗ G
(b) How do you express ~ = 0 ∗ 1G on the log scale?

(c) How do you express log(I) = log(10) + log(0.7) ∗ G on the linear scale?

(d) If something increases every year by 4%, how can you express this process on the linear scale?

How about on the log scale?

(e) Describe in words the process ~ = 1000 ∗ 1.03G .

(f) Describe in words the process log(D) = log(2) + log(3) ∗ C.

Discussion problems

1. General rules of when to use the log scale

Would Figure 2.4 in Regression and Other Stories be improved by plotting either or both axes on

the log scale? Can you come up with general rules of when to use the log scale in graphing and

regression? To get started, consider the example of a country-level regression predicting carbon

emissions from GDP, population, and land area; or predicting carbon emissions per capita from

GDP per capita and land area per capita; or predicting log(carbon emissions) from log(GDP),

log(population), and log(land area); or predicting log(carbon emissions per capita) from log(GDP

per capita) and log(land area per capita).

2. Straight line fit to an exponential or power-law pattern

Consider one of the examples from the class discussion of exponential growth or decline, or

power-law growth or decline. What would happen if you try to fit a linear model to data from such

an example? Sketch data showing the exponential or power-law pattern along with your best guess

of the straight line that would result from fitting a linear regression. Then use R to simulate some

points, graph them, fit the regression, and graph the fitted line. Where does the line fit well and

where does it have problems?
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Chapter 4

Week by week: the second semester

We continue the outline of the course, now going through the 13 weeks of the second semester. Again,

we have two 75-minute classes a week, hence the description for each week includes two sets of

readings and homework, two stories, two class-participation activities, two computer demonstrations,

and so forth.

4.14 Review of basic statistics and regression modeling

Computer Discussion

Stories Activities demonstrations Drills problems

Biased samples Self-selected Causal inference Regression Sampling

and coverage treatment adjusting for coefficients and

of intervals assignment pre-treatment as comparisons adjustment

The problem Design a study Simulating Log Causal

of too much to explore patterns transformations inference,

talent? nonlinearity of bias adjustment

Reading

1. Chapters 1–12 and Appendix A of Regression and Other Stories (review)

2. Appendix B of Regression and Other Stories: 10 quick tips to improve your regression modeling

Pre-class warmup assignments

1. No assignment before the first class.

2. Estimates and standard errors

(a) A survey is conducted of 700 people to estimate the proportion who support a law banning

abortion. Assuming the respondents are a simple random sample from the population, what is

the standard error of the estimated proportion?

(b) A survey is conducted including 500 Republicans, 600 Democrats, and 700 Independents to

ask their opinions on a proposed tax plan. Assuming the respondents are a simple random

sample from the population, what is the standard error of the estimated difference in the

proportions of Republicans and Democrats who support this plan?

(c) A company performs an experiment in which 50 work teams are given a special training,

and these are compared to 100 teams that are not given this training. Each team’s efficiency

is measured before and after the experiment, and then a regression is performed predicting

post-test from pre-test and a treatment indicator. The estimated treatment effect is 0.35 with a
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standard error of 0.30. Suppose the experiment were replicated with twice the sample size.

What would you expect the standard error to be?

Homework assignments

1. No homework assignment due for the first class.

2. Reading and commenting on a published article

The instructor should choose a research paper on a topic of interest to students. The assignment is

then to read the article and discuss the following issues:

(a) To what extent is the research generalizing from sample to population, from treatment to

control group, and from observed data to underlying quantities of interest?

(b) How are the data and inferences displayed graphically? How could the display be improved?

(c) What statistical methods are used in the paper? How do the methods and statistical conclusions

line up with the substantive goals and conclusions that are reported?

(d) What questions do you have about the paper? How do you think it could be improved?

Stories

1. Biased samples and coverage of confidence intervals

Real-world surveys have bias. Samples are not completely representative of the populations they

are studying, nor can a sample truly be considered to be a random draw of balls from an urn.

For example, a few years ago we estimated nonsampling error in political polls by collecting a

large number of state polls taken in the final weeks of presidential, senatorial, and gubernatorial

elections and comparing the published poll estimates with the actual election outcomes.1 We

found that “average survey error as measured by root mean square error is approximately 3.5

percentage points, about twice as large as that implied by most reported margins of error.”

Figure 55 shows the results, separately displaying polling error for elections for senator, governor,

and president. For each graph, the histogram displays the distribution of polling errors in the data:

all are within 10% of the election outcome and the vast majority are within 5%, but that is not

so impressive given that the standard deviation of a proportion from a simple random sample of

size 1000 is approximately
√

0.52/1000 = 0.016, or 1.6%. Each plot also shows a dotted line

indicating the variation that would be expected if the polling were ideal. For each survey, we took

the estimated Republican share of the two-party support and then computed the simple sampling

error using the formula
√
?(1 − ?)/=. For each plot, the dotted line shows the mixture of the

normal distributions for all those surveys.

Real-world polls typically include some adjustments for nonrandom sampling and nonresponse,

with different approaches used by different survey organizations.2 Reported standard errors can

be higher than
√
?(1 − ?)/=. Even after these published adjustments, though, polling errors are a

bit more variable than would be expected from published uncertainties. This makes sense; three

sources of nonsampling error are differential nonresponse (Democrats or Republicans being more

or less likely to answer pollsters during a particular election campaign), uncertainty about voter

turnout, and shifts in opinion between the poll and election day.

Just about all real-world surveys have bias. The larger the sample size, the more relatively

important the bias is. Consider a set of surveys, all of which are estimating a proportion that is

1Houshmand Shirani-Mehr, David Rothschild, Sharad Goel, and Andrew Gelman (2018), Disentangling bias and variance

in election polls, Journal of the American Statistical Association 113, 607–614.

2D. Stephen Voss, Andrew Gelman, and Gary King (1995), Pre-election survey methodology: Details from nine polling

organizations, 1988 and 1992, Public Opinion Quarterly 59, 98–132.
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Figure 55 Distribution of polling errors (Republican share of two-party support in the poll minus Republican

share of the two-party vote in the election) for state-level presidential, senatorial, and gubernatorial election

polls between 1998 and 2014. Positive values indicate the Republican candidate received more support in the

poll than in the election. For comparison, the dashed lines show the theoretical distribution of polling errors

assuming each poll is generated via simple random sampling.

Bias = 2%, Sample size = 100

Polling error
−20% −10% 0% 10% 20%

Bias = 2%, Sample size = 1000

Polling error
−3% 0% 3% 6% 9%

Bias = 2%, Sample size = 10000

Polling error
0% 1% 2% 3% 4%

Figure 56 Distribution of survey errors for three different hypothetical scenarios, each with bias of 2 percentage

points and with sample size 100, 1000, or 10 000. The three graphs are on different scales. As sample size

increases, the range of possible errors narrows, but the bias does not go away.

near 50% with a bias of 2 percentage points. Figure 56 shows sampling distributions for surveys

of size = = 100, 1000, and 10 000. Multiplying the sample size by 10 has the effect of dividing the

standard error by
√

10 ≈ 3.1, and the three sample sizes correspond to standard errors of 0.05,

0.016, and 0.005.

The three graphs in Figure 56 are on different scales, and they show how a fixed bias becomes

more consistent as the sampling error decreases.

Another way to see the importance of bias is to consider coverage of confidence intervals. For

each of the three hypothetical surveys in Figure 56, we simulated a large number of replications.

For each replication, we computed the 95% interval—the estimate ±2 standard errors. And then

we checked the coverage of these intervals: the percentage of 95% intervals that contained the true

population proportion being estimated. The coverage of these 95% intervals is 94% for the survey

with sample size 100, 77% for the survey with sample size 1000, and only 2% for the survey with

sample size 10000. The problem is that with the large survey the standard errors are very small,

yielding confidence intervals that are way too narrow.

Figure 57 shows confidence intervals resulting from 100 simulated datasets from each of the three

survey designs. For each graph, the gray vertical line indicates the true parameter value. For the

3Valerie Bradley, Shiro Kuriwaki, Michael Isakov, Dino Sejdinovic, Xiao-Li Meng, and Seth Flaxman (2021), Unrepre-

sentative big surveys significantly overestimated US vaccine uptake, Nature 600, 695–700, with discussion at Andrew Gelman

(2021), “Unrepresentative big surveys significantly overestimated US vaccine uptake,” and the problem of generalizing from

sample to population, https://statmodeling.stat.columbia.edu/2021/12/26/unrepresentative-big-surveys/.
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Bias = 2%, Sample size = 100
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Bias = 2%, Sample size = 1000
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Bias = 2%, Sample size = 10000

0% 1% 2% 3% 4%

Figure 57 100 simulated 95% intervals relative to the true population proportion (indicated by a vertical line),

for each of three hypothetical sampling designs. The three graphs are on different scales. The larger surveys

give smaller standard errors and thus narrower confidence intervals.

larger surveys, confidence intervals are narrower (note the different scales on the three graphs),

and the result is that fewer of the nominal 95% intervals contain the true value.

For another example, a recent study reported the following:3

“Two large online surveys of U.S. adults consistently overestimated first-dose COVID-19

vaccine uptake relative to counts released by the CDC throughout the spring of 2021. By

May 2021, Delphi-Facebook’s COVID-19 Trends and Impact Survey (collecting about

250,000 responses per week) and the Census Bureau’s Household Pulse Survey (about

75,000 responses every 2 weeks) overestimated first dose uptake by 17 and 14 percentage

points, respectively, relative to the CDC’s historically-adjusted estimates released May 26,

2021. These errors are orders of magnitude larger than the uncertainty intervals reported

by each survey, which are minuscule due to the large sample sizes. Meanwhile, a more

traditional survey run by Axios-Ipsos, with only about 1000 responses per week, provides

more reliable estimates with reasonable uncertainty.”

This story relates to the week’s readings as an example of the real-world challenges of statistical

inference. It relates to the course as a whole in connecting data collection to data analysis.

2. The “problem of too much talent”?

In 2014, an article was published in a psychology journal claiming that, in the sports of soccer

and basketball, “talent facilitates performance—but only up to a point, after which the benefits of

more talent decrease and eventually become detrimental as intrateam coordination suffers.”4 This

was summarized in a news report as, “Basketball and soccer teams with the greatest proportion of

elite athletes performed worse than those with more moderate proportions of top level players.”5

4Roderick Swaab, Michael Schaerer, Eric Anicich, Richard Ronay, and Adam Galinsky (2014), The too-much-talent

effect: Team interdependence determines when more talent is too much or not enough, Psychological Science 25, 1581–1591.

The discussion here is taken from Andrew Gelman (2016), Should this paper in Psychological Science be retracted? The data

do not conclusively demonstrate the claim, nor do they provide strong evidence in favor. The data are, however, consistent

with the claim (as well as being consistent with no effect), https://statmodeling.stat.columbia.edu/2016/06/28/khkhkj/.

5Cindi May (2014), The surprising problem of too much talent: A new finding from sports could

have implications in business and elsewhere, Scientific American, https://www.scientificamerican.com/article/

the-surprising-problem-of-too-much-talent/.
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Soccer

Figure 58 Data, summarizing the relationship between average performance of soccer teams and the percentage

of elite players on the team, that were used to support the statement, “teams with the greatest proportion of elite

athletes performed worse,” a claim that arose from a misinterpretation of a quadratic curve fit to these points.

In this study, “Top talent was indexed by the percentage of players within each national team who

had contracts with one of the world’s elite club teams.”

This finding could indeed have implications elsewhere, but first we should check exactly what the

authors are claiming. The paper displays a curve, based on data from several years of international

soccer competitions, of average team performance as a function of percentage of top talent,

showing a quadradic relationship, with team performance as G increases from 0 to 60%, then being

flat until about 80%, then declining slightly as the percentage of top talent increases to 100%. The

instructor can find this graph as Figure 2 in the published article and project it onto the screen.6

But is it really true that “teams with the greatest proportion of elite athletes performed worse”?

As one observer asked, “what soccer teams are comprised entirely of elite players?” Table 1 of the

linked paper reports that the mean percentage of top talent was 7% and the standard deviation was

16%, so there can’t be many teams in the 70–100% range where the curve is in its declining phase.

We have discussed the fitted curve. But what about the original data? In a later correspondence,

the authors of the paper prepared some graphs showing the data underlying their quadratic fit.7

Figure 58 shows these data, along with a piecewise linear function estimated by the authors.

Ignoring all the fitted lines, the data are consistent with a monotonic pattern—more talent is

always better, on average—but with diminishing returns. There are not enough teams on the right

half of the graph to say more than that. Also, the fitted broken-line regression does not seem

helpful; there’s no evidence of any sharp break at 0.58 or anywhere else in the range of the data.

The data do not support the claim in the paper’s abstract that, after some point, having more talent

“eventually become[s] detrimental.”

What happened? Three things. First, when you fit a quadratic curve to a function that asymptotes,

you can get this artifact where it appears that the function decreases. Second, there’s very little

information in the data about the high end of the curve, so any apparent pattern there can come

just from noise. Third, we suspect the authors of this paper and the editors of the journal where it

was published fell in love with their hypotheses.

They also looked at data from soccer and baseball, and again their storytelling went beyond what

6https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=6157&context=lkcsb_research.

7Roderick Swaab, Michael Schaerer, Eric Anicich, Richard Ronay, and Adam Galinsky, Response to post, “Thirty-

somethings are shrinking and other challenges for U-shaped inferences,” http://datacolada.org/wp-content/uploads/2014/09/

AuthorsResponse3.pdf.
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Basketball Baseball

Figure 59 Data that were used in fitting a model suggesting a decline in performance for top-talent teams in

basketball but not baseball. As with Figure 58, we do not think the data support this claim.

could be learned from their data. Figure 59 shows the data for those two sports, which again are

consistent with diminishing returns but no absolute decline in performance for the most talented

teams. In the article, though, the authors claimed to find a “too-much-talent effect” in basketball

but not baseball, because their fitted quadratic curves had a decline for one sport and not the other;

see Figures 4 and 6 in the linked article. Again, though, the data do not support this conclusion.

This story is relevant to the week’s readings as it is an example of bad interpretation of a regression

model that does not fit the data. In this case, a quadratic regression was fit to data showing

diminishing returns, leading to a mistaken conclusion that the data showed a non-monotonic

pattern. The story is relevant to the course as a whole in pointing toward the value of flexible

nonlinear models, at topic that we discuss in Chapter 22 of Regression and Other Stories.

Class-participation activities

1. Experiment with self-selected treatment assignment

We begin the second semester’s activities with an in-class experiment that demonstrates the

challenge of causal inference, a topic that will occupy much of the later part of the course. We

start by giving students the link to a Google form, which has questions shown in Figure 60, and

we give them a couple minutes to fill it out.

We then display the questions on the screen and explain that the goal of this experiment is to

estimate how people react differently to the scenario, depending on whether it involves an athlete

or a theater student. The simple thing to do is compare the average responses of students who

received the theater vignette to the average responses to the sports vignette. But there is a potential

bias here because the participants in the experiment (that is, the students in the class) selected

their own treatments.

We ask students to use hypothetical scatterplots to sketch possible patterns of bias. Each scatterplot

should show one dot per student, plotting the outcome (the response to the final survey question,

on a 0 to 100 scale) vs. a measure of relative interest in sports and theater (the difference between

the “How interested are you in sports” and “How interested are you in theater” questions, thus on

a −4 to 4 scale), using two different colors corresponding to the two treatments.

We then discuss how to analyze the data to estimate the average treatment effect. Start with a

regression of the outcome on the treatment indicator, coded as 1 for the sports vignette or 0 for

the theater vignette. Then we add the “sports minus theater” predictor. (Why not “theater minus

sports”? Because it’s easier to interpret the model if we use a consistent coding, in this case
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• What is your age?

• What is your sex (male / female / other or prefer not to answer)?

• How interested are you in sports (on a 1–5 scale, with 1 = not at all and 5 = very much)?

• How interested are you in theater (on a 1–5 scale, with 1 = not at all and 5 = very much)?

• How interested are you in cooking (on a 1–5 scale, with 1 = not at all and 5 = very much)?

• How interested are you in politics (on a 1–5 scale, with 1 = not at all and 5 = very much)?

You will next read a vignette. Would you like it to be about sports or theater?

Respondent receives one of two vignettes :

Sports vignette:

William is on the varsity soccer team. The

night before an important final exam, the

coach calls up to remind him of an upcoming

practice. The next day, William goes to the

practice and misses the exam without notify-

ing the instructor. With a zero on the final

exam, William would fail the class. The in-

structor allows him to take a makeup exam

but will only give partial credit. If you were

the instructor, how much credit (between 0

and 100%) would you give for the makeup

exam?

Theater vignette:

William is in the university theater program.

The night before an important final exam,

the director calls up to remind him of an

upcoming rehearsal. The next day, William

goes to the rehearsal and misses the exam

without notifying the instructor. With a zero

on the final exam, William would fail the class.

The instructor allows him to take a makeup

exam but will only give partial credit. If you

were the instructor, how much credit (between

0 and 100%) would you give for the makeup

exam?

Figure 60 Questions for a survey experiment designed to estimate differences in attitude in a vignette involving

an athlete or theater student. Responses to the vignette question are compared, but the treatment is self-selected,

so we need to adjust for differences between the two groups.

with theater being the baseline and sports being positive.) Adding this predictor allows for the

possibility that sports fans are more or less lenient than theater fans.

Then we need to add the interaction of the treatment indicator and the “sports minus theater”

predictor. A positive coefficient for this interaction implies that sports fans are more lenient in the

sports condition, and theater fans are more lenient in the theater condition.

All the above steps are necessary to adjust for obvious potential biases. We can include the

responses to the other questions as predictors as well.

This activity relates to the week’s readings as an example of using regression to adjust for

differences between treatment and control groups, and using an interaction to model varying

treatment effects. It relates to the semester as a whole by giving a challenging problem of causal

inference.

2. Design a study to explore a nonlinear relation

We remind students of the failed study that purported to show a negative effect of having too much

top talent in a sports team; see Figure 58. Suppose you wanted to do this right; how would you

design such a study?

We first separate the question into two parts: causal and descriptive. The causal question: if

you add (or subtract) top-talent players from your team, what would you expect to happen to the

team’s performance? The descriptive question is: How much better or worse are teams with more

top talent, on average? We can briefly discuss the causal challenge, but the main purpose of this
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activity is the descriptive problem: how to redo that “too much talent” study to better address the

questions it was purporting to answer.

Issues to discuss here include measurement (how to define “top talent”), performance (use

score differential rather than win-loss record) and, most importantly, getting enough data of

top-talent teams to estimate a potential decline in performance at the high end. After considering

data collection, we can discuss analysis: what is a flexible family of curves that would allow

possible non-monotonic effects without that being driven by diminishing returns? The curve

~ = 0 ∗ (1 − 4−1G) asymptotes but has no decline at all, so it seems that we might want to include

a sum of such functions. It’s not so clear how best to do this. Another option would be piecewise

constant. The broken lines in Figure 58b don’t look right.

This activity relates to the week’s readings as an example of the connections between data

collection, modeling, and inference. It relates to the course as a whole by introducing nonlinear

modeling.

Discuss reading and homework

1. For the first day of class, the instructor should discuss the course plan (see Section 1.2):

(a) Goals of the course

(b) Components of the course; discuss Figure 61

(c) Structure of each class period; discuss Figure 62

(d) Students’ responsibilities

(e) Roles of mathematics, computing, and applications

(f) Also discuss questions from final exam

1. Reading

2. Homework

3. Feedback sheet

4. Classes

5. Final exam

Figure 61 Components of the course. The instructor should project these onto the screen or write them on the

board on the first day of class.

1. Story

2. Activity

3. Discuss reading and homework

4. Computer demo

5. Drill

6. Discussion problem

Figure 62 Structure of each class period. The instructor should project these onto the screen or write them on

the board on the first day of class.

2. For later classes, this is a time to discuss issues that students raised in the shared document for

that class; see Section 1.3.
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Computer demonstrations

1. Causal inference using regression adjusting for pre-treatment variables

We analyze the data from the sports-theater survey:

library("rstanarm")

survey <- read.csv("Sports and theater survey.csv")

colnames(survey) <- c("time", "age", "sex", "interest_sports",

"interest_theater", "interest_cooking", "interest_politics",

"topic", "response_sports", "response_theater")

print(survey)

survey$male <- ifelse(survey$sex=="Male", 1,

ifelse(survey$sex=="Female", 0, 0.5))

survey$choose_sports <- ifelse(survey$topic=="Sports", 1, 0)

survey$response <- ifelse(survey$topic=="Sports",

survey$response_sports, survey$response_theater)

print(survey)

fit_1 <- stan_glm(response ~ choose_sports, data=survey, refresh=0)

print(fit_1)

survey$diff <- survey$interest_sports - survey$interest_theater

plot(survey$diff, survey$response, col=ifelse(survey$choose_sports==1,

"red", "blue"))

fit_2 <- stan_glm(response ~ choose_sports + diff, data=survey, refresh=0)

print(fit_2)

fit_3 <- stan_glm(response ~ choose_sports + diff + choose_sports:diff,

data=survey, refresh=0)

print(fit_3)

fit_4 <- stan_glm(response ~ choose_sports + diff + choose_sports:diff +

interest_cooking + interest_politics + male, data=survey, refresh=0)

print(fit_4)

Finally we can estimate an average treatment effect for the students in the class:

coef(fit_3)["choose_sports"] +

coef(fit_3)["choose_sports:diff"]*mean(survey$diff)

2. Simulating potential patterns of bias

The sports-theater demonstration demonstrated the challenge of causal inference for a self-selected

treatment. Here we simulate such a problem in a slightly simpler setting.

Consider an education experiment with pre-test and post-test, where the treatment is more likely

to be given to students who performed poorly on the pre-test. A simple comparison will give a

biased estimate of treatment effect; we must adjust for pre-test. First we simulate the data:

n <- 100

x <- rnorm(n, 50, 20)

x[x < 0] <- 0

x[x > 100] <- 100

z <- rbinom(n, 1, 1 - x/100)

a <- 10

b <- 0.7

theta <- 10

y <- a + b*x+ theta*z + rnorm(n, 0, 10)

fake <- data.frame(x, y, z)
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Then we perform the simple comparison:

library("rstanarm")

diff <- mean(y[z==1]) - mean(y[z==0])

print(diff)

fit_1 <- stan_glm(y ~ z, data=fake, refresh=0)

print(fit_1)

Next, the comparison adjusting for pre-test:

fit_2 <- stan_glm(y ~ z + x, data=fake, refresh=0)

print(fit_2)

This works!

And we can and should plot the data and fitted model:

plot(fake$x, fake$y, col=ifelse(fake$z==1, "red", "blue"),

pch=20, xlab="pre-test", ylab="post-test", bty="l")

abline(coef(fit_2)["(Intercept)"], coef(fit_2)["x"], col="blue")

abline(coef(fit_2)["(Intercept)"] + coef(fit_2)["z"], coef(fit_2)["x"],

col="red")

Now we consider a more difficult setting in which selection depends on an unmeasured variable:

x_obs <- x + rnorm(n, 0, 20)

fake_new <- data.frame(x_obs, y, z)

fit_3 <- stan_glm(y ~ z + x_obs, data=fake_new, refresh=0)

print(fit_3)

In this case, adjusting for x_obs does not correct for all of the bias, but we would still recommend

it as a step in the right direction.

Drills

1. Regression coefficients as comparisons

For each of the following examples, express the underlined coefficient as a comparison.

(a) incumbent party vote share = 46.3% + 3.0% ∗ (percentage economic growth) + error

Solution: Comparing two election years for which economic growth differs by 1%, on average

we would expect incumbent party vote share to be 3 percentage points higher in the year when

economic growth is higher.

(b) post-test = 20 + 9.3 ∗ treatment + 0.75 ∗ pre-test + error

(c) post-test = 20 + 9.3 ∗ treatment + 0.75 ∗ pre-test + 0.35 ∗ treatment ∗ pre-test + error

(d) post-test = 20 + 9.3 ∗ treatment + 0.75 ∗ pre-test + 0.35 ∗ treatment ∗ pre-test + error

2. Log transformations

For each of the following examples, express the underlined coefficient as a comparison, first on

the transformed scale, then on the untransformed scale.

(a) log(metabolic rate) = 1.2 + 0.74 ∗ log(body mass) + error

Solution:

i. Comparing two species of animals that differ by 1 in log(body mass), on average we

would expect log(metabolic rate) to be 0.74 higher for the heavier species.

ii. Comparing two species of animals that differ by 1% in body mass, on average we would

expect the heavier species to have a body mass that is 0.74% higher.



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

4.14. REVIEW OF BASIC STATISTICS AND REGRESSION MODELING 173

(b) log(population) = 2.1 + 0.014 ∗ (year − 1900) + error

(c) log(demand) = 8.5 − 0.8 ∗ log(price) + error

Discussion problems

1. Sampling and adjustment

Students should work in pairs or small groups and consider a sampling problem of interest to

them, for example a public opinion survey or a sample of trees or wild animals or a sample of

business records. For this example, consider ways in which the sample would not be representative

of the population, because of undercoverage, unequal sampling probabilities, nonresponse, and

other issues. Then discuss what sort of statistical adjustments could be done to account for these

problems of non-representativeness. We return to this topic in Chapter 17 of Regression and Other

Stories; the point of this discussion problem is to get students thinking about this important topic.

2. Causal inference and adjustment for context

Students should work in pairs or small groups and consider a causal inference problem of interest

to them that could be studied with a randomized experiment, for example estimating the effect of

a new persuasion technique in political marketing or the health effects of some environmental

exposure. For this problem, consider how the effect of interest could vary across the population,

over time, or based on context, and from there discuss challenges of using data from the specific

conditions of an experiment to generalize to a population of interest. What statistical adjustments

could be done to bridge from sample to population? We return to this topic in Chapter 19 of

Regression and Other Stories; the point of this discussion problem is to get students thinking

about this important topic.
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4.15 Logistic regression

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Item-response “Two truths Displaying Divide-by-4 Real-world

analysis of and a lie” a logistic rule logistic

final exams game curve regression

Survey Predict the Logistic Interpret Where logistic

nonresponse views of others regression logistic regression

probabilities coefficients makes no sense

Reading

Chapter 13 of Regression and Other Stories: Logistic regression

Pre-class warmup assignments

1. Logistic function

(a) What are the values of logit(G), for G = 0.01, 0.25, 0.5, 0.75, 0.99?

(b) What are the values of logit(G), for G = 1, 2, 3?

(c) For what value G is logit(x) equal to 0? 1? 2? −1? −2?

2. Logistic regression in R

(a) Simulate 100 data points ~8 from the model Pr(~8 = 1) = logit−1 (0 + 1G8), where 0 = −0.5,

1 = 0.1, and the data points G8 are sampled randomly from the interval (0, 20). Fit a logistic

regression to these data.

(b) Plot the data and the fitted curve on a single graph.

Homework assignments

1. (a) Fitting logistic regression to data (Exercise 13.1 of Regression and Other Stories)

The folder NES contains the survey data of presidential preference and income for the 1992

election analyzed in Section 13.1 of Regression and Other Stories, along with other variables

including sex, ethnicity, education, party identification, and political ideology.

i. Fit a logistic regression predicting support for Bush given all these inputs. Consider how

to include these as regression predictors and also consider possible interactions.

ii. Evaluate and compare the different models you have fit.

iii. For your chosen model, discuss and compare the importance of each input variable in the

prediction.

(b) Sketching the logistic curve (Exercise 13.2 of Regression and Other Stories)

Sketch the following logistic regression curves with pen on paper:

i. Pr(~ = 1) = logit−1 (G)
ii. Pr(~ = 1) = logit−1 (2 + G)
iii. Pr(~ = 1) = logit−1 (2G)
iv. Pr(~ = 1) = logit−1 (2 + 2G)
v. Pr(~ = 1) = logit−1 (−2G)

2. (a) Understanding logistic regression coefficients (Exercise 13.3 of Regression and Other Stories)
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Chapter 7 of Regression and Other Stories discusses a model predicting incumbent party’s

two-party vote percentage given economic growth: vote = 46.2 + 3.1 ∗ growth + error, where

growth ranges from −0.5 to 4.5 in the data, and errors are approximately normally distributed

with mean 0 and standard deviation 3.8. Suppose instead we were to fit a logistic regression,

Pr(vote > 50) = logit−1 (0 + 1 ∗ growth). Approximately what are the estimates of (0, 1)?
Figure this out in four steps: (i) use the fitted linear regression model to estimate Pr(vote > 50)
for different values of growth; (ii) plot these probabilities and draw a logistic curve through

them; (iii) use the divide-by-4 rule to estimate the slope of the logistic regression model; (iv)

use the point where the probability goes through 0.5 to deduce the intercept. Do all this using

the above information, without downloading the data and fitting the model.

(b) Graphing a fitted logistic regression (Exercise 13.3 of Regression and Other Stories)

We downloaded data with weight (in pounds) and age (in years) from a random sample of

American adults. We then defined a new variable,

heavy <- weight > 200

and fit a logistic regression, predicting heavy from height (in inches):

stan_glm(formula = heavy ~ height, family=binomial(link="logit"),

data=health)

Median MAD_SD

(Intercept) -21.51 1.60

height 0.28 0.02

i. Graph the logistic regression curve (the probability that someone is heavy) over the

approximate range of the data. Be clear where the line goes through the 50% probability

point.

ii. Fill in the blank: near the 50% point, comparing two people who differ by 1 inch in

height, you’ll expect a difference of ____ in the probability of being heavy.

Stories

1. Item-response analysis of final exams

Our final exam for the first semester of the course was a multiple-choice test with 24 questions:

two questions corresponding to each of the first 12 chapters of the textbook; see Appendix B. To

get a sense of how the students did on the exam, we plot in Figure 63 the performance on each

question vs. total exam score, so that, on each graph, each dot corresponds to a student. Each

graph also shows a fitted logistic regression giving the estimated probability of a correct answer

given total score, along with several gray lines representing uncertainty in the fitted curve as

indicated by draws from the posterior distribution of the estimated coefficients.

We can make the display in Figure 63 more readable by putting the questions in logical order.

Figure 64 orders the questions in increasing proportion of correct answers. Now we can see

patterns in the data more clearly.

Hey—what happened with question 17, that almost all the students got wrong? We went back and

checked, and it turned out we messed up on the answer key for questions 17, 14, and 5, so we

recalculated the students’ scores. Figure 65 shows the new plot, reordering the questions in order

of increasing percentage of correct answers.

This story is relevant to the week’s reading in demonstrating a simple logistic regression with a

single predictor. The example of final exam grades is something that all students can relate to.

The story relates to the course as a whole by showing how we can learn from displaying data and a

fitted model, even to the extent of discovering a problem with our exam grading. It also illustrates

the benefits of fitting a simple model many times and then comparing the results.
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Figure 63 First of three grids of graphs showing correct or incorrect answers on first-semester final exam

questions plotted vs. exam score, for 32 students in a class. For each question we fit a logistic regression and

display the fitted logistic curve and its uncertainty.
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Figure 64 Reordering Figure 63: Final exam results plotted vs. students’ total scores, with questions ordered in

increasing percentage of correct answers. Looking carefully at this graph reveals data errors.
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Figure 65 After correcting data errors, final exam results plotted vs. students’ total scores, with questions ordered

in increasing percentage of correct answers.

2. Survey nonresponse

Figure 66 shows the distribution of ages from the respondents to a survey that we analyzed as part

of a research project. The project was on “social penumbras”—asking respondents how many

people they knew in various social groups, such as gay people, Muslims, or active-duty military

service members—and the survey also included various demographic variables such as age, sex,

and ethnicity. We first used the default settings for the hist() function in R, then we specified the

histogram bars to display more detail, as shown in Figure 66b. The distribution of ages looks

wrong. Beyond the expected pattern of fewer respondents at the youngest and oldest ages (lower

response rates among the youngest and fewer people alive at the oldest ages), there is a strange

pattern with peaks in the late twenties, early forties, and mid-fifties. What’s going on?

The data were collected from an internet panel. The survey organization, YouGov, “aims for a

sample of American adults using quota sampling on age, sex, and other demographics.” We

received data from 3333 people who were interviewed in the first wave of the survey. The

respondents were contacted again a year later, and 2106 people responded; after data cleaning,

these were reduced to a sample of 1700 respondents to both waves. The wave 1 sample was

unweighted, but weights were supplied for the final sample to help deal with dropout.8 The

histograms shown in Figure 66 show the ages of the final 1700 respondents.

Perhaps the weird age patterns in Figure 66 came from using unweighted data? Figure 67a shows

the result using weighted data. The weights increase the representation of the younger ages (no

surprise, given that younger people are less likely to respond to the second wave of the survey),

but the strange patterns are still there.

As noted above, we have been working with a sample of people who responded to both waves of

the survey. Perhaps the unusual age distribution came from some combination of nonresponse

and adjustments that were made in the second wave? To check, we plot in Figure 67b the age

8Andrew Gelman and Yotam Margalit (2020), Social penumbras predict political attitudes, Proceedings of the National

Academy of Sciences 118 (6), e2019375118.
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Figure 66 Distribution of ages from a two-wave internet panel survey designed by us and administered by

YouGov: (a) Initial try at a histogram, (b) more precise version with a bar for every age. There is a strange

pattern with peaks in the late twenties, early forties, and mid-fifties.
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Figure 67 (a) Histogram of ages from the weighted sample of the second wave of our internet panel survey; (b)

ages from the larger sample in the first wave. The distribution of ages still has mysterious peaks in the late

twenties, early forties, and mid-fifties through early sixties.

distribution of the 3333 first-wave respondents. They also show that strange pattern of ages. How

did it happen? We suspect it’s a combination of nonresponse and survey design. To start with,

younger people are less likely to respond to surveys. To correct for this, YouGov uses a quota

sampling design, with one of the factors being age. In a quota sample, you keep adding more

respondents until you get your pre-specified “quota” in each category. In this case, we think the

age quotas are 18–29 years old, 30–44, 45–64, and 65+. So we end up with about the right number

of people in each age category, but because of differential nonresponse by age, we see not enough

people at the low end of each category and too many at the high end. The result is a sawtooth

pattern with big drops at 18, 30, and 45. The drops are not completely sharp because we do not

actually have age in our survey; we just have year of birth, so our estimated ages can be off by 1.

All of this motivates us to look more carefully at the pattern of nonresponse by age. The original

sample of 3333 people was selected using quota sampling so we have no clear sense of response

patterns there, but we can look at who among them responded when contacted for the second

wave.

Figure 68a shows, for each age, the proportion of people in the initial panel who responded to

the request a year later. The pattern is striking. The response rate is below 10% for the youngest

group and then rapidly rises from there, stabilizing at about 75% for people 50 and older. There is

some variation at the highest ages but this can be attributed to tiny sample sizes: when there is

only one person in an age category, the observed response rate can only be 0 or 100%.

Figure 68b shows a logistic regression fit to these data. The curve captures the general overall
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Figure 68 (a) For each age, the proportion of the first-wave panel who responded to the second wave of our

survey; (b) a logistic regression fit to these data.

trend but has some obvious problems too. Nonetheless, we pursue this further by predicting

response given age, sex, and ethnicity:

family: binomial [logit]

formula: respond ~ age + female + ethnicity

observations: 3333

predictors: 6

------

Median MAD_SD

(Intercept) -1.32 0.14

age 0.04 0.00

female 0.28 0.08

ethnicityBlack -0.55 0.12

ethnicityHispanic -0.56 0.13

ethnicityOther -0.21 0.16

We ask students to discuss these results in pairs.

This story relates to the week’s reading as an example of logistic regression applied in a case

where it does not fit the data well. It relates to the course more generally by demonstrating the

real-world challenge of survey nonresponse and how this can show up in data.

Class-participation activities

1. “Two truths and a lie” activity, calibrating probability estimates

In this activity,9 students divide into groups of four—it’s OK if some groups have three or five

students in them—to play “two truths and a lie.” We display the instructions in Figure 69 onto

the screen and explain the procedure. In this game, one person makes three personal statements;

two of these statements should be true and one should be false. The other students in the group

then briefly confer and together guess which statement is the lie. They should jointly construct a

numerical statement of their certainty about their guess, on a 0–10 scale, where 0 represents pure

guessing and 10 corresponds to complete certainty. The true statement is then revealed so that

the students know if they guessed correctly. Each group of students then rotates through, with

each student playing the role of storyteller, so that when the activity is over, each group of four

students has four certainty scores, each corresponding to a success or a failure. Figure 70 shows

an example.

9Andrew Gelman (2023), “Two truths and a lie” as a class-participation activity, American Statistician 77, 97–101.
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Within your group:

1. One person tells three personal statements, one of which is a lie.

2. Others discuss and guess which statement is the lie, and they jointly construct a numerical

statement of their certainty in the guess (on a 0–10 scale).

3. The storyteller reveals which was the lie.

4. Enter the certainty estimate and the outcome (success or failure) and submit in the Google

form.

Rotate through everyone in your group so that each person plays the storyteller role once.

Figure 69: Instructions for the “two truths and a lie” activity, to project onto the screen for students.

Certainty Outcome

8 Success

4 Success

7 Failure

5 Success

Figure 70 (a) Example of data produced by a group of four students playing the “two truths and a lie” game.

Each number is a group consensus: here, the group of students B, C, D assigned a certainty of 8 to their guess of

student A’s lie, and they were correct; students A, C, D assigned a certainty of 4 to their guess of student B’s lie,

and they happened to be correct, and so on. (b) Students play the game in groups and then enter the data one at

a time into a Google form, so that the instructor can analyze all the results together.

We then give students the URL of a Google form where they can enter their data using their

phones or laptops. The form is set up to take one response at a time, so each group should enter

four responses corresponding to their four guesses. Alternatively we could set up a longer Google

form allowing a group to enter all four responses together, but that would require additional data

processing on the analysis end, so we go with this simpler approach that does not keep track of the

clustering of the responses.

We download the data from the Google form as a csv file, read it into our statistical software, and

announce that we will display the data (a scatterplot of the success/failure outcome vs. certainty

score) along with a fitted curve showing the estimated probability of a choice being correct as a

function of certainty score. If the class is sufficiently advanced, we explain that the fitted curve

will be a logistic regression; otherwise we simply say we will fit a curve.

Before making the plot and displaying the data and fit, we ask students in their groups to sketch

what they think the scatterplot and fitted curve for the class will look like, and then we lead the

class in discussion. Some possible prompts include: What do you think the range of certainty

scores will look like: will there be any 0’s or 10’s? Will there be a positive relation between G and

~: are guesses with higher certainty be more accurate, on average? How strong will the relation be
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Pr(y=1) = invlogit(0.23 − 0.08*x)
Coefficient Estimate (s.e.)

Intercept 0.23 (0.77)

Slope −0.08 (0.15)

Figure 71 (a) Scatterplot from the “two truths and a lie” activity performed in a class of 49 students, along with a

curve showing a fitted model predicting correctness given the certainty scores (which have been jittered to avoid

points overlapping on the graph); (b) Coefficient estimates and standard errors from the fitted logistic regression.

The instructor can perform these steps in real time on the data that students have entered in their Google form.

between G and ~: what will the curve look like? If students have seen logistic regression, we ask

them to give approximate numerical values for the intercept and slope coefficients corresponding

to their sketched curves.

After this discussion, we display the data and fitted curve and conduct a followup discussion of

what has been learned. Figure 71 shows an example of real data from our class. In this case,

there was essentially no relation between the certainty score and the outcome (coded as 1 for

a successful guess and 0 for an error). In fact, the estimated logistic regression coefficient is

negative: higher certainty scores correspond to slightly lower rates of accuracy! It’s hard to see

this in the plot of raw responses; in general, scatterplots are not so helpful for displaying discrete

data. The standard error from the regression gives a sense of the uncertainty in the fit; in this

case, the right panel of Figure 71 shows an estimated slope of −0.08 with standard error 0.15,

indicating that the sign of the underlying relationship is unclear from the data. For this class, the

students’ stated certainty scores do not form a useful predictor of their actual knowledge.

In the discussion that followed in our class, students conjectured why their guesses were so bad

(23 of 49 correct, not much better than the 1
3

success rate that would come from random guessing)

and why their certainty judgments were not predictive of their accuracy. In many ways, the class

discussion before seeing the data was better than the post-data followup, which illustrates a general

point that concepts can sometimes be clearer in theory, with real data providing a useful check on

speculation.

For any particular class, the interpretation of the “two truths and a lie” experiment will depend on

the data that come in, and the instructor should be prepared for anything. In the class discussion

before the scatterplot and fitted model are revealed, it is natural for students to expect the certainty

score to be a strong predictor of empirical accuracy. If this occurs, great; if not, this is an excellent

opportunity to discuss the challenges of measurement and the value of statistical evaluation of a

measurement protocol.

This activity is relevant to the week’s reading by demonstrating logistic regression based on data

directly collected from students. It relates to the course as a whole as an example of calibration of

measurements. This sort of calibration problem arises in many areas of science and policy. For

example, consider a hiring setting where interviewers give numerical ratings for the candidates,

and then later when there are data on job performance, the ratings can be retrospectively calibrated,

given an empirical measure of the information provided by the ratings.
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2. Predict the views of others

In preparation for conducting a survey in class, we ask students in pairs to come up with some

questions to ask, questions for which they are interested in learning the average opinions of

their fellow students. Topic areas could include course policies (Should there be a midterm

exam in the course? Should there be a final project?), public health (for example, something on

vaccine or mask requirements), economic or foreign policy, or personal questions (for example,

questions about leisure activities). We then have a brief class discussion and come up with five

questions for students to privately consider. For each we will request a response on a 1–4 scale

(“strongly disagree,” “disagree,” “agree,” “strongly agree”), using an even number of categories

so that respondents can’t hide in the middle category to express no opinion. Each student should

separately write responses (each on the 1–4 scale) on a sheet of paper.

We then type the questions into a Google form, and then, for each, an item asking whether the

majority of students in the class will have responded positively or negatively. We announce that

will give a prize to any student who guesses all five correct. We add a couple of demographic

questions such as age and sex to the Google form and then share the URL with the students and

give them a couple minutes to fill in the questions individually.

We then open up R and read in the data from the Google form. We label the five survey responses

as &1, . . . , &5 and the guesses as �1, . . . , �5. For each of the five questions 9 , we will fit a logistic

regression predicting � 9 from & 9 . Here, � 9 is a binary response (1 for students who guess that

the majority of students responded with 3’s or 4’s to & 9 , 0 for those who guess that the majority

responded with 1’s or 2’s). We set up the code to fit the regressions, but before running, we ask

students in pairs to guess what the fits will look like. We then fit the model on the computer and

discuss the results. If there is time, we can also add the demographics as predictors in the model

and discuss how the coefficient for & 9 changes.

It is helpful in this activity to have five different questions. For example, one might guess that � 9

should have a positive coefficient in the logistic regression: students who agree with a particular

position would be more likely to think that others would agree with them. Having data from five

different questions gives us a chance to see if such a pattern holds consistently; results from just

one question could be a fluke.

This activity relates to the week’s reading by asking students to think hard about the results of

a simple logistic regression, with the small sample size motivating a discussion of inferential

uncertainty (that is, the standard error of the coefficient of interest). It is relevant to the course as

a whole as an example of the “secret weapon”: learning from multiple parallel datasets.

Computer demonstrations

1. Display fitted logistic curve and uncertainties

Here is the code we used to fit a logistic regression and then graph the data, fitted curve, and

uncertainties. First we read in and organize the data:

responses <- read.csv("final_exam_responses.csv")

answers <- read.csv("final_exam_answers.csv")

n <- nrow(responses)

score <- rep(NA, n)

for (i in 1:n){

score[i] <- sum(as.character(responses[i,]) == as.character(answers))

}

Next we write a function for fitting the logistic regression and plotting it along with the data. But

first we need some setup:
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jitt <- runif(n, -0.2, 0.2) # avoid overplotting of data

Then the plotting function:

fit_and_plot <- function(j, responses, answers){

y <- as.character(responses[,j]) == as.character(answers[j])

data <- data.frame(y, score)

fit <- stan_glm(y ~ score, family=binomial(link="logit"), data=data,

refresh=0, mean_PPD=FALSE)

plot(score + jitt, y, xlab="Score on exam", ylab="Pr (correct)",

main=paste("Question", j))

curve(invlogit(coef(fit)[1] + coef(fit)[2]*x), add=TRUE)

}

We try it out on question 1:

fit_and_plot(1, responses, answers)

It works, as can be seen in the graphics window of our RStudio session.

Next we want to display uncertainty. We add the following lines within the fit_and_plot()

function to display curves corresponding to 20 random draws from the posterior distribution of

the fitted model:

sims <- as.matrix(fit)

n_sims <- nrow(sims)

for (s in sample(n_sims, 20)) {

curve(invlogit(sims[s,1] + sims[s,2]*x), col="gray40", lwd=.5, add=TRUE)

}

We put these at the end within the fit_and_plot() function, save it, and then again run it for the

first question:

fit_and_plot(1, responses, answers)

It works!

Next we can plot all 24 questions:

pdf("exams_grid_1.pdf", height=6, width=10)

par(mfrow=c(4,6))

par(mar=c(3,3,2,.1), mgp=c(1.5,.5,0), tck=-.01)

for (j in 1:24){

fit_and_plot(j, responses, answers)

}

dev.off()

This basically works, but there are some weird things going on with questions 7 and 20, where all

the students got the correct answer, so the scales of these plots are off. We can fix this by adding

ylim=c(0,1) to the plot() call inside the function.

This demonstration relates to the week’s readings by showing how to fit and display logistic

regressions. It relates to the course as a whole by showing data analysis that solves an applied

problem.

2. Compute the difference in logistic regression probabilities and compare to the divide-by-4 rule

The divide-by-4 rule, explained in Section 13.2 of Regression and Other Stories, is a quick

approximate calculation of the predicted difference in probabilities associated with a logistic

regression coefficient. The rule works well when the predicted probabilities are not far from 1
2

but
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gives a large overestimate of the probability difference when probabilities are close to 0 and 1. We

explore this with a simulation.

# Define function

invlogit <- plogis # invlogit of linear predictor gives you p

# Graph inverse logit function

curve(invlogit(4 + 2*x), from=-12, to=8)

abline(v=-2) # Halfway point = -2; steepest slope = 0.5

# Calculate difference in probabilities around halfway point

x_left <- -2

x_right <- -1

p_left <- invlogit(4 + 2 * (x_left))

p_right <- invlogit(4 + 2 * (x_right))

print(p_right - p_left) # exact difference in p

abline(v = c(x_left, x_right), h = c(p_left, p_right), lty="dashed")

# Repeat with a much more spread-out function

curve(invlogit(10 - 0.1*x), from=0, to=200)

abline(v=100) # Halfway point = 100; steepest slope = ?

x_left <- 100

x_right <- 101

p_left <- invlogit(10 - 0.1 * (x_left))

p_right <- invlogit(10 - 0.1 * (x_right))

print(p_right - p_left) # exact difference in p

abline(v = c(x_left, x_right), h = c(p_left, p_right), lty="dashed")

Drills

1. Divide-by-4 rule

For each of the following models, calculate the halfway point (where the predicted probability is

0.5) as well as the curve’s steepest slope (using the divide-by-4 rule). When you are done, check

your results visually by graphing the curves in R.

(a) Pr(~ = 1) = logit−1 (G)
Solution: The halfway point is at G = 0 and the steepest slope is 1/4.

(b) Pr(~ = 1) = logit−1 (1 + G)
(c) Pr(~ = 1) = logit−1 (4G)
(d) Pr(~ = 1) = logit−1 (1 + 4G)
(e) Pr(~ = 1) = logit−1 (−G)
(f) Pr(~ = 1) = logit−1 (1 − 4G)
(g) Pr(~ = 1) = logit−1 (−20 + 0.4G)

2. Interpret logistic regression coefficients

For each of the following examples (all except the first based on Pew Research surveys), interpret

the constant and the slope estimate (where appropriate, you can use the divide-by-4 rule). Plot the

curves on an adequate range.

(a) Probability of buying a new laptop in a given year, given age of current laptop:

Pr(purchase) = logit−1 (−3 + 0.8 ∗ laptop_age)
Solution:

• Intercept: For someone with a brand-new laptop, this model predicts the probability of

buying a new laptop this year as logit−1 (−3.0) = 0.05, or 5%.
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• Slope: Comparing people who have owned a laptop 0, 1, or 2 years, the estimated

probability of buying a new one is logit−1 (−3.0) = 0.05, logit−1 (−2.2) = 0.10, or

logit−1 (−1.4) = 0.20, that is, from 5%, 10%, or 20%.

(b) Probability of being married, given age (centered on mean age ≈ 50 years):

Pr(married) = logit−1 (0.24 + 0.01 ∗ age)
(c) Probability of identifying as a Democrat, given sex:

Pr(Democrat) = logit−1 (−0.89 + 0.50 ∗ female)
(d) Probability of owning your home (rather than renting), given marital status and age (centered):

Pr(own) = logit−1 (0.57 + 1.71 ∗ married + 0.04 ∗ age)

Discussion problems

1. Real-world example of logistic regression

Students should work in pairs to come up with examples where logistic regression could make

sense, other than the cases we’ve considered in class or the readings. Any example should include

a binary outcome ~, a continuous predictor G, a range of values for G, and a sample size.

The class should then discuss and settle on one of these examples to work on together. For this

example, students should sketch in pairs what they think the data could like, along with the logistic

curve showing Pr(~ = 1) as a function of G, and from that sketched curve determine the intercept

and slope of the logistic regression. Once this has been done, the instructor should call on some

groups and ask them to go to the board, write their intercept and slope, and graph their guessed

curve. Different pairs can have much different curves, which can spark some discussion about

what curves are reasonable for the example.

2. Real-world example where logistic regression does not make sense

One way to understand logistic regression is to ask what it would take for the model to not make

sense for binary data. Some possibilities are if Pr(~ = 1) is not a smooth function or is not a

monotonic function of G, or if it asymptotes out at a value other than 0 or 1. Students should work

in pairs to come up with examples for which logistic regression would not make sense, with any

example including a binary outcome ~, a continuous predictor G, a range of values for G, and a

sample size.

For their example, each pair of students should sketch what they think the data could like, showing

Pr(~ = 1) as a function of G, along with the best-fit logistic curve—that is, what would happen if

logistic regression were to be fit to those data, despite their not fitting the model. Once this has

been done, the instructor should call on some groups and ask them to go to the board and sketch

their data and curves. The point of this example is not to come up with alternative models but

rather to explore different ways that logistic regression can fail, thus clarifying the assumptions of

the model.
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4.16 Working with logistic regression

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

“Keys to the Job training Predictions Probabilities Experimental

White House” and predictive from logistic in logistic design

comparisons regression regression

Opiate of Logistic Linear or Understand Design

the masses regression with logistic the logit with

interactions regression function pre-test

Reading

Chapter 14 of Regression and Other Stories: Working with logistic regression

Pre-class warmup assignments

1. Plot logistic regression in R

(a) Plot the curve, Pr(~ = 1) = logit−1 (2 + 3G), for G in the range (0, 5).
(b) Consider the model, Pr(~ = 1) = logit−1 (2 + 3G − 3I), for G in the range (0, 5) and I taking

on the values 0, 1, or 2. Plot the curves as a function of G for the values I = 0, 1, and 2, all on

the same graph.

2. Plot logistic regression with interactions

(a) Consider the model, Pr(~ = 1) = logit−1 (−0.2 + 0.3G − 1.5I − 0.2 ∗ G ∗ I), for G in the range

(0, 10) and I taking on the values 0, 1, or 2. Write the model for ~ given G for each of I = 0,

I = 1, and I = 2.

(b) Make a single plot of Pr(~ = 1) as a function of G, showing all three curves of I = 0, 1, and 2.

Label all three curves on the graph.

(c) At what value of G do the three curves cross? Explain why they cross at this point.

Homework assignments

1. (a) Logistic regression with two predictors (Exercise 13.4 of Regression and Other Stories)

The following logistic regression has been fit:

Median MAD_SD

(Intercept) -1.9 0.6

x 0.7 0.8

z 0.7 0.5

Here, G is a continuous predictor ranging from 0 to 10, and I is a binary predictor taking on

the values 0 and 1. Display the fitted model as two curves on a graph of Pr(~ = 1) vs. G.

(b) Interpreting logistic regression coefficients (Exercise 13.5 of Regression and Other Stories)

Here is a fitted model from the Bangladesh analysis predicting whether a person with high-

arsenic drinking water will switch wells, given the arsenic level in their existing well and the

distance to the nearest safe well:

stan_glm(formula = switch ~ dist100 + arsenic,

family=binomial(link="logit"), data=wells)
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Figure 72 (a) Data simulated from a logistic regression model, along with the logistic regression fit to these

data; (b) Binned averages, plotting ~̄ vs. Ḡ for the data divided into five bins based on the values of G.

Median MAD_SD

(Intercept) 0.00 0.08

dist100 -0.90 0.10

arsenic 0.46 0.04

Compare two people who live the same distance from the nearest well but whose arsenic

levels differ, with one person having an arsenic level of 0.5 and the other person having a level

of 1.0. You will estimate how much more likely this second person is to switch wells. Give

an approximate estimate, standard error, 50% interval, and 95% interval, using two different

methods:

i. Use the divide-by-4 rule, based on the information from this regression output.

ii. Use predictive simulation from the fitted model in R, under the assumption that these two

people each live 50 meters from the nearest safe well.

2. (a) Graphing binary data and logistic regression (Exercise 14.1 of Regression and Other Stories)

Reproduce Figure 72 with the model, Pr(~ = 1) = logit−1 (0.4 − 0.3G), with 50 data points

G sampled uniformly in the range [�, �]. (In Figure 72 the G’s were drawn from a normal

distribution.) Choose the values � and � so that the plot includes a zone where values of ~

are all 1, a zone where they are all 0, and a band of overlap in the middle.

(b) Limitations of logistic regression (Exercise 14.6 of Regression and Other Stories)

Consider a dataset with = = 20 points, a single predictor G that takes on the values 1, . . . , 20,

and binary data ~. Construct data values ~1, . . . , ~20 that are inconsistent with any logistic

regression on G. Fit a logistic regression to these data, plot the data and fitted curve, and

explain why you can say that the model does not fit the data.

(c) In pairs: Working through your own example (Exercise 13.13 of Regression and Other Stories)

Continuing the example from the final exercises of the earlier chapters, fit a logistic regression,

graph the data and fitted model, and interpret the estimated parameters and their uncertainties.

Stories

1. “Keys to the White House” and why it’s better to model continuous outcomes when possible

A book came out in several years ago called “The Keys to the White House,” predicting the

presidential election winner by tallying 13 factors and following the rule that “When five or fewer

statements are false, the incumbent party wins.” We have been told that “Retrospectively, the Keys

10Allan Lichtman (2008), The Keys to the White House, 2008 Edition, Rowman & Littlefield.
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Data and linear fit
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y = 46.7 + 2.8 x

family: gaussian [identity]

formula: vote ~ growth

observations: 18

predictors: 2

------

Median MAD_SD

(Intercept) 46.7 1.4

growth 2.8 0.6

Auxiliary parameter(s):

Median MAD_SD

sigma 3.7 0.7

Figure 73: Forecasting U.S. presidential elections from the economy using a linear regression.

account for presidential election outcomes from 1860 to 1980” and that the model has correctly

predicted the winner of each presidential race since 1984.10

The idea of a perfectly accurate deterministic prediction is ridiculous, yet the “Keys to the White

House” continue to get publicity every four years.11 We explore some problems with this idea as a

way of introducing some important general themes of statistical prediction.12

To start with, there’s a problem with attempting to predict the winner of every election. Since the

Second World War, there have been three U.S. presidential elections that have been essentially

tied in the final vote: 1960, 1968, and 2000. It’s meaningless to say that a forecasting method

predicts the winner correctly (or incorrectly) in these cases. And from a statistical point of view,

you don’t want to adapt your model to fit these tossups—it’s just an invitation to overfitting.

To put it another way: suppose the method mispredicted 1960, 1968, and 2000. Would we think

any less of it? No. No credit should come from predicting a coin flip. At the other extreme, just

about any method should predict the winner in a landslide election such as Ronald Reagan’s victory

in 1984, so not much is learned from a correct forecast in that year. A method that predicts vote

share, rather than just the winner, could get credit from these close elections and these landslides

by predicting the vote share with high accuracy.

Beyond all this, the model didn’t actually correctly predict all elections since 1984. The model

predicted a Gore win in 2000, which was counted as a correct forecast because Al Gore won the

popular vote that year—but then it was also counted as a win that the model predicted Trump’s

victory in 2016. You can’t have it both ways!

As discussed in Chapter 7 of Regression and Other Stories, our preferred approach is to predict

vote share rather than win/loss. Figure 73 shows the result for a linear regression predicting

11For example, Allison Gordon (2020), History professor who has accurately predicted every election since 1984 says

Trump will lose, CNN, https://www.cnn.com/2020/08/07/us/allan-lichtman-trump-biden-2020-trnd/index.html.

12See Andrew Gelman (2007), Some thoughts on “the keys to the White House,” https://statmodeling.stat.columbia.

edu/2007/02/05/some_thoughts_o_1/, Andrew Gelman (2007), Treating discrete variables as if they were continuous,

https://statmodeling.stat.columbia.edu/2007/05/25/treating_discre/, Andrew Gelman (2014), Basketball stats: Don’t model the

probability of win, model the expected score differential, https://statmodeling.stat.columbia.edu/2014/02/25/differential/, and

Andrew Gelman (2020), Rodman, https://statmodeling.stat.columbia.edu/2020/04/26/rodman/.
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Data and logistic fit
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Pr(y = 1) = invlogit(−2.0 + 1.0 x)

family: binomial [logit]

formula: inc_win ~ growth

observations: 18

predictors: 2

------

Median MAD_SD

(Intercept) -2.0 1.1

growth 1.0 0.5

Figure 74: Forecasting winners of U.S. presidential elections from the economy using a logistic regression.

incumbent party share of the two-party vote from economic growth, fit to all the presidential

elections between 1948 and 2020.

What happens if we just predict the winner of the election? Figure 74 shows the fitted logistic

regression. Just including wins and losses throws away a lot of information.

A similar issue arises in sports: if you’re predicting football or basketball or baseball or soccer

games, don’t model the probability of a win, model the expected score differential. Yeah, we

know, we know, what you really want to know is who wins. But the most efficient way to get there

is to model the score differential and then map that back to win probabilities.

2. Opiate of the masses and post-materialism: Logistic regression with interaction

Surveys have found that, in recent decades, people who regularly attend religious services are

more likely to vote for Republicans. Traditionally we think of voters as being divided by income

or social class, and the correlation between religious attendance and partisan voting came as a

surprise.

There have been two ways of thinking about religion and voting. The first is the “opiate of the

masses” model, in which lower-income voters are distracted from their economic interests and

vote based on social issues instead. The second model is “postmaterialism,” in which voting

on social issues is a sort of luxury. We summarize in Figure 75 and write this on the board for

students to see during the discussion.

We ask students to discuss (in pairs) these two models. Neither is true in any absolute sense; there

are people of all income levels who make voting decisions based on various mixes of economic

and social concerns. We will interpret these models as posited statistical relationships. We ask

each pair of students to make a graph with probability of Republican vote on the ~-axis and

income on the G-axis, with three lines corresponding to voters of low, medium, and high religious

attendance.

We then show Figure 76, which displays actual data from 2004.13 This graph is consistent with

the “postmaterialism” model, not with the “opiate of the masses” model.

Figure 76a can be approximated by a logistic regression. What would that regression look like?

13From Andrew Gelman, David Park, Boris Shor, and Jeronimo Cortina (2009), Red State, Blue State, Rich State, Poor

State: Why Americans Vote the Way They Do, Princeton University Press.
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Two models of voting on social issues:

• Opiate of the masses: Rich people vote their interests;

poor people vote “Gods, guns, and gays.”

• Postmaterialism: Poor people vote based on economics;

rich people have the luxury to vote on social issues.

Figure 75 Two conceptual models of voting on social issues. We write these on the board and then ask students to

express them as logistic regressions of vote preference given income, religious attendance, and their interaction.

−2 −1 0 1 2

0
.4

0
.5

0
.6

0
.7

Logistic regression with interaction

Income

P
ro

b
a

b
ili

ty
 o

f 
vo

ti
n

g
 f
o

r 
B

u
s
h

church = 0

church = 1

church = 2

Figure 76 (a) From survey data: probability of supporting the Republican presidential candidate in 2004 as

a function of income, for three different levels of religious attendance. (b) Logistic regression model with

interaction, Pr(Republican support) = logit−1 (10 + 11 ∗ income + 12 ∗ church + 13 ∗ income ∗ church). We ask

students to come up with coefficients 10, 11, 12, 13 to reproduce this graph.

We’ll work it out. But first, in a logistic regression predicting vote for Bush from income, church

attendance, and their interaction, is the coefficient of the interaction positive, negative, or zero?

We ask the students to consider this in pairs, and then we give the answer, which is that the

interaction is positive, because the slope of the regression predicting Bush vote from income is

higher for higher values of church attendance. Equivalently, the slope of the regression predicting

Bush vote from church attendance is higher for higher values of income.

To put numbers on this story, our first step is to define the predictors. Let the income variable

range from −2 (poor) to 2 (rich) and the church attendance variable range from 0 (never attend) to

2 (attend more than once per week). Now we want to assign parameters to the following model:

Pr(Republican support) = logit−1 (10 + 11 ∗ income + 12 ∗ church + 13 ∗ income ∗ church).

We work out the coefficients in steps:

(a) logit−1 (10) is the probability of supporting the Republican when the two predictors both equal

zero. From the graph, this is approximately 40%. So 10 is about −0.4. (Recall the divide-by-4

rule: if we wanted a probability of 50%, then 10 would be 0; going down from 50% to 40% is

a drop of 0.10, or approximately 0.40 on the logistic scale.)

(b) 11 is the difference in logit probability of supporting the Republican, comparing two people

who differ by 1 in income when their value of church is 0. In this graph, the line when

church is 0 is flat, so 11 is approximately zero.

(c) 12 is the difference in logit probability of supporting the Republican, comparing two people

who differ by 1 in church when their value of income is 0. From the graph, the difference

between the different lines in the middle-income category (which is 0 according to our coding)
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family: binomial [logit]

formula: trump ~ income100

observations: 6336

predictors: 2

------

Median MAD_SD

(Intercept) -0.13 0.04

income100 -0.13 0.03

Figure 77 (a) From the 2020 American National Election Study, support for Donald Trump within each of 22

family income categories; (b) Fitted logistic regression predicting Trump support given income (in hundreds of

thousands of dollars).

is approximately 12%, which corresponds to approximately 0.48 on the logistic scale. And

the difference is positive, not negative, so 11 is about 0.6.

(d) Finally, 12 corresponds to the difference in slopes for income, comparing values of church

that differ by 1. The three lines in the graph have approximate slopes of 0, 0.03 (the middle

line has a “rise” of about 0.12 divided by a “run” of 4), and 0.06 (the top line’s slope is

approximately 0.24/4), so the interaction is approximately 0.03 on the probability scale, or

0.12 on the logistic scale.

Hence, the lines in Figure 76a roughly correspond to the logistic regression,

Pr(Republican vote) = logit−1 (−0.4 + 0 ∗ income + 0.48 ∗ church + 0.12 ∗ income ∗ church).

We graph this model in Figure 76b. It’s a pretty good match to the data!

How have things changed since 2004? We went to the American National Election Study and

downloaded data from the 2020 survey.14 This survey had five categories of religious attendance

and 22 categories of family income, from $0–$10 000 (which we coded as $5000) to $250 000+

(which we coded as $300 000).

We start by fitting a logistic regression of support for Donald Trump (among respondents who

supported one of the two major-party candidates) given income. Figure 77 shows the raw data

and the fitted model. Things have changed since 2004: now the richer voters are less likely to

support the Republican candidate. However, this is just one data source. Other polls have found

Trump doing slightly better among higher-income voters. About all we can say for sure is that the

relation between income and voting in 2020 was fairly weak.

Next we include religion in the model. Figure 78 shows the fitted logistic regression as a table of

estimates and standard errors and as a graph of curves. As in 2004, there is a positive interaction,

indicating that religious attendance is a stronger predictor of Republican vote among richer voters.

Finally, we loop back to the raw data by making a separate plot for each category of religious

attendance, as shown in Figure 79. We point out two things to the class. First, these lines are

actually logistic curves; they appear to be straight lines just because their ranges are narrow.

Second, the lines do not appear to go through the points for each graph. That is because the fitted

model is linear in the two predictors, and there is no requirement that the data be linear. There is a

14American National Election Studies, https://electionstudies.org/.
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family: binomial [logit]

formula: trump ~ church +

income100 + church:income100

observations: 6313

predictors: 4

------

Median MAD_SD

(Intercept) -0.65 0.07

church 0.22 0.03

income100 -0.27 0.06

church:income100 0.08 0.02
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Figure 78 (a) Logistic regression predicting vote intention in 2020 given church attendance (on a 1–5 scale),

family income (in hundreds of thousands of dollars), and their interaction; (b) Curves showing the fitted model.

0
.3

0
.4

0
.5

0
.6

0
.7

Never attend religious services

P
r 

(v
o
te

 f
o
r 

R
e
p
u
b
lic

a
n
)

0 100,000 200,000 300,000

0
.3

0
.4

0
.5

0
.6

0
.7

A few times a year

P
r 

(v
o
te

 f
o
r 

R
e
p
u
b
lic

a
n
)

0 100,000 200,000 300,000
0
.3

0
.4

0
.5

0
.6

0
.7

Once or twice a month

Income

P
r 

(v
o
te

 f
o
r 

R
e
p
u
b
lic

a
n
)

0 100,000 200,000 300,000

0
.3

0
.4

0
.5

0
.6

0
.7

Almost every week

Income

P
r 

(v
o
te

 f
o
r 

R
e
p
u
b
lic

a
n
)

0 100,000 200,000 300,000

0
.3

0
.4

0
.5

0
.6

0
.7

Every week

Income

P
r 

(v
o
te

 f
o
r 

R
e
p
u
b
lic

a
n
)

0 100,000 200,000 300,000

Figure 79 Fitted logistic regression from Figure 78 predicting vote intention in 2020 given church attendance,

along with raw data, with separate graphs for each category of religious attendance.

big jump from the “never” category to the “few times a year” category which is not captured by

the model that labels these as 1, 2, 3, 4, 5.

Given that we can plot the raw data, why fit the logistic regression at all? We can give three

reasons:

(a) The fitted model with its four coefficients is a convenient summary of a complex pattern,

and we can interpret each of the coefficients, indeed even more so if we center the predictors

before fitting the model, as is shown in Figure 80.

(b) The standard errors give us a quantification of uncertainty about the fitted coefficients that

would be difficult to get from the plot of the data.

(c) If we plan to compare estimates across states or countries or demographic groups or over time,

it is helpful to have numerical summaries that can be plotted.

To demonstrate this last point, we display logistic regressions of Republican vote preference

given income, religious attendance, and their interaction, fit separately to each election from 1952
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family: binomial [logit]

formula: trump ~ church +

income100 + church:income100

observations: 6313

predictors: 4

------

Median MAD_SD

(Intercept) -0.65 0.07

church 0.22 0.03

income100 -0.27 0.06

church:income100 0.08 0.02

family: binomial [logit]

formula: trump ~ c_church +

c_income100 + c_church:c_income100

observations: 6313

predictors: 4

------

Median MAD_SD

(Intercept) -0.25 0.03

c_church 0.28 0.02

c_income100 -0.10 0.04

c_church:c_income100 0.08 0.02

Figure 80 (a) Repeated from Figure 78a, logistic regression predicting Trump vote intention in 2020 given

church attendance (on a 1–5 scale), family income (in hundreds of thousands of dollars), and their interaction;

(b) Fit using centered predictors, so that the intercept and main effects are much easier to interpret.
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Figure 81 Logistic regressions fit separately to survey data from each U.S. presidential election, predicting

Republican vote preference given income and religious attendance. Each predictor was coded on a −2 to 2

scale, and the three lines on each plot correspond to religious attendance scores of 2, 0, and −2. This display

demonstrates the way in which a fitted regression model can be used as a data reduction tool that allows us to

step back and see the bigger picture.
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Figure 82 Estimates and standard errors of the logistic regressions shown in Figure 81. Again, this shows the

value of fitted models as data reduction.

through 2020: all the presidential elections for which the American National Election Study asked

these questions. For these models, income is recorded in five categories (based on percentiles of

family income) and is coded on a scale from −2 to 2, and religious attendance is also recorded in

five categories, which we code from −2 (never attend religious services except at weddings and

funerals) to 2 (attend at least once per week). We show the fitted curves in Figure 81 and the time

series of estimated coefficients and standard errors in Figure 82.

This story is relevant to the week’s reading because it involves interpreting logistic regression

fits and comparing them to data. It relates to the course as a whole as an example of statistical

modeling for data reduction.

Class-participation activities

1. Job training programs and average predictive comparisons

Suppose a job training program is studied in an experimental context with pre-treatment employment

history G (a continuous variable ranging from 0 for people who have never held a regular job

to 10 for people who have had continuous employment during their working years), a treatment

indicator I, and an outcome ~ that equals 1 for people who are employed at the end of the study or

0 otherwise.

Further suppose that the true pattern of the data can be fit using a logistic regression of ~ on G

and I with no interactions, and that the coefficient of I is . . . what would it take for the effect to

be about 10%, we ask the class? From the divide-by-4 rule, the coefficient will be 0.4. Further

suppose that, in the absence of the treatment, the probability of being employed at the end of the

study ranges from 5% (when G = 0) to 50% (when G = 5) to 95% (when G = 10). From that we can

figure out the intercept coefficient for G; students should do this in pairs, using R to figure it out.

Because the probability is 50% when G = 5, we can write the model (in the absence of treatment)

as Pr(~ = 1) = logit−1 (1 ∗ (G − 5)). Then we just solve for 1 by working out the probability when

G = 10: we must have 0.95 = logit−1 (1 ∗ 5), so 1 = logit(0.95)/5 = 0.59. So the model in the

absence of treatment is Pr(~ = 1) = logit−1 (0.59 ∗ (G − 5)) = logit−1 (−2.95 + 0.59G). Throwing

in the coefficient for the treatment, we get Pr(~ = 1) = logit−1 (−2.95 + 0.59G + 0.4I).
How to think about this model? We ask students to sketch (with pen on paper) the two curves of

Pr(~ = 1) vs. G corresponding to I = 0 and I = 1. One way to think about these two coefficients is

that a difference of 1 in I represents the same predictive difference as a difference in G of . . . [we
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pause while students work this out] . . . 0.4/0.59 = 0.68. So getting the treatment is comparable to

moving up by 0.68 on the G scale.

What, then, is the treatment effect on the probability scale? How much does the treatment increase

your probability of getting a job? The answer is that it depends on your pre-treatment value of G.

That’s the predictive comparison discussed in Section 14.4 of Regression and Other Stories. We

ask students to consider average predictive comparisons for different hypothetical groups.

Now suppose an experiment was being designed to study the efficacy of the job training program.

What values of G would you like to include in the study? We ask students to discuss in pairs; the

answer is that, under the model we’ve specified, you’re most likely to find a clear effect if you

choose for your experiment people with values of G near 0.5.

If the study is successful, what would this imply about the generalization of the experimental

findings to the real world? We again have students discuss in pairs. The answer to the question is

that, first, if the logistic model is correct, you’d expect to see smaller average effects in the real

world as the treatment gets applied to people outside the “sweet spot” of maximum effect; second,

you wouldn’t really know how large the effect is outside that central region, as your inference

would be entirely subject to extrapolation. If there is time, students can discuss the implications of

these findings for other problems such experiments on medical treatments.

This activity is relevant to the week’s reading on average predictive comparisons and relates to the

course as a whole by considering the questions of data collection, experimental design, inference

from data, and real-world extrapolation.

2. Logistic regressions with interactions

Figures 76, 78, and 79 show positive interactions of income and religion predicting Republican

vote preference. We display Figure 78 on the screen and task the students to form small groups

and in each group come up with a different real-world example of an interaction. We then discuss

a few of these with the class as a whole, sketching hypothesized regressions and discussing how

one could gather data to fit these models. The key to getting this activity to work is to get dirty

with the numbers: for well-defined examples, students should hypothesize curves of the form

Pr(~ = 1) = logit−1 (10 + 11G1 + 12G2 + 13G1G2) with specified values of 10, 11, 12, 13 and then

draw these curves on the board, with each model displayed as two curves (for example, Pr(~ = 1)
vs. G1 for two different values of G2). Other students can then disagree with the details—or, if

not, the instructor can ask the students what sort of data would be required for the students to

decide that their guessed curves are wrong? The idea is to understand, not just the logistic model

in general, but particular instantiations of this model, here with the additional challenge of an

interaction.

This activity relates to the week’s reading by exploring logistic regression with interactions, and it

relates to the course as a whole by focusing on understanding models quantitatively, being able to

connect a general model with reasonable specific numbers.

Computer demonstrations

1. Predictive distributions from a fitted logistic regression

We fit a logistic regression of voter registration status on sex and age, using survey data from Pew

Research:

# Read data from here: https://github.com/avehtari/ROS-Examples

library("foreign")

library("dplyr")

library("rstanarm")

pew <- read.dta(paste0(



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

196 4. WEEK BY WEEK: THE SECOND SEMESTER

"https://raw.githubusercontent.com/avehtari/",

"ROS-Examples/master/Pew/data/",

"pew_research_center_june_elect_wknd_data.dta"

))

pew <- pew %>% select(c("age", "regicert", "sex")) %>%

na.omit() %>% filter(age != 99)

pew$registered <- ifelse(pew$regicert=="absolutely certain", 1, 0)

# Estimate logistic model (takes some time)

fit <- stan_glm(registered ~ age + sex, family=binomial(link="logit"),

data=pew, refresh=0)

print(fit, digits=4)

# Get estimated probability (using function, and by hand)

new <- data.frame(age=50, sex="male")

predict(fit, type="response", newdata=new) # function

invlogit(coef(fit)[1] + coef(fit)[2]*50) # by hand

# Linear predictor (X*beta) with uncertainty

linpred <- posterior_linpred(fit, newdata=new)

hist(linpred)

# Expected outcome (p) with uncertainty

hist(invlogit(linpred)) # One way

epred <- posterior_epred(fit, newdata=new) # Other way

hist(epred)

abline(v = c(mean(epred), mean(epred) + c(-2, 2)*sd(epred)))

# Predictive distribution (0 or 1) for a new observation

postpred <- posterior_predict(fit, newdata=new)

mean(postpred)

This can be extended by making comparisons between predictions for new observations (for

example, male/female, different ages).

2. Linear or logistic regression with binary outcomes

When probabilities are far from 0 or 1, logistic and linear regressions should yield similar results

for coefficient estimates and standard errors (after dividing by 4), with the big difference coming

in predictions. The linear model starts to fall apart at the boundaries.

We demonstrate with some experimentation, first setting up a well-behaved example for which

linear and logistic regressions give similar results, then pushing toward the boundary to see what

happens.

library("rstanarm")

n <- 100

x <- runif(n, 0, 1)

a <- 0.5

b <- -1

y <- rbinom(n, 1, invlogit(a + b*x))

fake <- data.frame(x, y)

fit_logistic <- stan_glm(y ~ x, family=binomial(link="logit"),

data=fake, refresh=0)

print(fit_logistic, digits=2)

fit_linear <- stan_glm(y ~ x, data=fake, refresh=0)

print(fit_linear, digits=2)
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We ask students in pairs to interpret the intercept and slope. The slope of the linear fit is about
1
4

that of the logistic regression, for reasons discussed in Section 13.2 of Regression and Other

Stories. The intercepts can be understood by considering the values of the functions at G = 0.

Next we plot the data and fitted lines:

plot(x, y)

curve(invlogit(coef(fit_logistic)[1] + coef(fit_logistic)[2]*x),

add=TRUE, col="blue")

curve(coef(fit_linear)[1] + coef(fit_linear)[2]*x, add=TRUE, col="red")

But what happens when we extend the range of the model? Change the coefficients and rerun the

above code. Let’s first put it into a function:

compare_linear_logistic <- function(n, a, b){

x <- runif(n, 0, 1)

y <- rbinom(n, 1, invlogit(a + b*x))

fake <- data.frame(x, y)

fit_logistic <- stan_glm(y ~ x, family=binomial(link="logit"),

data=fake, refresh=0)

print(fit_logistic, digits=2)

fit_linear <- stan_glm(y ~ x, data=fake, refresh=0)

print(fit_linear, digits=2)

plot(x, y, main=paste("y = invlogit(", a, " + ", b, "x)", sep=""))

curve(invlogit(coef(fit_logistic)[1] + coef(fit_logistic)[2]*x),

add=TRUE, col="blue")

curve(coef(fit_linear)[1] + coef(fit_linear)[2]*x, add=TRUE, col="red")

}

And now we can look at some examples, starting with what we did before:

compare_linear_logistic(100, 0.5, -1)

And then try some others, for example:

compare_linear_logistic(100, 2, -1)

compare_linear_logistic(100, 5, -10)

Drills

1. Expected probabilities in logistic regression

Consider the well-switching model in Section 14.2 of Regression and Other Stories:

Median MAD_SD

(Intercept) -0.22 0.09

dist100 -0.90 0.11

arsenic 0.47 0.04

educ4 0.17 0.04

For the following cases, calculate the difference in expected probabilities of well-switching and

interpret your findings:

(a) Two people both of whom are 50 meters away from well (dist100 = 0.5) and whose arsenic

levels both are 2 (arsenic = 2), but who differ by education, with 4 and 8 years of education,

respectively (educ_4 = 1 and educ_4 = 2)

Solution:

• Using the divide-by-4 rule: 0.17 ∗ (2 − 1)/4 = 0.04. The model predicts that the

higher-educated person is 4 percentage points more likely to switch.
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• Exact computation using the logistic function: logit−1 (−0.22 − 0.90 ∗ 0.5 + 0.47 ∗ 2 +
0.17 ∗ 2) − logit−1 (−0.22 − 0.90 ∗ 0.5 + 0.47 ∗ 2 + 0.17 ∗ 1) = 0.65 − 0.61 = 0.04.

In this case, the predicted probabilities are close enough to 0.5 that the divide-by-4 rule works

well for approximating the difference in probabilities between the two cases. When there is

doubt, you can always do the exact computation.

(b) Shared: 50 meters away from well (dist100 = 0.5), arsenic level 2 (arsenic = 2); Different:

education levels of 12 and 16 years, respectively (educ_4 = 3 and educ_4 = 4)

(c) Shared: 5 (median) years of education (educ_4 = 1.25), 1.3 (median) level of arsenic

(arsenic = 1.3); Different: distance from well of 0 and 500 meters, respectively (dist100

= 0 and dist100 = 5)

2. Understand the logit function

For models with the following parameters, sketch and write the formula for the corresponding

logit−1 (0 + 1G) function. When you are done, check your results visually in R.

(a) Halfway point = 0; steepest slope = 1

Solution: logit−1 (4 ∗ (G − 0)) = logit−1 (4G); that is, 0 = 0, 1 = 4.

(b) Halfway point = 0; steepest slope = −2

(c) Halfway point = 2; steepest slope = −2

(d) Halfway point = −50; steepest slope = 0.34

Discussion problems

1. Experimental design for logistic regression

Suppose a certain disease has a 20% mortality rate, and a new drug is hypothesized to reduce the

mortality rate to 10%. Frame this as a logistic regression, and suppose a randomized experiment is

performed with =/2 people getting the treatment and =/2 getting the control. How large must = be

so that the uncertainty in the estimated treatment effect is low enough that we can be nearly certain

of correctly identifying its beneficial effect? To figure this out, start by guessing =, then figure out

the standard error of the corresponding experiment, then adjust = up or down as necessary to get a

design with the desired standard error.

2. Experimental design for logistic regression with pre-treatment predictor

Consider estimating the effect of a job-training program (I = 1 if a person gets the program

and I = 0 otherwise) on a binary outcome ~ corresponding to whether the person is employed

within six months after the program, and a continuous pre-treatment predictor G on a 1–5 scale

representing employment history. Suppose that, in the absence of the program, the probability of

employment in six months ranges from 20% for people on the low end of the scale to 70% for

people on the high end, and further suppose that the treatment increases these probabilities to 35%

and 70%. Express this hypothesized pattern as a logistic regression model with an interaction.

Next suppose this experiment is conducted with =/2 people getting the treatment and =/2 getting

the control, with random assignment to a group of people whose values of G are uniformly

distributed between 1 and 5. How large must = need to be so that the uncertainty in the estimated

treatment effect is low enough that we can be nearly certain of correctly identifying its beneficial

effect? To figure this out, start by guessing =, then figure out the standard error of the corresponding

experiment, then adjust = up or down as necessary to get a design with the desired standard error.

With this value of =, how accurately can the interaction be estimated?
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4.17 Other generalized linear models

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Patterns How similar Simulating Coefficients in Identification

of gun are you to overdispersed negative binomial in linear

ownership your friends? data regression models

Structure Alternative Generalized Parameters in Functional

in social models for linear model ordered logistics forms for

networks discrete data with offset regression nonlinear models

Reading

Chapter 15 of Regression and Other Stories: Other generalized linear models

Pre-class warmup assignments

1. Negative binomial regression in R

(a) Simulate data from a negative binomial regression model with E(~ |G) = exp(0 + 1G) and

reciprocal dispersion parameter 2, with 100 data points, an intercept of 0.3 and a slope of 0.4,

and values of G randomly drawn from the range (0, 5).
(b) Fit a negative binomial regression to these data. Compare the estimates and standard errors of

the three parameters to the true values of these parameters.

(c) Make a graph displaying the simulated data and fitted regression curve.

2. Ordered logistic regression in R

(a) Simulate data from an ordered logistic regression model where ~ can take on the values

1, 2, 3, 4, or 5, and where Pr(~ > : | G) = logit−1 (0 + 1G − 2: ), for : = 1, . . . , 4 and with

0 = 21 < 22 < 23 < 24. The model thus has five parameters: 0, 1, 22, 23, and 24. Simulate 50

data points from the model with 0 = −5, 1 = 2, 22 = 1, 23 = 2, 24 = 5 and values of G drawn

at random from the interval (0, 5).
(b) Fit an ordered logistic regression to these data. Compare the estimates and standard errors of

the three parameters to the true values of these parameters.

(c) Make a graph displaying the simulated data and fitted regression curves.

(d) Label where on this plot is the predicted probability that ~ = 4, given G. Explain.

Homework assignments

1. (a) Graphing logistic regression (Exercise 14.3 of Regression and Other Stories)

The well-switching data described in Section 13.7 of Regression and Other Stories are in the

folder Arsenic.

i. Fit a logistic regression for the probability of switching using log (distance to nearest safe

well) as a predictor.

ii. Make a graph similar to Figure 83b displaying Pr(switch) as a function of distance to

nearest safe well, along with the data.

iii. Make a residual plot and binned residual plot as in Figure 84.

iv. Compute the error rate of the fitted model and compare to the error rate of the null model.

v. Create indicator variables corresponding to dist < 100; dist between 100 and 200; and
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Figure 83 (a) Histogram of distance to the nearest safe well, for each of the unsafe wells in our data from

Araihazar, Bangladesh. (b) Graphical expression of the fitted logistic regression, Pr (switching wells) =

logit−1 (0.61 − 0.62 ∗ dist100), with (jittered) data overlaid. The predictor dist100 is dist/100: distance to

the nearest safe well in 100-meter units.
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Figure 84 (a) Residual plot and (b) binned residual plot for the well-switching model. The strong patterns in the

raw residual plot arise from the discreteness of the data and inspire us to use the binned residual plot instead.

The bins are not equally spaced; rather, each bin has an equal number of data points. The light lines in the

binned residual plot indicate theoretical 95% error bounds.

dist > 200. Fit a logistic regression for Pr(switch) using these indicators. With this new

model, repeat the computations and graphs for part (a) of this exercise.

2. (a) Poisson and negative binomial regression (Exercise 15.1 of Regression and Other Stories)

The folder RiskyBehavior contains data from a randomized trial targeting couples at high

risk of HIV infection. The intervention provided counseling sessions regarding practices that

could reduce their likelihood of contracting HIV. Couples were randomized either to a control

group, a group in which just the woman participated, or a group in which both members of

the couple participated. One of the outcomes examined after three months was “number of

unprotected sex acts.”

i. Model this outcome as a function of treatment assignment using a Poisson regression.

Does the model fit well? Is there evidence of overdispersion?

ii. Extend the model to include pre-treatment measures of the outcome and the additional

pre-treatment variables included in the dataset. Does the model fit well? Is there evidence

of overdispersion?

iii. Fit a negative binomial (overdispersed Poisson) model. What do you conclude regarding

effectiveness of the intervention?
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iv. These data include responses from both men and women from the participating couples.

Does this give you any concern with regard to our modeling assumptions?

(b) Offset in a Poisson or negative binomial regression (Exercise 15.2 of Regression and Other

Stories)

Explain why putting the logarithm of the exposure into a Poisson or negative binomial model

as an offset, is equivalent to including it as a regression predictor, but with its coefficient fixed

at the value 1.

Stories

1. Understanding gun ownership using generalized linear models

From a recently published article in the criminal justice literature:

“The gun ownership literature is vast, with dozens of studies seeking to explain who owns

guns and why. We build on this literature in two key ways. First, we introduce a new variable

into the fold: moral concern about harming others. We theorize that this concern actively

inhibits gun ownership. Second, we direct theoretical and empirical attention to a predictor

of gun ownership that has frequently been overlooked in the contemporary gun literature:

childhood socialization. Using data from a national sample of 1100 adults, we find that

moral concerns about harm represent a barrier to gun ownership and limit the number of

guns people own. . . .

To measure Moral Harm, we used four items: ‘If we saw a mother slapping her child, we

would be outraged’; ‘Compassion for those who are suffering is the most crucial virtue’; ‘It

can never be right to kill a human being’; ‘The government must first and foremost protect

all people from harm.’ These items are drawn from previous measures . . . We averaged the

four items to create a Moral Harm index . . .

We measure Childhood Socialization using a five-item additive index that gauges both

gun presence and gun socialization experiences. Specifically, the respondents were asked if

when they were growing up, their family members or guardians did any of the following:

‘Keep a firearm in the house’; ‘Teach you how to shoot a firearm’; ‘Teach you how to clean

a firearm’; ‘Take you hunting’; and ‘Take you to a gun show.’”15

The questions being asked are all on a 1–5 scale (from strongly agree to strongly disagree), so the

averages are on a 1–5 scale as well. The researchers measure gun ownership by asking people

how many guns (“none,” “one,” “two,” “three,” or “four or more”) they own of each of four types

(shotgun, rifle, assault rifle, and handgun), and they record “four or more” as 4, so that the total is

somewhere between 0 and 16. They report:

“Around 36% of the sample own a gun. Of these gun owners, the majority own multiple

guns: around 70% own two or more guns and the average number of guns owned is greater

than four.”

They fit logistic regressions predicting whether a respondent owns a gun and negative binomial

regressions predicting the number of guns owned. The results are summarized in Figure 85, which

the instructor can project onto the screen to start a class discussion.

Start with the logistic regression. Students can work in pairs going through the two model fits and

explaining to each other the coefficients in each model. They can give numerical interpretations

using the usual divide-by-4 rule. For example, in the first regression, comparing two people who

differ by 1 on the Moral Harm scale but are the same in ethnicity, sex, age, education, income,

15Nathaniel Schutten, Justin Pickett, Alexander Burton, Francis Cullen, Cheryl Lero Jonson, and Velmer Burton (2021),

Understanding gun ownership in the twenty-first century: Why some Americans own guns, but most do not, Justice Quarterly,

https://osf.io/preprints/socarxiv/t4cf7/
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Figure 85 Regressions predicting gun ownership (logistic) and gun quantity (negative binomial). The instructor

jump go through these fitted models and discuss some of the coefficients with the class. One, two, and three

asterisks correspond to coefficients with ?-values less than 0.05, 0.01, and 0.001, that is, where the 95%, 99%,

and 99.9% intervals exclude zero. We do not recommend this sort of significance-level reporting, but we keep it

here just so students can see how regressions are often summarized in practice.

and marital and parental status, the person who is 1 point higher on the Moral Harm scale is

approximately 0.543/4 = 0.13 or 13 percentage points less likely to own a gun.

The real challenge comes when interpreting a comparison of people who differ by one unit in some

predictor while being identical in all others. For example, how do you think about a comparison

of a man and a woman who are identical on all other predictors, including Moral Harm? One

might suspect that women tend to be higher on the Moral Harm scale, so we’re comparing atypical

members of the two sexes.

Further difficulties arise in the second regression, where we are invited to compare people who

disagree on one set of survey questions but are identical in all the others. The authors of the paper

write that it is likely that “the effect of gender operates indirectly through some other significant

variable in the model, such as Childhood Socialization.” The evidence here is that the coefficient

for Male is large in model 1 and near zero in model 2, after adjusting for Childhood Socialization

and other variables. Unfortunately, it’s not so easy to make such a statement—indeed, it’s not

clear what a statement such as “operates indirectly” really means. We will return to this point in

the causal inference chapter.

We can then follow a similar exercise, first with students working in pairs and then convoking a

class discussion, on the negative binomial models for predicting number of guns. The coefficients

can now be interpreted on a logarithmic scale. For example, in model 3, the coefficient of −0.565

for Moral Harm corresponds to a predicted difference of this amount in the logarithm of number

of guns and thus a multiplication by exp(−0.565) = 0.57 in the expected number of guns; that is,

you would expect, on average, 57% as many guns for someone who is 1 point higher on that scale,

comparing to someone who is identical on all other predictors. Or, if you want a 95% confidence

interval, exp(−0.565 ± 2 ∗ 0.090) = (047, 0.68), so that you would expect, on average, between

47% and 68% as many guns. Again, the challenges come when interpreting comparisons between

people who are identical on all but one predictor.

This interpretation in terms of comparisons is so difficult that it would be good to have some other

way of understanding the models in Figure 85. A causal story would be tempting (for example, in

model 3, “Being married causes you, on average, to have 20% more guns”), but we won’t allow
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Figure 86 Histograms (on the square-root scale) of responses to “How many people do you know named Nicole?”

and “How many Jaycees do you know?” from a national survey, along with random simulations under three

fitted models: The Erdös–Renyi model (completely random links), a null model (a Poisson regression), and an

overdispersed (negative-binomial) regression. Each model predicts more variation than the one above, with the

overdispersed model fitting the data reasonably well. The propensities to form ties to Jaycees show much more

variation than the propensities to form ties to Nicoles, hence the Jaycees counts are much more overdispersed.

that! A different way of interpreting the regression is just as a model, a mathematical formula:

plug in the predictors and you get a prediction.

This example is relevant to the week’s reading in giving students a chance to interpret coefficients

in two related generalized linear models. It is relevant to the course as a whole by being an

example of the use of multiple regression as a way of understanding observational data, without

any particular causal goal. The problem remains open-ended, and we do not see the results in

Figure 85 as definitive; indeed, it’s not clear what it would mean to have a definitive analysis here.

Nonetheless, we can learn from these regressions. The class can discuss what sorts of analyses

could clarify what is happening, what questions that might be asked here, and what future data

would be worth gathering to answer these questions.

2. Using overdispersion in count data to estimate structure in social networks

How many people do you know? It depends on how the question is asked. One way that researchers

have measured the size of people’s social networks is to ask them how many people they know

named Nicole, or Christopher, or Anthony, or Stephanie. To illustrate, suppose that a student

knows two people named Nicole, and 0.13% of Americans are named Nicole. Extrapolating to

the entire population yields an estimate of 2/0.0013 = 1530 for the size of that student’s social

network. A more precise estimate can be obtained by averaging these estimates using a range

of different names. This is only a crude inference, but as an estimation procedure, it has the

advantage of not requiring respondents to recall their entire networks.
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Figure 87 (a) Estimated coefficients ±1 and 2 standard errors from regression of estimated log gregariousness

parameters on personal characteristics; (b) estimated coefficients ±1 and 2 standard errors from regression of

residuals from the “How many males do you know incarcerated in state or federal prison?” question on personal

characteristics.

The later rows of graphs in the figure display the distribution of each response under different

statistical models fit to data:

• The Erdös-Renyi model, ~8 9 ∼ Poisson(V 9 ), where 8 is the respondent and 9 is the survey

item. This is a model in which Nicoles and Jaycees are randomly distributed in the social

network and the two groups are allowed to have different sizes (hence the parameters V1 and

V2). After fitting this model to the data and estimating V1, V2, we simulate 1370 responses at

random from this distribution using these fitted parameters.

• The null model, ~8 9 ∼ Poisson(U8 + V 9 ), which still assumes random mixing, but now allows

for the gregariousness U8 to vary across people. After fitting this model to the data, we

simulate 1370 responses at random from this distribution allowing the U8’s to vary.

• The overdispersed model, ~8 9 ∼ negative binomial(U8 + V 9 , q 9 ). The parameter q 9 , which

varies by group, allows for a clustering or nonrandom distribution of the group within the

social network. The limit q → ∞ corresponds to the Poisson distribution, and lower values

of q represent clustering or overdispersion.

Descending from the second to fourth rows of Figure 86, we see increasingly accurate fits to the

data. The Jaycees in particular need an overdispersed model, which makes sense given that they

are a social organization, so if you know one Jaycee you’re likely to know many.

Most of our effort in this research project was spent in understanding the differences between

groups, and how we can use the observed overdispersion to learn about the social network.

For the purpose of this story, though, we talk about the other part of our model—the gregariousness

parameters U8 . Figure 87a shows the estimated coefficients from a linear regression of the estimates

of logU8 on characteristics of the survey respondents. Because the regression is on the logarithmic

scale, the coefficients (with the exception of the constant term) can be interpreted as proportional

differences: thus, with all else held constant, women have social network sizes 11% smaller than

men, people over 65 have social network sizes 14% smaller than others, and so forth. The '2 of the

model is only 10%, indicating that these predictors explain little of the variation in gregariousness

in the population.

Similar regressions can be performed on the residuals from the regression. For each item 9 , we

computed the residuals A8 9 = ~8 9 − exp(Û8 + V̂ 9 ) and regressed them on individual characteristics.

We did this for all 32 groups asked about in our survey. Different groups showed different patterns.

One particularly interesting group is men in prison. The estimated regression coefficients from

the residuals for that question are shown in Figure 87b. Being male, nonwhite, young, unmarried,

and so on are associated with knowing more men than expected in prison. However, the '2 of

the regression is only 11%, indicting that most of the variation in the data is not captured by

these predictors. The plots in Figure 87 also demonstrate how helpful it can be to see coefficients

graphed rather than presented as numbers in a table.
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This story relates to the week’s reading as an example of negative binomial regression for

overdispersed count data. It is an interesting example in which the overdispersion is of interest for

its own sake and is not just an annoyance to be adjusted for. Unfortunately, this model cannot be

fit using stan_glm—the difficulty is that the overdispersion parameter needs to vary by item, and

so we coded the model directly in Stan—but you can still use this example to understand some

of the concepts of generalized linear modeling. The story is relevant to the course as a whole in

showing how we can use survey data to learn about social structure.

Class-participation activities

1. How similar are you to your friends?

Political scientists and sociologists are interested in similarities within social networks: to what

extent are you similar to your friends? We can assess this with a set of survey questions that have

been used in social research.

The first step is to ask students to pick some questions to ask about each other. Aim for 10 questions,

including some political attitudes (for example, support for the death penalty, public funding for

charter schools, etc.) and some personal views (for example, preference for cats vs. dogs, coffee

vs. tea, etc.) We come up with a consensus set of questions (each with a binary outcome) and

write them on the board. Then we ask students to divide themselves into pairs and ask each pair to

select a unique ID number, for example by going into R and typing round(runif(1, 0, 1e6))

which will allow confidentiality of responses. Next we set up a Google form for each student to

fill out with 22 items: their pair’s ID number, the student’s responses to the 10 questions, and

the student’s guess of the responses of the other student in the pair, and a measure of how well

the student knows the partner (on a scale of 1 = don’t know the person at all, 2 = seen the person

around, 3 = acquaintance, 4 = friend, 5 = close friend).

The goal is to see how similar people are to their friends and also how similar people think their

friends are to them. When filling out the form, students should honestly report their own attitudes

on the 10 questions and do their best to guess their partners’ attitudes. We emphasize that all

responses will be confidential; the pair ID numbers will allow us to match up students in pairs but

not to identify who the students are.

Usually when we ask students to work in pairs, if there is an odd number, the extra student can

join a pair and form a group of three. In this one activity, however, if there is an odd number, one

of the students will just have to observe without participating.

Once the students have entered their data, the instructor can download the file and do some

operations in R to arrange the people in pairs and extract their responses. In the code, we arrange

the people in pairs based on their ID numbers and define ego as the answers to the ten questions

and guess_for_alter as the guesses of their partners’ responses:

responses <- read.csv("Similarity of friends.csv")

pair_id <- responses[,"Pair.ID.number"]

print(table(pair_id))

responses <- responses[order(pair_id),]

J <- 10

n <- nrow(responses)

alter_index <- 1:n + rep(c(1, -1), n/2)

ego <- as.matrix(responses[,paste("Q",1:J,sep="")])

guess_for_alter <-

as.matrix(responses[,paste("Guess.of.partner.s.response.to.Q",1:J,sep="")])

alter <- ego[alter_index,]

For each student, we construct two outcomes:
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• n_agree, the number of the 10 questions for which the two students had the same opinion

• n_perceived, the number of the 10 questions for which there was perceived agreement (that

is, the number of questions where person A thought that person B would agree with them):

n_agree <- rowSums(ego==alter)

n_perceived <- rowSums(ego==guess_for_alter)

And we create one predictor:

• close, the average of the two students’ assessments of how well they know each other (thus,

a number between 1 and 5)

We can use the recode function in R’s dplyr package to conveniently convert the responses into

numeric categories:

library("dplyr")

close_to_alter <- recode(responses[,"How.well.do.you.know.your.partner."],

"Not at all" = 1, "Seen each other around" = 2, "Acquaintance" = 3,

"Friend" = 4, "Close friend" = 5)

close <- (close_to_alter + close_to_alter[alter_index])/2

We then fit regressions predicting each of the two outcomes given the predictor. Each outcome

can be viewed as a number of successes out of a known number of trials, so we use binomial

regression:

friends_data <- data.frame(n_agree, n_perceived, close)

fit_agree <- stan_glm(cbind(n_agree, J - n_agree) ~ close,

family=binomial(link="logit"), data=friends_data, subset=seq(2,n,2), refresh=0)

fit_perceived <- stan_glm(cbind(n_perceived, J - n_perceived) ~ close,

family=binomial(link="logit"), data=friends_data, refresh=0)

The fit_agree regression selects the data from every second person because otherwise we would

be counting each observation twice.

As usual, the instructor should ask students to discuss what the results might be before displaying

the outcomes of the regressions. The next step is to plot the two fitted curves:

x_jitt <- runif(n, -0.2, 0.2)

plot((close + x_jitt)[seq(2,n,2)], n_agree[seq(2,n,2)]/J,

xlim=c(1,5), ylim=c(0,1), xlab="Friendship measure", ylab="Proportion agreed")

curve(invlogit(coef(fit_agree)[1] + coef(fit_agree)[2]*x), add=TRUE, col="red")

plot(close + x_jitt, n_perceived/J, xlim=c(1, 5), ylim=c(0, 1),

xlab="Friendship measure", ylab="Perceived agreement")

curve(invlogit(coef(fit_perceived)[1] + coef(fit_perceived)[2]*x),

add=TRUE, col="red")

The data collected in class may not show clear patterns in either the graphs or the regressions. If

so, that’s fine, and it can be taken as an example of realistic ambiguity in results.

After looking at and analyzing the students’ data, the instructor can discuss the research literature,

which has found that friends are more similar than strangers, but by less than they expect.16 There

are various hypotheses for why people overestimate their friends’ similarity to themselves. One

possibility is that people see their own views as reasonable and so attribute them to others. Another

possibility is that friendship colors people’s judgment. Other research has found that “while

16See Miller McPherson, Lynn Smith-Lovin, and James Cook (2001), Birds of a feather: Homophily in social networks,

Annual Review of Sociology 27, 415–444, and Sharad Goel, Winter Mason, and Duncan Watts (2010), Real and perceived

attitude agreement in social networks, Journal of Personality and Social Psychology 99, 611–621.
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individuals experience attitude homogeneity in their interpersonal networks, their networks are

characterized by attitude heterogeneity,” and this is consistent with a model in which friends avoid

areas of potential conflict in their conversations.17 The result is that you can have an exaggerated

belief in your friends’ agreement with you on contentious issues.

This activity relates to the week’s reading as an example of logistic regression with binomial data.

It is relevant to the course as a whole by demonstrating data collection and analysis in the unusual

setting of social networks.

2. Alternative models for discrete data

Here are some examples of count data: How many X’s do you know? How often have you been

stopped by the police? How often have you gone to the hospital?

A class-participation activity can be built upon these by discussing alternative ways of modeling

discrete data. Under the instructor’s guidance, the class can consider a particular area of interest

and flesh out the details. For example, for the number of hospital visits in the past year, the

class could consider regression models predicting this outcome given age, sex, and indicators for

ethnicity and urban/rural/suburban.

With such a context, the class can discuss various alternative models for the outcome, including:

• Linear regression,

• Thresholding and binary logistic regression,

• Poisson regression,

• Overdispersed Poisson regression,

• Ordered logistic regression if there are not too many categories (for example, if the observed

data counts range from 1 to 5) or binning larger categories (for example, coding counts of 0

as 0, counts of 1 as 1, counts of 2 through 4 as 2, counts of 5 through 9 as 3, and counts of 10

or higher as 4).

Depending on the problem being studied and the data, each of these alternatives has strengths

and weaknesses, with issues including interpretability of the model, fit to data, and usefulness of

predictions.

This activity relates to the week’s reading be pushing students to think about the applicability of

different generalized linear models. It relates to the course as a whole in drawing connections

between different families of models fit to a single (hypothetical) dataset.

Computer demonstrations

1. Problem with fitting Poisson regression to simulated overdispersed data

We simulate data on the number of bacteria that can be found after a number of days in a

hypothetical laboratory experiment. We first simulate data from a Poisson distribution and fit a

Poisson model.18 Then we simulate data from a negative binomial distribution with reciprocal

overdispersion parameter q = 1 and fit a Poisson as well as a negative binomial model. It may be

worthwhile to experiment with different values of q.

library("MASS")

par(mfrow=c(1,3), mar=c(3,3,2,0), mgp=c(1.5,.5,0), tck=-.01)

# Simulate Poisson data, estimate Poisson regression, plot data, and fit

17Delia Baldassarri and Peter Bearman (2007), Dynamics of political polarization, American Sociological Review 72,

784–811.

18From Section 15.2 of Regression and Other Stories.
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n <- 100

days <- runif(n, 0, 10)

bacteria <- rpois(n, 3.0*exp(0.2 * days))

fake <- data.frame(days, bacteria)

fit_pois <- stan_glm(bacteria ~ days, family=poisson(link="log"),

data=fake, refresh=0)

print(fit_pois, digits=2)

plot(days, bacteria)

curve(exp(coef(fit_pois)[1] + coef(fit_pois)[2] * x), add=TRUE, col="red")

sims <- as.matrix(fit_pois)

n_sims <- nrow(sims)

for (i in sample(n_sims, 10))

curve(exp(sims[i,1] + sims[i,2] * x), add=TRUE, col="red", lwd=.5)

newdata <- posterior_predict(fit_pois)

for (i in sample(n_sims, 2))

plot(days, newdata[i,], bty="l", main="Simulated replication")

# Repeat with overdispersed data, fitting Poisson model

bacteria2 <- rnegbin(n, 3.0*exp(0.2 * days), 1)

fake2 <- data.frame(days, bacteria2)

fit2_pois <- stan_glm(bacteria2 ~ days, family=poisson(link="log"),

data=fake2, refresh=0)

print(fit2_pois, digits=2)

plot(days, bacteria2)

curve(exp(coef(fit2_pois)[1] + coef(fit2_pois)[2] * x), add=TRUE, col="red")

sims <- as.matrix(fit2_pois)

n_sims <- nrow(sims)

for (i in sample(n_sims, 10))

curve(exp(sims[i,1] + sims[i,2] * x), add=TRUE, col="red", lwd=.5)

newdata <- posterior_predict(fit2_pois)

for (i in sample(n_sims, 2))

plot(days, newdata[i,], bty="l", main="Simulated replication")

# Repeat with overdispersed data, fitting negative binomial model

fit2_nb <- stan_glm(bacteria2 ~ days, family=neg_binomial_2(link="log"),

data=fake2, refresh=0)

print(fit2_nb, digits=2)

plot(days, bacteria2)

curve(exp(coef(fit2_nb)[1] + coef(fit2_nb)[2] * x), add=TRUE, col="red")

sims <- as.matrix(fit2_nb)

n_sims <- nrow(sims)

for (i in sample(n_sims, 10))

curve(exp(sims[i,1] + sims[i,2] * x), add=TRUE, col="red", lwd=.5)

newdata <- posterior_predict(fit2_nb)

for (i in sample(n_sims, 2))

plot(days, newdata[i,], bty="l", main="Simulated replication")

2. Generalized linear model with offset

As explained in Section 15.2 of Regression and Other Stories, an offset in a Poisson or negative

binomial model is the logarithm of a predictor that scales the expected outcome. We demonstrate

here with a simple simulation.

library("MASS")

n <- 100
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pop <- exp(runif(n, log(100), log(1e6)))

x <- runif(n, 0, 10)

a <- -7 # log(1000) = 6.9

b <- 0.1 # choose by comparing b*0 to b*10, the 2 extremes

deaths <- rnegbin(n, pop*exp(a + b*x), 2)

fake <- data.frame(x, deaths, pop)

fit_1 <- stan_glm(deaths ~ x, offset=log(pop),

family=neg_binomial_2(link="log"), data=fake, refresh=0)

print(fit_1, digits=2)

plot(x, deaths/pop)

a_hat <- coef(fit_1)[1]

b_hat <- coef(fit_1)[2]

curve(exp(a_hat + b_hat*x), add=TRUE, col="red")

sims <- as.matrix(fit_1)

n_sims <- nrow(sims)

for (i in sample(n_sims, 10)) {

curve(exp(sims[i,1] + sims[i,2]*x), add=TRUE, col="red", lwd=.5)

}

# Including log(pop) as a predictor

fit_2 <- stan_glm(deaths ~ x + log(pop),

family=neg_binomial_2(link="log"), data=fake, refresh=0)

print(fit_2, digits=2)

# We can include log(pop) as a predictor and also as an offset

fit_3 <- stan_glm(deaths ~ x + log(pop), offset=log(pop),

family=neg_binomial_2(link="log"), data=fake, refresh=0)

print(fit_3, digits=2)

# What about modeling death rate directly?

fake$death_rate <- fake$deaths/fake$pop

fit_4 <- stan_glm(log(death_rate) ~ x + log(pop), data=fake, refresh=0)

# This fails because you can't take log of 0.

Drills

1. Interpret coefficients in a negative binomial or Poisson regression

For each of the following examples, interpret the coefficients and standard errors of the fitted

Poisson regression.

Also, for each example it would be better to fit a negative binomial regression. If a negative

binomial regression were fit instead of a Poisson regression, how would the estimated coefficients

change and how would the standard errors change?

(a) The number of awards earned by students at one high school, as predicted by the type of

program in which the student was enrolled (vocational, general, or academic), and the score

on their final exam in math:19

Median MAD_SD

(Intercept) -5.3 0.6

progAcademic 1.1 0.4

progVocational 0.4 0.4

math 0.1 0.0

19See UCLA Statistical Consulting Group (2021), Poisson regression, https://stats.idre.ucla.edu/r/dae/poisson-regression/.
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Solution:

• The intercept says that on average, under the model we would expect to see exp(−5.3) =
0.005 awards for a student in the general program (so that the indicators for academic

and vocational programs are both 0) with a math score of 0. This is difficult to interpret

because it might well be that no students get scores of 0 or close to that.

• The coefficient for progAcademic says that, according to the model, on average comparing

two students with identical math scores but where one is in the academic program and

one is in the general program, the student in the academic program would be expected

to receive exp(1.1) = 3.0 times as many awards. The standard error of 0.4 implies

that we assign a roughly 68% chance to this multiplicative factor being in the range

exp(1.1 ± 0.4) = (2.0, 4.5).
• The coefficient for progVocational has the corresponding interpretation, comparing

two students with the same math scores but one is in the vocational program and one is

in the general program. The student in the vocational program is predicted on average

to receive exp(0.4) = 1.5 times as many awards, with a 68% uncertainty range of

exp(0.4 ± 0.4) = (1.0, 2.3).
• The coefficient for math says that, according to the model, on average comparing two

students in the same program but where one student scores 1 point higher on the final

exam in math, the higher-scoring student would be expected to receive exp(0.1) = 1.1

times as many awards. This estimate is essentially impossible to interpret without having

some sense of the range of math scores in the data or in the population of interest. What

is relevant is V times a relevant difference in G, not V alone.

• If a negative binomial regression were fit to these data, the estimated coefficients would

be about the same. The standard errors would become bigger; there’s no way of saying

how much bigger they would be without working it out with the data.

(b) The number of cyclists crossing the Brooklyn Bridge, as predicted by the high temperature

(centered at the mean, in tens of degrees Fahrenheit) and the precipitation (centered at the

mean, with units not specified in the data):20

Median MAD_SD

(Intercept) 7.85 0.00

c_HIGH_T_tens 0.12 0.00

c_PRECIP -0.84 0.01

2. Interpret the parameters in ordered logistic regression

For each of the following examples, interpret the estimated coefficients and cutpoints of the fitted

ordered logistic regression.

(a) Predicting party identification (on a 3-point scale, 1 = Democrat, 2 = Independent, 3 =

Republican), given age10 (age in years divided by 10) and sex:

stan_polr

family: ordered [logistic]

formula: factor(pid3) ~ age10 + male

observations: 7891

------

Median MAD_SD

age10 0.06 0.01

male 0.38 0.04

20Sachin Date (2021), The Poisson regression model, https://timeseriesreasoning.com/contents/poisson-regression-model/.
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Cutpoints:

Median MAD_SD

1|2 -0.12 0.07

2|3 1.31 0.07

Solution:

• Cutpoints: For a person with zero values of predictors (that is, a woman with age 0),

the predicted probabilities of identifying as Democrat, Independent, or Republican are

1 − logit−1 (0.12) = 0.47, logit−1 (0.12) − logit−1 (−1.31) = 0.32, and logit−1 (−1.31) =
0.21, respectively.

• Coefficient for age10: Comparing two respondents who are the same sex and 10 years

apart in age, the model predicts that the older person is more likely to be Republican. For

example, compare a 40-year-old woman to a 50-year-old woman. For the 40-year-old,

the predicted probabilities of identifying as Democrat, Independent, or Republican are

1 − logit−1 (0.06 ∗ 4 + 0.12) = 0.41, logit−1 (0.06 ∗ 4 + 0.12) − logit−1 (0.06 ∗ 4 − 1.31) =
0.33, and logit−1 (0.06 ∗ 4 − 1.31) = 0.26, respectively. For the 50-year-old, the

predicted probabilities of identifying as Democrat, Independent, or Republican are

1−logit−1 (0.06∗5+0.12) = 0.40, logit−1 (0.06∗5+0.12)−logit−1 (0.06∗5−1.31) = 0.33,

and logit−1 (0.06 ∗ 5 − 1.31) = 0.27, respectively.

• Coefficient for male: Comparing a man and a woman who are the same age, the model

predicts that the man is more likely to be Republican. For example, compare a 50-

year-old woman to a 50-year-old man. For the woman, the predicted probabilities of

identifying as Democrat, Independent, or Republican are 1−logit−1 (0.06∗5+0.12) = 0.40,

logit−1 (0.06∗5+0.12)−logit−1 (0.06∗5−1.31) = 0.33, and logit−1 (0.06∗5−1.31) = 0.27,

respectively. For the man, the predicted probabilities of identifying as Democrat,

Independent, or Republican are 1− logit−1 (0.06 ∗ 5 + 0.38 + 0.12) = 0.31, logit−1 (0.06 ∗
5+0.38+0.12)−logit−1 (0.06∗5+0.38−1.31) = 0.34, and logit−1 (0.06∗5−1.31) = 0.35,

respectively.

(b) Predicting party identification (on a 3-point scale), given age10 (age in years divided by 10),

sex, and education (on a 5-point scale from 1 = no high school degree to 5 = postgraduate

degree):

stan_polr

family: ordered [logistic]

formula: factor(pid3) ~ age10 + male + education

observations: 7408

------

Median MAD_SD

age10 0.07 0.01

male 0.38 0.04

education -0.11 0.02

Cutpoints:

Median MAD_SD

1|2 -0.43 0.08

2|3 1.01 0.08

21We use question VCF0838, “By law, when should abortion be allowed," from the 2020 American National Election

Study, and here is the exact wording: “There has been some discussion about abortion during recent years. Which one of the

opinions on this page best agrees with your view? You can just tell me the number of the opinion you choose. 1. By law,

abortion should never be permitted. 2. The law should permit abortion only in case of rape, incest, or when the woman’s life is

in danger. 3. The law should permit abortion for reasons other than rape, incest, or danger to the woman’s life, but only after

the need for the abortion has been clearly established. 4. By law, a woman should always be able to obtain an abortion as a

matter of personal choice.” We removed nonresponses from our analysis.
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(c) Predicting attitude on abortion (1 = should never be legal, 2 = should be illegal in most

circumstances, 3 = should be legal in most circumstances, 4 = should always be legal), given

age10 (age in years divided by 10), sex, education (on a 5-point scale), and party identification

(on a 3-point scale):21

stan_polr

family: ordered [logistic]

formula: factor(abortion) ~ age10 + male + education + pid3

observations: 7098

------

Median MAD_SD

age10 -0.09 0.01

male 0.02 0.05

education 0.17 0.02

pid3 -1.07 0.03

Cutpoints:

Median MAD_SD

1|2 -4.51 0.12

2|3 -2.82 0.11

3|4 -2.11 0.11

Discussion problems

1. Identification in linear models

Consider a regression model with two identical predictors, for example ~8 = 10+11G18+12G28+error8 ,

for 8 = 1, . . . , = where G1 ≡ G2. In this case, the coefficients 11 and 12 are said to be not identified

from the data. It is possible to fit such models using stan_glm but the identification there is

coming from the prior. A similar problem arises if one of the predictors is a constant, in which

case the data do not separately identify the intercept and the coefficient for the constant predictor.

More complicated examples of lack of identification can arise when multiple predictors are

linearly dependent. This can arise, for example, if a dataset includes people from four different

occupational categories, and indicators for all four categories are included as regression predictors.

In this case, the standard approach is to include indicators for three of the categories and consider

the other category as default; see page 138 in Section 10.4 of Regression and Other Stories.

A good topic for discussion is to consider various ways that nonidentification can arise in

applications. In some cases, nonidentification can be structural, for example if a model includes

three predictors, number of boys, number of girls, and number of children, then G1 + G2 − G3 = 0

by construction. In other settings, nonidentification can arise with the data at hand, for example

if certain categories that are theoretically possible happen to be empty. This is related to the

problem of complete separation in logistic regression, as discussed in Section 14.6 of Regression

and Other Stories.

2. Functional forms for nonlinear models

Tricky issues of identification can arise with nonlinear models. For example, what is the problem

with predicting ~ from G using the model, ~ = 0 + 1 ∗ exp(−2G + 3) + error? This is an entry

point to a discussion of different possible nonlinear functional forms. Students will have learned

about quadratic or polynomial models such as ~ = 10 + 11G + 12G
2 + 13G

3 + error—again, we are

considering G as the predictor, ~ as the outcome, and the parameters 10, 11, 12, 13 as constants to

be estimated from data—but polynomials are typically not the most effective ways of modeling

real-world relationships. The quadratic model has the problem that its rise and fall are symmetric;

also it blows up at the extremes. Declining exponential models can be useful because they flatten

out in the limit: ~ = 1 ∗ exp(−2G) for G8 ≥ 0 starts at 1 and decreases to 0 as G increases, with a
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scale of 1/2. Students can learn by drawing these curves for different values of 1 and 2. The next

question is how to write the equation of a curve that starts at zero and increases with an asymptote.

Here is an answer: ~ = 1 ∗ (1 − exp(−2G)). This can be made non-monotonic by adding a linear

trend: ~ = 0 + 1 ∗ (1 − exp(−2G)) + 3G. Again, graphing this for different choices of parameters

will provide insight.
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4.18 Design and sample size decisions

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

The multiverse Design Design Sample size Designing

and the an experiment analysis by calculation a survey

feedback loop from scratch simulation for proportions

Lucky golf balls Hypothetical Design for Sample size Designing

and implausible study of left- estimating calculation future

effect sizes handedness interactions for averages studies

Reading

Chapter 16 of Regression and Other Stories: Design and sample size decisions

Pre-class warmup assignments

1. Sample size and statistical power: comparison of proportions

Suppose you are comparing two manufacturing processes, with the goal of reducing the rate

of defects in a product from 1% under process A to 0.8% under process B. For each design

below, how large must = be for your experiment to have 80% power of finding a difference that is

“statistically significant” at the conventional 95% level, under this assumed treatment effect.

(a) Produce =/2 products under each process and compare the defect rates.

(b) Produce 2=/3 products under process A and =/3 products under process B.

(c) Produce 20 000 products under process A and = products under process B.

(d) Produce 2000 products under process A and = products under process B.

2. Sample size and statistical power: regression

A linear regression is performed to estimate the effect of a treatment, yielding the following result:

formula: post_test ~ z + pre_test

observations: 100

predictors: 3

------

Median MAD_SD

(Intercept) 23.6 10.9

z 1.4 4.0

pre_test 0.7 0.2

Auxiliary parameter(s):

Median MAD_SD

sigma 20.1 1.4

Here, I is the treatment indicator, and the coefficient of I is the treatment effect. Suppose are

designing a new study on a similar population and you think the true treatment effect will be 5.0.

(a) How large a sample size would you need to have approximately 80% power of finding a

difference that is “statistically significant” at the conventional 95% level?

(b) How large a sample size would you need to have approximately 80% power of finding a

difference that is “statistically significant” at the 90% level?
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Homework assignments

1. (a) Logistic regression and choice models (Exercise 15.10 of Regression and Other Stories)

Using the individual-level survey data from the election example described in Section 10.9

of Regression and Other Stories (data in the folder NES), fit a logistic regression model for

the choice of supporting Democrats or Republicans. Then interpret the output from this

regression in terms of a utility/choice model.

2. (a) Sample size calculations for estimating a proportion (Exercise 16.1 of Regression and Other

Stories)

i. How large a sample survey would be required to estimate, to within a standard error of

± 3%, the proportion of the U.S. population who support the death penalty?

ii. About 14% of the U.S. population is Latino. How large would a national sample of

Americans have to be in order to estimate, to within a standard error of ±3%, the

proportion of Latinos in the United States who support the death penalty?

iii. How large would a national sample of Americans have to be in order to estimate, to

within a standard error of ± 1%, the proportion who are Latino?

(b) Sample size calculations for estimating a difference (Exercise 16.2 of Regression and Other

Stories)

Consider an election with two major candidates, A and B, and a minor candidate, C, who are

believed to have support of approximately 45%, 35%, and 20% in the population. A poll is to

be conducted with the goal of estimating the difference in support between candidates � and

�. How large a sample would you estimate is needed to estimate this difference to within a

standard error of 5 percentage points? (Hint: consider an outcome variable that is coded as

+1, −1, and 0 for supporters of A, B, and C, respectively.)

(c) In pairs: Working through your own example (Exercise 15.18 of Regression and Other Stories)

Continuing the example from the final exercises of the earlier chapters, fit a generalized linear

model that is not a logistic regression, graph the data and fitted model, and interpret the

estimated parameters and their uncertainties.

Stories

1. The multiverse, the statistical significance filter, and the feedback loop

Section 4.5 of Regression and Other Stories discusses a study conducted in 2012 that claimed that

single women during certain times of the month were 20 percentage points more likely to support

Barack Obama for president. As we wrote in the book,

“There are so many different things that could be compared, but all we see is some subset

of the comparisons. Some of the choices available in this analysis include the days of the

month characterized as peak fertility, the dividing line between single and married (in this

particular study, unmarried but partnered women were counted as married), data exclusion

rules based on reports of menstrual cycle length and timing, and the decision of which

interactions to study. Given all these possibilities, it is no surprise at all that statistically

significant comparisons turned up; this would be expected even were the data generated

purely by noise.”

We looked at this question more carefully by going back to the data in this study, considering

different options in the data coding and analysis, and performing a “multiverse analysis” by looking

at the possible results.22

22Sara Steegen, Francis Tuerlinckx, Andrew Gelman, and Wolf Vanpaemel (2016), Increasing transparency through a

multiverse analysis, Perspectives on Psychological Science 11, 702–712.
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1. Exclusion criteria based on cycle length (3 options)

2. Exclusion criteria based on “How sure are you?” response (2 options)

3. Cycle day assessment (3 options)

4. Fertility assessment (4 options)

5. Relationship status assessment (3 options)

168 possibilities (after excluding some contradictory combinations)

Figure 88 Options in the analysis of the ovulation-and-voting study. We reanalyed the data in each of these 168

ways to see how sensitive the inference was to these choices of data coding.

Figure 88 shows the options we considered in our reanalyses. These are really only a small subset

of the coding and modeling choices, but they still gives a sense of some of the forking paths. For

each of these choices, we chose the options based on this and other papers in the literature. For

example, one of the papers by these authors assigned days 7–14 to the high-fertility group and days

17–25 to the low-fertility group, another used days 9–17 and 18–25, another used 8–14 for high

fertility and 1–7 and 15–28 for low fertility, and another used 9–17 and 1–8, 18–28. Similarly, there

are different possible choices in excluding women with irregular cycles, categorizing relationship

status, and so on. We ended up with 168 options, and for each we performed the analysis performed

in the original article, which was essentially a linear regression on the binary outcome (prefer

Barack Obama or Mitt Romney for president) on ovulation status, relationship status, and their

interaction. The key parameter here is the coefficient on the interaction, and for each of the 168

analyses we computed its estimate and standard error.

Of all these analyses, only three were “statistically significant” in the sense of having a 95%

interval excluding zero, and the analysis that appeared in the published paper is one of these

three. This is not to say that the authors performed all 168 analyses and chose the one whose

estimate was the most standard errors away from zero; rather, they made various coding and

analysis decisions with the data in front of them, and it makes sense that they would make choices

that yielded the sharpest results. But such an analysis procedure can easily produce apparently

statistically significant results from pure noise.

This sort of thing can result in a feedback loop by which effect sizes are overestimated, leading

to overly optimistic designs for new studies, leading to noisy data followed by a search for

statistically significant results, which will then be extreme overestimates of effect sizes, leading to

overconfidence in future research, and so forth.

This story is relevant to the week’s reading by connecting choices in design, data processing, and

analysis to the way that a statistical study is interpreted. It relates to the course as a whole as an

example of the feedback loop by which quantitative misconceptions (in this case, of large effects

of politically irrelevant stimuli) can be propagated through flawed quantitative analyses.

2. Lucky golf balls and implausible effect sizes

In June 2021, the site Golf.com ran an article, “‘Lucky’ golf items might actually work,” pointing

to a research paper published in 2010 in which a team of psychologists claimed that “superstition

improves performance.”23 Empirical support for this statement came from an experiment on

28 university students who were given the task of attempting 10 short golf putts. The students

were randomly assigned to the treatment (told they’d been given a “lucky ball”) or the control

condition (told their ball was ordinary). The average number of shots made was 6.42 out of 10 in

23Luke Kerr-Dineen (2021), “Lucky” golf items might actually work, according to study, https://golf.com/instruction/

lucky-golf-balls-study-play-smart/. The discussion here is taken from Andrew Gelman (2021), The so-called “lucky golf ball”:

The Association for Psychological Science promotes junk science while ignoring the careful, serious work of replication,

https://statmodeling.stat.columbia.edu/2021/12/20/not-replicable-but-citable/.
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the treatment group and 4.75 out of 10 in the control group. The standard deviation of number of

shots made was 1.88 in the treatment group and 2.15 in the control group, hence the observed

difference of 6.42 − 4.75 = 1.67 with a standard error of
√

1.882/14 + 2.152/14 = 0.76, and

a 95% confidence interval of [1.67 ± 2 ∗ 0.76] = [0.91, 2.43]. The interval excludes zero, so,

following conventional practice, this was considered as strong evidence in favor of the claim of

improved performance.

But there’s a problem here. An increase of 1.67 successes—that’s a 1.67/4.75 = 35%

improvement—all from using a ball that you’re told is “lucky”—that’s an implausibly large

effect. Any average effect of such a belief would realistically be much lower. Suppose, for example,

that a belief in the lucky ball increased the probability of success by 5%, which would correspond

to 0.05 ∗ 4.75 = 0.24 shots out of 10. Then the existing experiment, which yields a standard error

of 0.76, is way too noisy to detect such an effect. As discussed in Chapter 16 of Regression and

Other Stories, to get 80% power we need an effect size of 2.8 standard errors away from zero,

hence a standard error of 0.24/2.8 = 0.09. The existing experiment has a standard error that is

0.76/0.09 = 8 times too high, which implies that if the design of the study were kept as is, we’d

want at least 64 times the sample size, thus 1800 students in the study rather than 28.

To go back to the study that actually happened, the estimate is just too noisy to be useful.

There’s only one missing piece in the story. If, as we claim above, the study was underpowered,

far too noisy to learn anything useful, then how did the authors manage to find a “statistically

significant” result? Sure, you can get a 95% interval to exclude zero just by luck—even if there is

no effect at all, it will happen 5% of the time from chance alone—but the published article had

four experiments, each with its own statistically significant finding. It seems unlikely that all four

of these comparisons could have attained statistical significance by chance alone.

At this point we usually point to forking paths—alternative analyses that could give different

results. But this study seems so simple. Here is the description from the published article:24

“We recruited 28 university students (12 males, 16 females) as participants and randomly

assigned them to a superstition-activated or a control condition. Participants were asked to

engage in a 10-trial putting task. A pretest revealed that more than 80% of our participant

population believed in good luck, so to activate the superstition, we linked the concept of

good luck to the ball participants used during the task. Specifically, while handing the ball

over to the participants, the experimenter said, ‘Here is your ball. So far it has turned out

to be a lucky ball’ (superstition-activated condition) or ‘This is the ball everyone has used

so far’ (control condition). Finally, participants performed the required 10 putts from a

distance of 100 cm. We used the number of hits as our central dependent measure, with

‘hits’ defined as successful putts (when the ball actually ended up where it was supposed to

be). As predicted, participants performed better when playing with an ostensibly lucky ball

(" = 6.42, (� = 1.88) rather than a neutral ball (" = 4.75, (� = 2.15).”

With such a simple design and analysis, where could there possibly be forking paths? We project

the above description onto the screen and ask students to consider the question in pairs.

What is the answer? It’s hard to know, but here are a few possibilities. First, we are told of a

pre-test where the participants were asked if they believed in good luck. There may have been

other questions on the pre-test too. This provides lots of potential forking paths. For example, the

analyses could have been restricted just to the people who reported believing in good luck, or

just to men, or just to women, or the analysis could have looked at the interaction of sex with the

treatment. We are also told that the number of hits was the “central dependent measure,” which

suggests that other outcomes could have been used, for example the average distance of putt from

24Lysann Damisch, Barbara Stoberock, and Thomas Mussweiler (2010), Keep your fingers crossed!: How superstition

improves performance, Psychological Science 21, 1014–1020.
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Figure 89 Number of citations of the “lucky golf ball” paper and the later replication study that revealed no

effect. Sadly, the erroneous paper continues to be cited in the academic literature and promoted in the news

media, while the failed replication is barely noticed.

the hole, or maybe something simpler such as just counting the number of students in each group

who had at least a 50% success rate. Another possibility is forking paths in data inclusion. We

are told of these 28 students, but perhaps this was just one of several groups that were analyzed.

Another potential forking path is the task itself. Perhaps an earlier study was done with putts at

a distance of 200 cm, the results were not statistically significant, and researchers decided that

the task was too difficult, so then they tried a shorter distance which then worked as planned.

Similarly, had the results not shown up in 10 putts, they could have extended the data collection.

This all may sound like fanciful speculation—but really we have no idea what was going on.

Consider, for example, the following alternative description that we made up:

“We recruited 60 university students (28 males, 32 females) as participants in two waves of

a study and randomly assigned them to a superstition-activated or a control condition. In a

pre-test, 47 of these students stated that they believed in luck. All participants were asked

to engage in a 15-trial putting task from a distance of 150 cm. As our central dependent

measure, we used total success, defined as more than half the attempted putts ending up

where they were supposed to be. Consistent with our hypothesis, participants who believed

in luck performed better when playing with an ostensibly lucky ball, while there was no

difference among those expressed no belief in luck.”

That sounds just as reasonable as the original, right? There are many researcher degrees of

freedom, and it could have seemed reasonable to the researchers at the time to navigate through

the paths to find a statistically significant result.

One way to get a handle on this problem is to perform a replication study, and this was done a few

years later: a team of researchers performed a replication on 124 students and another replication

with a slightly stronger intervention on 111 students. The results were consistent with chance: in

the first experiment, the difference was 0.11 successes (out of 10 tries), with a standard error of

0.37; the second experiment found an average difference of 0.10 with a standard error of 0.40.

Given our earlier design analysis, it is unsurprising that a sample of 124 or 111 is not nearly large

enough to reliably detect a realistic effect size here.

The design analysis, followed by the failed replication attempts, makes us doubt there is anything

beyond noise in the original finding. In that first article, the authors wrote, “This study is in line

with prior research examining the influence of seemingly irrelevant factors, such as one’s arm

position, specific colors, or preperformance routines, on intellectual and physical performance.”

Unfortunately, these earlier studies may well have been flawed in the same way.
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Does the problem of forking paths imply that nothing can be trusted? No. One way we can get

around the problem of forking paths is to decide the baseline analysis ahead of time. This strategy

can work well in replication—that’s what was done in the replication studies just mentioned—but

is not so practical for a new project where, realistically, some exploration is necessary to understand

the data. In settings where we cannot preregister the analysis, we recommend performing multiple

analyses and not laying all your bets down on whether a particular comparison or coefficient is

“statistically significant.”

This story is relevant to the week’s reading in demonstrating the value of design analysis for

understanding what can be learned from a study, in particular the challenge of interpreting results

when the underlying effect size is likely to be small. It relates to the course as a whole as an

example of the connections between theoretical models, data collection and analysis, and scientific

conclusions.

There is a sad postscript to this story. Someone tracked the citations to the “lucky golf ball” article

and the followup replication study. Unfortunately, the original study continues to be cited; see

Figure 89. This is a case where statistics did (a small amount of) scientific damage, or at least

wasted some people’s time. Without the infrastructure of randomized experimentation, statistical

modeling, and hypothesis testing, we doubt that a claimed effect of lucky golf balls would have

been taken seriously.

Class-participation activities

1. Design analysis for an experiment

The class can work together to design an experiment. The instructor should start by projecting

Figure 90 onto the screen to show the steps of a simulation-based design analysis. The starting

point is to consider an area of application with some treatment of interest and then a pre-test and

post-test measurement. For example, this could be a study of a hypothetical advertising program

designed to increase vaccination rates, so that the individual data points in the study are cities,

the pre-treatment variable G is the vaccination rate in the city last year, each city receives the

advertising program (I = 1) or not (I = 0), and the outcome ~ is the vaccination rate a year later.

Or it could be a study on individuals, for example a physical therapy program to increase the range

of motion of people who are recovering from wrist injuries.

1. Consider a pre-test measurement G, a treatment I, and a post-test outcome ~

2. Set a distribution for the pre-test measurement G

3. Assume 50/50 randomized assignment for the treatment, I

4. Specify values for the parameters in the model log ~ = V0 + V1 log G + V2I + error

5. Choose a provisional sample size =

6. Simulate G, I, and ~ (in that order)

7. Plot the data and see if they make sense

8. Fit the linear regression of log ~ on log G and I and look at the parameter estimates and

uncertainties

9. Look at the standard error for the treatment effect and alter the sample size accordingly to aim

for a standard error that is equal to the hypothesized effect size divided by 2.8

10. Loop it: perform 100 simulations, save the results, and look at the distribution of estimates

and uncertainties

Figure 90 Steps for choosing the sample size for a hypothetical experiment. These should be projected onto

onto the screen, and then students can work in pairs to go through these steps.
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In any case, the pre-test and post-test measurements should be positive continuous numbers (for

example, rates, costs, spending, or physical measurements) so that we can fit a multiplicative

model, that is, a linear model on the log scale. The class can work through all the steps in Figure

90, with the simulation in the final step confirming that the chosen sample size is sufficient.

This activity relates to the week’s reading as an example of designing a study using simulation.

It relates to the course as a whole in requiring numbers to be assigned to the model based on

assumptions regarding a realistic problem.

2. Sample size calculation for a hypothetical study of left-handedness

Suppose we want to design a study comparing the handedness of artists to the general population,

and to do so we conduct a study with = artists and = others. How large a study would we need?

We should be able to figure this out from first principles and common knowledge. Start by

considering the measurement. We’ll assume that each person in the study is given a handedness

questionnaire as in Figure 20, giving them a score ranging from −1 for pure left-handers to +1 for

pure righties. Call this measurement ~. We would then compute the difference ~̄1 − ~̄2, which

has standard error
√
B2

1
/= + B2

2
/=, where B1 and B2 are the standard deviations of the handedness

scores in the two groups.

So to figure this out we just need an assumption about the mean and standard deviations of the

handedness scores of artists and others. How to get that?

To start with, we know that approximately 90% of people are right-handed, and that non-right-

handers are roughly uniformly distributed across the handedness spectrum. For simplicity we shall

construct a discrete distribution of handedness, with possible values −1.0,−0.9,−0.8, . . . , 0.9, 1.0.

We’ll assume that the 90% of people who are right-handers are divided evenly among scores 0.8,

0.9, and 1.0, and that the remaining 10% of people have scores uniformly distributed between

−1.0 and 0.7. This distribution is shown in Figure 91a.

What about artists? Suppose they are three percentage points more likely to be lefties. We shall

assume that this is attained by having 87% being divided evenly among scores 0.8, 0.9, and 1.0,

with the remaining 13% uniformly distributed between −1.0 and 0.7, as shown in Figure 91b.

We can compute the mean and standard deviation of these distributions:

h <- seq(-1, 1, 0.1)

p <- rep(c(0.1/18, 0.9/3), c(18, 3))

mean_h <- sum(h*p)

sd_h <- sqrt(sum((h - mean_h)^2*p))

p_art <- rep(c(0.13/18, 0.87/3), c(18, 3))

mean_h_art <- sum(h*p_art)

sd_h_art <- sqrt(sum((h - mean_h_art)^2*p_art))

General population

−1 −0.5 0 0.5 1

Artists

−1 −0.5 0 0.5 1

Figure 91 Hypothesized distribution of handedness scores (a) for the general population and (b) for artists, under

the assumption that artists are 3 percentage points more likely to be left-handers. This does not look like much

on the graph, but it corresponds to a big difference (from 10% mixed- or left-handers to 13%).
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Sample Percentage

Course of study size left-handed

Behavioral sciences 90 8.89%

Humanities 51 9.80%

Sciences 92 4.35%

Other arts and sciences 156 7.05%

Business 241 9.54%

Music 47 14.89%

Design and art 147 12.24%

Engineering 75 10.67%

Nursing 71 4.23%

Other 75 9.38%

Figure 92 Data from a survey of 1045 students in an introductory psychology course, used to compare the rate

of left-handedness (“determined by the self-reported hand used to perform a simple drawing task”) among

different majors. The comparisons look interesting at first, but there is too much uncertainty here to draw any

firm conclusions, as can be seen from a careful look at uncertainties; see Figure 93.

The resulting values are mean_h = 0.795 and sd_h = 0.36 for the general population and

mean_h_art = 0.764 and sd_h_art = 0.41 for the artists.

Now we can perform a design analysis. The difference between the average handedness score of =

artists and the average handedness of = others would have an approximately normal distribution

with mean 0.795−0.764 = 0.031 and standard deviation
√

0.412/= + 0.362/= = 0.55/
√
=. To have

80% power to detect this difference with a 95% confidence interval, it is necessary for the effect

size to be more than 2.8 times the standard deviation of the estimate (see Section 16.2 of Regression

and Other Stories), thus 0.031 > 2.8 ∗ 0.55/
√
=; that is, = > (2.8 ∗ 0.55/0.031)2

= 2467. So we

would need a sample size of at least 2500 to be able to reliably see this difference.

We can also understand this by simulating data from our hypothesized distributions of handedness.

We’ll first simulate a study with = = 100 in each group:

n <- 100

y_controls <- sample(h, n, p, replace=TRUE)

y_arts <- sample(h, n, p_art, replace=TRUE)

diff <- mean(y_controls) - mean(y_arts)

se_diff <- sqrt(sd(y_controls)^2/n + sd(y_arts)^2/n)

print(round(c(diff, se_diff), 3))

This should be too small, and indeed it is. We can further check by looping this 50 times:

for (loop in 1:50){

n <- 100

y_controls <- sample(h, n, p, replace=TRUE)

y_arts <- sample(h, n, p_art, replace=TRUE)

diff <- mean(y_controls) - mean(y_arts)

se_diff <- sqrt(sd(y_controls)^2/n + sd(y_arts)^2/n)

print(round(c(diff, se_diff), 3))

}

The estimates are hopelessly noisy and almost never more than two standard errors from zero.

Redoing with = = 2500 gives more reasonable results.

25John Peterson (1979), Left-handedness: Differences between student artists and scientists, Perceptual and Motor Skills

48, 961–962.
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Sample Percentage ± standard

Course of study size left-handed error

Behavioral sciences 90 9% ±3%

Humanities 51 10% ±4%

Sciences 92 4% ±2%

Other arts and sciences 156 7% ±2%

Business 241 10% ±2%

Music 47 15% ±5%

Design and art 147 12% ±3%

Engineering 75 11% ±2%

Nursing 71 4% ±4%

Other 75 9% ±3%

Figure 93 Repeat of Figure 92 including standard errors. The differences between the percentages in the table

are not large once we consider the uncertainties; a sample size of 1045 is too small to identify differences in

proportion left-handed among these groups. Also, recognizing the large uncertainties, we have rounded each

number to the nearest percentage point, as it would be silly, for example, to report a percentage as 8.89% when

the uncertainty is 3 percentage points.

Googling revealed a study with some data; see Figure 92.25 At first the results in this table may

look interesting—compare, for example, the music and arts majors with over 12% left-handers to

the sciences with less than 5%. Calculation of standard errors, however, reveals these differences

to be consistent with noise. Figure 93 demonstrates by repeating the table including standard

errors using the formula
√
?(1 − ?)/= for each group. For example, the comparison between

the science majors and the music majors is 10 percentage points but with a standard error of√
22 + 52

= 5 percentage points, so even this difference is only 2 standard errors away from zero.

At first this might be considered a respectable finding, indeed attaining the conventional

level of “statistical significance,” but consider all the other comparisons that could have

been made. Before the data had been collected, it could seem natural to include en-

gineering with the sciences and include the arts with music. The resulting compari-

son is then (92 ∗ 4.35% + 75 ∗ 10.67%)/(92 + 75) = 7.2% for science/engineering and

(47 ∗ 14.89% + 147 ∗ 12.24%)/(47 + 147) = 12.9% for music/arts; the difference is 5.7%

with standard error
√

0.072(1 − 0.072)/(92 + 75) + 0.129(1 − 0.129)/(47 + 147) = 3.2%, which

could easily be explained by chance.

In short, the noise in the estimation of the proportions in Figure 93 overwhelms any possible

signal, which is no surprise given our design calculations earlier. The simulation revealed that

sample sizes of 100 per group are not nearly enough to detect realistic differences in handedness.

This activity is relevant to the week’s reading in that students are performing a design analysis

from first principles, using the conventional criterion of statistical power. It relates to the course as

a whole in connecting a claim of statistical significance from the scientific literature to statistical

theory explaining why such a claim is overstated.

Computer demonstrations

1. Design analysis for a simple experiment, including with a pre-treatment predictor

Consider the case of an experimental sports regimen that is expected to decrease heart rate by 3

beats per minute. Assume that heart rates are normally distributed with mean 80 and standard

deviation 10. Also assume that f1 = f2 = f and =1 = =2 = =/2, for control and treatment groups,

respectively.

First calculate the required = for a simple experiment to achieve 80% power. Then show the effect
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of including a pre-treatment predictor for physical activity. As in Section 16.6 of Regression and

Other Stories, the variation in ~ is constructed to be the same across both setups.

# Calculate required n

theta <- -3 # treatment effect: difference in heart rates

sigma <- 10 # variation in treatment and control group

required_n <- ceiling((5.6 * sigma / theta) ^ 2) # rounding up

# Validate calculation

loop <- 1000

ledger <- array(NA, dim=c(loop, 2)) # store estimate and se of coef

for (i in 1:loop) {

y_if_control <- rnorm(required_n, 80, sigma)

y_if_treatment <- y_if_control + theta

z <- sample(c(0,1), required_n, replace=TRUE)

y <- ifelse(z == 1, y_if_treatment, y_if_control)

ledger[i,1] <- mean(y[z==1]) - mean(y[z==0]) # coef

ledger[i,2] <- sqrt((sd(y[z==1])^2/length(y[z==1])) +

(sd(y[z==0])^2/length(y[z==0]))) # se

}

mean(abs(ledger[,1]/ledger[,2]) >= 1.96) # power (note "abs()")

# Include pre-test, using latent variable representing physical activity

library("rstanarm")

n <- required_n

ledger <- array(NA, dim=c(loop 2)) # store estimate and se of coef

for (i in 1:loop) {

x <- rnorm(n, 20, 6) # a physical activity scale

y_if_control <- (100 - x) + rnorm(n, 0, 8) # heart rate

y_if_treatment <- y_if_control + theta

z <- sample(c(0,1), n, replace=TRUE)

y <- ifelse(z == 1, y_if_treatment, y_if_control)

fake <- data.frame(x, y, z)

fit <- stan_glm(y ~ z + x, data=fake, refresh=0)

ledger[i,] <- summary(fit)["z",c("mean", "sd")]

if(i %% 5 == 0) cat("Rep:", i, "\n")

}

mean(abs(ledger[,1]/ledger[,2]) >= 1.96) # power

2. You need 16 times the sample size to estimate an interaction that is half the size as the main effect

You can see the challenge of estimating interactions, as discussed in Section 16.4 of Regression

and Other Stories, by simulating a hypothetical experiment on the effect of canvassing on feeling

thermometer scores toward Joe Biden.26 First, consider an intervention that improves feelings by

10 points for everybody. You can calculate the standard error of the estimate of the main effect

and see what sample size would be required to achieve a power of 80%.

Then introduce an interaction that is half the size of the main effect: women’s feelings increase by

5 points more than men’s. Using the same sample size as before, the interaction term that is twice

as large as the standard error of the main effect.

As discussed on page 302 in Section 16.4 of Regression and Other Stories, to be able to detect the

interaction effect, the experiment needs to have a sample size 16 times what is required to detect

the main effect. We demonstrate with this code:

26Pew Research Center (2020), Perceptions of Trump and Biden, https://www.pewresearch.org/politics/2020/10/09/

perceptions-of-donald-trump-and-joe-biden/.
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# Simple case: main effect only (10 points)

n <- 100

theta <- 10

sigma <- 20

y_control <- rnorm(n, 45, sigma) # Pew, fall 2020

y_treatment <- y_control + theta

z <- sample(c(0,1), n, replace=TRUE)

y <- ifelse(z==1, y_treatment, y_control)

fake <- data.frame(y, z)

fit <- stan_glm(y ~ z, data=fake, refresh=0)

print(fit, digits=2)

# Calculate the standard error analytically

se <- sqrt((sigma^2/(n/2)) + (sigma^2/(n/2)))

print(se)

# Calculate the sample size needed for 80% power

n_required <- (5.6 * sigma / theta)^2

print(n_required)

# Repeat with interaction half the size of main effect (5 points)

# ... "Female" is set at (-0.5, 0.5) instead of (0, 1)

n <- 100

female <- sample(c(-0.5, 0.5), n, replace=TRUE)

y_control <- rnorm(n, 45, 20)

y_treatment <- y_control +

ifelse(female==0.5, (theta + theta/4), (theta - theta/4))

z <- sample(c(0,1), n, replace=TRUE)

y <- ifelse(z==1, y_treatment, y_control)

fake <- data.frame(y, z, female)

fit <- stan_glm(y ~ z + female + z:female, data=fake, refresh=0)

print(fit, digits=2)

If = = 125 is enough to detect the main effect with 80% power, then = = 16 ∗ 125 = 2000 is needed

for the interaction effect. You can show this using the following code:

tries <- 50

ledger <- array(NA, dim=c(tries, 2))

for (i in 1:tries) {

n <- 2000 # required_n * 16

female <- sample(c(-0.5, 0.5), n, replace=TRUE)

y_control <- rnorm(n, 45, 20)

y_treatment <- y_control +

ifelse(female==0.5, (theta + theta/4), (theta - theta/4))

z <- sample(c(0,1), n, replace=TRUE)

y <- ifelse(z==1, y_treatment, y_control)

fake <- data.frame(y, z, female)

fit <- stan_glm(y ~ z + female + z:female, data=fake, refresh=0)

ledger[i,] <- summary(fit)["z:female", c("mean", "sd")]

if(i %% 5 == 0) cat("Rep:", i, "\n")

}

print(mean(abs(ledger[,1] / ledger[,2]) >= 1.96)) # power

Drills

1. Sample size calculation for proportions
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Calculate the sample size needed to achieve the stated statistical goal:

(a) Estimate the proportion of Democratic voters, with a standard error of 1 percentage point.

Solution: Start by guessing = = 100, then the standard error of the estimated proportion is

approximately
√

0.5 ∗ 0.5/100 = 0.05. To get this down to 1 percentage point, we need to

lower the standard error by a factor of 5, so we need to increase the sample size by a factor of

52, thus the required sample size is 2500.

(b) Estimate the difference in proportions of voters with conservative political ideology, comparing

married and divorced people, with a standard error of 2 percentage points, assuming an equal

number of people in each sample.

(c) Estimate the difference in proportions of citizens in the United States and Canada who

have personally experienced corruption, with an 80% probability of achieving “statistical

significance,” from a survey with an equal number of people in each sample and a hypothesized

true difference in proportions of 5 percentage points. For this problem you must also

hypothesize a baseline proportion.

2. Sample size calculation for averages

Calculate the sample size needed to achieve the stated statistical goal:

(a) Estimate the mean college admissions test scores of a population of high school students,

with a standard error of 10 points. Assume the scores have a standard deviation of 150 in the

population.

Solution: Start by guessing = = 100, then the standard error of the estimated average is

150/
√

100 = 15. To get this down to 10, we need to increase the sample size by a factor of

(15/10)2, thus the required sample size is 225.

(b) Compare the average heights of women in two different countries, estimating the difference to

within a standard error of 0.5 cm. Assume the population of women’s heights in each country

has a standard deviation of 5 cm and that your sample sizes are equal for the two countries.

(c) Estimate the difference in average happiness levels, between Republicans and Democrats, with

an 80% probability of obtaining “statistical significance.” Assume that happiness is measured

on a 1–10 scale and that the underlying average difference is 0.2 points on that scale. For this

problem you must also hypothesize a population standard deviation for each group.

Discussion problems

1. Choosing a survey design to estimate question-wording effects

Suppose you are conducting a survey and are concerned about the possible effects of the wording

of one particular question.

You are offered the choice of doing one of two experiments: (a) Within-subject design: Put the

two different wordings on the same survey form (randomizing the order of the two questions) and

compare responses to the two wordings. (b) Between-subject design: Randomly give one wording

to half the respondents and the other wording to the other half. Compare the average responses

under the two wordings.

Give a reason why you might prefer design (a). Think about how you could perform a simulation

on the computer to compare the two designs.

2. Implications and potential escapes from the trap of designing future studies based on past

“statistically significant” estimates

Consider a world in which researchers report “statistically significant” estimates and then use

these to design future studies. Work out the implications of this decision. Is there a way for the

self-correcting nature of science to escape from this trap? How could you write a simulation to

study this?
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4.19 Poststratification and missing-data imputation

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Estimating Generalizing Regression Poststrat Network

state-level from class to and post- and weighted sampling

opinion population stratification averages

Environmental Experimental Random Methods Problems

Sustainability design and imputation for with

Index effect sizes imputation missing data

Reading

Chapter 17 of Regression and Other Stories: Poststratification and missing-data imputation

Pre-class warmup assignments

1. Poststratification

For each problem, suppose an experiment has been performed in a set of middle schools, to study

a new teaching style by comparing it to existing approaches, and that the results will be used to

estimate the average effect, assuming a population that is 35% sixth-graders, 35% seventh-graders,

and 30% eighth-graders.

(a) Suppose the estimated effect of the new style on standardized test scores is 2.5 ± 1.1 points in

sixth grade, −0.9 ± 1.5 points in seventh grade, and 1.9 ± 1.2 points in eighth grade. Give the

estimate and standard error of the average effect in the population.

(b) Suppose the estimated effect of the new style on standardized test scores is 3.5 ± 2.1 points in

sixth grade, −1.9± 2.5 points in seventh grade, and - ±. points in eighth grade. Suppose the

estimate and standard error of the average effect in the population is 2.0 points with a standard

error of 3.5. Then what are - and .?

2. Missing data

Consider the following very small dataset:

x y z

1 NA NA 1

2 NA -0.60 NA

3 NA NA NA

4 NA NA 1

5 NA 0.30 0

6 1.11 NA 0

7 0.45 NA 2

8 -1.55 1.40 1

9 0.14 -0.38 1

10 0.11 -0.82 1

You are planning to fit a regression of ~ on I and a regression of ~ on G and I.

(a) Which data points would be included in a complete-case analysis?

(b) Which data points would be included in an available-case analysis?

(c) Which data points will be included if you fit these regressions in R?
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standard deviations
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1.96

.84

2.8

Figure 94 Sketch illustrating that, to obtain 80% power for a 95% confidence interval, the true effect size must

be at least 2.8 standard errors from zero (assuming a normal distribution for estimation error). The top curve

shows that the estimate must be at least 1.96 standard errors from zero for the 95% interval to be entirely positive.

The bottom curve shows the distribution of the parameter estimates that might occur, if the true effect size is 2.8.

Under this assumption, there is an 80% probability that the estimate will exceed 1.96. The two curves together

show that the lower curve must be centered all the way at 2.8 to get an 80% probability that the 95% interval

will be entirely positive.

Homework assignments

1. (a) Power (Exercise 16.3 of Regression and Other Stories)

Following Figure 94, determine the power (the probability of getting an estimate that is

“statistically significantly” different from zero at the 5% level) of a study where the true effect

size is - standard errors from zero. Answer for the following values of -: 0, 1, 2, and 3.

(b) Power, type M error, type S error (Exercise 16.4 of Regression and Other Stories)

Consider the experiment shown in Figure 95 where the true effect could not realistically be

more than 2 percentage points and is estimated with a standard error of 8.1 percentage points.

i. Assuming that the estimate is unbiased and normally distributed and the true effect size is

2 percentage points, use simulation to answer the following questions: What is the power

of this study? If only “statistically significant” results are reported, what is the expected

type M error rate and what is the type S error rate?

ii. Assuming that the estimate is unbiased and normally distributed and the true effect size

is no more than 2 percentage points in absolute value, what can you say about the power,

expected type M error, and type S error rate?

(c) Decline effect (Exercise 16.7)

After a study is published on the effect of some treatment or intervention, it is common for the

estimated effect in future studies to be lower. Give five reasons why you might expect this to

happen.

2. (a) Regression and poststratification (Exercise 17.1 of Regression and Other Stories)

Section 10.4 of Regression and Other Stories presents some models predicting weight from

height and other variables using survey data in the folder Earnings. But these data are

not representative of the population. In particular, 62% of the respondents in this survey

are women, as compared to only 52% of the general adult population. We also know the

approximate distribution of heights in the adult population: normal with mean 63.7 inches
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The winner's curse of the low−power study

Estimated effect size

−30% −20% −10% 0% 10% 20% 30%

True
effect size
(assumed
to be 2% in
this example)

You think you won.
But you lost.
Your estimate has
the wrong sign!

You think you won.
But you lost.
Your estimate is
over 8 times too high!

Figure 95 When the effect size is small compared to the standard error, statistical power is low. In this diagram,

the bell-shaped curve represents the distribution of possible estimates, and the gray shaded zones correspond

to estimates that are “statistically significant” (at least two standard errors away from zero). In this example,

statistical significance is unlikely to be achieved, but in the rare cases where it does happen, it is highly

misleading: there is a large chance the estimate has the wrong sign (a type S error), and in any case the

magnitude of the effect size will be vastly overstated (a type M error) if it happens to be statistically significant.

Thus, what would naively appear to be a “win” or a lucky draw—a statistically significant result from a

low-power study—is, in the larger sense, a loss to science and to policy evaluation.

and standard deviation 2.7 inches for women, and normal with mean 69.1 inches and standard

deviation 2.9 inches for men.

i. Use poststratification to estimate the average weight in the general population, as follows:

(i) fit a regression of linear weight on height and sex, (ii) use posterior_epred to make

predictions for men and women for each integer value of height from 50 through 80

inches, (iii) poststratify using a discrete approximation to the normal distribution for

heights given sex and the known proportion of men and women in the population. Your

result should be a set of simulation draws representing the population average weight.

Give the median and mad sd (see Section 5.3 of Regression and Other Stories) of this

distribution: this represents your estimate and uncertainty about the population average

weight.

ii. Repeat the above steps, this time including the height:female interaction in your fitted

model before poststratifying.

iii. Repeat (a) and (b), this time performing a regression of log(weight), but still with the

goal of estimating average weight in the population, so you will need to exponentiate your

predictions in step (ii) before poststratifying.

(b) In pairs: Working through your own example (Exercise 16.14 of Regression and Other Stories)

Continuing the example from the final exercises of the earlier chapters, think of a new data

survey, experiment, or observational study that could be relevant and perform a design analysis

for it, addressing issues of measurement, precision, and sample size. Simulate fake data for

this study and analyze the simulated data.

Stories

1. Using regression and poststratification to estimate public opinion by state

Section 17.1 of Regression and Other Stories introduces the method of regression and poststratifi-

cation to adjust for differences between sample and population. There is a more advanced method,
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multilevel regression and poststratification (MRP) that combines these ideas with what is called

“small-area estimation” to get estimates for subpopulations for which we have small sample sizes.

The idea of MRP is to build a regression model to make predictions for these subpopulations,

“partially pooling” between the model and the data in each state.

MRP was first developed in the 1990s to estimate state-level opinion from national polls, and it is

still used for this and related purposes. For example, in the 2019 British election, the London

Times and Guardian referred to the seat-by-seat forecasts produced by an “MRP election polls.”

When using MRP to estimate state-level public opinion in the United States, the regression model

should include state-level predictors. Consider a small state such as Vermont or Wyoming: a

national poll of 5000 people might only include 10 respondents from each of these states, and

the MRP-based estimates for these states will depend strongly on the model. Without state-level

predictors, these estimates would be partially pooled toward the national average, which would not

be appropriate. It typically makes sense to include as a predictor the Republican vote share in the

state in the most recent presidential election: this way, the estimate for Vermont is partially pooled

toward the other strongly Democratic-leaning states and the estimate for Wyoming is partially

pooled toward the strongly Republican states.

But that one predictor won’t always do the job. For example, suppose you’re interested in attitudes

toward gun control. Two natural state-level predictors are Republican vote share and percent rural.

These variables are also highly correlated. But look at Vermont: it’s one of the most Democratic

states and also the most rural. Vermont also is a small state, so the MRP inference for Vermont

will depend strongly on the fitted model, which in turn will depend strongly on the coefficients for

Republican vote share and percent rural. You may need some strong priors on these state-level

coefficients to get a stable answer when fitting the regression.27

To elaborate, consider the following four MRP models:

(a) No state-level predictors. This is bad because for states without much data, estimates are

pooled toward the national mean. This is clearly the wrong thing to do for Wyoming, say,

as this is a small state where attitudes toward gun control are probably far from the national

average.

(b) Republican vote share as a state-level predictor. Now the estimates are pooled toward the

state-level regression model, which will estimate a negative effect of state-level Republican

vote on gun control attitude. This will do the right thing for Wyoming. This model will

partially pool Vermont to other strongly Democratic states such as California, Maryland, and

Hawaii.

(c) Percent rural as a state-level predictor. This should also fit the data well, with voters in more

rural states being less likely to support gun control, and it should also do the right thing for

Wyoming. This model will partially pool Vermont to other rural states such as Montana,

North Dakota, and Mississippi.

(d) Include Republican vote share and percent rural as two state-level predictors. This will do

the right thing again for Wyoming and will split the difference on Vermont. The estimate for

Vermont should also have a higher uncertainty, reflecting inferential uncertainty about the

relative importance of the two state-level predictors.

Of all of these options, we think the last is the best—but this presupposes that we’re willing to use

strong priors to control the estimation. If we’re only allowed to use weak priors—or, worse, not

allowed to use any priors at all—then including both predictors could give noisy results.

This is where Bayesian inference comes in. It’s not just that we can now use prior information.

It’s also that, by allowing the use of prior information, the Bayesian approach also opens the door

to including more information into the model in the form of predictors.

27Andrew Gelman (2021), State-level predictors in MRP and Bayesian prior, https://statmodeling.stat.columbia.edu/2021/

04/08/state-level-predictors-in-mrp-and-baysian-prior/.
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To put it another way, the first three models above are all special cases of the fourth model,

but with very strong priors where one or two of the coefficients are assumed to be exactly zero.

Paradoxically, putting Bayesian priors in the fourth model allows us to fit a bigger, more general

model than would otherwise be realistically possible.

This story relates to the week’s reading in providing a subtlety to regression and poststratification

beyond the example in the textbook. It is relevant to the course as a whole in connecting technical

decisions of statistical modeling and adjustment with subject-matter concerns—in this case, the

unusual position of Vermont as a rural state whose residents mostly vote for Democrats. Similar

issues arose in other MRP models when considering unusual states. For example, in a model

for predicting attitudes on social issues, one state-level predictor that was used was percentage

evangelical Protestant. But the model did not fit for Utah, a state with a large number of Mormons,

a different conservative denomination. The problem was fixed by changing the state-level predictor

to be the percentage of evangelical Protestants plus the percentage of Mormons in the state. In this

case, it would not have worked to include these two as separate predictors, because pretty much

the only information available to estimate the coefficient for percent Morman would’ve come from

Utah, which would ruin the whole partial-pooling approach.

2. Challenges with imputations of the Environmental Sustainability Index

The environmental sustainability index (ESI) was created as a measure of overall progress toward

environmental sustainability and was designed in 1992 to permit systematic and quantitative com-

parison between nations. The ESI is a scaled linear combination of 64 variables of environmental

concern. Environmental measures (such as oxide emissions and concentration) are included

along with political indicators (such as civil liberty and level of corruption) that are relevant to

environmental sustainability. The ESI, like other indices of environmental concern (such as the

environmental wellbeing index and the human development index), condenses dissimilar social

and physical metrics into cohesive summaries for national level comparisons.

Environmental data are often dissimilarly reported across regions or nations—rendering their

quality poor, missing, or so incomparable that variables need to be treated as missing. When

imputing missing values, we want to take into account context from the data that are observed.

For example, if a variable is more likely to be missing for countries with low values of per capita

gross domestic product, and this gross domestic product predictor is available for all countries,

then we can use it as a predictor in a regression imputation.

Figure 96 shows the aggregate pattern of missingness in our data. Lower-income countries and

countries with less environmental sustainability (as measured by our index) had more missing

data.

Figure 96 Aggregate pattern of missingness in the Environmental Sustainability Index. Each dot is a country;

the plots show the number of missing variables (out of 64) in the data for the country, plotted vs. the country’s

environmental sustainability index and its per capita gross domestic product.
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Figure 97 Missing-data imputation for a variable in the Environmental Sustainability Index relating to water

pollution: (a) distribution of observed and imputed data for all 142 countries in the data, (b) separating into

imputed (the mode on the right half of the density plot) and observed (the large mode on the left of the plot and

the small bump on the far right), (c) observed and imputed values plotted vs. index estimates for each country.

These graphs show a problem, and so the imputation model was changed.

We imputed missing values for the 2002 ESI using a three-step process, first using a statistical

model to impute missing values, second exploring the observed and imputed data to reveal

problems with the imputations, and in the third step improving the imputations. The result was far

from perfect, and we see the main value of this story in demonstrating the bad news that imputation

can create problems and the good news that sometimes these problems can be detected.28 At first

the idea of detecting imputation problems might seem impossible—after all, the whole point is

that the values are missing, so how can they possibly be checked?—but it is indeed possible to

diagnose problems with imputed data by looking at coherence with observed data.

Figure 97 shows an example, the observed and imputed data for a measure of the industrial and

organic pollutants per available freshwater. Most of the observed data are in a narrow range. The

exception is for Kuwait, which, as a net importer of freshwater, stands out as the point in the upper

left of the scatterplot. The graphs show the problem with a naive default imputation model that

fits a simple distribution to the observed data.

This story relates to the week’s reading by showing how problems in imputations can be diagnosed.

It relates to the course as a whole as an example of the way that statistical analysis can be involved

in the measurement process. We can follow up with a discussion of models that go into other

summary measurements such as the Consumer Price Index and various political indexes.

Class-participation activities

1. Generalizing from the class to a larger population

For this activity, the instructor conducts a survey of the class and then attempts to use these

responses to generalize to the larger population, poststratifying on age, sex, and education.

The first step is to choose three survey questions of interest—for example, one issue attitude, one

experiential question, and one pop culture question—based on suggestions from the class. The

next step is to put these on a Google form, along with background variables: questions on age,

sex, and education.

Students fill out the form, and then the instructor can download the data and conduct the analysis.

The first step is fitting a regression predicting each response given the demographics. The second

step is to get predictions for all demographic categories in the population. Here we follow standard

practice and bin age into the categories 18–29, 30–44, 45–64, and 65+, and bin education into

28Kobi Abayomi, Andrew Gelman, and Marc Levy (2008), Diagnostics for multivariate imputations, Journal of the Royal

Statistical Society C 57, 273–291.
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the categories no high school degree, high school degree or equivalent, some college, four-year

college degree, and post-college education, so that we have 4 × 2 × 5 = 40 poststratification cells

defined by age, sex, and education. The third step is to average this over the population. We

have prepared the poststratification table ahead of time using the American Community Survey

five-year sample.29

Here is our script for recoding the survey responses and reading in the census data:

responses <- read.csv("Poststratification example.csv")

# Students' survey responses as saved on Google form

n <- nrow(responses)

library("dplyr")

age <- recode(responses$Age, "18-29" = 1, "30-44" = 2, "45-64" = 3, "65+" = 4)

male <- recode(responses$Sex, "Male" = 1, "Female" = 0)

educ <- recode(responses$Education, "No high school degree" = 1,

"High school degree or equivalent" = 2, "Some college" = 3,

"Four-year college degree" = 4, "Postgraduate degree" = 5)

census <- read.csv("census2.csv")

Suppose the first survey question is a binary response on attitude to gun control. Then here is

code for regression and poststratification:

responses$gun_attitude <- ifelse(responses$Q1=="Yes", 1, 0)

fit_gun <- stan_glm(gun_attitude ~ factor(age) + male + factor(education),

data=responses, family=binomial(link="logit"), refresh=0)

print(fit_gun)

pred_gun <- posterior_epred(fit_gun, newdata=census)

pred_gun_poststrat <- pred_gun %*% census$N / sum(census$N)

print(c(mean(pred_gun_poststrat), sd(pred_gun_poststrat)))

Unfortunately, this code, when applied to data from a class of university students, will produce an

error. The problem is that there will be no data on the highest age categories and lowest education

categories. So the usual regression can’t even be fit!

The class can discuss possible solutions to this problem, along with the related scenario where

very few responses are available in some categories. The problem with very few data can be

seen by augmenting the dataset with some fake responses corresponding to people in the missing

age and education categories and then fitting the model. The resulting predictions will have big

uncertainties.

Beyond issues of uncertainty, we also need to be concerned with bias, to the extent that the sample

(in this case, the students in the class) is unrepresentative of the population, even within these

demographic categories. A possible solution is to supplement the data with survey responses from

other sources.

The point is that there is no reasonable way of generalizing to the larger population when the

same is so unrepresentative—at least not without outside information regarding responses in the

missing groups.

This activity relates to the week’s reading on poststratification, and it relates to the course as a

whole by giving us a chance to discuss modeling assumptions in the context of a real applied

problem, albeit simplified.

2. Experimental design and effect sizes

This activity demonstrates a basic principle of efficient design of experiments using a hypothetical

study of people who are caring for their elderly relatives, where some training by a social worker

29See Juan Lopez-Martin, Justin Phillips, and Andrew Gelman (2022), Multilevel regression and poststratification case

studies, https://bookdown.org/jl5522/MRP-case-studies/.
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1. z <- sample(rep(c(0, 10), c(n/2, n/2)), n)

2. z <- sample(rep(c(0, 50), c(n/2, n/2)), n)

3. z <- sample(rep(c(0, 200), c(n/2, n/2)), n)

4. z <- sample(rep(c(0, 5, 10), c(n/3, n/3, n/3)), n)

5. z <- sample(rep(c(0, 25, 50), c(n/3, n/3, n/3)), n)

6. z <- sample(rep(c(0, 100, 200), c(n/3, n/3, n/3)), n)

7. z <- sample(runif(n, 0, 10))

8. z <- sample(runif(n, 0, 50))

9. z <- sample(runif(n, 0, 200))

Figure 98 Code snippets representing nine different treatment assignment mechanisms for the caregiver design

activity. Each pair of students will pick a random integer between 1 and 9 and use this to simulate the treatments

for the = caregivers in their simulated-data experiment. The treatment I here represents the number of hours

spent by a social worker for each caregiver in the hypothetical experiment.

can reduce the stress of the caregiver. Imagine an experiment in which 60 caregivers are studied,

with each being given a treatment I representing some number of hours of training by a social

worker, and a year later the stress level of the caregiver is measured, perhaps by some combination

of a questionnaire and observation by a trained social worker, yielding a continuous stress measure

~. Assume for simplicity that no pre-treatment measurements are available. Further assume a

linear model, ~ = 0 + 1I + error. The treatments are randomly assigned to the 60 caregivers, and

from the data we can estimate 1, the effect on stress per hour of treatment.

In this activity, each pair of students performs an experiment—actually simulating the result

of an experiment on a computer—and produces an estimate of 1 and a standard error. Each

pair of students will simulate an experiment. The trick is that different pairs are given different

distributions of treatment assignments.

We display on the screen Figure 98, which shows code for nine different treatment assignment

mechanisms, and ask each each pair of students to open R on their laptops and choose a mechanism

by simulating a random number between 1 and 9; in R, this would be sample(1:9, 1).

Before actually doing the simulation, we ask students to discuss which of the nine designs will

give the most precise estimate of the treatment effect, and which will give the noisiest estimate.

Then we ask each pair to simulate an experiment on = = 60 caregivers by first simulating I from

the line of code they’ve been given and then drawing a vector of outcome measurements from the

model ~ = 0 + 1I + error, with a baseline expected stress level 0 = 100, the average effect on stress

level per hour of training being 1 = −0.1, and with the model error being normally distributed

with mean 0 and standard deviation 40. Each pair should then fit the regression of ~ on I and look

at their estimate and standard error.

Then compare results. Which groups had the smallest standard error? Which had the biggest? If

all goes well, the smallest standard error should come from the design where half the caregivers

are assigned 0 hours and half are assigned 200. This is the design that gives us the most leverage

to estimate the slope.

The class can discuss the following questions: Are there problems with the design where all

treatments are at the extreme values? What about potential nonlinearity in the treatment effect? Is

it realistic to expect that a social worker could spend 200 hours on a single caregiver? To give

good answers to these questions, students need to think carefully about what is being estimated.

This activity is relevant to the week’s reading as an example of experimental design. It demonstrates

the general principle that, when estimating an effect, it is best for the differences between treatment
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and control group to be as large as possible. The activity relates to the course as a whole by

bringing in realistic concerns about possible sizes of treatments. We can discuss with students

how these issues arise in other settings.

Computer demonstrations

1. Regression and poststratification

The following code goes through a simple example of regression and poststratification, generalizing

from a survey to the U.S. adult population. The survey data come from the Cooperative Election

Study.30 For convenience, we created a small file, cces.csv, with responses to just a few questions.

Focus on the response to the question pro_gun: “Do you support the following proposal: make it

easier for people to obtain concealed-carry permit?” First read in the data and compute the mean

of this binary response and its standard error, for simplicity excluding missing responses:

cces <- read.csv("cces.csv")

ok <- !is.na(cces$pro_gun)

n <- sum(ok)

print(mean(cces$pro_gun[ok]))

print(sd(cces$pro_gun[ok])/sqrt(n))

The mean is 0.358—that is, 35.8% of the respondents answered Yes to this question, with a

standard error of 0.002, or 0.2%. We ask the students in pairs to discuss how to think about this

small uncertainty. It comes from the sample size being so large: = = 60 984, and 0.5/
√
= = 0.002.

What can it mean to say that 35.8% ± 0.2% of Americans support concealed carry? Could this

quantity ever really be estimated so accurately? Given that this example is coming up in the

context of survey adjustment and missing data, students might point out that this survey is not a

true random sample, and the nonsampling error could be much more than 0.2%. Beyond this,

public opinion is not completely stable: Support for concealed carry could be 35.7% one day and

36.1% the next. At some point, the extra precision you get from a very large = is illusory.

In any case, you can move on to regression and poststratification. First fit a model predicting the

survey response from three demographic variables:

fit_1 <- stan_glm(pro_gun ~ age + male + educ,

data=cces, family=binomial(link="logit"), algorithm="optimizing")

print(fit_1)

We recommend fitting the model using the optimizing setting because it’s faster. When stan_glm

is run in this way, it uses a normal approximation to the posterior distribution centered at a point

estimate. In this case, the sample size is large and this approximation is fine.

You can then move to the poststratification step, first computing expected predicted values for the

demographic categories we have gathered from the U.S. Census:

pred_1 <- posterior_epred(fit_1, newdata=census)

The result is a matrix with simulations representing uncertainty in the proportion of Yes responses

in the population within each poststratification cell, as computed from the fitted model. Generalize

to the population by weighting these cell estimates by the proportion of the population in each

cell, which we can do using matrix multiplication:

pred_1_poststrat <- pred_1 %*% census$N / sum(census$N)

The result is a set of simulations representing the posterior distribution of the proportion of Yes

respondents in the population. Take the mean and standard deviations of these simulations to

represent the posterior estimate and uncertainty of this population proportion:

30Full data are at https://cces.gov.harvard.edu, with a subset at https://bookdown.org/jl5522/MRP-case-studies/.
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print(c(mean(pred_1_poststrat), sd(pred_1_poststrat)))

The resulting estimate is 0.381 ± 0.002, that is, 38.1% ± 0.2%. This estimate is higher than the

raw survey mean of 35.8% that we computed above. Why? You can understand this by going

back to the fitted logistic regression:

family: binomial [logit]

formula: pro_gun ~ age + male + educ

observations: 60984

predictors: 9

------

Median MAD_SD

(Intercept) -1.2 0.0

age30-44 0.1 0.0

age45-64 0.2 0.0

age65+ 0.1 0.0

male 0.7 0.0

educHS 0.5 0.0

educNo HS 0.7 0.1

educPost-grad -0.3 0.0

educSome college 0.4 0.0

Yes responses are slightly more common among older respondents, but the strongest pattern is

that Yes responses are more common among men and less-educated respondents. Surveys tend to

undersample men and less-educated respondents, and you can see that here:

print(sum(census$N[census$male==1])/sum(census$N))

print(mean(cces$male))

The proportion of adults who are male is 48.7% from the Census and only 42.4% in the survey.

Similarly for education:

print(sum(census$N[census$educ=="No HS" | census$educ == "HS"])/sum(census$N))

print(mean(cces$educ=="No HS" | cces$educ=="HS"))

The proportion with high school education or less is 39.7% from the Census and only 30% in the

survey.

The poststratification is a projection to a population that is more male and less educated than the

sample, and this has the effect of increasing the estimate of support for concealed carry. Or, to put

it another way, the survey undersamples men and less educated people and, as a result, understates

support for this policy.

You can do a more elaborate version by including interactions in the regression:

fit_2 <- stan_glm(pro_gun ~ age + male + educ + age:male + age:educ + male:educ,

data=cces, family=binomial(link="logit"), algorithm="optimizing")

print(fit_2)

pred_2 <- posterior_epred(fit_2, newdata=census)

pred_2_poststrat <- pred_2 %*% census$N / sum(census$N)

print(c(mean(pred_2_poststrat), sd(pred_2_poststrat)))

The resulting estimate is 37.6% ± 0.2%.

This is not the final word; real surveys are adjusted for other variables, such as ethnicity, region of

the country, and party identification (although that last variable is tricky as it is not recorded in the

Census), but the above calculations give a sense of how poststratification works and why we do it.

2. Random imputation



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

236 4. WEEK BY WEEK: THE SECOND SEMESTER

In this demonstration, first create fake data on log wages, education, experience, and sex. Then

delete some of the log wage records (turning them into missing data), and pursue three different

strategies to impute the missing values. As an add-on, you could compare the imputed values.

# Simulate fake data (with some missing), based on a previously estimated model

n <- 1000

exper <- runif(n, 0, 30)

female <- rbinom(n, 1, 0.49)

logwage <- 0.86 + 0.10 * female + 0.10 * educ + 0.01 * exper + rnorm(n, 0, 0.3)

missing <- sample((1:n), 50)

logwage[missing] <- NA

fake <- data.frame(educ, exper, female, logwage)

# Random imputation

imputed_logwage_1 <- ifelse(is.na(logwage),

sample(logwage[!is.na(logwage)]), logwage)

# Deterministic imputation

fit_imp <- stan_glm(logwage ~ female + educ + exper, data=fake)

predictors <- fake[,1:3]

pred_det <- predict(fit_imp, newdata=predictors)

imputed_logwage_2 <- ifelse(is.na(logwage), pred_det, logwage)

# Random regression imputation

pred_ran <- posterior_predict(fit_imp, newdata=predictors, draws=1)

imputed_logwage_3 <- ifelse(is.na(logwage), pred_ran, logwage)

Drills

1. Poststratification and weighted averages

Calculate population-level averages from the information about group-level averages as well as

the groups’ sizes.

(a) Life expectancy in the United States:

• ~̄male = 76

• ~̄female = 81

• #male = 161 million

• #female = 169 million

Solution: (161 ∗ 76 + 169 ∗ 81)/(161 + 189) = 74.1

(b) Proportion of Americans without health insurance:31

• ~̄U.S. born = 7.5%

• ~̄foreign born = 19.6%

• Proportion U.S.-born = 86.3%

• Proportion foreign-born = 13.7%

2. Methods for imputation

Give an advantage and a disadvantage of each of the following approaches for imputing missing

responses for a question in a survey, and come up with a scenario in which you would be

comfortable using it. Explain your reasoning.

31From Abby Budiman, Christine Tamir, Lauren Mora, and Luis Noe-Bustamente (2020), Facts on U.S. immigrants, 2018,

https://www.pewresearch.org/hispanic/2020/08/20/facts-on-u-s-immigrants-current-data/.
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(a) Simple random imputation

Solution: Advantage: easy to do and to explain. Disadvantage: can give unreasonable

imputations (for example, if education level is being imputed at random, you could impute

post-graduate education to an 18-year-old).

(b) Deterministic regression imputation

(c) Random regression imputation

Discussion problems

1. Network sampling

A researcher at Columbia University’s School of Social Work wanted to estimate the prevalence

of drug abuse problems among American Indians (Native Americans) living in the New York City

area.32 From the Census, it was estimated that about 100 000 American Indians lived in the area,

and the researcher had a budget to interview 400. She did not have a list of the population, so

instead she planned to obtain her sample using network sampling, as follows.

She started with a list of approximately 300 members of a local American Indian community

organization and planned to take a random sample of 100 from this list. She then planned to

interview these 100 people and ask each of these to give her the names of other Indians in the

area whom they knew. The respondents would also be asked to characterize themselves and the

people whose names they supplied on a 0–10 scale, where 10 is “strongly Indian-identified,” 5 is

“moderately Indian-identified,” and 0 is “not at all Indian identified.” Most of the original 100

people sampled would be expected to characterize themselves near 10 on the scale, given that

they belonged to an Indian community organization. The researcher then planned to sample 100

people from the combined lists of all the people referred to by the first group, and then repeated

the process twice more to obtain 400 people in total.

Describe how you would use the data from these 400 people to estimate, and get an uncertainty for

your estimate of, the prevalence of drug abuse problems among American Indians living in New

York City. You must account for the bias and dependence of the nonrandom sampling method.

2. Missing data imputation problems

The instructor can lead the class in a discussion of some missing data problems. To start, students

divide into groups of four, and each group should come up with a problem they care about involving

missing data. Missingness can arise for many reasons, including survey nonresponse, censoring

(for example, not knowing the duration of an event because it hasn’t ended yet), incomplete

measurement (for example, economic data not being available in all countries for all years of a

dataset), and others. After the groups of four have discussed for a couple of minutes, the instructor

reconvenes the class to discuss a few of their examples, using this as an opportunity to bring in the

ideas of Sections 17.3–17.6 of Regression and Other Stories.

This activity is relevant for the week’s reading on missing-data imputation, and it relates to the

course as a whole in calling attention to an important practical challenge in applied statistics.

32Teresa Evans-Campbell, Taryn Lindhorst, Bu Huang, and Karina Walters (2006), Interpersonal violence in the lives

of urban American Indian and Alaska Native women: Implications for health, mental health, and help-seeking, American

Journal of Public Health 96, 1416–1422.
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4.20 How can flipping a coin help you estimate causal effects?

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Varying Potential outcomes Data analysis Average Randomization

treatment for basketball for basketball treatment and ethics

effects study activity effects

Ballot- Potential outcomes Sample and Uncertainty Assumptions

order for ballot-order population in treatment in randomized

effects comparisons average effects effects experiments

Reading

Chapter 18 of Regression and Other Stories: Causal inference and randomized experiments

Pre-class warmup assignments

1. Average causal effects

Consider the following hypothetical table of pre-treatment predictor, treatment, and potential

outcomes:
Potential outcomes

Unit 8 Age, G8 Treatment, I8 ~0
8

~1
8

Audrey 40 0 140 135

Anna 45 1 140 135

Bob 50 1 150 140

Bill 55 0 150 140

Caitlin 60 0 160 155

Cara 65 0 160 155

Dave 70 1 170 160

Doug 75 1 170 160

(a) What is the treatment effect for Audrey?

(b) What is the sample average treatment effect?

(c) What is the estimated average treatment effect, if it is estimated by a simple regression of the

observed outcome, ~, on the treatment indicator, I?

2. Simulate randomized experiments in R

Consider the following code to simulate a randomized experiment, starting with a vector x

representing a pre-treatment predictor and vectors y0 and y1 representing potential outcomes. In

a real experiment, we would not know both y0 and y1, but this sort of simulation can be useful to

understand the principles.

n <- length(x)

z <- sample(...)

y <- ifelse(z==0, y0, y1)

expt <- data.frame(x, y, z)

fit <- stan_glm(y ~ x + z, data=expt)

print(fit)

The coefficient for z in this fitted model is the estimated treatment effect. Assume = = 100.
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In the above code, the line z <- sample(...) is a placeholder. Replace it with correct code for

each of the following scenarios:

(a) Completely randomized experiment: 50 get treatment, 50 get control.

(b) Complete randomization but with 33 getting treatment and 67 getting control.

(c) Random assignment with unequal probabilities, where the probability of getting the treatment

is logit−1 (G).

Homework assignments

1. (a) Bias in deterministic imputation (Exercise 17.4 of Regression and Other Stories)

Suppose you are imputing missing responses for income in a social survey of American

households, using for the imputation a regression model given demographic variables. Which

of the following two statements is basically true?

i. If you impute income deterministically using a fitted regression model (that is, imputing

using -V rather than -V + n), you will tend to impute too many people as rich or poor:

a deterministic procedure overstates your certainty, making you more likely to impute

extreme values.

ii. If you impute income deterministically using a fitted regression model (that is, imputing

using -V rather than -V+ n), you will tend to impute too many people as middle class: by

not using the error term, you’ll impute too many values in the middle of the distribution.

2. (a) Designing an experiment (Exercise 18.1 of Regression and Other Stories)

Suppose you are interested in the effect of the presence of vending machines in schools on

childhood obesity. What controlled experiment would you want to do (in a world without

ethical, logistical, or financial constraints) to evaluate this question?

(b) Designing an experiment with ethical constraints (Exercise 18.2 of Regression and Other

Stories)

Suppose you are interested in the effect of smoking on lung cancer. What controlled experiment

could you plausibly perform (in the real world) to evaluate this effect?

(c) In pairs: Working through your own example (Exercise 17.11 of Regression and Other Stories)

Continuing the example from the final exercises of the earlier chapters, perform multiple

imputation for missing data (in earlier analyses, you may have just excluded cases with

missingness) and then compare one of your earlier regression results to what you obtain with

the imputed datasets.

Stories

1. Treatment effect depends on the population: coronavirus example

Part of designing a study is accounting for uncertainty in effect sizes. Unfortunately, there is a

tradition in clinical trials of making optimistic assumptions in order to claim high power. Here is

an example that came up in March, 2020.33 A doctor was designing a trial for an existing drug

that he thought could be effective for high-risk coronavirus patients. He contacted us to check

his sample size calculation: under the assumption that the drug increased survival rate by 25

percentage points, a sample size of = = 126 would assure 80% power. (With 126 people divided

evenly in two groups, the standard error of the difference in proportions is bounded above by√
0.5 ∗ 0.5/63 + 0.5 ∗ 0.5/63 = 0.089, so an effect of 0.25 is at least 2.8 standard errors from

zero, which is the condition for 80% power for the comparison.) When we asked the doctor

33See Jon Zelner, Julien Riou, Ruth Etzioni, and Andrew Gelman (2021), Accounting for uncertainty during a pandemic,

Patterns 2, 100310.
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Hypothetical scenario of 1000 people:

• 300 would live either way

• 450 would die either way

• 250 would be saved by the treatment

Average treatment effect: 25 percentage points

Figure 99 Hypothetical scenario of a potentially lifesaving treatment with a 25 percentage point effect. We

display this diagram to demonstrate to students that this does not represent “a 25 percentage point benefit” for

each patient; rather, it’s a benefit for 25% of the patients.

how confident he was in his guessed effect size, he replied that he thought the effect on these

patients would be higher and that 25 percentage points was a conservative estimate. At the same

time, he recognized that the drug might not work. We asked the doctor if he would be interested

in increasing his sample size so he could detect a 10 percentage point increase in survival, for

example, but he said that this would not be necessary, because if it did work, he thought it would

increase the survival rate by at least 25 percentage points.

It might seem reasonable to suppose that a drug might either have a large effect or not work at all.

But this vision of uncertainty has problems. Suppose, for example, that the survival rate was 30%

among the patients who do not receive this new drug and 55% among the treatment group. Then

in a population of 1000 people, it could be that the drug has no effect on the 300 of people who

would live either way, no effect on the 450 who would die either way, and it would save the lives

of the remaining 250 patients. There are other possibilities consistent with a 25 percentage point

benefit—for example the drug could save 350 people while killing 100—but it makes sense to

stick with the simple scenario for now. In any case, the point is that the posited benefit of the drug

is not “a 25 percentage point benefit” for each patient; rather, it’s a benefit for 25% of the patients.

In explaining this to the class, the instructor can construct on the board the chart shown in Figure

99 and elaborate as necessary.

From that perspective, once we accept the idea that the drug works on some people and not

others—or in some comorbidity scenarios and not others—we realize that “the treatment effect”

in any given study will depend entirely on the patient mix. There is no underlying number

representing the effect of the drug. Ideally one would like to know what sorts of patients the

treatment would help, but in a clinical trial it is enough to show that there is some clear average

effect. The point is that if you consider the treatment effect in the context of variation between

patients, this can be the first step in a more grounded understanding of effect size.

This story relates to the week’s reading as an example where the potential-outcome framework

is directly helping us understand what is going on.34 It is relevant to the course as a whole in

connecting this model of causal inference to experimental design in a context of varying treatment

effects, which in turn relates to more general issues in experimental design and extrapolation.

2. Effects of ballot order on voting

Did Donald Trump win the 2016 election because his name came first in the ballot in key states?

We’re moderately skeptical, but let’s look at the evidence.35

34See also Andrew Gelman (2021), A counterexample to the potential-outcomes model for causal inference, https:

//statmodeling.stat.columbia.edu/2021/07/26/causal-counterexample/.

35See Andrew Gelman (2017), Did Trump win because his name came first in key states? Maybe, but I’m doubtful,

https://statmodeling.stat.columbia.edu/2017/02/27/name-first-doubtful/, Andrew Gelman (2018), A Bayesian take on ballot

order effects, https://statmodeling.stat.columbia.edu/2018/11/21/bayesian-take-ballot-order-effects/, Andrew Gelman (2019),

Ballot order update, https://statmodeling.stat.columbia.edu/2019/04/25/ballot-order-update/, and Andrew Gelman (2019),

Ballot order effects in the news; I’m skeptical of the claimed 5% effect, https://statmodeling.stat.columbia.edu/2019/11/15/

ballot-order-effects-in-the-news-im-skeptical-of-the-claimed-5-effect/.
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The claim came from a BBC news report in early 2017:36

“One of the world’s leading political scientists believes Donald Trump most likely won the

US presidential election for a very simple reason . . . his name came first on the ballot in

some critical swing states.

Jon Krosnick has spent 30 years studying how voters choose one candidate rather than

another, and says that ‘at least two’ US presidents won their elections because their names

were listed first on the ballot, in states where the margin of victory was narrow. . . . ‘There

is a human tendency to lean towards the first name listed on the ballot,’ says Krosnick, a

politics professor at Stanford University. ‘And that has caused increases on average of about

three percentage points for candidates, across lots of races and states and years.’ . . . When

an election is very close the effect can be decisive, Krosnick says—and in some US states,

such as Pennsylvania, Michigan and Wisconsin, the 2016 election was very close.”

As noted in the news article, Trump seems to have been listed first on the ballot in Michigan and

Wisconsin.

What about the other close states in that election? We looked up their ballot rules on the internet.

In Minnesota, it looks like Trump was first on the ballot, and he did almost come from behind to

win that state in 2016.

Florida and Pennsylvania appeared to list the candidate of the governor’s party first, which would

put Trump first in Florida and Clinton first in Pennsylvania. New Hampshire rotates candidate

name order, which would imply no large aggregate effect there.37

Suppose ballot order gave Trump the win in Michigan, Wisconsin, and Florida. That’s 16+10+29 =

55 electoral votes. On the other side, there were no close states that Clinton won where she had a

ballot-order advantage. Take away 55 of Trump’s electoral votes and he no longer has the victory

(assuming all electoral voters voted as pledged). We tend to think of all these little things as

averaging out, but they don’t have to. The number of swing states is small.

So, yeah, maybe Krosnick is right on this one. It all comes down to Florida: if the ballot-order

effect were enough to swing that state, it also likely would have swung the closer elections in

Michigan and Wisconsin.

In 2016, Trump beat Clinton in Florida by 1.2% of the vote. Could ballot order have been enough

to cause a 1.2% swing? Maybe so, maybe not. The research is mixed. Analyzing data from

California elections where a rotation of candidate orders was used across assembly districts, a

study by Krosnick and others found large effects including in the 2000 presidential race. But a

different analysis of California elections a few years later concluded that “in general elections,

ballot order significantly impacts only minor party candidates, with no detectable effects on

major party candidates.”38 The authors of that California study also point out that the analysis of

Krosnick et al. is purely observational. That said, much can be learned from observational data.

Krosnick et al. analyzed data from the 80 assembly districts but it doesn’t look like they adjusted

for previous election results in those districts, which would be the obvious thing to do in such an

analysis. So their problem was not so much in using observational data but in not adjusting for a

key pre-treatment predictor.

Ballot-order effects have been studied using various data. An analysis of Australian elections

36BBC News (2017), Did Trump win because his name came first in key states?, https://www.bbc.com/news/

magazine-39082465/.

37Data from New Hampshire are analyzed by Bo MacInnes, Joanne Miller, Jon Krosnick, Clifton Below, and Miriam

Lindner (2021), Candidate name order effects in New Hampshire: Evidence from primaries and from general elections with

party column ballots, PLoS One 16, e0248049. However, we are not convinced by their conclusions regarding name-order

effects in the general elections for president.

38Daniel Ho and Kosuke Imai (2008), Estimating causal effects of ballot order from a randomized natural experiment: The

California alphabet lottery, 1978–2002, Public Opinion Quarterly 72, 216–240.
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found that “being placed first on the ballot increases a candidate’s vote share by about 1 percentage

point.”39 A study of local contests in the United States found ballot order effects of 4 to 5

percentage points on city council and school board elections, but this is not so relevant for the

presidential race.40 A literature search found many papers on ballot-order effects but mostly on

local elections or primary elections, where such effects would be expected to be larger. Some of

the research goes back to the early 1900s.41

So, putting all the evidence together: what do we think? As noted above, it all comes down to

Florida. In 2000, Florida was extremely close—the best estimate has Gore winning by only about

30 000 votes—according to political scientist Walter Mebane, the votes were lost “primarily due

to defective election administration in the state”—and had ballot order been randomized Gore

could well have won by even more, enough for the state to have counted in his favor in the electoral

college.42

In 2016, maybe, maybe not. Based on the literature we’ve seen, a swing of 1 percentage point

seems to be on the border of what might be a plausible ballot-order effect for the general election

for president, maybe a bit on the high end given our current level of political polarization. So

we think Krosnick is overstating the case, but it is just possible that the ballot order effects were

large enough that, had the ballots been randomized, Clinton could have won Florida as well as

Michigan, Wisconsin, and thus the electoral college.

This story is relevant to the week’s reading because it demonstrates the potential-outcome model

of causality: causal inference is about predicting what would’ve happened under alternative states

of the world. It relates to the course as a whole in that we sift through results from various studies

of different data sources in order to adjudicate a research and policy claim.

Class-participation activities

1. Potential outcomes and treatment assignments for basketball training

Chapter 18 of Regression and Other Stories has a recurring example with a table of pre-treatment

variables G, treatments I, and potential outcomes ~0 and ~1 for a hypothetical blood pressure study

with 8 people. As a class-participation activity, we set up a similar structure with the students in

our class, using an example of sports training.

We explain to the class that we would be setting up a potential-outcome table for a hypothetical

sports example as displayed in Figure 100. Students are told to imagine themselves going to

the basketball court in a month and taking 50 free throws, with ~0 being the number of shots

they would make if they do no preparation and ~1 being the number of shots they would make if

they were to go to the court and practice for 15 minutes each day for a month. This is not a true

experiment because we are asking students to guess how they might respond—we are not actually

performing the treatments or measuring the outcome. The point here is to have that full table to

demonstrate the principles of causal inference. We ask students to complete the exercise with

a pre-treatment variable, an assessment of their athleticism on a 1–10 scale. We give them the

URL for a Google form asking their name, age, self-assessed athleticism, and the two potential

outcomes; we then download the data and project all the information on to the screen, where it

remains during our discussion.

The next step is to consider several different designs—approaches for assigning treatment or

control to the participants in this hypothetical experiment. For each design, we compute the simple

39Amy King and Andrew Leigh (2009), Are ballot order effects heterogeneous?, Social Science Quarterly 90, 71–87.

40Marc Meredith and Yuval Salant (2013), On the causes and consequences of ballot order effects, Political Behavior 35,

175–197.

41See R. Darcy and Ian McAllister (1990), Ballot position effects, Electoral Studies 9, 5–17.

42Walter Mebane (2004), The wrong man is President! Overvotes in the 2000 presidential election in Florida, Perspectives

on Politics 2, 525–535.
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Potential outcomes, ~:

• ~1: number of free throws you make out of 50 tries, if I = 1

• ~0: number of free throws you make out of 50 tries, if I = 0

Treatment, I:

• I = 1: practice for 15 minutes each day for a month

• I = 0: no practice

Pre-treatment predictors, G:

• Age

• Self-assessed athleticism (on 1–10 scale)

Figure 100 Outline of a hypothetical experiment on sports training, used as an example of potential outcomes.

We display this outline to students to help them understand the different variables in the model.

estimate ~̄1 − ~̄0 and its standard error. But we first calculate the true average treatment effect by

averaging the values of ~1 − ~0 for everyone in the class. This is something that would not usually

be known, because in general it is not possible to give anyone both treatments.

We then consider some designs, each of which can be implemented in R:

• An independent randomization in which each participant is equally likely to receive treatment

or control. To get things started, we simulated this basic design, computed the resulting

~̄1 − ~̄0 and its standard errors, and compared this result to the students’ expectations.

• A biased treatment assignment where participants get to decide whether to do the treatment

or the control. It seems plausible that people who are more athletic would be more

likely to do regular practices, and we can simulate such a design using a rule such as

Pr(I = 1) = logit−1 (G − 5.5). We ask students how they think this will bias the treatment

estimate: What direction will the bias be and how large? We then simulate this treatment

assignment rule, compute the resulting ~̄1 − ~̄0 and its standard errors, and compare the result

to the students’ expectations.

• We next construct a rule that’s biased in the other direction. Suppose the treatment is not chosen

by the participants but instead is assigned by a coach, who gives the practice to those who

seem to really need it. This can be simulated using the rule Pr(I = 1) = logit−1 (−(G − 5.5)).
We again ask the class to guess the direction and magnitude of the bias and follow up with

the simulation.

• What about an alternating design, where participants are alternately given control and

treatment, using the order in which the forms were returned?

• If there is time, students can be asked if there are any other designs they’d be interested in

considering, for example a non-randomized design without a known treatment assignment

rule.

This activity relates to the week’s reading by bringing to life the contingent nature of potential

outcomes. It relates to the course as a whole by showing the connection between biased data

collection and biased inference.

2. Potential outcomes and randomization

A class can experience the sampling distribution of a randomized experiment by having each pair

43Jim Saunders (2020), Court refuses to reconsider ballot order ruling, https://cbs12.com/news/local/

court-refuses-to-reconsider-ballot-order-ruling/.
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Potential outcomes, ~:

• ~1: Republican vote share in congressional election, if I = 1

• ~0: Republican vote share in congressional election, if I = 0

Treatment, I:

• I = 1: Republican is listed first on the ballot

• I = 0: Democrat is listed first on the ballot

Pre-treatment predictor, G:

• Republican vote share in most recent contested congressional election

Figure 101 Structure of a hypothetical study to estimate the effect of ballot order on congressional election

outcomes.

dist r2020 rprev yearprev

1 0.655 0.671 2018

2 1.000 0.674 2018

3 0.571 0.576 2018

4 0.611 0.668 2018

5 0.349 0.332 2018

. . .

dist y0 y1

1 0.635 0.655

2

3 0.551 0.571

4 0.591 0.611

5 0.329 0.349

. . .

dist y0 y1 z y

1 0.635 0.655 1 0.655

2

3 0.551 0.571 0 0.551

4 0.591 0.611 0 0.591

5 0.329 0.349 1 0.349

. . .

Figure 102 (a) First few rows of data from the file florida2020data.csv showing the Republican vote share

for each of the state’s 27 U.S. congressional districts in 2020, along with the Republican vote share in that

district in the most recent previous contested congressional election, and the year of that election. In most

cases, the most recent contested election occurred in 2018, but in some districts it was in 2016 or 2014. (b)

Potential outcomes under the control (Democratic candidate listed first on the ballot in that district) or treatment

(Republican listed first), under the assumption that the treatment effect is exactly 2% of the vote in every district,

excluding the election in district 2, which was uncontested. (c) Possible outcome of an experiment in which

ballot position is assigned randomly by district.

of students perform their own experiment on the computer and then comparing the results. For

example, consider a hypothetical ballot-order effect in Florida. In that state, the candidate of the

governor’s party is listed first on all ballots.43

But suppose that Florida followed California’s rule and randomly chose the order of candidates

in districts.44 This would be fairer; also it would provide data that would allow us to estimate

ballot-order effects. To get a sense of this, we constructed a dataset of Florida’s 27 congressional

districts in the 2020 election that you can use as the basis for a simulated experiment.

The instructor can start by displaying Figure 101, which places the problem in the potential-outcome

framework. The next step is to input the data and take a look.

data2020 <- read.csv(paste0(

"http://www.stat.columbia.edu/~gelman/regression_course/",

"florida2020data.csv"

))

print(data2020)

The left panel of Figure 102 shows the first few rows of the dataset, which has district number,

Republican share of the two-party vote in 2020, Republican vote share in that district in the most

recent previous contested congressional election, and the year of that election. In most cases, the

most recent contested election occurred in 2018, but in some districts it was in 2016 or 2014.

44California Secretary of State (2015), Randomized alphabet, https://www.sos.ca.gov/elections/randomized-alphabet/; see

also Darren Grant (2016), The ballot order effect is huge: Evidence from Texas, Public Choice 172, 441–442.
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In this activity, students will consider alternative outcomes in 2000 under different assignments of

ballot order. In doing this, set aside district 2 and another district that had an uncontested election

in 2020, as there is no ballot order effect if there is only one major-party candidate. It is simplest

to with a smaller dataset including only the elections that were contested by both parties in 2020:

contested <- (data2020$r2020 > 0) & (data2020$r2020 < 1)

data <- data2020[contested,]

Next, potential outcomes can be defined under the assumption that being listed first on the ballot

is worth 1% of the vote. In that case, switching the ballot order in a congressional race from

Republican first to Democrat first would decrease Republican vote share by 2%. You can define

the outcome under the control condition ~0 if the Democratic candidate had been listed first on the

ballot and the treatment condition ~1 if the Republican had been listed first, which is what actually

happened in the Florida races:

data$y1 <- data$r2020

data$y0 <- data$y1 - 0.02

The center panel of Figure 102 shows the result for the first few districts in our dataset. You can

then simulate a randomized treatment assignment and the resulting election outcome:

data$z <- rbinom(nrow(data), 1, 0.5)

data$y <- ifelse(data$z==1, data$y1, data$y0)

The first line of code assigns the treatment randomly; the second line chooses the appropriate

potential outcome to be observed. The right panel of Figure 102 shows one possible result.

The way we do this in class is to share the URL of the data file and go through these steps on our

computer, displaying on the screen, and then asking students to pair up, and each pair should go

into R, copy in the code, and simulate their own experiment on the 25 Florida districts that were

contested in 2020.

Each pair, once they have simulated the treatment assignment and created the observed ~, should

estimate the treatment effect. Each pair can then announce their estimate and standard error.

Here are two ways of estimating the treatment effect given data ~ (but not the potential outcomes

~0 and ~1, as that would be cheating). First is the simple difference between treatment and control

groups, equivalently the regression of the outcome on the treatment indicator:

fit <- stan_glm(y ~ z, data=data, refresh=0)

print(fit, digits=2)

We can do better by adjusting for the pre-treatment variable:

data$x <- data$rprev

fit2 <- stan_glm(y ~ z + x, data=data, refresh=0)

print(fit2, digits=2)

Figure 103 shows the sorts of results you can expect to see. In this case, the pre-treatment variable

G is a very strong predictor—past results are a good predictor of future elections—and this can be

seen in the smaller standard error for I after adjusting for G and also the much smaller residual

standard deviation.

You can also do a similar simulation but replacing the constant 2% treatment effect by an effect

that varies between 0 and 4% of the vote:

data$y0 <- data$y1 - runif(nrow(data), 0, 0.04)

data$y <- ifelse(data$z==1, data$y1, data$y0)

print(stan_glm(y ~ z, data=data, refresh=0), digits=2)

print(stan_glm(y ~ z + x, data=data, refresh=0), digits=2)
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family: gaussian [identity]

formula: y ~ z

observations: 25

predictors: 2

------

Median MAD_SD

(Intercept) 0.53 0.04

z 0.08 0.05

Auxiliary parameter(s):

Median MAD_SD

sigma 0.13 0.02

family: gaussian [identity]

formula: y ~ z + x

observations: 25

predictors: 3

------

Median MAD_SD

(Intercept) 0.07 0.02

z 0.01 0.01

x 0.89 0.04

Auxiliary parameter(s):

Median MAD_SD

sigma 0.02 0.00

Figure 103 Estimating the effect of a treatment (in this case, ballot order) on Republican vote share in Florida

congressional elections based on a hypothetical experiment. This figure, to be displayed to the class, shows two

estimates: (a) regression of outcome on treatment indicator, which is equivalent to average difference between

treatment and control groups; (b) regression also adjusting for pre-treatment variable (in this case, Republican

vote share in a previous election). From our construction of the data, we know that the true treatment effect

is −0.02, but the key point here is that the estimated treatment effect (the coefficient of I) has a much lower

standard error after adjusting for G.

This activity relates to the week’s reading as an example of potential outcomes and randomized

experiments. It relates to the course as a whole by illustrating the way that such experiments can

be used to estimate a causal effect, and also demonstrating the challenges of such estimation when

the effect size is small, data are variable, and the sample size is low.

Computer demonstrations

1. Data analysis for the basketball training activity

Here is the code for cleaning and analyzing the data collected from students in the potential

outcomes activity on page 242. The demonstration starts with the data file from the students’

survey responses and then goes from there.

# Read in and clean data

data <- read.csv("Potential outcomes sports training example.csv")

n <- nrow(data)

x <- data[,"x...Athleticism..1...not.athletic.to.10...very.athletic."]

y1 <- data[,"y1...Number.of.shots..out.of.50..you.would.make.with.training"]

y0 <- data[,"y0...Number.of.shots..out.of.50..you.would.make.with.NO.training"]

true_effect <- mean(y1 - y0)

print(true_effect)

# Flip coin to assign treatment or control to each student

z <- rbinom(n, 1, 0.5)

y <- ifelse(z==1, y1, y0)

minidata <- data.frame(x, y, z)

# Simple comparison and se

est <- mean(y[z==1]) - mean(y[z==0])

s1 <- sd(y[z==1])

s0 <- sd(y[z==0])

n1 <- sum(z==1)

n0 <- sum(z==0)

se <- sqrt(s1^2/n1 + s0^2/n0)
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print(c(est, se))

# Equivalently, run regression and look at coef and se for z

fit <- stan_glm(y ~ z, data=minidata, refresh=0)

print(fit)

# Biased treatment assignment

curve(invlogit(x - 5.5), from=1, to=10)

p_treat <- invlogit(x - 5.5)

z <- rbinom(n, 1, p_treat)

y <- ifelse(z==1, y1, y0)

minidata2 <- data.frame(x, y, z)

fit2 <- stan_glm(y ~ z, data=minidata2, refresh=0)

print(fit2)

# Adjust for pre-treatment variable: this estimate should be better (on average).

fit2a <- stan_glm(y ~ z + x, data=minidata2, refresh=0)

print(fit2a)

# Biased in the other direction

curve(invlogit(-(x - 5.5)), from=1, to=10)

p_treat <- invlogit(-(x - 5.5))

z <- rbinom(n, 1, p_treat)

y <- ifelse(z==1, y1, y0)

minidata3 <- data.frame(x, y, z)

fit3 <- stan_glm(y ~ z, data=minidata3, refresh=0)

print(fit3)

# Adjust for pre-treatment variable: this estimate should be better (on average).

fit3a <- stan_glm(y ~ z + x, data=minidata3, refresh=0)

print(fit3a)

2. Sample and population average treatment effects

Consider the treatment “publicly available tutoring,” which might have less of an effect on wealthy

people who might already be drawing on other resources. Imagining that wealthy people are

nevertheless overrepresented in an experiment that assesses the impact of tutoring, you can show

how the sample average treatment effect (SATE) differs from the population average treatment

effect (PATE):

# Publicly available tutoring

n <- 1000

wealthy <- c(rep(0, 800), rep(1, 200))

treatment_effect <- ifelse(wealthy == 1, 5, 15)

print(treatment_effect)

y_0 <- rnorm(n, 100, 15)

y_1 <- y_0 + treatment_effect

pop <- data.frame(y_0, y_1)

PATE <- mean(pop$y_1) - mean(pop$y_0)

print(PATE)

# Sample, with wealthy people overrepresented

sample_n <- 50

selected <- c(sample(1:800, sample_n/2), sample(801:1000, sample_n/2))

sample <- pop[selected, ]

sample$z <- sample(c(0,1), sample_n/2, replace=TRUE)

treated <- sample$y_1[sample$z==1]
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control <- sample$y_0[sample$z==0]

SATE <- mean(treated) - mean(control)

print(SATE)

Drills

1. Average treatment effects

Suppose you run this code:

fit <- stan_glm(post_test ~ z + pre_test + z:pre_test, data=expt)

print(fit)

and get the following result:

formula: post_test ~ z + pre_test + z:pre_test

observations: 100

predictors: 3

------

Median MAD_SD

(Intercept) 23.6 10.9

z 10.4 4.0

pre_test 0.7 0.2

z:pre_test -0.4 0.3

Auxiliary parameter(s):

Median MAD_SD

sigma 20.1 1.4

You also have a data frame, pop, representing the population.

(a) Give R code to compute the estimated sample average treatment effect (SATE).

Solution: 10.4 - 0.4*mean(expt$pre_test)

(b) Give R code to compute the estimated population average treatment effect (PATE).

(c) Give R code to compute the estimated PATE among students who scored more than 50 on the

pre-test.

2. Average treatment effects with uncertainty

Suppose you run the following to estimate the effect of a treatment, I:

fit <- stan_glm(post_test ~ z + pre_test + z:pre_test, data=expt)

You also have a data frame, pop, representing the population.

(a) Give R code to compute the estimate and standard error of the sample average treatment effect

(SATE), using posterior_epred:

Solution:

expt_0 <- expt

expt_0$z <- 0

expt_1 <- expt

expt_1$z <- 1

treatment_effect <- posterior_epred(fit, newdata=expt_1) -

posterior_epred(fit, newdata=expt_0)

SATE <- rowMeans(treatment_effect)

print(c(mean(SATE), sd(SATE)))

(b) Give R code to compute the estimate and standard error of the population average treatment

effect (PATE)
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(c) Give R code to compute the estimate and standard error of the PATE among students who

scored more than 50 on the pre-test.

Discussion problems

1. Randomization and ethics

Consider a medical experiment in which people are randomly assigned to existing protocol or a

new treatment. Several ethical challenges can arise, for example: (1) the experimental treatment

could be risky; (2) from the other direction, if the new treatment is believed to be better, it could

seem unfair to give someone the control; (3) it is unclear what standard of evidence should be

required for the treatment to be deemed effective enough to be approved for public use; (4) it

is unclear how to balance risks and benefits; (5) the new treatment could be very slightly more

effective but much more expensive; (6) it must be determined how to compare to treatments that

have not been evaluated using randomized experiments. Discuss these issues, which can also

apply to educational and social experiments.

2. Assumptions in randomized experiments

Take a particular example of a randomized experiment in an area of interest to you—this could

be a real experiment that has been done, or a hypothetical experiment on some treatment or

exposure—and consider each of the following issues: ignorability, efficiency, the stable unit

treatment value assumption, external validity, internal validity, missing data, and noncompliance.
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4.21 Causal inference using regression on the treatment variable

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Pest Adjustments Benefits of Average effect Causal

control in causal pre-treatment and post- logistic

experiment inference data stratification regression

Social Average Combining Average effect Holding

penumbras treatment pre-treatment for nonlinear all else

effect predictors models equal?

Reading

Chapter 19 of Regression and Other Stories: Causal inference using regression on the treatment

variable

Pre-class warmup assignments

1. Gain scores

Consider the following hypothetical scenario of pre-treatment measurements and potential

outcomes:

G I ~0 ~1

Aurelia 11 ? 13 17

Bora 14 ? 14 16

Chen 13 ? 17 18

D’Angelo 14 ? 19 19

Eddie 9 ? 14 13

Farah 11 ? 9 10

Goldie 7 ? 13 13

Harpreet 10 ? 15 19

(a) Use R to randomly assign treatment to four out of the eight people.

(b) Given your treatment assignment, calculate the gain score �8 = ~8 − G8 for each person 8.

(c) Given the data you would see after your treatment assignment, estimate the treatment effect in

two ways, first by regressing ~ on I, then by regressing ~ on I and G.

2. Poststratification

Consider the following fitted model:

Median MAD_SD

(Intercept) 23.6 10.9

z 10.4 4.0

pre_test 0.7 0.2

z:pre_test -0.4 0.3

Auxiliary parameter(s):

Median MAD_SD

sigma 20.1 1.4

(a) What is the estimated treatment effect?



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

4.21. CAUSAL INFERENCE USING REGRESSION ON THE TREATMENT VARIABLE 251

(b) Suppose the estimated population average treatment effect is 7.1. What, then, can you say

about the population?

Homework assignments

1. (a) Average treatment effects (Exercise 18.4 of Regression and Other Stories)

The following table displays a hypothetical experiment on 8 people. Each row of the table

gives a participant and her pre-treatment predictor G, treatment indicator I, and potential

outcomes ~0 and ~1.

G I ~0 ~1

Anna 3 0 5 5

Beth 5 0 8 10

Cari 2 1 5 3

Dora 8 0 12 13

Edna 5 0 4 2

Fala 10 1 8 9

Geri 2 1 4 1

Hana 11 1 9 13

i. Give the average treatment effect in the population, the average treatment effect among

the treated, and the estimated treatment effect based on a simple comparison of treatment

and control.

ii. Simulate a new completely randomized experiment on these 8 people; that is, resample

I at random with the constraint that equal numbers get the treatment and the control.

Report your new randomization and give the corresponding answers for (a).

(b) Potential outcomes (Exercise 18.5 of Regression and Other Stories)

The following tables displays a hypothetical experiment on 2400 people. Each row specifies

a category of person, as defined by a pre-treatment predictor G, treatment indicator I, and

potential outcomes ~0, ~1. For simplicity, we assume unrealistically that all the people in this

experiment fit into these eight categories.

Category # people in category G I ~0 ~1

1 300 0 0 4 6

2 300 1 0 4 6

3 500 0 1 4 6

4 500 1 1 4 6

5 200 0 0 10 12

6 200 1 0 10 12

7 200 0 1 10 12

8 200 1 1 10 12

In making the table, we are assuming omniscience, so that both ~0 and ~1 are known for

all observations. But the (non-omniscient) investigator would only observe G, I, and ~I for

each unit. For example, a person in category 1 would have G=0, I=0, ~=4, and a person in

category 3 would have G=0, I=1, ~=6.

i. What is the average treatment effect in this population of 2400 people?

ii. Another summary is the mean of ~ for those who received the treatment minus the mean

of ~ for those who did not. What is the relation between this summary and the average

treatment effect (ATE)?

iii. Is it plausible to believe that these data came from a completely randomized experiment?

Defend your answer.

iv. For these data, is it plausible to believe that treatments were assigned using randomized

blocks conditional on given G? Defend your answer.
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2. (a) Gain scores (Exercise 19.3 of Regression and Other Stories)

In the discussion of gain-score models in Section 19.3 of Regression and Other Stories, we

noted that if we include the pre-treatment measure of the outcome in a gain score model,

the coefficient on the treatment indicator will be the same as if we had just run a standard

regression of the outcome on the treatment indicator and the pre-treatment measure. Show

why this is true.

(b) In pairs: Working through your own example (Exercise 18.18 of Regression and Other Stories)

Continuing the example from the final exercises of the earlier chapters, frame a substantive

question in terms of the effect of a binary treatment. For this example, explain what are the

outcome variable ~, the treatment variable I, the pre-treatment variables G, and the potential

outcomes ~0 and ~1.

Stories

1. Pest control experiment: estimating a multiplicative treatment effect

Years ago we were working with a group that was estimating the effect of pest control treatments.

They were planning to perform an experiment in a number of roach-infested apartments, proceeding

as follows:

(a) In each apartment, a pre-test measurement G was taken by setting out several traps and counting

the number of roaches that are captured.

(b) The apartments were randomly assigned to a treatment or control group (I = 1 or I = 0). In

the treatment group, residents were given advice on pest control and, in addition, a crew came

into the apartment to clean it, put out poison, and seal all cracks in the walls; this took a full

day and cost about $700. The control group just got the advice.45

(c) A month later, a post-test measurement ~, the number of roaches was taken in each apartment.

Figure 104 summarizes.

The efficacy of the intervention can be estimated by a regression of the post-test measurement on

the treatment indicator and the pre-test measurement. A simple linear regression, y ~ x + z,

would be a reasonable start, but it would make more sense to estimate multiplicative effects (for

example, “the treatment reduces infestation on average by 40%” rather than “the treatment reduces

infestation on average by 15 roaches”), and for that purpose it would make sense to fit a model

on the log scale, where we’d first define log_x = log(x) and log_y = log(y) and then fit

log_y ~ log_x + z. The trouble here is that some apartments have zero roaches, and you can’t

take the logarithm of 0. The data are counts, so it makes sense to fit a negative binomial model

with a logarithmic link: y ~ log_x + z, family=neg_binomial_2(link="log"), which

gives us the best of both worlds: the effect is on the multiplicative scale (just exponentiate the

regression coefficient; for example if the coefficient of I is −0.30, then the treatment effect is

exp(−0.30) = 0.74, so the treatment reduces the number of roaches by 26%, on average), and we

can model the data as is, including zero cases.

There’s still a problem here for any cases with zero roaches in the pre-treatment measurement,

because it’s not possible to take log(G) if G = 0. In practice this might not be a problem because

any apartments being included in a roach-control experiment probably will have a high level of

infestation at the beginning of the study. Just in case, though, we can work with log(G + 1) as our

predictor. This is a sloppy solution—really we’d like to use what is called a measurement-error

model, where we keep log(G) as our regression predictor but consider the observed number of

roaches as a noisy measure of G. But that sort of model goes beyond the scope of this course.

This story relates to the week’s reading by demonstrating a real experiment with pre-test, treatment,

45Andrew Gelman (2000), Should we take measurements at an intermediate design point?, Biostatistics 1, 27–34.
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Potential outcomes, ~:

• ~1: number of roaches in your apartment, if I = 1

• ~0: number of roaches in your apartment, if I = 0

Treatment, I:

• I = 1: cleaning/poison/sealing and pest control advice

• I = 0: pest control advice

Pre-treatment predictor, G:

• Number of roaches measured before treatment

Figure 104 Outline of an experiment on cockroach infestation. We display to the class to reinforce the sequence

of pre-treatment variables, treatment assignment, and potential outcomes.

and post-test measurements. It is relevant to the course as a whole in combining issues of data

collection and measurement with modeling, inference, and decision making.

2. Social penumbras and causal effects

The political influence of a group is typically explained in terms of its size, its geographic

concentration, or the wealth and power of the group’s members. This example introduces another

dimension, the “penumbra,” defined as the set of individuals in the population who are personally

familiar with someone in that group. Distinct from the concept of an individual’s social network,

penumbra refers to the circle of close contacts and acquaintances of a given social group. Figure

105 illustrates.46

In 2013 we conducted a survey of American adults, asking them how many people they knew

in each of 14 groups, separately asking about close family, close friends, and others, defined as

“people that you know their name and would stop and talk to at least for a moment if you ran

into the person on the street or in a shopping mall.” Figure 106 shows the size of the different

penumbras of each group, along with the size of the group indicated in yellow. The groups are

ordered by increasing group size. This figure can be displayed on the screen so that students can

discuss it in pairs and note whatever interesting patterns they see. We are now ready for a class

discussion. One important feature is that similarly-sized groups can have much differently sized

penumbras. Compare, for example, the sizes of the Muslim and gay penumbras. This could have

some impact on the political clout of these groups.

Figure 107 shows some statistical summaries of the survey responses for these 14 groups, along

with 8 names that we included for comparison: Rose, Emily, Bruce, Walter, Tina, and Kyle, chosen

to represent a balance of male, female, young, middle aged, and old, along with Jose and Maria to

target the Hispanic population. Students should look in pairs at these graphs and share anything

interesting that they notice.

For each respondent and each item, we created a “penumbra score” by counting 1 point for

knowing at least one friend with the relevant characteristic, at least one family member, and at

least one other person. The penumbra score is thus a number between 1 and 3. For each item,

we fit a regression predicting this penumbra score from income, education, ethnicity, and sex.

Figure 108 shows coefficients for the regression predictors. These different demographic profiles

could be related to groups’ political profiles. For example, people with high incomes and high

education are less likely to know welfare recipients, uninsured people, and unemployed people.

At the opposite end, the penumbras of National Rifle Association (NRA) members, Muslims, and

recent immigrants have high shares of upper-income and well-educated people.

46Andrew Gelman and Yotam Margalit (2020), Social penumbras predict political attitudes, Proceedings of the National

Academy of Sciences 118 (6), e2019375118.
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Acquaintances

Close friends

Core
group

Family members

Figure 105 Sketch of the social penumbra of a group in the population, which we estimate using a series of

survey questions on a sample of Americans.

Active Military Immigrant in Past 5 Yrs NRA Member Abortion in Past 5 Yrs Muslim

Gay/Lesbian Lost Job Last Year Currently Unemployed Mortgage Underwater No Health Insurance

Care for Elder Receive Govt Welfare Gun Owner Serious Health Problem

Group size (area of yellow circle) and penumbras (areas of black circles indicate close family, close family + close friends,
and close family + close friends + others known) compared to the population of American adults (light gray circle)

Figure 106 Core groups and penumbra sizes for the groups asked about in our survey, listed in increasing order

of size.

Serious Health Problem
Gun Owner

Receive Govt Welfare
Care for Elder

No Health Insurance
Mortgage Underwater
Currently Unemployed

Lost Job Last Year
Gay/Lesbian

Muslim
Abortion in Past 5 Yrs

NRA Member
Immigrant in Past 5 Yrs

Active Military
Maria
Jose

Emily
Kyle
Tina

Bruce
Rose

Walter

0 0.25 0.5 0.75 1

Proportion knowing at least one

0 5 10

Average number known

1 6 11 16 21

Overdispersion

Figure 107 Some summaries of the penumbras of the 14 groups asked about in our survey, along with 8 names

that we included for comparability to earlier research on the topic.
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High income High education White Male

−0.2 0.0 0.2 0.4 0.00 0.25 0.50 −0.4 0.0 0.4 0.8 −0.2 0.0 0.2 0.4

Serious Health Problem

Gun Owner

Receive Govt Welfare

Care for Elder

No Health Insurance

Mortgage Underwater

Currently Unemployed

Lost Job Last Year

Gay/Lesbian

Muslim

Abortion in Past 5 Yrs

NRA Member

Immigrant in Past 5 Yrs

Active Military

Figure 108 Estimated coefficients ±1 and 2 standard errors from regressions of penumbra score on indicators

for education, income, sex, and ethnicity.

In our survey, we also asked about attitudes on several issues that were related to the groups

being studied. There was a question about support of the United States using military force, a

question about whether immigration levels should be increased, decreased, or kept about the same,

a question about whether Muslims should be given extra security checks at airports, questions

about assault weapons, the legality of abortion, extension of unemployment benefits, and so on.

We were interested in seeing how entering a penumbra was predictive of changes in attitudes.

So we recontacted the survey respondents from the online panel a year later, again asking the

penumbra and issue attitude questions. For each issue question, we then computed the change in

attitude—if each question was on a 1–4 scale, the change would be something between −3 and 3.

We then fit a logistic regression on the subset of people who were not in the relevant penumbra,

predicting the change in attitude on an indicator for whether the respondent entered that penumbra

during the second wave, also adjusting for attitude in the first wave, party identification, and

demographics. The regression looks like:

stan_glm(I(attitude2 - attitude1) ~ in_penumbra2 + attitude1 + partyid +

age + male + education + black + hispanic, subset=!in_penumbra1)

The instructor should this expression on the board and go over each term with the class.

We were interested in the coefficient for in_penumbra2, that is, looking at people who were the

same at time 1 in issue attitude, partisanship, demographics, and comparing those who were not

in the penumbra of the group in question at both times 1 and 2, to those who were not in the

penumbra at time 1 and entered it at time 2. Figure 109 shows the results: most of the estimates

are positive, indicating that entering the penumbra is generally associated with a change in relevant

political attitudes, but there is wide uncertainty.

The high uncertainty makes it challenging to interpret the results. For example, entering the NRA

penumbra is associated with a shift toward opposing an assault weapons ban, but there is no clear

change associated with knowing a gun owner. Some of this can be understood as simple sampling

error, as we discuss next.

The estimates in Figure 109 are on the order of 0.05. Students should discuss in pairs to think

about what this means. The survey responses are mostly on 4-point scales, so you can interpret an

effect of 0.05 as 5% of the people shifting by 1 point on the scale, or some net shift of 5%, for

example 15% shifting in a positive direction and 10% shifting in a negative direction.

Is it plausible that effects would be so small? Maybe so. Consider that many of these are

47Justin McCarthy (2001), Record-high 70% in U.S. support same-sex marriage, https://news.gallup.com/poll/350486/

record-high-support-same-sex-marriage.aspx/.
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−0.2 −0.1 0.0 0.1 0.2

Serious Health Problem (10)

Gun Owner (5)

Receive Govt Welfare (12)

Care for Elder (11)

No Health Insurance (10)

Mortgage Underwater (9)

Currently Unemployed (8)

Lost Job Last Year (8)

Gay/Lesbian (7)

Muslim (4)

Muslim (3)

Muslim (2)

Abortion in Past 5 Yrs (6)

NRA Member (5)

Immigrant in Past 5 Yrs (4)

Immigrant in Past 5 Yrs (3)

Immigrant in Past 5 Yrs (2)

Active Military (1)

Coefs predicting change in
attitude, given entrance into the penumbra

Figure 109 For each issue item, estimated coefficient ±1 and 2 standard errors of penumbra membership in a

logistic regression predicting change in issue attitude between the two waves of the survey, given demographics

and attitude in the first wave.

high-profile issues for which most people will not change their opinion in any given year. For

example, one of the biggest shifts in opinion in recent decades was the increase in support for

same-sex marriage, an increase from 27% in 1996 to 70% in 2021, an average increase of 1.7

percentage points per year.47 Even in a fast-moving issue with real flux, the number of people

who change their views in any single year will be small. And so for most issues we would expect

much smaller changes from one year to the next.

In addition, entering a penumbra will not necessarily have a predictable effect. And penumbra

measurement is itself noisy, and some of the apparent change in penumbra membership can arise

from variation in recall.

Why are the standard errors in the fitted regressions so large? There was only a one-year gap

between the two waves of the survey. People enter penumbras all the time, but not so many in any

given year. In a survey with 1700 respondents, there might be about 800 people who are not in

a particular penumbra at time 1, and perhaps 100 of these enter the penumbra between times 1

and 2. So then our regression is comparing the 100 people in the “treatment group” with 700

“controls,” which is not a lot of data to measure something as noisy as a single issue attitude.

The wide uncertainties in Figure 109 imply a resolution limit of our study. Pointing to these

results, we ask students to discuss in pairs how the resolution could be improved. The obvious

answer is to increase the sample size, but this is costly: to divide the standard errors in half, you

need to multiply the sample size by 4. Other approaches would be to wait longer between waves

and to measure issue attitudes more carefully.

This story relates to the week’s reading in that it culminates in a regression model for causal

inference. The story relates to the course as a whole with its use of many different analyses to

capture different aspects of social science data, in this case using negative binomial regression

for the overdispersion model whose results are shown in Figure 107 and linear regression for

penumbra scores in Figure 108 and issue attitudes in Figure 109. The story also gives a lesson in

the challenges of measurement and the limitations of statistical analysis.
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Class-participation activities

1. Regression to adjust for pre-treatment characteristics

Return to the example of the potential outcomes for basketball training from page 242. In that

activity, students filled out a survey form giving their age, a self-assessment of athleticism (G, on a

1–10 scale), and their guess of the number of shots they would make in 50 tries, with (~1) and

without (~0) a month of practice. Students considered various treatment assignment mechanisms

and the biases they yielded for the treatment effect as estimated by the average difference between

treatment and control observations. This new activity continues the example with an exploration

of what happens to the bias when there is adjustment for G.

For each of several possible assignments of the treatment variable, I, you can consider three

estimates of the average treatment effect: (i) the difference ~̄1 − ~̄0, (ii) the regression of ~ on I

(which should give the same estimate as the difference), and (iii) the regression of ~ on I and G

(here looking at the coefficient on I).

Several treatment assignment rules can be considered. For each, the instructor should first lead

students in a discussion of the rule and then have them guess the direction and magnitude of

the bias under each of the three estimates. During all this time, the data from their survey are

projected on the screen, thus providing all the information necessary to compute the biases. Here

are some possible treatment assignment rules:

• Independent randomization: flipping a coin (actually, simulating random binary variables

with probability 0.5) to randomly assign treatment or control to each participant in the study.

• Complete randomization: half the participants get one treatment and half get the other.

• A biased design: participants choose treatment or control, and more athletic people are more

likely to choose to practice basketball, hence a rule such as Pr(I = 1) = logit−1 (G − 5.5).
• A rule that’s biased in the other direction: treatment or control is assigned by a coach who

gives the practice to those who seem to really need it, hence a rule such as Pr(I = 1) =

logit−1 (−(G − 5.5)).
• A design based on participants’ ages.

The basic idea is that if the design depends on a pre-treatment variable, then that variable should

be included as a regression predictor. In particular, you would expect the designs that select based

on athleticism to yield very biased estimates in the regression of ~ on I but with much less bias in

the regression of ~ on I and G.

This example relates to the week’s reading in demonstrating the value in causal inference of

adjusting for pre-treatment predictors. It relates to the course as a whole by showing a connection

between data collection and data analysis in the context of causal inference.

2. Understand the “average treatment effect”

This activity explores the idea of the average treatment effect by considering effects on individuals.48

We first describe the general problem in the context of an example and then ask students to work

in pairs to come up with their own example.

Here’s the background. In statistics and econometrics there’s lots of talk about the average

treatment effect. We’ve often been skeptical of the focus on the average treatment effect, for the

simple reason that, if you’re talking about an average effect, then you’re recognizing the possibility

of variation; and if there’s important variation (enough so that we’re talking about “the average

48From Andrew Gelman (2020), Understanding the “average treatment effect” number, https://statmodeling.stat.columbia.

edu/2020/06/30/ate/. See also Andrew Gelman, Jessica Hullman, and Lauren Kennedy (2023), Causal quartets: Different

ways to attain the same average treatment effect, https://arxiv.org/abs/2302.12878/.
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effect” rather than simply “the effect”), then maybe we care enough about this variation that we

should be studying it directly, rather than just trying to reduce-form it away.

But that’s not the whole story. Consider an education intervention. Sure, the treatment effect will

vary. But if the treatment will be applied to all the students in a school district, then, yeah, let’s

poststratify and estimate an average effect: this seems like a relevant number to know.

What we want to consider here is interpreting that number. It’s something that came up in the

discussion of growth mindset.

The reported effect size was 0.1 points of grade point average (GPA). GPA is measured on

something like a 1–4 scale, so 0.1 is not so much; indeed, one commenter wrote, “I hope all this

fuss is for more than that. Ouch.”

Actually, though, an average effect of 0.1 GPA is a lot. One way to think about this is that it’s

equivalent to a treatment that raises GPA by 1 point for 10% of people and has no effect on the

other 90%. That’s a bit of an oversimplification, but the point is that this sort of intervention might

well have little or no effect on most people. In education and other fields, we try lots of things

to try to help students, with the understanding that any particular thing we try will not make a

difference most of the time. If mindset intervention can make a difference for 10% of students,

that’s a big deal. It would be naive to think that it would make a difference for everybody: after

all, many students have a growth mindset already and won’t need to be told about it.

That’s all a separate question from the empirical evidence for that 0.1 increase. Our point here is

that thinking about an average effect can be misleading.

Or, to put it another way, it’s fine to look at the average, but let’s be clear on the interpretation.

This comes up in a lot of cases. Various interventions are proposed, and once the hype dies down,

average effects will be small. There’s no one-quick-trick or even one-small-trick that will raise

GPA by 1 point or that will raise incomes by 42% (to use one of our recurring cautionary tales).

An intervention that raised average GPA by 0.1 point or that raised average income by 4.2% would

still be pretty awesome, if what it’s doing is acting on 10% of the people and having a big benefit

on this subset. Researchers and policymakers try different interventions with the idea that maybe

one of them will help any particular person.

Again, this discrete formulation oversimplifies—it’s not like the treatment either works or doesn’t

work on an individual person. It’s just helpful to understand average effects as compositional in

that way. Otherwise you’re bouncing between the two extremes of hypothesizing unrealistically

huge effect sizes or else looking at really tiny averages. Maybe in some fields of medicine this is

cleaner because you can really isolate the group of patients who will be helped by a particular

treatment. But in social policy this is much harder. Even in marketing, efforts to target individuals

or small subpopulations are not always successful.

Having discussed all this, we ask students to work in pairs to come up with examples of individual

and average treatment effects in areas of interest to them, and then we talk about one or two of

these together as a class. This activity relates to the week’s reading by bringing specificity to

the theoretical concept of average treatment effect, and it is relevant to the course as a whole in

connecting mathematical models to numbers from specific applications.

Computer demonstrations

1. Benefits of pre-test measurements

Consider a hypothetical study of interest to the class, for example a political persuasion experiment

that will shift opinions on average by 5 percentage points. To do the simulation you need to create

a fake world. For this particular example, assume that, at baseline, 40% of the population supports
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some particular issue and that, in the absence of the treatment, people’s opinions will not change.

We further assume that the treatment will shift 5% of the people from No to Yes.

Consider an experiment in which 1000 people get the treatment and 1000 are in the control group.

n <- 1000

se <- sqrt(0.5^2/n + 0.5^2/n)

print(se)

The standard error of this experiment is 0.022, or 2.2 percentage points. Let’s simulate some fake

data and do the analysis:

y_0 <- rbinom(1, n, 0.40)

y_1 <- rbinom(1, n, 0.45)

diff <- y_1/n - y_0/n

print(c(diff, se))

As discussed in Section 7.3 of Regression and Other Stories, this comparison can be expressed as

a regression. First simulate the 2000 responses:

z <- rep(c(0,1), c(n,n))

y <- rbinom(2*n, 1, 0.40 + 0.05*z)

fake <- data.frame(y, z)

Print this data frame in the console to check that it makes sense. Then fit the regression:

fit <- stan_glm(y ~ z, data=fake, refresh=0)

print(fit, digits=3)

The errors in this regression are not normally distributed but we don’t really care for the purpose

of estimating the average effect.

That is all fine, but you can do better if opinions are first measured before the experiment and then

used as a pre-treatment predictor. Consider the following hypothetical population:

Share of Pre-test Post-test response

population response if control if treated

0.40 Yes Yes Yes

0.55 No No No

0.05 No No Yes

The last row in this table represents the persuadables. From a statistical perspective, this is a

best-case scenario, but let’s go with it. Now simulate some data. Let G be the pre-treatment

opinion:

x <- rbinom(2*n, 1, 0.40)

z <- rep(c(0,1), c(n,n))

y <- ifelse(z==0, x, ifelse(x==1, 1, rbinom(n, 1, 0.05/0.60)))

fake <- data.frame(x, y, z)

This was kind of yucky, but it did the job. And now it’s time to fit the regression:

fit_1 <- stan_glm(y ~ z, data=fake, refresh=0)

print(fit_1, digits=3)

fit_2 <- stan_glm(y ~ x + z, data=fake, refresh=0)

print(fit_2, digits=3)

The standard error is now much lower.
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This is the best case, where the pre-test is a nearly perfect measurement, but still. The instructor

can discuss how this works and then ask the students why this sort of pre-test measurement is not

always done in a comparative study.

This demonstration relates to the week’s reading in the connection between data and the underlying

object of study. It relates to the course as a whole in linking data collection to analysis.

2. Combining pre-treatment predictors

The following code shows a simple example of combining several pre-treatment predictors into a

single score. The first step is to fit a linear model with no interactions. We next use the coefficients

from the fitted model to create the combined score. Finally, we include the combined score along

with the treatment indicator in a regression with interactions. The advantage of this approach

is that the final model is relatively simple, as long as we are comfortable interpreting the linear

combination of the pre-treatment predictors as a summary score.

We demonstrate with simulated data:

n <- 100

z <- rnorm(n, 0, 1)

x2 <- rnorm(n, 0, 1)

x3 <- rnorm(n, 0, 1)

x4 <- rnorm(n, 0, 1)

x5 <- rnorm(n, 0, 1)

b0 <- 0; b1 <- 1; b2 <- 2; b3 <- 3; b4 <- 4; b5 <- 5

sigma <- 10

y <- b0 + b1*z + b2*x2 + b3*x3 + b4*x4 + b5*x5 + rnorm(n, 0, sigma)

fake <- data.frame(z, x2, x3, x4, x5, y)

fit <- stan_glm(y ~ z + x2 + x3 + x4 + x5, data=fake, refresh=0)

print(fit)

b_hat <- coef(fit)

fake$u <- b_hat["x2"]*x2 + b_hat["x3"]*x3 + b_hat["x4"]*x4 + b_hat["x5"]*x5

fit_2 <- stan_glm(y ~ z + u, data=fake, refresh=0)

print(fit_2)

fit_3 <- stan_glm(y ~ z + u + z:u, data=fake, refresh=0)

print(fit_3)

Drills

1. Average treatment effect and poststratification

For each of these models, give R code to compute the sample average treatment effect, ignoring

any uncertainty in the coefficient estimates. In all examples, I is a binary variable and you want to

compare I = 0 to I = 1. Further suppose that the data for the regression are in a data frame, expt.

(a) ~ = 1 + 2G + 3I + 4GI

Solution: mean(3 + 4*expt$x)

(b) ~ = 1 + 2G + 3I

(c) ~ = 1 + 2G1 + 3G2 + 4G1G2 + 5I

(d) ~ = 1 + 2G1 + 3G2 + 4G1G2 + 5I + 6G1G2I

2. Average treatment effect for nonlinear models

For each of these models, give R code to compute the sample average treatment effect, ignoring

any uncertainty in the coefficient estimates. In all examples, I is a binary variable and you want to

compare I = 0 to I = 1. Further suppose that the data for the regression are in a data frame, expt.
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(a) Pr(~ = 1) = logit−1 (1 + 2G + 3I)
Solution: mean(invlogit(1 + 2*expt$x + 3) - invlogit(1 + 2*expt$x))

(b) Pr(~ = 1) = logit−1 (1 + 2G + 3I + 4GI)
(c) Pr(~ = 1) = logit−1 (1 + 2G1 + 3G2 + 4G1G2 + 5I)
(d) log ~ = 1 + 2G + 3I + 4GI

Discussion problems

1. Causal inference using logistic regression for a binary outcome

We have focused on using linear models to estimate causal effects, starting with the additive model,

~ = V0+V1G+V2I+error, and continuing to the interaction model, ~ = V0+V1G+V2I+V3GI+error,

with pre-treatment predictor G, treatment indicator I, and outcome measurement ~. But what if

your outcome is binary (live or die, vote or don’t vote, pass or fail, etc.)? Then it would seem

natural to model ~ given G and I using logistic regression. How would it work to estimate the

treatment effect in this way? What is the estimated causal effect? Be careful with notation.

2. Holding all else equal?

Consider the following statement from a well-known psychology researcher:49

“Education is an important determinant of income—one of the most important—but it is

less important than most people think. If everyone had the same education, the inequality of

income would be reduced by less than 10%. When you focus on education you neglect the

myriad other factors that determine income. The differences of income among people who

have the same education are huge.”

We think we know what he’s saying—if you regress income on education and other factors, and

then you take education out of the model, '2 decreases by 10%. Or something like that. Not

necessarily '2, maybe you fit the big model, then get predictions for everyone putting in the mean

value for education and look at the standard deviation of incomes or the Gini index or whatever.

Or something else along those lines.

But we have problems with the counterfactual: “If everyone had the same education . . . ” First,

if everyone had the same education, the world would be much different and we don’t see why

the regressions on which Kahneman is relying would still be valid. Second, is it even possible

for everyone to have the same education? Different students have different interests and their

educational trajectories will differ. You could imagine everyone having the same number of years

of education, but that seems like a different thing entirely.

As noted, we get the point that income is determined by lots of other factors than education, but

we think the quoted statement is too casual with the causality. And, without the causal punch, the

statement doesn’t seem so impressive. Take this as a warning about the pitfalls that can arise from

processing undigested regression results.

For discussion, consider this example in two different ways. First, suppose you are interested in

what would happen to incomes and income inequality if everyone had the same education. How

could you model or estimate this? Second, consider the descriptive research alluded to in the

quotation. How could you describe these findings in a way that conveys why they are interesting

but without using inappropriate causal language?

49Daniel Kahneman (2011), Focusing illusion, https://www.edge.org/response-detail/11984/. The discussion here is taken

from Andrew Gelman (2011), D. Kahneman serves up a wacky counterfactual, https://statmodeling.stat.columbia.edu/2011/

05/13/d_kahneman_serv/.
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4.22 Causal inference as prediction

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

No effect Components of Playing Experimental Individual

of heart an observational with least design and average

stents? study squares effects

The Study makers Don’t adjust Adjusting for Nudge

freshman vs. study for intermediate post-treatment meta-

fallacy breakers outcomes variables analysis

Reading

Chapters 18 and 19 of Regression and Other Stories again

Pre-class warmup assignments

1. Simulate potential outcomes

Consider a randomized experiment with pre-treatment variable G, treatment indicator I, and

potential outcomes ~0 and ~1. Assume that, under the control condition, outcome follows a linear

model, ~ = 0.1 + 0.2G + error. Further assume that the expected treatment effect is 0.3 + 0.4G.

Simulate a randomized experiment on 100 people in the following steps:

(a) Simulate the pre-treatment variables for the 100 people whose G values are uniformly

distributed between 0 and 10.

(b) Simulate the treatment assignment, with 50 people randomly selected to get the treatment and

50 getting the control.

(c) Simulate both potential outcomes for all 100 people, assuming independent errors that are

normally distributed with mean 0 and standard deviation 0.3.

(d) Compute the observed ~ for each person by picking the appropriate potential outcome given

the treatment assignment.

2. Regression modeling for average causal effects

Suppose you have pre-treatment variables G1, G2, treatment indicator I, and outcome ~ on a

collection of people in an observational study. Give R code to fit regression models for the

following tasks:

(a) Estimating a constant treatment effect, adjusting for G1 and G2

(b) Estimating a constant treatment effect, adjusting for G1, G2, and their interaction.

(c) Estimating a treatment effect that linearly depends on G1 and G2, adjusting for G1, G2, and their

interaction

(d) If ~ is binary, estimating a constant treatment effect on the logit scale, adjusting for G1, G2, and

their interaction

Homework assignments

1. (a) Pre-test and post-test (Exercise 19.4 of Regression and Other Stories)

100 students are given a pre-test, then a treatment or control is randomly assigned to each,

then they get a post-test. You are given the following regression model:

post_test = 0 + 1 ∗ pre_test + \ ∗ I + error,
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where I = 1 for treated units and 0 for controls. Further suppose that pre_test has mean 40

and standard deviation 15. Suppose 1 = 0.7 and \ = 10 and the mean for post_test is 50 for

the students in the control group. Further suppose that the residual standard deviation of the

regression is 10.

i. Determine 0.

ii. What is the standard deviation of the post-test scores for the students in the control group?

iii. What are the mean and standard deviation of the post-test scores in the treatment group?

(b) Causal inference using logistic regression (Exercise 19.5 of Regression and Other Stories)

Suppose you have fit a model,

fit <- stan_glm(y ~ z + age + z:age,

family=binomial(link="logit"), data=mydata)

with binary outcome y, treatment indicator z, and age measured in years. Give R code to

produce an estimate and standard error of average treatment effect in a large population, given

a vector n_pop of length 82 that has the number of people in the population at each age from

18 through 99.

2. (a) Sketching the regression model for causal inference (Exercise 19.6 of Regression and Other

Stories)

Assume that linear regression is appropriate for the regression of an outcome, ~, on treatment

indicator, I, and a single confounding covariate, G. With pen on paper, sketch hypothetical

data (plotting ~ vs. G, with treated and control units indicated by circles and dots, respectively)

and regression lines (for treatment and control group) that represent each of the following

situations:

i. No treatment effect,

ii. Constant treatment effect,

iii. Treatment effect increasing with G.

(b) Linearity assumptions and causal inference (Exercise 19.7 of Regression and Other Stories)

Consider a study with an outcome, ~, a treatment indicator, I, and a single pre-treatment

predictor, G. Draw a scatterplot of treatment and control observations that demonstrates each

of the following:

i. A scenario in which the difference in means estimate would not capture the true treatment

effect but a regression of ~ on G and I would yield the correct estimate.

ii. A scenario in which a linear regression would yield the wrong estimate but a nonlinear

regression would yield the correct estimate.

Stories

1. Apparent null effects in a study of heart stents

This example is discussed at the end of Section 3.5 of Regression and Other Stories and in more

detail in a research article in which we wrote,50

“The study [of a heart treatment called ‘stents’] included approximately 200 patients and

was notable for being a blinded experiment in which half the patients received stents and

half received a placebo procedure in which a sham operation was performed. In followup,

patients were asked to guess their treatment and of those who were willing to guess only

56% guessed correctly, indicating that the blinding was largely successful.

The summary finding from the study was that stenting did not ‘increase exercise time

50Andrew Gelman, John Carlin, and Brahmajee Nallamothu (2019), Objective Randomised Blinded Investigation With

Optimal Medical Therapy of Angioplasty in Stable Angina (ORBITA) and coronary stents: A case study in the analysis and

reporting of clinical trials, American Heart Journal 214, 54–59.
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by more than the effect of a placebo procedure’ with the mean difference in this primary

outcome between treatment and control groups reported as 16.6 seconds with a standard

error of 12.7 . . . ”

The average gain score (increase in exercise times from the beginning to end of the study) was

28.4 seconds for the treatment group and 11.8 seconds for the control group, yielding a difference

in gain scores of 16.6 seconds. Compared to the standard error of 12.7 seconds (computed using

the usual formula,

√
f2
�
/=� + f2

)
/=) , where f� and f) are the standard deviations of the gain

scores in the control and treatment groups, respectively, and =� and =) are the sample sizes), this

difference is not “statistically significant”: the estimate is less than 2 standard errors from zero.

Following usual practice, the non-statistically-significant result was characterized as a null finding.

For example, here is how the study was reported in the New York Times:51

“Heart Stents Fail to Ease Chest Pain . . . When the researchers tested the patients six weeks

later, both groups said they had less chest pain, and they did better than before on treadmill

tests. But there was no real difference between the patients, the researchers found. Those

who got the sham procedure did just as well as those who got stents. . . . ‘It was impressive

how negative it was,’ Dr. Redberg said of the new study . . . ”

However, the estimate using gain in exercise time died not make full use of the data that were

available on differences between the comparison groups at baseline. In particular, the treatment

and placebo groups differed in their pre-treatment levels of exercise time, with the treatment

group having values that were 38.0 seconds higher, on average. This sort of difference is no

surprise—randomization assures balance only in expectation—but it is important to adjust for this

discrepancy in estimating the treatment effect.

If we label ~ as the post-test outcome and G as the pre-test measure, then the estimated effect from

the gain score is,
gain score estimate = (~̄) − Ḡ) ) − (~̄� − Ḡ� ).

But this overcorrects for differences in pre-test scores, because of the familiar phenomenon of

“regression to the mean” (see Chapter 6 of Regression and Other Stories): just from natural

variation, one would expect patients with lower scores at baseline to improve, relative to the

average, and patients with higher scores to regress downward.

The optimal linear estimate of the treatment effect is,

adjusted estimate = (~̄) − V Ḡ) ) − (~̄� − V Ḡ� ),

where V is the coefficient of G in a regression of ~ on G and the treatment indicator I. The gain

score estimate is a special case of the regression estimate corresponding to V = 1. Given that

the pre-test and post-test measurements are on the same scale and we would expect them to be

positively correlated and have nearly identical variances, we can anticipate that the estimated V

will be less than 1, which will reduce the correction for difference in pre-test and thus increase

the estimated treatment effect while also decreasing the standard error. As a result, an adjusted

analysis of these data would be expected to yield a stronger estimated effect.

Indeed, this is what happened. The estimate of V from these data is 0.87, yielding an adjusted

mean difference of 21.3 (quite a bit higher than the raw difference in gain scores of 16.6) with a

standard error of 12.5 (very slightly lower than 12.7, the standard error of the difference in gain

scores). The estimate is not quite 2 standard errors away from zero: the ratio of estimate divided

by standard error is 1.7. The ?-value from this adjusted analysis is 0.09; as anticipated, it is lower

than the ? = 0.20 from the unadjusted analysis.

51Gina Kolata (2017), “Unbelievable”: Heart stents fail to ease chest pain, New York Times, 2 Nov, https://www.nytimes.

com/2017/11/02/health/heart-disease-stents.html/.
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Despite moving closer to the conventional 0.05 threshold, the ?-value of 0.09 remains above the

traditional level of significance at which one is taught to reject the null hypothesis. A potential

blockbuster reversal with an adjusted analysis—“Statistical Sleuths Turn Reported Null Finding

into a Statistically Significant Effect”—does not quite materialize.

Yet within different conventions for scientific reporting, this experiment could have been presented

as positive evidence in favor of stents. In some settings, a ?-value of 0.09 is considered to be

statistically significant.

Here is the main reason we’re telling the story of the stents experiment. It is a well-known

statistical fallacy to take a result that is not statistically significant and report it as zero, as was

essentially done here based on the ?-value of 0.20 for the primary outcome. Had this comparison

happened to produce a ?-value of 0.04, would the headline have been, “Confirmed: Heart Stents

Indeed Ease Chest Pain”? A lot of certainty seems to be hanging on a small bit of data.

Beyond exercise time, other signals from ORBITA seemed to suggest consistent improvements

in the physiological parameter of ischemia through endpoints such as fractional flow reserve,

instantaneous wave-free ratio, and stress echo. Actually, findings from the stress echo highlight a

potentially important avenue into an alternative presentation of these results. There is no question

that some physiological changes are being made by stents, with large and stable effects seen on

echo measures. As is often the case, the null hypothesis that these physical changes should make

absolutely zero difference to any downstream clinical outcomes seems farfetched. A simple way

to tackle this question is to report uncertainty intervals around the mean differences and not to

focus on whether the intervals happen to include zero.

The larger question has to be about balancing the long-term benefits of stents with risks of

the operation, and in making such decisions it is important to move beyond a simplistic binary

summary saying that the treatment works or does not work. In reality, treatment effects are variable

and there is unavoidable uncertainty about the magnitude and direction of the effect. Statistics

cannot always resolve this uncertainty, and in particular it is a mistake to conclude that an effect is

negligible or zero just because it does not reach some threshold of “statistical significance.”

This example relates to the week’s reading as an example of the application of causal inference, and

it is relevant to the course as a whole in demonstrating the challenge of moving from a statistical

analysis to larger conclusions and decisions.

2. The Freshman Fallacy: Interactions and average treatment effects

In a discussion of an article, “Women are more likely to wear red or pink at peak fertility,”

published in the journal Psychological Science in 2013, which was based on two samples—a

self-selected sample of 100 women from the Internet, and 24 undergraduates at the University of

British Columbia—we wrote,52

“[There is a problem with] representativeness. What color clothing you wear has a lot to

do with where you live and who you hang out with. Participants in an Internet survey and

University of British Columbia students aren’t particularly representative of much more

than . . . participants in an Internet survey and University of British Columbia students.”

In response, we received this in an email from a prominent psychology researcher whom we had

never met:

“Complaining that subjects in an experiment were not randomly sampled is what freshmen

do before they take their first psychology class. I really *hope* you [know] why that is an

absurd criticism—especially of authors who never claimed that their study generalized to

52Andrew Gelman (2013), Too good to be true, Slate, 24 Jul, https://slate.com/technology/2013/07/

statistics-and-psychology-multiple-comparisons-give-spurious-results.html/.
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1. Essentially no effect, with patterns in data coming from noise or measurement artifacts

2. Large and variable effects that depend strongly on the person and context

3. Large and consistent effects

Figure 110 Three scenarios for the treatment effect of the ovulation-and-clothing study. If the effect is estimated

with no interactions and then used to draw conclusions about the general population, this is equivalent to

assuming scenario 3. The instructor can project this onto the screen to help focus class discussion.

all humans. (And please spare me ‘but they said men and didn’t say THESE men’ because

you said there were problems in social psychology and didn’t mention that you had failed to

randomly sample the field. Everyone who understands English understands their claims are

about their data and that your claims are about the parts of psychology you happen to know

about).”

Just because a freshman might raise a question, that does not make the issue irrelevant! Freshmen

can be pretty thoughtful sometimes. And we hope they remain skeptical of these studies even after

they take their first psychology class. Like these freshmen, we are skeptical about generalizing to

the general population based on 100 people from the internet and 24 undergraduates.

We have is no doubt that the authors, and anyone else who found this study to be worth noting, are

interested in some generalization to a larger population—certainly not “all humans” (as claimed

by our correspondent), but some large subset of women of childbearing age, some subset that

includes college students in Canada and women of various ages who are on the Mechanical Turk

experimental platform. The abstract to the paper simply refers to “women” with no qualifications.

Why should generalization be a problem? The issue is subtle. We will elaborate on the

representativeness issue using some (soft) mathematics.53

Let \ be the parameter of interest, in this case the difference in the probability of wearing red or

pink shirts, comparing women in two different parts of their menstrual cycle, among the women

who are wearing shirts and have regular menstrual periods.

The concern is that, to the extent that \ is not very close to zero, that it can vary by person and

by context. For example, perhaps \ is a different sign for college students who don’t want to get

pregnant, as compared to married women who are trying to have kids. Perhaps \ is much different

for single women than women with partners.

Consider three possible scenarios:

(1) Essentially no effect. Women’s clothing colors have very low correlations with the time of

the month, and anything that you find in data will likely come from sampling variability or

measurement artifacts.

(2) Large and variable effects. Results will depend strongly on what population is studied and

on the social context. There is no reason to trust generalizations from an unrepresentative

sample. The college freshmen are right.

(3) Large and consistent effects. If the parameter \ is large and pretty much the same sign

everywhere, then a sample of college students or internet participants is just fine (measurement

issues aside).

These are summarized in Figure 110, which the instructor can project onto the screen as reference

for the students. Our correspondent, and the authors of the published article in question, implicitly

53Andrew Gelman (2013), Does it matter that a sample is unrepresentative? It depends on the size of the treatment

interactions, https://statmodeling.stat.columbia.edu/2013/09/04/does-it-matter/.
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assumed the third scenario. Until you make that assumption, you can’t really generalize beyond

people who are like the ones in the study.

In this particular case, we expect the authors gained confidence in their results because they

appeared in two very different populations. They saw a large estimate of \ among the group of

internet participants and a large estimate among the college students, hence this is some evidence

that \ is large in general. This is a good idea in general—two case studies is a good way to get

started in looking at variation—but in this particular case we don’t trust it because the sample

sizes are so small and the data analysis rules were flexible enough to allow researchers to find

statistical significance even from noise: the “forking paths” problem discussed in Section 4.5 of

Regression and Other Stories.

Representativeness of samples is something that statisticians and economists have thought a lot

about, and which we discuss in the causal inference chapters in Regression and Other Stories.

Phrases such as “local average treatment effect” recognize that treatment effects vary, and this

leads to interest in looking at where an intervention is more or less effective.54

Researchers in medicine and public health are also acutely aware of variation in treatment effects

and the need to consider what population is being studied when an effect is being estimated. In

medicine and public health (unlike in psychology), it tends to be expensive to add people to a

study. Researchers want to maximize their power for a given cost, and so they often make an effort

to restrict enrollment to the subset of people who they believe are most likely to respond to the

treatment. This results in, among other things, the “decline effect” when a successful experimental

treatment is applied to the general population.

But, as indicated by the quotation from the psychology professor above, not all researchers are

aware of the potential for treatment interactions; they seem to be implicitly operating under

scenario 3 in Figure 110, in which effects are universal, or at least where there is no reason to

be concerned about extrapolating from 24 college students to “women” in general. The point

of this story is to explain why such a generalization can be a mistake. This is a case in which

professional expertise can be a bad thing; the intuition of a college freshman can be more valid

than the experience of an experienced and much-published researcher.

We hope that the next time a freshman comes to our correspondent with a complaint about subjects

in an experiment not being randomly sampled, he (our correspondent) will not merely dismiss the

complaint but instead discuss with the student its relevance under scenarios 1, 2, and 3.

The next year, the authors of the ovulation-and-clothing paper published a new article, “The

impact of weather on women’s tendency to wear red or pink when at high risk for conception.”

The trouble is that the weather factor came up in this new article but nowhere else. There’s an

essentially unlimited list of factors that could be picked up to explain any pattern in the dress of

college students: if not weather, there’s family structure such as number of younger and older

siblings, relationship status of the students, age, political orientation, socioeconomic status, height,

weight, general health, sexual history, and so on—all of which are plausibly related to the topic of

the study, which is described as “a desire to increase one’s sexual appeal.” This long list of factors

represents a large number of forking paths and, in addition, many potential interactions that would

make it difficult to generalize from a nonrepresentative sample.

At this point the question arises, how could such as study ever be done in a reasonable way? It

might be that the project is hopeless, as it’s plausible that there are no clear differences in patterns

of dress between different parts of the menstrual cycle—that is, scenario 1 in Figure 110. If there’s

no strong effect to find, then it’s game over.

But if there are real patterns—scenario 2 or 3—we would recommend a within-person design,

54See, for example, Rajeev Dehejia (2003), Was there a Riverside miracle? A hierarchical framework for evaluating

programs with grouped data, Journal of Business and Economic Statistics 21, 1–11.
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interviewing people repeatedly over a series of months, measuring ovulation as accurately as

possible, and looking at other outcomes too, not just what shirt the student is wearing. One

of the difficulties is that the hypothesis is so vague. Maybe it would make sense to formally

have a two-stage design where the first stage is exploratory and the researchers use the analyses

from these data to formulate a specific hypothesis that they could test in the second stage. Think

seriously about effect size and do a corresponding design analysis. It’s not easy, but if you think

the topic is important, that’s the way to study it. It’s a mistake to try to do science by taking sloppy

measurements and then trying to come up with hypotheses from the data.

This story relates to the week’s reading because it involves the importance of varying treatment

effects and interactions. It relates to the course as a whole because it demonstrates the challenge

of certain conventional approaches to statistical analysis of experimental data.

Class-participation activities

1. Components of an observational study

This activity is done with students in groups of four, with two students coming up with a setting

for an observational study and the other students asking questions to clarify. For each study, there

needs to be a population of units, a sample, a pre-treatment measurement G, a treatment I and its

assignment rule, and an outcome ~; see Figure 111. All must be clearly defined, and I must be a

treatment, that is, something that could possibly be done.

Here is a simple example, a hypothetical study of the effectiveness of a new plan for teaching

statistics:

• Population: all students who might study statistics in high school

• Sample: students in statistics classes in the 18 schools in a city where the study is conducted

• Pre-treatment measurement: a mathematics pre-test given to all students

• Treatment or exposure: for a year, some students get the traditional teaching method, some

get the new method

• Treatment assignment: teachers choose the teaching methods for their own classes. (For this

activity we want to define an observational study, not an experiment.)

• Outcome: a standardized test taken by all students at the end of the year.

The instructor can go through this example to lead off the activity, to give a sense of how the

steps in Figure 111 could go. Analysis of this example study would involve challenges including

clustering (data collection on students but treatment assigned at the classroom level), omitted

variables (perhaps the teachers who are willing to try a new method are already better at their

jobs), and generalization from sample to population. That’s fine; the focus here is on carefully

laying out all the components of an observational study.

Or consider a study of the effects of smoking on lung function. The population could be all

adults in the United States, the sample could be some large number of people in a survey, the

pre-treatment measurement could be parents’ lifespans, the treatment could be the lifetime number

of cigarettes smoked or the equivalent, as measured with a set of survey questions, exposure

is self-selected, and the outcome could be some measure of lung function. Challenges would

include omitted variables, measurement error, and missing data, but, again, there is a pretty direct

mapping from applied example to the observational-study framework.

For a more challenging example, consider a hypothetical study of the effects of income on

happiness. There will be some difficulties of measuring income and happiness, but the real

challenge we want to emphasize here is that “income” is not a treatment or exposure, in that it is

not something that could be done. To talk about “the effect” of income, it is not enough to simply
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1. Population

2. Sample

3. Pre-treatment measurement, G

4. Treatment or exposure, I

5. Treatment assignment rule

6. Outcome, ~

Figure 111 Steps needed to define an observational study. This should be projected onto the screen during the

class-participation activity. The challenge for each group of students is to get specific on all these steps.

compare people who have different incomes. It is necessary to define some specific treatment,

for example getting a new job, or a raise, or a tax break, or some other source of money. For

another example, suppose you want to conduct a cross-country study of the effect of levels of

social trust (as measured from the responses on a battery of survey questions) on the probability

of civil war. Again, “social trust” is not in itself a treatment, so you would need to consider some

potential treatments or exposures that would alter social trust, for example outside support for an

anti-immigrant political party.

Once the instructor has displayed Figure 111 and discussed some of these challenges, the students

should divide into groups of four, with one pair coming up with the example and the other pair

going through the six steps and asking questions to clarify the details of the study. When students

are done with this, one or two of these examples could be used for class discussion if there is time.

2. Role play: study makers vs. study breakers

This activity is done with students in groups of four. Two of the students will be “study makers”

and should come up with an idea for an observational study, including plans for gathering data and

estimating the treatment effect of interest. The other pair of students in the group should play the

role of “study breakers,” raising concerns about the proposed idea. The pairs should go back and

forth, discussing potential problems with the study and how they could be fixed through analysis

or gathering additional data. Meanwhile, the instructor should go around the room observing the

groups and helping to focus the discussions where necessary.

After the students have had a few minutes to work through their example, one of the groups should

go up to the board and re-enact their discussion, and the rest of the class can participate in the

conversation regarding this particular proposed observational study. The instructor can help guide

the discussion by pointing out connections to the topics in the week’s readings and in the course as

a whole. The goal here is not for the “study makers” or the “study breakers” to have a debate with

a winner and a loser, but rather to use role play to explore in depth the challenges of designing and

interpreting an observational study.

Computer demonstrations

1. Playing with least squares optimization

Here you can explore the ideas of least squares regression, which is an important tool in causal

inference. Following Section 8.1 of Regression and Other Stories, define a rss (residual sum of

squares) function, simulate fake data, and fit a linear regression:

library("rstanarm")

rss <- function(x, y, a, b){ # x and y are vectors, a and b are scalars

resid <- y - (a + b*x)

return(sum(resid^2))

}
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# Generate fake data

n <- 30

x <- runif(n, 0, 10)

y <- 5 + 3*x + rnorm(n, 0, 10)

fake <- data.frame(x, y)

# Prepare a plotting grid

par(mfrow=c(2,2))

# Plot the data

par(mar=c(3,3,2,1), mgp=c(1.5,.5,0), tck=-.01)

plot(fake$x, fake$y, pch=20, bty="l")

# Fit the model

fit <- stan_glm(y ~ x, data=fake, refresh=0)

abline(coef(fit), col="blue")

print(fit)

a_hat <- coef(fit)[1]

b_hat <- coef(fit)[2]

fit_rss <- rss(fake$x, fake$y, a_hat, b_hat)

print(fit_rss)

mtext(paste("y =", round(a_hat, 1), "+", round(b_hat, 1), "x; rss =",

round(fit_rss, 1)), side=3, line=1, col="blue")

Then play around with other lines and compute rss for each:

plot(data$x, data$y, pch=20, bty="l")

abline(coef(fit), col="blue")

a_guess <- 5

b_guess <- 3

abline(a_guess, b_guess, col="red")

guess_rss <- rss(fake$x, fake$y, a_guess, b_guess)

mtext(paste("y =", round(a_guess, 1), "+", round(b_guess, 1), "x; rss =",

round(guess_rss, 1)), side=3, line=1, col="red")

You can make this into a function and then try it out:

rss_plot <- function(fake, a_guess, b_guess) {

plot(fake$x, fake$y, pch=20, bty="l")

fit <- stan_glm(y ~ x, data=fake, refresh=0)

abline(coef(fit), col="blue")

abline(a_guess, b_guess, col="red")

guess_rss <- rss(fake$x, fake$y, a_guess, b_guess)

mtext(paste("y =", round(a_guess, 1), "+", round(b_guess, 1), "x: rss =",

round(guess_rss, 1)), side=3, line=1, col="red")

}

rss_plot(fake, 5, 3)

Now you can try some more values and see that if you move the line around, rss will always go

up.

This demonstration relates to the week’s reading in giving a sense of the modularity of inferences.

You can see this here with simple least squares, and the same principle applies with more

complicated estimates such the two-stage least squares used for instrumental variables. The

demonstration is relevant more generally as an example of checking a mathematical formula by

writing a function in R.
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2. Don’t adjust for intermediate outcomes

Section 19.6 of Regression and Other Stories discusses the problem with adjusting for post-

treatment variables when using regression for causal inference. Here we demonstrate with a

simulation of a hypothetical education experiment, constructed as follows:

(a) Simulate a distribution of students’ background abilities on the subject being studied. This

will be an unobserved (latent) variable.

(b) Simulate a pre-test score as ability plus random error.

(c) Randomly assign each student to control (I = 0) or treatment (I = 1) with equal probabilities.

(d) Simulate a midterm test score given ability and assuming the treatment has a positive effect of

5 points on the midterm.

(e) Simulate a final exam score given ability and assuming the treatment has a positive effect of

10 points on the final.

The goal of this hypothetical study is to estimate the effect of the treatment on the final exam, and

this can be done directly by regressing final on z, or more efficiently by regressing final on

z and also adjusting for pretest. But if we also adjust for midterm, which is an intermediate

outcome (a post-treatment variable), we will get the wrong answer: the coefficient of z in that

regression is a biased estimate of the treatment effect.

Here is the code:

n <- 1000

ability <- rnorm(n, 40, 10)

pretest <- ability + rnorm(n, 0, 5)

z <- rbinom(n, 1, 0.5)

midterm <- ability + 10 + 5*z + rnorm(n, 0, 5)

final <- ability + 20 + 10*z + rnorm(n, 0, 5)

fake <- data.frame(pretest, midterm, final, z)

print(stan_glm(final ~ z, data=fake, refresh=0))

print(stan_glm(final ~ z + pretest, data=fake, refresh=0))

print(stan_glm(final ~ z + pretest + midterm, data=fake, refresh=0))

Drills

1. Experimental design

For each hypothetical experiment described below, state whether it is a randomized block

experiment, a matched-pair experiment, a cluster-randomized experiment, or a simple randomized

experiment.

(a) To identify the long-term effects of special economic zones on economic growth, 10 out of

300 districts in a country are randomly selected to become special economic zones. The

observational units are districts.

Solution: This is a simple randomized experiment.

(b) To examine the effect of a special dietary regimen on physical stamina, 10 out of 100 amateur

soccer clubs in Europe are being assigned professional nutritionists. The observational units

are individual players.

(c) To study the impact of canvassing on voter turnout, five neighborhoods in Brooklyn and five

neighborhoods in Queens get randomly assigned to be visited by volunteers for a weekend.

The observational units are neighborhoods.

(d) To understand the impact of free food on learning outcomes, 100 high schools in Chile get

paired based on a number of characteristics, and one school in each pair gets selected randomly

to receive free food deliveries. The observational units are schools.
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2. Adjusting for post-treatment variables

For each hypothetical analysis described below, explain the problem with adjusting for post-

treatment variables, and how this could be fixed.

(a) It is hypothesized that electorates engage in party balancing, so that if one party is in power,

some voters switch to preferring the opposite party. Consider a study of several cities,

comparing those with mayors with Democratic or Republican party affiliation, where the

outcome is a survey of attitudes of city residents to the out-party, adjusting for past voting

patterns in the city and some measure of the performance of the local economy.

Solution: The treatment must be defined at a specific time. You could look at outcomes in the

years following elections, in which case you would want to use a measure of the performance

of the local economy at some time before the election.

(b) An experiment was conducted in which different groups of people were randomly given music

recommendations, and then they were followed up to see which songs they were downloading

and were asked to rate each song in the study on a 1–5 scale.55 Suppose a regression is fit,

where each data point is a person in the experiment, the outcome is the average download

frequency for a certain song, the treatment is whether this song was recommended to this

person, and the analysis also adjusts for the ratings this person gave to the song.

(c) A study is conducted comparing two methods of teaching introductory statistics. The outcome

of interest is the score on a final exam, and the analysis also adjusts for students’ previous

grades, performance on a pre-test, and performance on a midterm exam.

Discussion problems

1. Individual and average effects

We were reading a book on data science and came across the following motivation for comprehensive

integration of data sources, a story that is reminiscent of parables that appear in business books:56

“By some estimates, one or two patients died per week in a certain smallish town because of

the lack of information flow between the hospital’s emergency room and the nearby mental

health clinic. In other words, if the records had been easier to match, they’d have been able

to save more lives. On the other hand, if it had been easy to match records, other breaches

of confidence might also have occurred. Of course it’s hard to know exactly how many lives

are at stake, but it’s nontrivial.”

The moral of the story:

“We can assume we think privacy is a generally good thing. . . . But privacy takes lives too,

as we see from this story of emergency room deaths.”

This particular story raised our suspicions. One or two patients per week is 75 in a year. Can you

figure out if this number is plausible? This can be a good discussion problem involving numeracy

and quantitative understanding of possible causal effects.

Here is our attempt to answer this question. To calibrate, we’d like to get a denominator, the total

number of deaths each year.

We’re not sure how large the “smallish town” is. From Wikipedia’s discussion of towns in the

United States: “In some instances, the term ‘town’ refers to a small incorporated municipality of

55Matthew Salganik, Peter Dodds, and Duncan Watts (2006), Experimental study of inequality and unpredictability in an

artificial cultural market, Science 311, 854–856.

56David Crawshaw and Josh Wills (2013), Data engineering: MapReduce, Pregel, and Hadoop, in Doing Data Science,

edited by Rachel Schutt and Cathy O’Neil. The discussion here is taken from Andrew Gelman (2014), Parables vs. stories,

https://statmodeling.stat.columbia.edu/2014/01/24/parables-vs-data/.
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less than 10,000 people, while in others a town can be significantly larger. Some states do not use

the term ‘town’ at all, while in others the term has no official meaning . . . ” Wikipedia then goes

state by state, for example, “In Alabama, the legal use of the terms ‘town’ and ‘city’ are based on

population. A municipality with a population of 2000 or more is a city, while less than 2000 is a

town.”

Just to go forward on this, suppose the “smallish town” has 10 000 people. Given that people live

approximately 70 years, we can very roughly estimate that 1/70 of the population is dying every

year, which would be 140 deaths per year. In that case, the above-quoted claim can’t possibly

be right—there’s no way that half the deaths in this town were caused by poor record-keeping

between a hospital and a mental health clinic. If the town had 20 000 people (which would seem

beyond the size of a town that one would call “smallish,” at least in the United States), then we’re

talking 1/4 of the deaths, which still seems much too large a proportion. Even if it is a town with

lots of old people, so that much more than 1/70 of the population is dropping off each year, the

numbers don’t even come close to adding up.

Based on these calculations, we think there is something missing in the story that was told about

the hospital records. Perhaps someone dropped a couple of zeroes when reporting some estimate,

or maybe the authors heard about some case of someone dying because of poor record keeping

in some town somewhere and just made up the “one or two patients died per week” because it

sounded plausible to them and they weren’t thinking it through, kind of like how you might say

that your car weighs 80 tons, because you’ve never really understood exactly what a ton is. Or we

might be missing something here; it’s hard for us to say more, because the story is not sourced.

Our point here is that it can be possible to evaluate causal claims by stepping back and thinking

about statistical claims in a quantitative way.

2. Meta-analysis of nudge experiments

Here is the abstract of a published meta-analysis of “nudge” interventions:57

“Over the past decade, choice architecture interventions or so-called nudges have received

widespread attention from both researchers and policy makers. . . . Drawing on more than 200

studies . . . we present a comprehensive analysis of the effectiveness of choice architecture

interventions . . . . Our results show that choice architecture interventions overall promote

behavior change with a small to medium effect size of Cohen’s d = 0.45 (95% CI [0.39,

0.52]). . . . Food choices are particularly responsive to choice architecture interventions, with

effect sizes up to 2.5 times larger than those in other behavioral domains. . . . Our analysis

further reveals a moderate publication bias toward positive results in the literature. . . . ”

Actually, though, we find no reason to expect large and consistent effects of nudge interventions.

Defaults can be considered as a form of nudging, and defaults can make a big difference

sometimes.58 The evidence for the effectiveness of nudges other than defaults is not so clear.

How can we say this given the strong claims made in the above-quoted article? The problem is

that the meta-analysis is summarizing a literature of noisy data, small sample sizes, and selection

on statistical significance, hence massive overestimates of effect sizes. This is not a secret: follow

the references and look at the papers in question and you will see, over and over again, that they

are selecting what to report based on whether the ?-value is less than 0.05. The problem here is

57Stephanie Mertens, Mario Herberz, Ulf Hahnel, and Tobias Brosch (2022), The effectiveness of nudging: A meta-

analysis of choice architecture interventions across behavioral domains, Proceedings of the National Academy of Sci-

ences 119, e2107346118. For our take, see Andrew Gelman (2022), PNAS GIGO QRP WTF: This meta-analysis of

nudge experiments is approaching the platonic ideal of junk science, https://statmodeling.stat.columbia.edu/2022/01/07/

pnas-gigo-qrp-wtf-approaching-the-platonic-ideal-of-junk-science/, and Barnabás Szászi, Anthony Higney, Aaron Charlton,

Andrew Gelman, Ignazio Ziano, Balacs Aczel, Daniel Goldstein, David Yeager, and Elizabeth Tipton, No reason to expect

large and consistent effects of nudge interventions, Proceedings of the National Academy of Sciences 119, e2200732119.

58See, for example, Eric Johnson and Daniel Goldstein (2003), Do defaults save lives? Science 302, 1338–1339.
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not the ?-value but rather the selection, which induces noise (through the reduction of continuous

data to a binary summary) and bias (by not allowing small effects to be reported at all).

Consider the implications of this meta-analysis and potential concerns. How can you think about

treatment effects that are estimated from a messy literature, and how can these be studied going

forward?
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4.23 Imbalance and lack of complete overlap

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Retrospective Imbalance Poststratification Ignorability Effects of

evaluation and lack for causal of treatment campaign

of a policy of overlap inference assignment contributions

Postal Victimization Measurement- Imbalance Effects and

service and views on error and lack variation

modeling crime policy models of overlap

Reading

Chapter 20 of Regression and Other Stories: Observational studies with all confounders assumed to

be measured (Sections 20.1–20.6)

Pre-class warmup assignments

1. Imbalance and lack of complete overlap

(a) For each of these graphs of outcome ~ vs. pre-treatment predictor G, describe the imbalance

and lack of complete overlap. Dots and open circles represent control and treated units,

respectively.

x

y

x

y

x

y

(b) Sketch an example of two predictors, G1 and G2, using red and blue dots for treatment and

controls, where there is balance on each of G1 and G2 but not on their joint distribution.

(c) Sketch an example of two predictors, G1 and G2, using red and blue dots for treatment and

controls, where there is complete overlap on each of G1 and G2 but not on their joint distribution.

2. Subclassification and average treatment effects

Suppose you are conducting an observational study comparing two different approaches to

counseling of caregivers of family members. The outcome is a mental health survey of caregivers

and the study also includes three pre-treatment predictors on the caregivers: age, sex, and a

measure of life satisfaction.

(a) How could you obtain estimates of the effect among all the caregivers in the study, the effect

among caregivers with pre-treatment life satisfaction that was lower than average, and among

caregivers with pre-treatment life satisfaction that was higher than average?

(b) You are concerned that your study is not representative of the general population of caregivers.

How can you estimate the population average treatment effect using the data from your study?
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Homework assignments

1. (a) Messy randomization (Exercise 19.8 of Regression and Other Stories)

The folder Cows contains data from an agricultural experiment that was conducted on 50 cows

to estimate the effect of a feed additive on six outcomes related to the amount of milk fat

produced by each cow.

Four diets (treatments) were considered, corresponding to different levels of the additive, and

three variables were recorded before treatment assignment: lactation number (seasons of

lactation), age, and initial weight of the cow.

Cows were initially assigned to treatments completely at random, and then the distributions

of the three pre-treatment predictors were checked for balance across the treatment groups;

several randomizations were tried, and the one that produced the “best” balance with respect

to the three covariates was chosen. The treatment depends only on fully observed covariates

and not on unrecorded variables such as the physical appearances of the cows or the times at

which the cows entered the study, because the decisions of whether to re-randomize are not

explained.

We shall consider different estimates of the effect of the additive on the mean daily milk fat

produced.

i. Consider the simple regression of mean daily milk fat on the level of additive. Compute

the estimated treatment effect and standard error, and explain why this is not a completely

appropriate analysis given the randomization used.

ii. Add more predictors to the model. Explain your choice of which variables to include.

Compare your estimated treatment effect to the result from (a).

iii. Repeat (b), this time considering additive level as a categorical predictor with four levels.

Make a plot showing the estimate (and standard error) of the treatment effect at each level,

and also showing the inference from the model fit in part (b).

(b) Causal inference based on data from individual choices (Exercise 19.9 of Regression and

Other Stories)

Our lives involve tradeoffs between monetary cost and physical risk, in decisions ranging

from how large a car to drive, to choices of health care, to purchases of safety equipment.

Economists have estimated how people implicitly trade off dollars and danger by comparing

choices of jobs that are similar in many ways but have different risks and salaries. This can be

approximated by fitting regression models predicting salary given the probability of death

on the job (and other characteristics of the job). The idea is that a riskier job should be

compensated with a higher salary, with the slope of the regression line corresponding to the

“value of a statistical life.”

i. Set up this problem as an individual choice model, as in Section 15.7 of Regression and

Other Stories. What are an individual’s options, value function, and parameters?

ii. Discuss the assumptions involved in assigning a causal interpretation to these regression

models.

2. (a) Understanding the difference between average treatment effect in the treated and control

groups (Exercise 20.3 of Regression and Other Stories)

Create a hypothetical dataset in which the average treatment effects on the treated and controls

(ATT and ATC) are clearly different. What are the distinguishing characteristics of this

dataset?

(b) Observational studies and hypothetical experiments (Exercise 20.11 of Regression and Other

Stories)

Consider an applied problem of interest to you with a causal effect that has been estimated

using an observational study. Think about possible hypothetical experiments that could be
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performed to estimate different aspects of this causal effect. Consider how the effect might

vary across the population and across different implementations of the treatment.

(c) In pairs: Working through your own example (Exercise 19.12 of Regression and Other Stories)

Continuing the example from the final exercises of the earlier chapters, estimate the causal

effect you defined in Exercise 18.18 of Regression and Other Stories using a regression of ~

on the treatment indicator I, at least one pre-treatment predictor G, and their interaction. Plot

the data and the fitted regression lines for treatment and control, and discuss the assumptions

that are required for this to be a good estimate of the causal effect of interest.

Stories

1. Retrospective controlled evaluation of a policy experiment

The Millennium Villages Project (MVP) was an integrated rural development program carried

out for a decade in 10 clusters of villages in sub-Saharan Africa starting in 2005 and in a few

other sites for shorter durations.59 The project has been controversial, both in its conception

and in evaluation of its effects. The starting point for the controversy was the project’s approach

of economic and social development catalyzed by foreign aid, which has been criticized as a

doomed-to-fail relic of a bygone paternalistic era. In addition, the project was criticized for not

being designed as a randomized controlled trial. The MVP stands out as a high-profile project

organized by an academic economist that did not include a control group.

At the inception of the MVP, two reasons were given for not designing the MVP as a randomized

controlled trial. First, the MVP used a basket of many interventions that had already been shown to

work, often through previous controlled trials. The main focus of the MVP was on the feasibility

of implementing the package of proven interventions within the specified budget and timeline, a

concern for which a control group is not relevant. Second, the MVP did not have an adequate

project budget to engage systematically with control sites, especially to be able to offer those other

sites the package of interventions at a later date. From a pragmatic, political, and ethical point of

view, the MVP was therefore wary of identifying and engaging actively with non-project sites.

Eventually, however, the leaders of the project decided to perform an empirical assessment

of its effectiveness, a retrospective controlled evaluation that was constructed by comparing

outcomes in the 10 MVP sites to 10 other locations within the countries being studied. We

retrospectively selected comparison villages that best matched the project villages on possible

confounding variables based on data from 2005, thus only matching on pre-treatment information.

Cross-sectional survey data on 40 outcomes of interest were collected from both the project and the

comparison villages in 2015. Using these data, as well as on-site spending data collected during

the project, we estimated project impacts as differences in outcomes between the project and

comparison villages; target attainment as differences between project outcomes and prespecified

targets; and on-site spending as expenditures reported by communities, donors, governments, and

the project. We estimated generally favorable impacts—that is, the Millennium Villages showed

better outcomes than the comparison villages, with differences larger than would be expected by

chance given the variation in the data across the 10 locations:

“The MVP had favourable impacts on outcomes in all MDG [Millennium Development

Goal] areas, consistent with an integrated rural development approach. The greatest effects

were in agriculture and health, suggesting support for the project’s emphasis on agriculture

and health systems strengthening.”

Two years later, a different research group, unaffiliated with the project, performed a separate

59See Andrew Gelman, Shira Mitchell, Jeffrey Sachs, and Sonia Sachs (2022), Reconciling evaluations of the Millennium

Villages Project, Statistics and Public Policy 9, 1–9, and Shira Mitchell et al. (2018), The Millennium Villages Project: A

retrospective, observational, endline evaluation, Lancet Global Health 6, e500–e513.



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

278 4. WEEK BY WEEK: THE SECOND SEMESTER

analysis of a single MVP site in northern Ghana. They did a prospective controlled comparison,

also not randomly assigned but with the control villages selected at the beginning of the project.

They reported mostly small or null results:60

“Our study finds that the impact of MVP on the MDGs was limited, and that core

welfare indicators such as monetary poverty, child mortality and under-nutrition were not

affected. . . . despite some positive impacts, we found mostly null results, suggesting that the

intervention was ineffective.”

We looked into the details to try to understand how these two studies came to such different

conclusions. We concluded that the key differences were: (1) the full MVP study went for 10

years, whereas the later study was conducted for less than five and hence would be expected to

have smaller effects, and (2) effects vary by location, and with just one site it is difficult to get

a precise estimate. Given the inherent noisiness in estimates for a single site over a short time

period, we feel it was a mistake for the report of the second study to summarize in terms of

statistical significance (for example, “the count of statistically significant impacts is low”) and

to report non-significant comparisons as if they were zero (for example, “we found mostly null

results, suggesting that the intervention was ineffective”).

Beyond these technical issues, much of the difference in the conclusions of the two reports can

be explained by differences in framing. Is it a plus that “the project conclusively met one third

of its targets,” or is it a disappointment that, although effects were positive, they mostly did not

reach the original stated goals? The two apparently contradictory evaluations of the Millennium

Villages Project are both consistent with a larger picture in which the MVP has positive average

effects (compared to untreated villages) across a broad range of outcomes, but with effects that are

variable across sites and that require several years to take effect.

This story is relevant to the week’s reading as an example of causal inference for an observational

study using matching. In discussing the applied problem, we have considered some of the practical

reasons why controlled experimentation is not always done, and the controversies that can result

from this decision. The example is relevant to the course as a whole as an example of a policy

dispute that turns on statistical analysis.

2. Postal Service cost modeling: What are inferences used for?

Several years ago, we worked with some statisticians and economists on a project with the U.S.

Postal Service. The goal was to estimate the volume of all sorts of mail (first-class mail of

different weights, second-class mail, packages, etc.) handled by the Postal Service, along with the

costs of processing these. The reason was that the Postal Service was required by law to charge

an appropriate fee for each of its services, neither overcharging any of its customers by taking

advantage of its monopoly position nor undercutting any of its competitors by cross-subsidizing

any of its services. To this end, the Postal Service had several large ongoing sampling projects,

including a survey of mail pieces based on a sample of locations around the country, a time-use

survey of employees, and various smaller studies. These surveys were in continuous operation

and cost millions of dollars per year. Our team was tasked to evaluate the system that existed at

the time and make suggestions for improvement.61

After immersing ourselves in the details of the sampling schemes and cost estimates, we decided

to set up a simulation model to propagate the estimates and uncertainties in all stages of the

calculations. In doing this, we learned that many of the largest contributors to the uncertainties

came from small offline studies that had been performed to estimate elasticities.

60Edoardo Masset, Jorge Hombrados, and Arnab Acharya (2020), Aiming high and falling low: The SADA-Northern

Ghana Millennium Village Project, Journal of Development Economics 143, 102427.

61Richard Waterman, Donald Rubin, Neal Thomas, and Andrew Gelman (2000), Simulation modeling for cost estimation,

in Current Directions in Postal Reform, edited by Michael Crew and Paul Kleindorfer, 171–193, http://www.stat.columbia.edu/

~gelman/research/published/postal.pdf.
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To simplify slightly, it went like this: to get a simple estimate of the cost per unit of handling mail

type - , you can take the total cost spent on handling - during the past year, divided by the total

number of pieces of type - mailed during the year. The numerator is estimated from the time

use survey and the denominator is estimated using the survey of mail pieces. A lot of effort had

been placed into minimizing the biases in these surveys and making sure the samples were large

enough that variances of the relevant summaries were small.

But this simple ratio does not answer the question of interest, first because of various complexities

(for example, an employee when contacted by the time use survey might be handling many pieces

of mail at once or might be doing a part of the job that cannot be simply allocated across types of

mail), and also because there are other costs beyond employee hours, for example cost of driving

and repairing the trucks and planes used to transport the mail. To estimate the allocation these

costs, the Post Office had performed a series of studies estimating “elasticities” such as the extra

amount of fuel consumed per weight of mail. Each of these elasticities was estimated from its

own little regression analysis that would result in an estimate and standard error, and in our big

simulation model we propagated all these uncertainties. As noted above, it turned out that the

standard errors in these little elasticity studies were driving the final uncertainties in the cost

estimates. So, even though we’d started by focusing on the design of the big surveys, our final

recommendations were to redo the elasticity studies, and we recommended an ongoing program

where these elasticities were periodically re-estimated.

This story relates to the week’s reading in that a problem which appeared to be all about survey

sampling turned out ultimately to center on observational studies, using available data to estimate

things such as the effect on fuel costs of mailing one more 1-ounce letter. The story relates to the

course as a whole as an example of a problem where the goal of inference was not a particular

parameter or coefficient in a model but rather a combination of unknowns that were estimated

from many different sources. We ask the students in pairs if they can think of other problems

where this is the case.

Class-participation activities

1. Imbalance and lack of overlap

The activity here is to consider some example of real-world imbalance and lack of overlap in

observational studies. Students should first divide into groups of four to consider possible examples

on topics of interest to them. The class as a whole can then discuss several of these examples, one

at a time, going over imbalance and lack of overlap for each pre-treatment variable of interest

and discussing how these problems could be addressed. This is relevant to the week’s reading in

elaborating on these important concepts in causal inference, and it relates to the course as a whole

in being an opportunity to connect a statistical challenge to topics of interest to students.

2. Observational study on students: Crime victimization and policy views

There is a saying that “a conservative is a liberal who has been mugged.” What effect does being

a crime victim have on attitudes toward crime and criminal justice?62

We address this question with a class-participation demonstration gathering responses from

students on crime victimization and attitudes on justice policies. Two challenges arise: first,

deciding what questions to ask; second, the study is observational so it will be necessary to adjust

for differences between the treated and control groups, however they are defined.

62There is some literature on this topic, for example Daniel J. Koenig (1980), The effects of criminal victimization and

judicial or police contacts on public attitudes toward local police, Journal of Criminal Justice 8, 243–249, R. Thomas Dull and

Arthur Wint (1997), Criminal victimization and its effect on fear of crime and justice attitudes, Journal of Interpersonal Violence

12, 748–758, James Unnever, Francis Cullen, and Bonnie Fisher (2007), “A liberal is someone who has not been mugged”:

Criminal victimization and political beliefs, Justice Quarterly 24, 309–334, and Anna King and Shadd Maruna (2009), Is a

conservative just a liberal who has been mugged?: Exploring the origins of punitive views, Punishment & Society 11, 147–169.
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• Pre-treatment predictors G: Background variables

• Treatment (or exposure) I: Victim of a crime

• Outcome ~: Tough-on-crime attitudes

Figure 112 Setup for the in-class crime victimization survey. The instructor can display this on the screen to

guide a class discussion of what questions to include on their crime victimization and attitudes survey.

The questions to ask will depend on the local political context. In our class at Columbia University,

we asked a set of questions regarding a policy issue that was covered in a local news story:63

“The poll question asked: ‘Three years ago, New York passed a law eliminating monetary

bail for people facing misdemeanor and non-violent felony charges. Which of the following

two views is closest to yours? “The so-called bail reform law should be amended to give

judges more discretion to keep dangerous criminals off the streets.” — or “The law should

not be amended to give discretion on bail back to judges because it could once again lead to

people of color being disproportionately denied bail.”’

A total of 65 percent of the 803 respondents said the bail law should be amended to take

into account a defendant’s prior violent record, and only 27 percent of voters said the law

should not be changed, while the rest were undecided.”

After sharing this news story, we displayed Figure 112 and used this to organize a discussion on

what questions should be asked. We ended up with the following questions:

• Do you favor or oppose the death penalty for persons convicted of murder? (five options:

“strongly favor,” “favor,” “no opinion,” “oppose,” “strongly oppose”)

• Do you agree or disagree with the statement that crime is a serious problem in New York?

(five options, from “strongly agree” to “strongly disagree”)

• Do you agree or disagree with the statement that criminal justice should be more severe?

(five options)

• Do you favor or oppose the law eliminating monetary bail for people facing misdemeanor

and non-violent felony charges? (five options)

• Have you been a victim of a crime? (three options: “No,” “Yes, a minor crime,” “Yes, a

major crime”)

• Demographic items: age, sex, and highest education level of parents (five levels, from no

high school degree to postgraduate degree)

We typed these into a Google form, which the students then filled out using their laptops or

phones, then we downloaded the data and performed a simple analysis. First we combined the

attitude questions into a single “tough on crime” measure (being careful to scale each item in

the appropriate regression). Next, we compared the average values of this score for students in

each of the three victimization categories. We then fit a regression predicting the score given

victimization level (coded as 0, 1, or 2), also adjusting for the pre-treatment predictors. The

resulting estimate had a high standard error—no surprise given the small sample size. For the

purpose of discussion we asked students to ignore the uncertainties, pretend that the point estimate

of the coefficient represented a population value, and then discuss potential problems with the

observational study—differences between the different groups that were not fully addressed by the

pre-treatment predictors—and how it could be improved.

63Carl Campanile (2022), 65% of New York voters back stricter bail law, New York Post, 22 Feb, https://nypost.com/2022/

02/22/65-percent-of-new-york-voters-back-stricter-bail-law-poll/.
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This activity relates to the week’s reading by bringing to life the challenges of causal inference

from an observational study. It is relevant for the course as a whole in linking data collection to

analysis and real-world conclusions.

Computer demonstrations

1. Simulated-data example of poststratification for causal inference

Consider a hypothetical experiment that evaluates a yoga program that is intended to reduce stress.

The challenge is that retirees are overrepresented in the experiment, and we are interested in the

average treatment effect in the population. In this demonstration, we simulate pre-test, treatment,

and post-test data for the sample and then adjust for the mismatch between sample and population.

For simplicity we assume that stress is measured on a standardized continuous scale so we do not

need to worry about discrete-data issues.

In general we can estimate population average causal effects by regression and poststratification.64

# Simulate the sample data

n <- 2000

retiree <- rbinom(n, 1, 0.4) # Approx 40% of sample are retirees

pre_stress <- rnorm(n, ifelse(retiree==1, 90, 100), 20) # Retirees have less stress

z <- sample(c(0,1), n, replace=TRUE) # Randomized treatment assignment

# Simulate from a regression model on pre_stress, where the treatment effect

# is 10 for non-retirees and 5 for retirees

post_stress <- rnorm(n, 100 + 0.7*(pre_stress - 100) - 10*z + 5*z*retiree, 15)

# Fit a regression to sample data

sample_data <- data.frame(retiree, pre_stress, z, post_stress)

fit <- stan_glm(post_stress ~ pre_stress + retiree + z + retiree:z, data=sample_data)

print(fit)

# Posterior simulations of sample average treatment effect

sims <- as.matrix(fit)

sate <- sims[,"z"] + sims[,"retiree:z"] * mean(sample_data$retiree)

cat("Estimate and s.e. of sample avg treatment effect:",

c(mean(sate), sd(sate)), "\n")

# Posterior simulations of population average treatment effect,

# assuming 20% of population are retirees

pate <- sims[,"z"] + sims[,"retiree:z"] * 0.20

cat("Estimate and s.e. of population avg treatment effect:",

c(mean(pate), sd(pate)), "\n")

The problem would become more challenging if the treatment effect varies by pre-test, because

then it is necessary to poststratify over pre-test, which requires some knowledge or assumptions

about pre-treatment stress levels in the population. Here we simulated the simplest case of

postratification on a binary variable that is assumed completely known in the population.

2. Measurement-error models

Section 22.2 of Regression and Other Stories mentions that in a regression of ~ on G, if G is

64See, for example, Jennifer Hill (2011), Bayesian nonparametric modeling for causal inference, Journal of Computational

and Graphical Statistics 20, 217–240, and Lauren Kennedy and Andrew Gelman (2021), Know your population and know your

model: Using model-based regression and poststratification to generalize findings beyond the observed sample, Psychological

Methods 26, 547–558.
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measured with error, this will induce bias in the estimated coefficients. If ~ is measured with error,

this induces variance but not bias. We demonstrate this here with a simulation, where there is a

true relation, ~ = 0 + 1G + error, with G∗ and ~∗ defined as G and ~ measured with error:

n <- 1000

x <- rnorm(n, 50, 10)

a <- 20

b <- 0.8

y <- a + b*x + rnorm(n, 0, 10)

plot(x, y)

y_star <- y + rnorm(n, 0, 10)

x_star <- x + rnorm(n, 0, 10)

data <- data.frame(x, y, x_star, y_star)

First fit a regression of the latent data to confirm that you reproduce the underlying relation of

interest:

fit_1 <- stan_glm(y ~ x, data=data, refresh=0)

print(fit_1, digits=2)

Next try the regression with the observed data, G∗ and ~∗, which will give a different result, as the

measurement error induces bias in the estimate:

fit_2 <- stan_glm(y_star ~ x_star, data=data, refresh=0)

print(fit_2, digits=2)

To understand what is going on, next try regressing the observed outcome on the latent predictor,

and then the latent outcome on the observed predictor:

fit_3 <- stan_glm(y_star ~ x, data=data, refresh=0)

print(fit_3, digits=2)

fit_4 <- stan_glm(y ~ x_star, data=data, refresh=0)

print(fit_4, digits=2)

If there is time, you can then try this more elaborate example:

n <- 1000

x <- rnorm(n, 50, 10)

z <- rbinom(n, 1, 0.5)

a <- 20

b <- 0.8

theta <- 5

y <- a + b*x + theta*z + rnorm(n, 0, 10)

data_new <- data.frame(x, y, z)

fit_new <- stan_glm(y ~ x + z, data=data_new, refresh=0)

print(fit_new)

error <- rbinom(n, 1, 0.25)

z_star <- ifelse(error==1, 1-z, z)

data_new$z_star <- z_star

fit_new_2 <- stan_glm(y ~ x + z_star, data=data_new, refresh=0)

print(fit_new_2)

data_new$x_star <- data_new$x + rnorm(n, 0, 10)

fit_new_3 <- stan_glm(y ~ x_star + z, data=data_new, refresh=0)

print(fit_new_3)
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Drills

1. Ignorability of treatment assignment

In the following cases of observational studies, discuss possible problems with the assumption of

ignorability of the treatment assignment, conditional on the pre-treatment predictors and with

respect to the potential outcomes.

(a) Regression of health outcomes on a treatment indicator, with the treatment chosen by patients’

doctors.

Solution: The ignorability assumption is implausible here unless the predictors include the

information that doctors used to choose the treatment for each patient. If the treatment

assignment was based only on information in the patients’ written charts, then those data

could be included as regression predictors. If the treatment assignment was also based on

unrecorded information, for example doctors’ impressions after observing and talking with

the patients, then ignorability would be more difficult to attain.

(b) Regression of income at age 40 on an indicator of having been admitted to university, including

high school grade point average as a pre-treatment predictor, in a country where there is only

one university, admission depends only on high-school grade point average, and there are so

many applicants that many equally capable applicants get rejected.

(c) Regression across a number of countries of voter turnout on perceived levels of corruption, as

well as on predictors measuring the vote share of the incumbent party in the previous election,

per-capita GDP, and indicators for different types of colonial history.

2. Imbalance and lack of complete overlap

In the following examples of observational studies, discuss possible concerns about imbalance or

lack of complete overlap.

(a) Regression of income at age 40 on an indicator of having been admitted to university, including

high school grade point average as a pre-treatment predictor, in a country where there is only

one university, admission is only dependent on high-school grade point average, and there are

so many applicants that many equally capable applicants get rejected.

Solution: There should be overlap on high-school grade-point average in the middle-to-high

end of the range, where admission is competitive so some students enter university and others

do not. We might see lack of overlap at the low end of the range, as only very few students

with low grades may be admitted to the university.

(b) Regression of farm yields on the administration of fertilizer as well as a covariate indicating

precipitation levels, if all treated units are located in Ireland and all control units are located

in Morocco.

(c) Regression of sentencing outcomes on a variable indicating the time of day of the sentencing,

when the analysis is limited to one courthouse and time assignment is random.

(d) Regression of personal consumption on an indicator whether a person lives in New York or in

Pennsylvania, including predictors for income, age, sex, and number of children.

Discussion problems

1. Causal challenges in estimating the effects of campaign contributions on politicians’ behaviors

The first step here is to consider possible treatments or interventions. Be specific: the treatment

is not just “campaign contributions”; it must be some specific activity that could be done, for

example anonymously donating $100 to a particular campaign. Even that would not be specific

enough, as you would want to define exactly when the money would be given. Next you need to

define a population—which candidates and which elections—and outcomes of interest. Only at

that point does it make sense to specify a hypothetical experiment involving randomized treatment
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assignment. The next step is to consider why it could be difficult to do this, along with limitations

of such an experiment—for one thing, it could only be done in the future so could not address

questions of past effects.

The usual approach to causal inference is to start with the general question (What is the effect

of X on Y?, with X and Y only vaguely defined) and available data and work back from there.

The point of this discussion problem is that being specific about treatments, units, pre-treatment

measurements, and post-treatment outcomes can be a good way to think about a problem.

2. Variation in social science patterns

A study was done concluding,65

“Sports participation causes women to be less religious, more likely to have children, and, if

they do have children, more likely to be single mothers.”

The authors of that study continued:

“It is true that many successful women with professional careers, such as Sheryl Sandberg

and Brandi Chastain, are married. This fact, however, is not necessarily opposed to our

hypothesis. Women who participate in sports may ‘reject marriage’ by getting divorces

when they find themselves in unhappy marriages. Indeed, Sheryl Sandberg married and

divorced before marrying her current husband.”

Accepting the claim in the first quote as stated (actually the statistical evidence for the claim is not

so clear), in what way does the second quote betray a misunderstanding?

65See the story on page 47 of this book.
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4.24 Additional topics in causal inference

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Deterrent Two measures Instrumental Assumptions for Effects of

effect of of the same variables instrumental masks

death penalty quantity variables

Regression “Why” questions Adjustment in Regression Coaching for

discontinuity and causal regression discontinuity admissions

mishaps inference discontinuity tests

Reading

Chapter 21 of Regression and Other Stories: Additional topics in causal inference

Pre-class warmup assignments

1. Instrumental variables

(a) An instrumental variables analysis is done in which the estimated average intent-to-treat effect

is 0.5 and the estimated average effect of the instrument on the treatment indicator is 0.7.

What is the estimated treatment effect?

(b) A medical experiment is conducted in which patients are randomly assigned to one of two

groups: a group where an experimental blood-pressure-lowering drug is offered, and a group

where the drug is not offered. It is recorded who in the first group actually takes the drug;

nobody in the second group takes the drug. Everyone’s blood pressure is measured before and

after the experiment, and an instrumental variables analysis is done to estimate the effect of

the drug on blood pressure.

This estimates the average treatment effect among what group of patients?

2. Adjust for pre-treatment variables

(a) A medical experiment is conducted in which patients are randomly assigned to one of two

groups: a group where an experimental blood-pressure-lowering drug is offered, and a group

where the drug is not offered. It is recorded who in the first group actually takes the drug;

nobody in the second group takes the drug. Everyone’s blood pressure is measured before and

after the experiment, and an instrumental variables analysis is done to estimate the effect of

the drug on blood pressure.

How should this analysis make use of the pre-treatment measurement?

(b) An experiment is performed in which patients’ blood pressure is measured, and then the

patients whose blood pressure is higher than some preset threshold are given an experimental

blood-pressure-lowering drug. Everyone who is offered this drug takes it, and the drug is not

available to those who are not offered it. After the experiment, everyone’s blood pressure is

measured.

A regression discontinuity analysis is then performed. Suppose that you would like to also

adjust for patient age in the analysis. How would you do it?

Homework assignments

1. (a) Instrumental variables (Exercise 21.1 of Regression and Other Stories)
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The following study is performed at a university. Students are sent emails encouraging them

to click on a university website. Each student is randomly assigned to one of two sites: a site

with encouragement to vote in the upcoming student government election, and a neutral site

with study tips. The students are then followed up to see if they voted. Define ~ = 1 if the

student voted or 0 otherwise; define D = 1 if the student was assigned to the encouragement

site or 0 if assigned to the neutral site; define { = 1 if the student actually accessed the site

(which can be checked using unique identifiers) or 0 if the student never clicked on the link.

i. From which of the following regressions or pair of regressions can we compute the

instrumental variables estimate of the effect of accessing the site on voting?

• Regression of ~ on D.

• Regression of ~ on {.

• Regression of ~ on D and {.

• Regression of ~ on D, and the regression of { on D.

• Regression of ~ on {, and the regression of { on D.

ii. What assumptions are required for the instrumental variables estimate to be reasonable in

this case? Do these assumptions seem plausible here?

(b) Intermediate outcomes (Exercise 21.15 of Regression and Other Stories)

In Exercise 19.10 of Regression and Other Stories, you estimated the effect of incumbency on

votes for Congress. Now consider an additional variable: money raised by the congressional

candidates. Assume that this variable has been coded in some reasonable way to be positive

in districts where the Democrat has raised more money and negative in districts where the

Republican has raised more.

i. Explain why it is inappropriate to include money as an additional input variable to

“improve” the estimate of incumbency advantage in the regression in Exercise 19.10 of

Regression and Other Stories.

ii. Suppose you are interested in estimating the effect of money on the election outcome.

Set this up as a causal inference problem (that is, define the treatments and potential

outcomes).

iii. Explain why it is inappropriate to simply estimate the effect of money using instrumental

variables, with incumbency as the instrument. Which of the instrumental variables

assumptions would be reasonable in this example and which would be implausible?

iv. How could you estimate the effect of money on congressional election outcomes?

(c) Causes of effects and effects of causes (Exercise 21.17 of Regression and Other Stories)

Apply the ideas of Section 21.5 of Regression and Other Stories to an applied problem of

interest for you. Consider reverse causal questions and then potential forward causal questions,

along with associated experiments or experiments that could be used to estimate relevant

causal effects.

2. (a) Regression discontinuity (Exercise 21.9 of Regression and Other Stories)

Take the Chile schools example from Section 21.3 and perform a series of analyses using

different subsetting ranges. Plot the estimate ± standard error as a function of the subsetting

range. As the width of the range increases, the standard error should go down, but there

should be more of a concern about the use of the estimate for causal inference, given the lack

of overlap.

(b) Regression discontinuity (Exercise 21.10 of Regression and Other Stories)

Suppose you are trying to evaluate the effect of a new procedure for coronary bypass surgery

that is supposed to help with the postoperative healing process. The new procedure is

risky, however, and is rarely performed in patients who are over 80 years old. Data for this

(hypothetical) example are displayed in Figure 113.
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Figure 113 Hypothetical data of length of hospital stay and age of patients, with separate points and regression

lines plotted for each treatment condition: the new procedure in gray and the old procedure in black.

i. Does this seem like an appropriate setting in which to implement a regression discontinuity

analysis?

ii. The folder Bypass contains data for this example: stay is the length of hospital stay

after surgery, age is the age of the patient, and new is the indicator for whether the new

surgical procedure was used. Preoperative disease severity (severity) was unobserved

by the researchers, but we have access to it for illustrative purposes. Can you find any

evidence using these data that the regression discontinuity design is inappropriate?

iii. Estimate the treatment effect using a regression discontinuity estimate (ignoring) severity.

Estimate the treatment effect in any way you like, taking advantage of the information in

severity. Explain the discrepancy between these estimates.

(c) In pairs: Working through your own example (Exercise 20.12 of Regression and Other Stories)

Continuing the example from the final exercises of the earlier chapters, consider a treatment

effect that can only be estimated using an observational study. Using your data, assess issues

of imbalance and lack of overlap. Use matching if necessary to get comparable treatment and

control groups, then perform a regression analysis adjusting for matching variables or the

propensity score and estimate the treatment effect. Graph the data and fitted model and assess

your assumptions.

Stories

1. Deterrent effect of the death penalty

In 2006, law professor John Donohue and economist Justin Wolfers summarized some of the

research on the effects of capital punishment:66

“Over much of the last half-century, the legal and political history of the death penalty in

the United States has closely paralleled the debate within social science about its efficacy as

a deterrent. Sociologist Thorsten Sellin’s careful comparisons of the evolution of homicide

rates in contiguous states from 1920 to 1963 led to doubts about the existence of a deterrent

effect caused by the imposition of the death penalty. This work likely contributed to the

waning reliance on capital punishment, and executions virtually ceased in the late 1960s.

In 1975, Isaac Ehrlich’s analysis of national time-series data led him to claim that each

execution saved eight lives. Solicitor General Robert Bork cited Ehrlich’s work to the

Supreme Court a year later, and the Court, while claiming not to have relied on the empirical

evidence, ended the death penalty moratorium when it upheld various capital punishment

statutes . . . ”

66John Donohue and Justin Wolfers (2006), Uses and abuses of empirical evidence in the death penalty debate, Stanford

Law Review 58, 791–845. The discussion here is taken from Andrew Gelman (2006), The deterrent effect of the death penalty,

https://statmodeling.stat.columbia.edu/2006/01/18/decision_analys_2/.
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Donohue and Wolfers review the data on death sentences and homicide:

“No clear correlation between homicides and executions emerges from this long time series.

In the first decade of the twentieth century, execution and homicide rates seemed roughly

uncorrelated, followed by a decade of divergence as executions fell sharply and homicides

trended up. Then for the next forty years, execution and homicide rates again tended to

move together—first rising together during the 1920s and 1930s, and then falling together

in the 1940s and 1950s. As the death penalty fell into disuse in the 1960s, the homicide

rate rose sharply. The death penalty moratorium that began . . . in 1972 and ended . . . in

1976 appears to have been a period in which the homicide rate rose. The homicide rate then

remained high and variable through the 1980s while the rate of executions rose. Finally,

homicides dropped dramatically during the 1990s.”

They then review some of the literature between 1975 and the publication of their article in 2006

on the statistical evidence regarding a possible deterrent effect of the death penalty, in particular

discussing problems with an article from 2003 claiming that each death sentences has the effect of

deterring, on average, 18 homicides.

They summarize:

“We have surveyed data on the time series of executions and homicides in the United States,

compared the United States with Canada, compared non-death penalty states with executing

states, analyzed the effects of the judicial experiments provided by the Furman and Gregg

decisions comparing affected states with unaffected states, surveyed the state panel data

since 1934, assessed a range of instrumental variables approaches, and analyzed two recent

state-specific execution moratoria. None of these approaches suggested that the death

penalty has large effects on the murder rate. Year-to-year movements in homicide rates

are large, and the effects of even major changes in execution policy are barely detectable.

Inferences of substantial deterrent effects made by authors examining specific samples

appear not to be robust in larger samples; inferences based on specific functional forms

appear not to be robust to alternative functional forms; inferences made without reference to

a comparison group appear only to reflect broader societal trends and do not hold up when

compared with appropriate control groups; inferences based on specific sets of controls turn

out not to be robust to alternative sets of controls; and inferences of robust effects based on

either faulty instruments or underestimated standard errors are also found wanting.”

Death-penalty deterrence is a difficult topic to study. The treatment is observational, the data and

the effect itself are aggregate, and changes in death-penalty policies are associated with other

policy changes. Much of the discussion of the deterrence studies reminds us of a little-known

statistical principle, which is that statisticians (or, more generally, data analysts) look best when

they are studying large, clear effects. This is a messy problem, and nobody is going to come out

of it looking so great.

More specifically, a quick analysis of the data, at least since 1960, finds that homicide rates went

up when the death penalty went away, and then homicide rates declined when the death penalty

was re-instituted, and similar patterns have happened within states. So it’s not a surprise that

regression analyses have found a deterrent effect. But, as noted, the difficulties arise because of

the observational nature of the treatment, and that other policies are changed along with the death

penalty. There are also various technical concerns that Donohue and Wolfers discuss.

Policy questions about the death penalty have sometimes been expressed in terms of the number

of lives lost or saved by a given sentencing policy. But this direction of thinking might be a dead

end. First, as noted above, it may very well be essentially impossible to statistically estimate the

net deterrent effect of death sentencing—what seem like hard numbers or “careful econometric

analysis” aren’t so clear at all.
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More generally, though, it’s not clear how one would balance the chance of deterring murders with

the chance of executing an innocent person. What if each death sentence deterred 0.1 murder, and

5% of people executed were actually innocent? That’s still a 2-to-1 ratio (assuming that you’re

fine with executing the guilty people), so the death penalty is saving lives. Then again, maybe

these innocent people who were executed weren’t so innocent after all. But then again, not every

murder victim is innocent either. Conversely, suppose that executing an innocent person were

to deter 2 murders (or, conversely, that freeing an innocently-convicted man were to un-deter 2

murders). Then the utility calculus would suggest that it’s actually fine to execute the innocent. In

general we are sympathetic to probabilistic cost-benefit analyses, but here we don’t see it working

out. The main worries—on one hand, concern about out-of-control crime, and on the other hand,

concern about executing innocents—seem too difficult to put on the same scale.

Finally, regarding decision analysis, incentives, and so forth: much of the discussion (not in the

Donohue and Wolfers paper, but elsewhere) seems to go to the incentives of potential murderers.

But the death penalty also affects the incentives of judges, juries, prosecutors, and so forth. One

of the arguments in favor of the death penalty is that it sends a message that the justice system

is serious about prosecuting murders. This message is sent to the population at large, not just

to deter potential murderers but to make clear that the system works. Conversely, one argument

against the death penalty is that it motivates prosecutors to go after innocent people, and to hide or

deny exculpatory evidence. Lots of incentives out there.

This story is relevant to the week’s reading as a demonstration of the instability of instrumental

variables estimates and an example where a causal effect of interest cannot be estimated in any

good way from available data. It relates to the course as a whole with its opaque connection

between statistical modeling and social science theory. As Donohue and Wolfers put it,

“By any measure, the resumption of the death penalty in recent decades has been fairly

minor, and both the level of the execution rate and its year-to-year changes are tiny: since

1960 the proportion of homicides resulting in execution ranged from 0% to 3%. By contrast,

there was much greater variation in execution rates over the previous sixty years, when

the execution rate ranged from 2.5% to 18%. This immediately hints that—even with

modern econometric methods—it is unlikely that the last few decades generated enough

variation in execution rates to overturn earlier conclusions about the deterrent effect of

capital punishment.”

This story relates to the week’s reading as an example of the difficulty of causal inference from

observational data and, in particular, the instability of estimates from instrumental variables.

2. Regression discontinuity mishaps

Section 21.3 of Regression and Other Stories discusses regression discontinuity, an approach to

estimating a causal effect in a setting where the treatment I is assigned based on a single predictor

G, with I = 1 if G exceeds some threshold (the “discontinuity”) or I = 0 otherwise. The idea is to

fit a regression of ~ given I, G, and any other important pre-treatment predictors, just using the data

G in some zone near the discontinuity. The discontinuity design has the drawback of imbalance

and zero overlap on G but the advantage that the assignment method is known, and sometimes it

can be reasonable to consider the assignment as essentially random in the neighborhood of the

discontinuity.

Different statistical methods have different characteristic modes of failure.For regression disconti-

nuity, failure often arises when an unreasonable curve is fit to predict ~ from G and when other

important pre-treatment predictors are not included in the model, so that the regression is not

doing a good job of comparing similar units for treatment and controls.

Figure 114 from Regression and Other Stories shows an example of regression discontinuity

analysis that we find reasonable. The model makes sense to us for theoretical reasons—it makes
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Figure 114 A regression discontinuity analysis that we find plausible, from Section 21.3 of Regression and Other

Stories. Each dot on the graph is a school in Chile, and the assignment variable is school-level average score

on a pre-test. (a) School-level data and regression lines predicting the outcome (reading test score in 1992)

given the assignment variable. (b) Subset of data close to the cutoff, representing schools that had a reasonable

chance of receiving or not receiving the assignment. For both graphs, black dots represent schools that were

below the cutoff and gray dots indicate schools above the cutoff. Lines show the fitted regression model in each

case with a discontinuity at the threshold.

sense to compare schools that are similar in pre-test scores—and for the empirical reason that the

estimated curve predicting E(~) given G seems plausible. The average treatment effect is small

but can be estimated using a large number of schools.

Here we share various well-publicized examples from social and health sciences of discontinuity

regressions that we did not find convincing. There are too many examples here to fit into the time

allocated for discussion in one class period, so an instructor should feel free to choose just one or

two to focus on.

Figure 115 shows an estimate of the effect of indoor air pollution on life expectancy.67 Each circle

in the graph represents a different location in China, and after the cubic curve is fit to the data

there is a large discontinuity at zero, with lower life expectancies in the areas north of the river,

where there had been a policy offering free indoor coal heating. This was taken as evidence of a

causal effect.

There are two clear problems with this conclusion. First, the drop at the discontinuity point arises

only to counterbalance the steep increase in the fitted curve in that region of the graph. If you

look at the data without the fitted curve, there is no evidence of a difference in life expectancy on

the left and right sides of the boundary. And there is no scientific reason to think that this cubic

polynomial makes sense: what is happening is that a curve is being overfit to the data and then

overinterpreted. The second problem with this analysis is the data. Look at the green dot on the

upper right portion of the graph. Is it really plausible that there is an area with a life expectancy of

92 years? Indeed, if you believe the fitted model, the life expectancy there would have been 97 in

the absence of the coal heating policy. That high point, along with the implausible life expectancy

of 88 for the blue circle on the upper left of the graph, appears to be driving the fitted curve. A

conclusion is only as good as the data that go into it, and in this case we doubt the data.

67Yuyu Chen, Avraham Ebenstein, Michael Greenstone, and Hongbin Li (2013), Evidence on the impact of sustained

exposure to air pollution on life expectancy from China’s Huai River policy, Proceedings of the National Academy of Sciences

110, 12936–12941. The discussion here is taken from Andrew Gelman and Adam Zelizer (2015), Evidence on the deleterious

impact of sustained use of polynomial regression on causal inference, Research and Politics 2, 1–7. See also the followup

study, Avraham Ebenstein, Maoyong Fan, Michael Greenstone, and Maigeng Zhou (2017), New evidence on the impact of

sustained exposure to air pollution on life expectancy from China’s Huai River Policy, Proceedings of the National Academy of

Sciences, 114, 10384–10389.
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Figure 115 Example of a regression discontinuity analysis we do not trust, purporting to show a large effect on

life expectancy from an indoor coal-heating policy that was available in China only in areas north of the Huai

River. Look at the dots without the curve, and you will see no evidence of a discontinuity across the border.

Figure 116 Example of a regression discontinuity analysis we do not trust, purporting to show that unionization

reduces the risk of a company’s stock crashing. Data come from a set of companies that had union elections.

The dots show average values of a standardized outcome relevant to the risk of a stock-price crash, plotted vs.

the proportion of votes favoring unionization, and the curve shows a fitted quadratic curve with discontinuity.

Look at the dots without the curve and you will see no evidence of a discontinuity across the border.

For another example, Figure 116 summarizes an analysis purporting to find that adoption of labor

unions reduces the risk of a company’s stock price crashing.68 As in the previous example, the

apparent discontinuity cancels a fitted curve trending in the other direction, and if you look at

68Jeong-Bon Kim, Eliza Xia Zhang, and Kai Zhong (2021), Does unionization affect the manager–shareholder conflict?

Evidence from firm-specific stock price crash risk, Journal of Corporate Finance 69, 101991. The discussion here

is taken from Andrew Gelman (2019), Another regression discontinuity disaster and what can we learn from it, https:

//statmodeling.stat.columbia.edu/2019/06/25/another-regression-discontinuity-disaster-and/.
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Figure 117 Example of a regression discontinuity analysis we do not trust, purporting to show that the use of

health care rises immediately before elections. The noisy fitted curves create the conditions for the discontinuity

which otherwise does not appear in the data.

the data without the curve, no discontinuity appears at all. In addition, the curve itself makes no

sense. One could fit such a curve and find a discontinuity just about anywhere in such data.69

Figure 117 shows another example, this time a study from Taiwan claiming to show that “elections

increased health care use and expense only during legally specified campaign periods by as much

as 19%.”70 A curve is fit with a discontinuity at age 20, corresponding to the age at which people

were eligible to vote. The curve on the left side of the discontinuity drops just enough to allow a

big jump right next to it, but that did not stop the claim from being reported entirely uncritically in

some economics and policy-related outlets.71 There’s no discontinuity in the data, but it’s possible

to see a discontinuity appear by fitting enough things to the two sides of the border.

For our next example, we point to a paper claiming to show a large benefit of air filters on student

performance within a school district.72 This purported effect was found by fitting a piecewise

linear regression to data from 28 schools, predicting growth in average test scores given distance

from gas leak, with a discontinuity at 5 miles, because air filters were installed only for schools

within 5 miles of the site of a gas leak. Figure 2 of the research article shows the fitted piecewise

linear model: it is approximately ~ = 0.10 + 0.11(G − 5) for schools with new air filters (those

less than 5 miles from the leak: G < 5) and ~ = −0.10 + 0.09(G − 5) for schools without the

new air filters (further than 5 miles from the leak: G > 5); thus the estimate of the effect at the

discontinuity is 0.2, implying that the air filters caused an increase of test scores by an average of

0.2 standard deviations.

69For more systematic discussion of this point, see Andrew Gelman and Guido Imbens (2019), Why high-order polynomials

should not be used in regression discontinuity designs, Journal of Business and Economic Statistics 37, 447–456. The title of

that article notwithstanding, these problems also arise when fitting low-order polynomials or nonparametric curves.

70Hung-Hao Chang and Chad Meyerhoefer (2023), Do elections make you sick? Evidence from first-time voters, Health

Economics 32, 1064–1083. The discussion here is taken from Andrew Gelman (2020), Does regression discontinuity (or,

more generally, causal identification + statistical significance) make you gullible?, https://statmodeling.stat.columbia.edu/

2020/12/27/rd-gullible/.

71See, for example, Liz Scott (2021), Do elections make you sick?, Chicago Policy Review, https://chicagopolicyreview.org/

2021/03/15/do-elections-make-you-sick/, Stephen Dubner (2020), Does the president matter as much as you think?, Freako-

nomics Radio, https://freakonomics.com/podcast/does-the-president-matter-as-much-as-you-think-ep-404/, Tyler Cowen

(2020), Do elections make you sick?, https://marginalrevolution.com/marginalrevolution/2020/01/do-elections-make-you-sick.

html/, and Russell Lynch (2020), It’s official: elections are bad for your health, Telegraph, https://www.telegraph.co.uk/

business/2020/01/28/official-elections-bad-health/.

72Michael Gilraine (2023), Air filters, pollution and student achievement, Journal of Human Resources. The discussion

here is taken from Andrew Gelman (2020), No, I don’t think that this study offers good evidence that installing air filters in

classrooms has surprisingly large educational benefits, https://statmodeling.stat.columbia.edu/2020/01/09/filters-benefits/.
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Figure 118 Example of a regression discontinuity analysis we do not trust, estimating the effect of a care

management intervention for high risk patients. The data show no clear patterns, but the fitted curves induce

trends that are then countered by the fitted jumps.

We do not believe this result. Our problem is not with the general idea—yes, we’re skeptical of

claims of large effects, but really we have no idea about what’s going on with air pollution and the

brain—; rather, what we don’t believe is that the study in question provides the claimed evidence.

The whole thing is driven by one data point and a linear trend of sharply increasing test scores as

a function of distance from the leak, an effect that makes no theoretical sense in the context of the

paper (from the abstract: “Air testing conducted inside schools during the leak (but before air

filters were installed) showed no presence of natural gas pollutants, implying that the effectiveness

of air filters came from removing common air pollutants”) but does serve to create a background

trend to allow a big discontinuity with some statistical significance. As before, the steep slope of

the fitted curve in the neighborhood of the discontinuity induces an opposite estimated effect at

the threshold.

Given what we know about statistics, how should we think about this problem?

It goes like this: The installation of air filters can be considered as a natural experiment, so the

first step is to compare outcomes in schools in the area with and without air filters: in statistics

terms, a regression with one data point per school, with the outcome being average post-test score

and the predictors being average pre-test score and an indicator for air filters. Make a scatterplot

of post-test vs. pre-test with one point per school, displaying treated schools as open circles and

control schools as dots. There’s nothing wrong with looking at the distance variable, but in this

case the discontinuity analysis seems more like a distraction. There will be other differences

between schools. In addition, it is difficult to interpret the reported statistical significance, given

the many reseacher degrees of freedom involved in the analysis, including what other variables
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to adjust for and the functional forms used in the adjustments. At the end of the day, it’s a cool

natural experiment, but it might be just too small to give any useful information.

For a final example, see Figure 118, which shows various outcomes plotted vs. a healthcare

utilization risk score.73 The large discontinuities are artifacts of the wildly varying underlying

curves being fit. Remove the curves and the discontinuities go away.

The point of all these examples is not that regression discontinuity analyses are always wrong or

even that they deserve special scrutiny. Rather, the issue is that these sorts of observational studies

or natural experiments require careful comparison of treated and control units that are similar in

their pre-treatment characteristics. Pushing the regression-discontinuity button will not in general

work, except in those cases where the selection variable is strongly predictive of the outcome and

where the underlying fitted model makes sense.

This example relates to the week’s reading in supplying examples of a method for causal inference.

It is relevant to the course as a whole in demonstrating some ways that statistical analysis can go

wrong.

Class-participation activities

1. Gather, plot, and discuss two measurements of the same underlying quantity from students

Together, the class should come up with two ways of measuring a single characteristic (for example,

political ideology, social class, interest in sports, . . . ). These will be displayed in scatterplots, so it

is best if the measurements are continuous or approximately continuous. For example, a question

on party identification (Democrat, Independent, Republican) will take on only three values, and

this would be hard to display a scatterplot, so it would be better in that case to ask students for a

continuous measure on a 0–100 scale, in which case it would be necessary to calibrate the scale in

some way. One can also get a more continuous response by recording the sum of responses to a

few questions.

Once the class has settled on the specific questions to ask, the instructor can put them on a Google

form, and the students can use their phones or laptops to go to the form and enter their responses.

Then the students should discuss what the scatterplot might look like. In pairs, students sketch

guesses of the scatterplot. The instructor should go around the room to see what the students have

done and then get a couple of students to go up to the board to sketch their guessed graphs.

Once the data have been gathered, the instructor can download the data from the form, and make a

scatterplot in R that displays on the screen. Students should compare this plot of actual data to the

guessed plots they sketched on the board and discuss differences.

This activity relates to the week’s reading because questions about interpretation of the results

inevitably lead into questions of the form, “Why” does the graph look like this? As discussed

in Section 21.5 of Regression and Other Stories, these sorts of Why questions can be viewed as

explorations of implicit models. For example, if students report political ideology and they are

mostly on the liberal or left side of the spectrum, then the question, “Why is this?”, is a comparison

to an implicit model in which the distribution of ideology is closer to uniform, and we would

seek an explanation for this difference. Or if you expect to see a strong relation between age and

ideology, and you see only a weak pattern or none at all, then this again reflects a departure from

your implicit model, which requires an explanation. The activity relates to the course as a whole

as an example of the open-ended nature of empirical research; also it connects back to ideas of

data collection and measurement in Chapter 2 of Regression and Other Stories.

73Guy David, Aaron Smith-McLallen, and Benjamin Ukert (2019), The effect of predictive analytics-driven interventions

on healthcare utilization, Journal of Health Economics 64, 68–79, and Andrew Gelman (2021), Just another day at the sausage

factory . . . It’s just funny how regression discontinuity analyses routinely produce these ridiculous graphs and the authors and

journals don’t even seem to notice, https://statmodeling.stat.columbia.edu/2021/11/21/sausage-notice/.
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2. “Why” questions and causal inference

Statistical methods focus on estimating treatment effects—what we call “forward causal inference,”

but what about the “reverse causal problem” of seeing a pattern and trying to understand its

cause? Section 21.5 of Regression and Other Stories considers what can be learned from Why

questions.74 A Why question points to an anomaly, some pattern in data that contradicts or cannot

be explained by existing theories.

The idea of learning from anomalies is appealing, and it connects to the formulation in Chapter 2

of Regression and Other Stories considering statistical graphs as comparisons. Exploratory data

analysis is the search for unexplained patterns in data, where “unexplained” is with reference to

some set of implicit or explicit models representing one’s prior expectations about the data. Here

we use the phrase “prior expectation” not in any formal Bayesian sense but just to acknowledge

that exploration and surprise must be defined relative to some baseline of what would not be

surprising. Every exploratory graph is in some sense a model check, and it can be valuable to

consider what are the models being used as comparisons.75

To explore these ideas we go online and pull up a link to a graph from the New York Times showing

county-level vaccine hesitancy estimates that came from a news report during the coronavirus

epidemic.76 We project onto the screen the map from that New York Times link. We ask students

what they notice. Most clearly, there is variation across the country, with lower rates of willingness

to take the vaccine in the southeast and higher rates in the west and northeast.

Also noticeable are several stark boundaries between states, such as Minnesota and its neighbors,

or Colorado and Wyoming. Students should discuss in pairs where this pattern comes from.

Before going on, we point out that this is an example of the use of statistical graphics to reveal

unexpected patterns in data, and this motivates a consideration of what is expected. Is it reasonable

to expect to see jumps across states in the estimated share of adults who say they would definitely

or probably get the coronavirus vaccine?

One possible explanation for the discontinuities across states in the New York Times map is that

there are underlying differences between neighboring states, for example having to do with policy

or political differences. For example, perhaps people in Minnesota are much more likely than

people across the border in Wisconsin to say they would get the vaccine because the vaccine was

more readily available in Wisconsin. Or perhaps Wyoming residents are much more politically

conservative than Coloradans living across the border.

Statistics student Luke Vrotsos looked into the problem:

“Immediately, it seems really implausible how big some of the state-border discontinuities

are (like Colorado-Wyoming). I guess it’s possible that there’s really such a big difference,

but if you check the 2020 election results, which are presumably pretty correlated with

vaccine hesitancy, it doesn’t seem like there is. For example, estimated vaccine hesitancy

for Moffat County, CO is 17% vs. 31% for neighboring Sweetwater County, WY, but

Trump’s vote share was actually higher (81%) in Moffat County than in Sweetwater County

(74%). . . . It’s strange to see results that seem so unlikely, just by looking at a map, reported

so widely.”

74See also Andrew Gelman and Guido Imbens (2013), Why ask why? Forward causal inference and reverse causal

questions, National Bureau of Economic Research working paper 19614, https://www.nber.org/papers/w19614/.

75See Andrew Gelman (2003), A Bayesian formulation of exploratory data analysis and goodness-of-fit testing, International

Statistical Review 71, 369–382.

76Apoorva Mandavilli (2021), Reaching “herd immunity” is unlikely in the U.S., experts now believe, New York

Times, 3 May, https://www.nytimes.com/2021/05/03/health/covid-herd-immunity-vaccine.html/. The discussion here

is taken from Andrew Gelman (2021), Whassup with the weird state borders on this vaccine hesitancy map?, https:

//statmodeling.stat.columbia.edu/2021/05/04/whassup-borders/.
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What happened? The data come from the U.S. government’s Household Pulse Survey, which

describes its methodology as follows:77

“Our statistical analysis occurred in two steps. First, using the HPS, we used a logistic

regression to analyze predictors of vaccine hesitancy using the following sociodemographic

and geographic information: age, gender, race/ethnicity, education, marital status, health

insurance status, household income, state of residence, and interaction terms between

race/ethnicity and having a college degree. Second, we applied the regression coefficients

from the HPS analysis to the data from the ACS to predict hesitancy rates for each ACS

respondent ages 18 and older. We then averaged the predicted values by the appropriate unit

of geography, using the ACS survey weights, to develop area-specific estimates of hesitancy

rates.”

So they have no county-level data at all—they “averaged the predicted values,” not the survey

responses, within each geographic unit. The county differences in the map come entirely from

demographic differences between counties. This still doesn’t explain the large differences between

states. We wouldn’t be surprised to see some state-level effects, because policies vary by state and

the political overtones of vaccines can vary by state, but the border effects just look too large and

too consistent here. Perhaps part of the problem here is that they are using health insurance status

as a predictor, and maybe that varies a lot from state to state.

The Household Pulse Survey had 80 000 respondents in week 26 (the source of the data used

to make the map being discussed).78 80 000 is a lot! Not big enough to get good estimates

for all the 3000 counties in the U.S., but big enough to get good estimates for subsets of states.

For example, if we divide states into chunks of 200 000 people each, then we have, ummmm,

80 000 ∗ 200 000/(330 million) = 48 people per chunk. That would give us a raw standard error

of 0.5/
√

48 = 0.07, or 7 percentage points, per chunk, which is pretty big, but some regression

modeling should help with that, and it still should be enough to improve certain things such as the

North Dakota / Minnesota border.

On the other hand, the map is not a disaster. The reader of the map can realize that the state

borders are artifacts, and that tells us something about the quality of the data and model. Any

graph should contain the seeds of its own destruction—that is, provide enough granularity to

reveal its flaws—and it’s appealing, in a way, that this map shows the seams, in this case at the

state borders.

This activity relates to the week’s reading as an example of a Why question that pushes us to

understand an anomaly in some published data. It relates to the course as a whole in that we are

often in the habit of graphing and analyzing data, without always looking carefully for problems.

Computer demonstrations

1. Instrumental variables estimation

Consider expected survival times after a heart attack (in years), depending on hospital quality

and the administration of a special treatment. Hospital quality and the probability of offering the

treatment can be correlated, and supposing we cannot observe hospital quality directly, a direct

estimate of the effects of the treatment suffers from omitted variable bias.

One way to get around this is using an instrument, if some experiment or natural experiment

77U.S. Department of Health and Human Services (2021), ASPE predictions of vaccine hesitancy for

COVID-19 vaccines by geographic and sociodemographic features, https://aspe.hhs.gov/system/files/pdf/265341/

vaccine-hesitancy-COVID-19-Methodology.pdf.

78U.S. Census Bureau (2020), Source of the data and accuracy of the estimates for the Household Pulse Survey — Phase

3, https://www2.census.gov/programs-surveys/demo/technical-documentation/hhp/Phase3_Source_and_Accuracy_Week_

26.pdf.
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is available. For example, suppose that special funding had been randomly provided to some

hospitals, making it more likely that they would administer the treatment. We can then estimate

the treatment effect using an instrumental variables analysis. In the code below we simulate

the experimental assignment along with a model in which funding increases the probability of

receiving the treatment:

n <- 1000

quality <- rnorm(n, 0, 1.5) # confounder

funding <- sample(c(0,1), n, replace=TRUE) # instrument

treatment <- rbinom(n, 1, invlogit(0.5 * quality + 1 * funding)) # treatment

survival <- 8 + 0.5 * quality + 3.0 * treatment + rnorm(n, 0, 1.5) # outcome

fake <- data.frame(funding, treatment, survival)

In this case, we are using an additive model for survival times, which does not make much sense

given that this outcome is restricted to be positive. But that is not the focus of this example so we

will continue.

Next you can perform the simple regression, which suffers from omitted variable bias:

fit1 <- stan_glm(survival ~ treatment, data=fake, refresh=0)

print(fit1)

You can then compare the estimate to the true treatment effect of 3.0 (see above code).

And here is the instrumental variables estimate:

itt_zt <- stan_glm(treatment ~ funding, data=fake, refresh=0)

itt_zy <- stan_glm(survival ~ funding, data=fake, refresh=0)

wald_est <- coef(itt_zy)[2] / coef(itt_zt)[2]

print(wald_est)

Again, check and compare to the true effect. You can also try embedding the whole thing in a

loop to see the sampling distributions of the two estimates.

You can also experiment by re-running with different coefficients for funding in the simulation to

make the instrument stronger or weaker.

2. Adjustment for pre-test score in a regression discontinuity analysis

Consider a world in which the length of the sentences that children speak (a proxy measure for

cognitive development) is influenced by parents’ income. To help less well-off families, society

offers an intervention below a certain income threshold. You can create this world and then try

to recover the effect using regression discontinuity. As the demonstration shows, we get more

precise estimates when adjusting for pre-treatment variables.

# Pre-intervention world: 4-year-old children, sentences averaging 4.5 words

n <- 1000

income <- exp(rnorm(n, log(50), 0.3)) # in tens of thousands of dollars

words_pre <- 4.5 + 0.005*(income - median(income)) + rnorm(n, 0, 0.3)

# Post-intervention world: 1 year later, sentences averaging 1 word more

# ... for everybody, and 0.25 words more for those with intervention

rule <- income - 25

eligible <- ifelse(rule < 0, 1, 0)

words_post <- words_pre + 1 + 0.25*eligible + rnorm(n, 0, 0.5)

# Regression discontinuity

fake <- data.frame(income, words_pre, words_post, eligible)

fit1 <- stan_glm(words_post ~ eligible, data=fake,
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subset=abs(rule) < 10, refresh=0)

print(fit1)

# Adjust for past word_count

fit2 <- stan_glm(words_post ~ eligible + words_pre, data=fake,

subset=abs(rule) < 10, refresh=0)

print(fit2)

Drills

1. Assumptions for instrumental variables estimation

Remind yourself of the assumptions for instrumental variables estimation, namely (1) ignorability

of the instrument, (2) monotonicity and nonzero association between instrument and treatment

variable, and (3) exclusion restriction. Then assess the following examples: how well do you think

the assumptions hold?

(a) You want to study the effect of education on earnings, using relative proximity to a four-year

college as an instrument.79

Solution: (1) There could be nonignorability. The outcome is earnings, and it could be that

people who live closer to a four-year college have higher earnings on average, for example.

(2) Monotonicity and nonzero association seem plausible: we would expect that living closer

to a college is associated with a higher probability of attending college. (3) The exclusion

restriction seems like a problem. Students who are not affected by the instrument (those who

would have gone to college, or not, regardless of their distance from the nearest college when

growing up) could still have earnings affected by the instrument.

(b) You want to study the effect of breast cancer screenings on survival rates, using randomly-sent

invitations to breast cancer screenings as an instrument.80

(c) You want to study the effect of the composition of municipal councils (balance of left- and

right-leaning representatives) on education policy and total government spending. You use

rainfall as an instrument, under the belief that potential left-wing voters are more likely to

abstain from voting if it rains on election day.81

2. Regression discontinuity

Consider the following examples of discontinuity designs. Which would plausibly allow you to

estimate a causal effect? What variables would you want to adjust for?

(a) In France, municipalities with 3500 inhabitants or more have a proportional representation

system, while smaller ones use a majoritarian system. A researcher finds a discontinuity in

voter turnout at the threshold (higher turnout in proportional representation systems) and

suggest this is a causal effect of going from one system to another.82

Solution: You would want to investigate if other differences occurring at that population

threshold could provide alternative explanations for the discontinuity. In addition, in the

analysis you would want to adjust for variables that could be predictive of voter turnout, such

as region of the country and average socioeconomic status of the residents.

(b) A special remedial educational program is given only to students for whom the pre-test score

79David Card (1993), Using geographic variation in college proximity to estimate the return to schooling, National Bureau

of Economic Research working paper 4483, https://davidcard.berkeley.edu/papers/geo_var_schooling.pdf.

80Thad Dunning (2009), Instrumental variables, http://www.thaddunning.com/wp-content/uploads/2009/12/Dunning_

IEPS_InstrumentalVariables2.pdf.

81Jo Thuri Lind (2020), Rainy day politics: An instrumental variables approach to the effect of parties on political

outcomes, European Journal of Political Economy 61, 101821.

82Andrew Eggers (2013), Proportionality and turnout: Evidence from French municipalities, https://www.bi.edu/

globalassets/forskning/institutt-for-samfunnsokonomi/seminar-v13/eggers.pdf.
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is below some threshold. Students with and without the remedial program are then compared

on scores from a post-test taken a year later.

(c) A city sets up a historic preservation law protecting buildings that were constructed before

1940. Rents on buildings subject or not subject to the law are then compared, five years after

the law has been passed.

Discussion problems

1. Estimating the effects of masks and social distancing

During the covid epidemic, people were not assigned at random to wear masks or to practice

social distancing, but they were indirectly affected by national, state, and local policies mandating

these actions.83 Discuss how you might use instrumental variables to estimate these effects

from available data on state-level policies, compliance, and outcomes. Then consider potential

objections to such analyses, and finally discuss possible data that could be gathered to better

estimate the effects of interest.

2. Coaching for college admissions tests

Companies that provide coaching for college admissions tests advertise large gains from their

programs. For example, Kaplan Educational Centers claimed benefits of 120 points on the SAT,

and the Princeton Review claimed a score increase of 140 points.84 Suppose these represent

average gains among students who take the test, then do these programs, then take the test again.

Explain why the average before-after difference is not a good estimate of the effect of the program.

How could you estimate the magnitudes of the different biases involved when considering the

before-after difference as an estimated causal effect?

Now suppose you were to estimate the effect of one of these coaching programs using a randomized

experiment. How would you have to adjust this to obtain an estimate of the average treatment

effect in the real world?

83See Andrew Gelman (2020), The point here is not the face masks; it’s the impossibility of assumption-free causal inference

when the different treatments are entangled in this way, https://statmodeling.stat.columbia.edu/2020/06/17/face-masks/.

84See Donald Powers and Donald Rock (1998), Effects of coaching on SAT I: Reasoning scores. College Board report

98-6, https://files.eric.ed.gov/fulltext/ED562638.pdf.
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4.25 Advanced regression and multilevel models

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Nonlinearity Nonlinear Modeling Nonlinear 20 data

in leafout treatment golf putting models points and

dates effect in Stan 16 predictors

Governors’ When do students Opinions on Error terms Noisy

elections and stop coming same-sex for nonlinear time

lifespans to class? marriage models series

Reading

Chapter 22 of Regression and Other Stories: Advanced regression and multilevel models

Pre-class warmup assignments

1. Express models in a common framework

(a) Explain why ~ = V0 + V14
−G + V24

−2G + error can be considered a linear model but ~ =

V0 + V14
−V2G + error cannot.

(b) Explain what happens if you fit a regression model, ~ = 0 + 1G + error, and ~ is itself measured

with error.

(c) Explain what happens if you fit a regression model, ~ = 0 + 1G + error, and G is itself measured

with error.

2. Graph a nonlinear model

(a) Sketch the curve ~ = 1 − 4−G for positive values of G using pen on paper, without using the

computer. Label the axes.

(b) Use R to graph the curve ~ = 1 − 4−G using a range of positive values of G that shows the

interesting behavior of the curve.

Homework assignments

1. (a) Measurement error in ~ (Exercise 22.1 of Regression and Other Stories)

Simulate data (G, ~)8 , 8 = 1, . . . , = from a linear regression model, ~ = 0 + 1G + error, but

suppose that the outcome ~ is not observed directly, but instead we observe { = ~ + error, with

independent measurement errors with mean zero. Use simulations to understand the statistical

properties of the observed-data regression of { on G, compared to the desired regression of ~

on G.

(b) Measurement error in G (Exercise 22.2 of Regression and Other Stories)

Simulate data (G, ~)8 , 8 = 1, . . . , = from a linear regression model, ~ = 0 + 1G + error, but

suppose that the predictor G is not observed directly, but instead we observe D = G + error, with

independent measurement errors with mean zero. Use simulations to understand the statistical

properties of the observed-data regression of ~ on D, compared to the desired regression of ~

on G.

2. (a) Understanding nonlinear models

i. Sketch the curve, ~ = 0(1 − 4−1G) for positive values of G on a sheet of paper, without

using the computer. Label 0 and 1 on the axes.
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ii. Sketch the curve, ~ = 0 + 1 1
1+G/2 for positive values of G on a sheet of paper, without

using the computer. Label the axes in terms of 0, 1, and 2.

(b) In pairs: Working through your own example (Exercise 21.18 of Regression and Other Stories)

Continuing the example from the final exercises of the earlier chapters, consider a causal

problem that it would make sense to estimate using instrumental variables. Perform the

instrumental variables estimate, compare to the estimated causal effect using direct regression

on the treatment variable (in both cases including relevant pre-treatment predictors in your

regressions), and discuss the different assumptions of these different approaches.

Stories

1. Nonlinear patterns in leafout dates

In a collaboration with a group of biologists, we wrote,85

“Temperature sensitivity—the magnitude of a biological response per ◦C—is a fundamental

concept across scientific disciplines, especially biology, where temperature determines the

rate of many plant, animal and ecosystem processes. Recently, a growing body of literature in

global change biology has found temperature sensitivities decline as temperatures rise. Such

observations have been used to suggest climate change is reshaping biological processes,

with major implications for forecasts of future change.”

Figure 119 shows an example of this literature, plotting trends over time in the temperature

sensitivity of leaf unfolding for several species of trees.86 For each species and for a series of

10-year moving windows, a linear regression was fit predicting the time of leaf unfolding given

average temperature, and what is plotted in Figure 119 are the slopes from those regressions.

These slopes show a general decline over time.

The decline in the regression slopes—the decrease in temperature sensitivity—has been found in

many empirical studies, and there has been speculation of why this decline is happening and what

it implies for the environment. It turns out, though, that the decline in slopes can be explained as

an artifact of fitting linear models to nonlinear data.

Figure 120a illustrates with a time series of budding of leaves as a function of temperature, for

several different varieties of walnut trees.87 Suppose these curves represented a persistent pattern

over a long period but with average temperature gradually increasing over a period of decades.

Then in the early part of the time series, you would see data with temperatures in the 5◦–10◦ range,

hence a high temperature sensitivity—a steep slope of budding time vs. temperature—and for

the later part of the series, you would see data in the 20◦–25◦ range, hence a low temperature

sensitivity. Even if the underlying nonlinear curve is not changing at all over time, there will

appear to be a regime change, because temperature sensitivity was defined based on a linear model.

We also demonstrated this behavior using a theoretical model, as shown in Figure 120b, where

simulated data are divided into temperature windows to make it clear that, even when the big

picture is nonlinear, data can look locally linear. This example also shows how the problem would

not necessarily be resolved by checking the fit of the individual linear models. In this case, the

temperature sensitivity—the local regression line—really is changing over time; the mistake is

just to consider this as evidence for a change in the underlying curve.

85Elizabeth Wolkovich, Jonathan Auerbach, Catherine Chamberlain, Daniel Buonaiuto, Ailene Ettinger, Ignacio Morales-

Castilla, and Andrew Gelman (2021), A simple explanation for declining temperature sensitivity with warming, Global Change

Biology 27, 4947–4949.

86From Yongshuo Fu et al. (2015), Declining global warming effects on the phenology of spring leaf unfolding, Nature

526, 104–107.

87From Guillaume Charrier, Marc Bonhomme, André Lacointe, and Thierry Améglio (2011), Are budburst dates, dormancy

and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control?, International
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Figure 119 For several species of trees, time trends of temperature sensitivities of leaf unfolding. This sort of

pattern can be understood as an artifact of fitting a series of linear models to nonlinear data; see Figure 120.

Figure 120 (a) Mean time until budbreak for six sorts of walnut trees, as a function of temperature. (b) Simulated

data showing a nonlinear relation of leafout with temperature, showing data from different temperature windows.

This story is relevant to the week’s reading as an example of the limitations of linear models. It

relates to the course as a whole by demonstrating the sometimes subtle connections between the

models we fit to data and the scientific conclusions that we draw.

2. Nonlinear modeling for data exploration

Beginning on page 289, we discussed several examples of regression discontinuity analyses that

we do not trust. Here we present another, this time using loess regression to explore the data.

Figure 121 is from a research article claiming that winning an election causes an increase of 5

to 10 years of life.88 The analysis was performed on a historical database including the years of

birth and death of the winning and losing candidates in elections for governors of U.S. states. The

graph, plotting average lifespan after the election vs. margin of victory, in binned averages, shows

Journal of Biometeorology 55, 763–774.

88Sebastian Barfort, Robert Klemmensen, and Erik Gahner Larsen (2021), Longevity returns to political office, Political

Science Research and Methods 9, 658–664. The discussion here is taken from Andrew Gelman (2022), Criticism as

asynchronous collaboration: An example from social science research, Stat 11, e464.
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Figure 121 Example of a regression discontinuity analysis we do not trust, purporting to show a large effect on

life expectancy from winning or losing an election for governor. Each dot represents an average of data points.

The pattern looks impressive, but upon careful reflection the fitted model makes no sense. After removal of

duplicate cases from the data, the estimate can be explained as an artifact of variation and is consistent with a

null effect.

Figure 122 Raw data from the governors’ elections and lifespans analysis. Compare to the binned averages in

Figure 121.

a fitted line with a discontinuity at zero. However, that jump at zero can be seen as an artifact of

the negative slope of the line on each side of the cutoff.

However, that line itself does not make sense, as it implies that a candidate’s life expectancy is:

• 30 years if he loses an election by 5 percentage points

• 25 years if he loses narrowly

• 35 years if he wins narrowly

• 30 years if he wins by 5 percentage points.

The problem here is not just with the discontinuity but with the entire model—and, crucially, the

discontinuity can only be interpreted in the context of the fitted line. It’s a lot more believable

that this variation is just noise, some artifact of the few hundred cases in this dataset, than that it

represents some general truth about elections, or even about elections for governor.
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Figure 123 Data from the governors’ elections and lifespans analysis along with a fitted local linear smoother.

Figure 124 Data from the governors’ elections and lifespans analysis along with the fitted local linear smoother

(continuous curve) and two separate locally linear smoothers fit separately to the data where the candidates lost

and won the election (broken curves). A discontinuity at G = 0 counteracts a strong and implausible negative

relation between vote margin and lifespan near the boundary.

Figure 121 might at first look compelling, but now consider Figure 122, which shows the raw,

unbinned data. For ease of interpretation we have plotted the data in years rather than days.

Next we throw a local linear smoother (loess) on there and see what we get; this is shown in Figure

123. Figure 124 shows two additional loess fits, one for negative G and one for positive G, at which

point a discontinuity opens up. We’ve seen this before with discontinuity regressions: when the

data are relatively flat near the break point, but the fitted continuous curve from the regression

discontinuity model happens to have a steep negative slope right near the discontinuity, so that a

positive jump is needed to counter an essentially random pattern in the overfitted curves.

Further analysis finds the discontinuity estimate to be very sensitive to the details of the model

that is fit. In particular, the graphs show remaining years of life, which has a very high negative

correlation with the candidate’s age at the time of the election.

The purpose of this particular story is not to rehash all the problems with sloppy statistical models;

rather, the relevance to the week’s reading is that fitting a nonlinear model can give us intuition

about problems with a different fit—even if the nonlinear model does not make sense either. The

example relates to the course as a whole by illustrating the importance of interpreting models, not

just fitting them.
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Class-participation activities

1. Nonlinear treatment effect

It is usual in regression models to assume a constant treatment effect (that is, a coefficient for the

treatment indicator) or an effect that varies linearly with some predictors (that is, coefficients for

interactions of the treatment indicator and other predictors in the model). But real effects can

show strong nonlinear dependence on predictors.

For example, consider a medical treatment that has no effect for the healthiest patients (because

they do not need the treatment) or for the sickest (for whom the treatment is too late). This

corresponds to a nonlinear treatment effect that starts at zero, rises in a “sweet spot” somewhere

in the middle of the range, and declines back to zero. A similar example would be an educational

innovation that benefits students in the middle but not the least-prepared students (who do not

know enough to make use of the new teaching approach) and not the best-prepared students

(because they already understand the material well enough not to need the help).

In this demonstration, students are set up to simulate this scenario. First, the class should together

come up with a story, similar to the medical or educational example above, with a pre-test

measurement G, a treatment effect that is a non-monotonic function of G, and potential outcomes

~0, ~1 under the control and treatment. Students should work in pairs to sketch the expected value

of ~0 and ~1 given G and try to come up with mathematical formulas to approximate these curves.

The instructor can walk around the room and monitor progress. After a few minutes the instructor

can graph formulas that show the desired behavior and project these onto the screen.

The next step is to assign data to each student. The pre-treatment measurement G can be drawn

from a uniform distribution representing the range of interest of this variable. The treatment I

can be assigned completely at random, or using some more complicated approach such as people

with higher values of G being more likely to get the treatment. Finally, the outcome ~ is computed

using the given formula. For simplicity, we recommend using the deterministic model here, that is

adding no random error to ~.

At this point, we demonstrate the challenge of nonlinear effects by estimating the average treatment

effect using a linear model fit to different subsets of the data: just students with low values of

G, just students with high values of G, students with intermediate values, all students. Fitting to

different subsets will give different results. With the correct nonlinear model, all should be fine,

but in general such a model can be difficult to construct.

This activity connects to the week’s reading by being an example of nonlinear modeling. It relates

to the course as a whole in connecting modeling errors to estimation problems.

2. When do students quit a class?

It is usual for some students to decide to drop a course as the semester goes on. You can study this

with your own statistics class with an activity that starts at the beginning of the semester, follows

up a few weeks later, and ends with a final analysis.

The first step is for students in pairs to predict attendance for the next class, or the percentage of

homework assignments that will be turned in on time. Students can first write down their guesses

and then discuss how to evaluate these with future data. If we assume that there will be no new

students joining the class, this can be framed as a binomial model with some probability that a

student who had registered for the course will attend also the next class or return a homework

assignment. If the activity is continued over the course, the previous weeks’ predictions can

be compared to actual events, and students can make new predictions each week. Students can

discuss in pairs how they can improve their predictions given information from the previous weeks,

and whether the binomial model assumption makes sense.

At the end of the course, the instructor can graph trends in past retention and students can make
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Figure 125 Proportion of each assignment handed in as the semester went on, for five different years that a

course was offered. In each year, participation declined, but in the most recent year the decline in participation

had reduced. This is an example of data that would be best fit by a flexible nonlinear model.

their guesses given those trends and then discuss how to fit a nonlinear model to make a prediction

with uncertainty.

For example, Figure 125 shows data from a class we taught at Aalto University with nine homework

assignments. The course was not required, and it is common practice for students to sign up for

extra courses and then later in the semester decide which to stick with. Some of the students

who drop out eventually finish the course in a later semester, but that is not shown here. We are

interested in whether student retention is similar in different years, as we may hope that changes in

the course arrangements would improve the retention.

This activity relates to the week’s reading as a motivation for flexible nonlinear modeling. Here is

an example of code to fit a spline model to the data in R and Stan:

fit6 <- brm(y | trials(n) ~ s(t, k=4) + (t | year),

family=binomial(), data=retention)

Here, the data frame retention has 45 rows corresponding to 9 assignments in each of 5 years, y

is the number of students who turned in assignments in a given assignment number and year, n is

the number of students who began the class that year, t is the assignment number, year is the year

number, and we are fitting a spline with 4 tuning parameters (that is the k=4 in the code), along

with a linear term that varies by year.

Computer demonstrations

1. Fitting golf putting models in Stan

Section 22.6 of Regression and Other Stories presents models for the probability of getting a

golf ball into a hole as a function of distance. Here we demonstrate how to fit a logistic model

using rstanarm and use Stan to fit a geometry-based model. The model can be improved further,

beyond what we show here, also accounting for how hard the ball is hit.89

# Setup

library("rstanarm")

89See Section 10 of Andrew Gelman et al. (2020), Bayesian workflow, http://www.stat.columbia.edu/~gelman/research/

unpublished/Bayesian_Workflow_article.pdf, and Andrew Gelman (2022), Hierarchical model golf putting success!, https:

//statmodeling.stat.columbia.edu/2022/02/20/golf-success/.
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library("cmdstanr")

golf <- read.table(paste0(

"https://raw.githubusercontent.com/avehtari/",

"ROS-Examples/master/Golf/data/",

"golf.txt"),

header=TRUE, skip=2)

# Logistic regression

fit1 <- stan_glm(cbind(y, n-y) ~ x, family=binomial(link="logit"), data=golf,

refresh=0)

plot(golf$x, golf$y/golf$n, ylim=c(0,1))

curve(invlogit(coef(fit1)[1] + coef(fit1)[2] * x), add=TRUE)

# Fit logistic regression using Stan

golf_data <- list(x=golf$x, y=y, n=n, J=J)

golf_logistic <- cmdstan_model("golf_logistic.stan")

fit_logistic <- golf_logistic$sample(data=golf_data, refresh=0)

print(fit_logistic)

# Geometry-based nonlinear model using Stan

r <- (1.68/2)/12

R <- (4.25/2)/12

golf_angle<- cmdstan_model("golf_angle.stan")

fit_angle <- golf_angle$sample(data=golf_data, refresh=0)

print(fit_angle)

# Plot data and both fits

draws_angle <- fit_angle$draws(format="df")

sigma_sim <- draws_angle$sigma

sigma_hat <- median(sigma_sim)

par(mar=c(3,3,2,1), mgp=c(1.7,.5,0), tck=-.02)

plot(0, 0, xlim=c(0, 1.1*max(x)), ylim=c(0, 1.02), xaxs="i", yaxs="i", bty="l",

xlab="Distance from hole (feet)", ylab="Probability of success",

main="Two models fit to the golf putting data", type="n")

segments(x, y/n + se, x, y/n-se, lwd=.5)

curve(invlogit(a_hat + b_hat*x), from=0, to=1.1*max(x), add=TRUE)

x_grid <- seq(R-r, 1.1*max(x), .01)

p_grid <- 2*pnorm(asin((R-r)/x_grid) / sigma_hat) - 1

lines(c(0, R-r, x_grid), c(1, 1, p_grid), col="blue")

points(x, y/n, pch=20, col="blue")

2. Nonlinear regression for opinions on same-sex marriage

Section 22.7 of Regression and Other Stories presents several nonlinear models fit to data on

the support for same-sex marriage given age. This demonstration shows calculations for one

of the two questions demonstrated in the textbook. We fit and display two different nonlinear

models, locally weighted regression using the loess function in R, and spline regression using

stan_gamm4. We collapse the data, which is not essential for the estimation but facilitates plotting

the data along with the fitted models.

# Setup

library("rstanarm")

marr <- read.csv(paste0(

"https://raw.githubusercontent.com/avehtari/",

"ROS-Examples/master/Gay/data/",

"naes04.csv"
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))

marr <- marr[!is.na(marr[,"age"]) & !is.na(marr[,"gayFavorStateMarriage"]),]

marr$age[marr$age>90] <- 91

y <- as.character(marr[,"gayFavorStateMarriage"])

marr$y <- ifelse(y=="Yes", 1, ifelse(y=="No", 0, NA))

# Collapse data

uniq_age <- sort(unique(marr$age))

n_age <- length(uniq_age)

tab <- table(marr$age, marr$y)

y_sum <- as.vector(tab[,2])

n_sum <- as.vector(tab[,1] + tab[,2])

marr_sum <- data.frame(n=n_sum, y=y_sum, age=uniq_age)

# Loess

marr_loess <- loess(y ~ age, data=marr)

marr_loess_fit <- predict(marr_loess, data.frame(age=marr_sum$age))

# Spline

marr_spline <- stan_gamm4(I(y/n) ~ s(age), data=marr_sum)

marr_spline_fit <- posterior_linpred(marr_spline, data.frame(age=marr_sum$age))

# Plot

uniq_age <- sort(unique(marr$age))

plot(marr_sum$age, marr_sum$y/marr_sum$n, ylim=c(0.1, 0.6)) # data

lines(uniq_age, marr_loess_fit, col="blue", lwd=3) # loess

n_sims <- nrow(marr_spline_fit) # spline

for (i in sample(n_sims, 20)){

lines(marr_sum$age, marr_spline_fit[i,], lwd=.5, col="gray50")

}

lines(marr_sum$age, colMeans(marr_spline_fit), lwd=2)

Drills

1. Nonlinear models

Each of these functions is defined for positive values of G. Sketch each function using pen on

paper, labeling the axes appropriately.

(a) ~ = 2 + 44−0.2G

Solution:

(b) ~ = 4 G+2
G+10

(c) ~ = −2G−1.5

2. Error terms for nonlinear models
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Using pen on paper, sketch scatterplots of each of the following models, plotting roughly 100

points with G uniformly distributed between 0 and 20.

(a) ~ = 44−0.2G + error, with independent errors normally distributed with mean 0 and standard

deviation 1

Solution:

(b) ~ = 44−0.2G + error, with independent normally-distributed errors with mean 0 and standard

deviation 0.1

(c) ~ = 44−0.2G ∗ error, with independent lognormally-distributed errors with mean 0 and standard

deviation 1 on the log scale

(d) ~ = 44−0.2G ∗ error, with independent lognormally-distributed errors with mean 0 and standard

deviation 0.1 on the log scale

Discussion problems

1. Regression with 21 data points and 16 predictors

Many years ago we taught a course in statistical consulting. The consulting was done by graduate

students in pairs: each pair had open office hours once a week, clients would come in to discuss

their problems and then were told to return in a week, then each week we would have a meeting

with all the students where we would go over the consulting problems that had come in, which

would prepare them for their followup meetings.

Lots of interesting problems would come in. One week, a pair of students reported that someone

had shown up who was studying the efficiency of industrial plants. The researcher had data on

21 factories, and for each of them she had a measure of efficiency and 16 predictors—different

variables that might be predictive of that outcome. She wanted to use these data to see which of

these factors was most important. We’re sorry, but we have no records from this class, so many

details are missing—we’re reconstructing this from memory.

But one thing we do remember are the numbers: 21 data points, 16 predictors.

The first problem here is to ask what can be done with these data. It’s not an easy question. Indeed,

it might seem ridiculous to suppose that you could tease out a regression relationship among

so many predictors with so few observations. And this is without even getting into potential

interactions (16 ∗ 15/2 two-way interactions and so forth) or the difficulties of causal identification

from observational data. If students cannot come up with any ideas, the instructor should push

them in another way, by asking what decisions they might make based on these data, if they were

designing this sort of industrial plant.

When this example came up in our consulting class years ago, one of the other students said that

he remembered that researcher from the previous semester: she’d come by with 15 data points and

16 predictors, and he and his partner had told her that, with fewer data points than predictors, they

couldn’t help her. In the meantime this researcher had gathered data from 6 more plants and was

emboldened to return.
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Figure 126 Proportion of boy births over time in the United States, among white single births, white multiple

births (twins, etc.), black single births, and black multiple births. The solid curves are smoothed versions for

each group. The first challenge is to identify which of the four lines is which. The class can then discuss how to

model and assess the visible trends and fluctuations.

Fine. Laugh all you want. But . . . there are things that can be done even using this small dataset.

Think about it this way: suppose the researcher had come in with 21 factories and just one

predictor. Then you could do something, right? You can make a scatterplot of the outcome vs.

the predictor, you could run a regression predicting the outcome from this one variable. You can

potentially learn a lot from 21 data points, or even from 15. Even if all you learn is that none

of the 16 available predictors is by itself a strong indicator of the outcome, that still is relevant

information.

This example relates to the week’s reading because it is a problem with a large number of predictors

compared to the number of data points, which is a setting where classical least-squares regression

will not work, and some sort of regularization would be necessary, as is done in various Bayesian

or machine learning approaches to statistics. It is relevant to the course as a whole as an example

where if we think carefully about our inferential goals, we realize we can learn something useful

from our data—just not the “statistically significant” comparison that we’re used to looking for.

2. Noisy time series

Figure 126 shows trends in the sex ratio for single and multiple births among white and black

mothers.90 The first step of this discussion problem is to figure out which of the four series is

which. The solution is to look at variability: the larger the sample size, the less noisy the time

series should look. More white babies than black babies are born each year, and there are many

more singletons than twin births. The ranking of the four time series from least to most noisy

should thus be white singletons, black singletons, white multiples, and black multiples, which

happens to be the ordering of the four series in the graph, from upper to lower.

The next step is to discuss how these time series could be modeled, and to what extent you think

some of the fluctuations in the curves are meaningful. The changes from year to year give some

sense of what to believe. The long-term trend of increasing proportion of boy births among black

mothers seems like a consistent pattern. At the other extreme, the big year-to-year fluctuations

in sex ratio among black multiple births look like noise. A careful statistical analysis of these

series would have to use the 0.5/
√
= standard deviation of proportions that would arise from pure

randomness, as empirical studies have found that the sexes of births are statistically independent

(with the exception that identical twins must be of the same sex).

90Amy Branum, Jennifer Parker, and Kenneth Schoendorf (2009), Trends in US sex ratio by plurality, gestational age and

race/ethnicity, Human Reproduction 24, 2936–2944.
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4.26 Review of the course

Plan for two classes

Computer Discussion

Stories Activities demonstrations Drills problems

Randomized trials Designing Quadratic Basic Design

in international a paper regression statistics using

development helicopter and regression simulation

Is North Carolina Review Bias and Logistic Electoral

less democratic in groups unmodeled regression integrity

than North Korea? uncertainty and causality index

Reading

Review all of Regression and Other Stories

Pre-class warmup assignments

1. Basic statistics and linear regression

(a) Give the standard error corresponding to an estimated proportion of 0.3 from a simple random

sample of 1000 people.

(b) You are doing an experiment feeding rats, and in the range of your data you find out that if you

give a rat 1% more food, its weight will increase by 0.8% on average. Write the mathematical

form of this model, where G is the amount of food given to the rat and ~ is its weight.

2. From logistic regression through causal inference

(a) A logistic regression model is fit, Pr(~ = 1) = logit−1 (0 + 0.2G), predicting whether a survey

respondent plans to vote for the conservative party in the upcoming election, given an issue

attitude G that is on a 0–10 scale. What is a reasonable value for the intercept, 0?

(b) Suppose a fitted regression model is ~ = 0.1 + 0.2G + 0.3I + 0.4GI + error, where G is a

pre-treatment measurement, I is the treatment, and ~ is the outcome of interest. What is the

estimated population average causal effect?

Homework assignments

1. In pairs: Working through your own example

Write a few paragraphs summarizing what you have learned about your example from all the

analyses you have done on it during the semester.

2. No assignment due last day of class.

Stories

1. The rise and fall and rise of randomized controlled trials in international development

Regression and Other Stories follows the standard presentation of causal inference in which

randomized experimentation is the baseline. In many areas of social science, though, observational

91Luciana de Souza Leão and Gil Eyal (2019), The rise of randomized controlled trials (RCTs) in international

development in historical perspective, Theory and Society 48, 383–418. The discussion here is taken from Andrew

Gelman (2020), The rise and fall and rise of randomized controlled trials (RCTs) in international development, https:

//statmodeling.stat.columbia.edu/2020/11/14/rise-fall-rcts/.
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studies are the norm. Sociologists Luciana de Souza Leão and Gil Eyal discuss the history of

randomized experiments in studies of international development:91

“Although the buzz around RCT [randomized controlled trial] evaluations dates from the

2000s, . . . what we are witnessing now is a second wave of RCTs, while a first wave began

in the 1960s and ended by the early 1980s.”

What were the key differences between the two waves? Leão and Eyal start with the most available

explanation:

“What could explain the rise of RCTs in international development? Randomistas tend

to present it as due to the intrinsic merits of their method, its ability to produce ‘hard’

evidence as compared with the ‘softer’ evidence provided by case studies or regressions.

They compare development RCTs to clinical trials in medicine, implying that their success

is due to the same ‘gold standard’ status in the hierarchy of evidence.”

They quote an economist who wrote, “It’s not the Middle Ages anymore, it’s the 21st cen-

tury . . . RCTs have revolutionized medicine by allowing us to distinguish between drugs that work

and drugs that don’t work. And you can do the same randomized controlled trial for social policy.”

Leão and Eyal offer a slightly different perspective:

“While the buzz around RCTs certainly dates from the 2000s, the assumption—implicit in

both the randomistas’ and their critics’ accounts—that the experimental approach is new

to the field of international development—is wrong. In reality, we are witnessing now a

second wave of RCTs in international development, while a first wave of experiments in

family planning, public health, and education in developing countries began in the 1960s

and ended by the early 1980s. In between the two periods, development programs were

evaluated by other means.”

They then set up the puzzle:

“Instead of asking, ‘why are RCTs increasing now?’ we ask, ‘why didn’t RCTs spread to

the same extent in the 1970s, and why were they discontinued?’ In other words, how we

explain the success of the second wave must be consistent with how we explain the failure

of the first.”

Good question, illustrating an interaction between historical facts and social science theorizing.

Leão and Eyal continue:

“The comparison demonstrates that the recent widespread adoption of RCTs is not due

to their inherent technical merits nor to rhetorical and organizational strategies. Instead,

it reflects the ability of actors in the second wave to overcome the political resistance to

randomized assignment, which has bedeviled the first wave, and to forge an enduring link

between the fields of development aid and academic economics.”

This historical story is relevant to the course because it gets us thinking about the reasons that

certain designs and analyses get used. To loop back to the beginning of the course, the goals

of statistics are modeling, prediction, and causal inference—and, as discussed in Chapter 18 of

Regression and Other Stories, causal inference can be thought of as a special case of prediction.

Meanwhile, fundamental challenges of statistics are generalizing from sample to population, from

treatment to control group, and from observed data to underlying constructs of interest. Many

different approaches to design, data collection, measurement, and analysis are available, but they

all go back to addressing these fundamental challenges to answer these fundamental questions.

2. The Harvard study claiming North Carolina is less democratic than North Korea
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The story starts with this news article from 2017 in which a political science professor at the

University of North Carolina wrote,92

“In 2005, in the midst of a career of traveling around the world to help set up elections in

some of the most challenging places on earth . . . my Danish colleague, Jorgen Elklit, and I

designed the first comprehensive method for evaluating the quality of elections around the

world . . . In 2012 Elklit and I worked with Pippa Norris of Harvard University, who used the

system as the cornerstone of the Electoral Integrity Project. Since then the EIP has measured

213 elections in 153 countries and is widely agreed to be the most accurate method for

evaluating how free and fair and democratic elections are across time and place . . .

In the just released EIP report, North Carolina’s overall electoral integrity score of

58/100 for the 2016 election places us alongside authoritarian states and pseudo-democracies

like Cuba, Indonesia and Sierra Leone. If it were a nation state, North Carolina would rank

right in the middle of the global league table—a deeply flawed, partly free democracy that is

only slightly ahead of the failed democracies that constitute much of the developing world.”

This got us curious, so we searched on the web and found The Year in Elections by Norris et al.,

which included a map from 2014 with North Korea colored as one of the countries with “moderate”

electoral integrity, in 65th place out of 127 countries. The poor saps in Bulgaria and Romania

were ranked 90 and 92, respectively. Clearly what they needed was a dose of Kim Jong-il.

Let’s see what this measure actually is. From the report:93

“The survey asks experts to evaluate elections using 49 indicators, grouped into eleven

categories reflecting the whole electoral cycle. Using a comprehensive instrument, listed at

the end of the report, experts assess whether each national parliamentary and presidential

contest meets international standards during the pre-election period, the campaign, polling

day and its aftermath. The overall PEI index is constructed by summing the 49 separate

indicators for each election and for each country. . . . Around forty domestic and international

experts were consulted about each election, with requests to participate sent to a total of

4970 experts, producing an overall mean response rate of 29%. The rolling survey results

presented in this report are drawn from the views of 1429 election experts.”

Now let’s check what the experts said about North Korea; it’s on page 9 of the report:

Electoral laws 53

Electoral procedures 73

District boundaries 73

Voter registration 83

Party and candidate registration 54

Media coverage 78

Campaign finance 84

Voting process 53

Vote count 74

Results 80

Electoral authorities 60

Each of these is on a 0–100 scale with 100 being the best. North Korea is above 50 in every

category on the scale. What’s going on?

92Andrew Reynolds (2016), North Carolina is no longer classified as a democracy, Raleigh News & Observer, 22 Dec. The

discussion here is taken from Andrew Gelman (2017), About that bogus claim that North Carolina is no longer a democracy,

https://statmodeling.stat.columbia.edu/2017/01/02/bogus-north-korea/, with followup, Andrew Gelman (2017), “Constructing

expert indices measuring electoral integrity” — reply from Pippa Norris, https://statmodeling.stat.columbia.edu/2017/01/02/

reply-pippa-norris/. For more recent material, see the Electoral Integrity Project at http://www.electoralintegrityproject.com/.

93Pippa Norris, Ferran Martinez i Coma, and Max Grömping (2015), The year in elections, 2014, Harvard Kennedy School

working paper RWP15-008, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2567075.
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Let’s look more carefully. From one of the tables in the report, the response rate for North Korea

is given as 6%. And it said they consulted about 40 “domestic and international experts” for each

election. 6% of 40 is 2.4, so maybe they got 3 respondents for North Korea, 2 of whom were

Stalinists. Or, more realistically, maybe they were scoring North Korea not in comparison to other

countries but in relation to their expectation, in which case it would be inappropriate to use these

numbers to directly compare countries, as was done in the Electoral Integrity Index report, let

alone to compare to U.S. states.

That report gave North Korea a rating of 65.3 out of 100 and Cuba a rating of 65.6. Both these

numbers are higher than at least 27 of the 50 U.S. states in 2016, according to the ratings from the

Electoral Integrity Project. And these claims were picked up in the news media, including the

New York Times.94

In 2015, the director of the Electoral Integrity Project wrote,95

“The map identifies North Korea and Cuba as having moderate quality elections. The full

report online gives details on how to interpret this. It does not mean that these countries are

electoral or liberal democracies. The indicators measure expert perceptions of the quality of

an election based on multiple criteria derived from international standards.”

Later that year, they dropped North Korea from their reports, which is a start but we don’t think is

enough. First, it’s disturbing that they didn’t see a problem back in 2014 when they rated that

dictatorship as over 50 on all dimensions of electoral integrity. Second, the North Korea numbers

were created using the same approach used for all other countries. Given that we can all agree that

North Korea’s numbers were problematic, this calls into question the method more generally. On

the plus side, it is good that the Harvard team is open about its data and methods, as this allows us

to better assess what they have been doing wrong and gives them an opportunity to improve.

This example is relevant to the course in reinforcing fundamental issues of data collection and data

quality, discussed in Chapter 2 of Regression and Other Stories but often forgotten in quantitative

research. We also like that the last story of the semester is an example for which the data analysis

is simple and the challenge comes in data collection and the definition of the problem.

Class-participation activities

1. Designing a paper helicopter

On page 31 of this book there is a homework problem in which students are asked to build a series

of paper “helicopters,” take measurements on their flight times, and use these data to design a

helicopter to maximize time in the air.96

This exercise can be expanded into a classroom activity that touches on several aspects of design,

data collection, and statistical modeling. At each step, students will only be given a few sheets of

paper, so they will need to consider carefully how to design the helicopters they will test.

We start by simplifying and considering just one factor to modify, for example wing length. Figure

127 shows a template that can be printed out and handed to students. As usual, students work in

pairs. In the first version of the activity, we give each pair of students three copies of the template

and ask how they would choose the values for the one factor to build three helicopters so that they

would expect to learn as much as possible.

94Eduardo Porter (2017), A threat to U.S. democracy: Political dysfunction, New York Times, 3 Jan, http://www.nytimes.

com/2017/01/03/business/economy/trump-election-democracy.html/.

95See Pippa Norris (2015), The best and worst elections of 2014, Washington Post, 16 Feb, https://www.washingtonpost.

com/news/monkey-cage/wp/2015/02/16/the-best-and-worst-elections-of-2014/.

96For further discussion and a more elaborate version of this activity, see George Box (1992), Teaching engineers

experimental design with a paper helicopter, Quality Engineering 4, 453–459, https://williamghunter.net/george-box-articles/

teaching-engineers-experimental-design-with-a-paper-helicopter.
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Figure 127 Template for the one-parameter helicopter activity, printed here at half scale so it can fit on the page.

The instructor should print out many copies of this at full scale to hand to students, who can then cut out and

construct their own helicopters.
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Figure 128 Results from the helicopter activity performed by students in a class. Expected flight time is a

non-monotonic function of wing length, implying that a linear model would not be appropriate for modeling

these data with a goal of finding a wing length to optimize flight time.

We then tell them they can have six helicopters, and that they can choose to design the experiment

for all six at once, or they can first make three and then design sequentially new experiments.

Which approach is better? This is the difference between batch and sequential designs.

If in the three first experiments the wing lengths are ordered G1 < G2 < G3 but the flight time C2
is the longest, we ask them to think how they could fit some simple nonlinear model such as a

quadratic, ~ = 10 + 11G + 12G
2 + error, to predict flight times for other values of G. Given this

model, how should they choose the next values of G?

Figure 128 shows results from a class where we performed this activity and gathered data by

assigning a wing length to each pair of students. In these graphs, each dot represents a single drop

of a helicopter from a fixed height, and the students were also asked to characterize each flight as

being stable or unstable. The longest and stablest flights came with wings that were not too short

or too long. A linear model would not be appropriate for optimizing this function.

If students start with 25 sheets of paper but they a time bonus for each non-used sheet, how should

they decide when to stop making additional experiments (time is money)? This can be made into

a competition. We can then ask students how they might proceed with additional design factors.

This activity is relevant to the week’s reading in providing a motivation for nonlinear modeling
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1. Choose a method you have learned during the semester

2. Review the method

3. Discuss where the method works and where it fails

4. Discuss relevance to your applied interests

5. Points of confusion and open questions

Figure 129 Steps for the semester review activity. This can be displayed on the screen. Students should divide

into groups of four, and then each group can go through the above steps.

amid variation, along with some data to try out such models. It relates to the course as a whole by

connecting regression modeling to larger questions about experimental design, data collection,

and decision making.

2. Semester review

For the last class, it makes sense to do an activity that looks back on the semester. The class

should divide into groups of four, with each group having an in-depth discussion of a single topic

from the course, with the discussion following the steps listed in Figure 129. When each group

chooses a topic, they should announce it aloud and the instructor can write it on the board; that

way the different groups of students will discuss different topics, and among them they should

cover the entire course.

Having chosen their topics, each group should go through the further steps in Figure 129, reviewing

the topic they have chosen, considering its relevance to applied work including their own outside

interests, and listing and trying to resolve any confusions they have. The class as a whole can then

rejoin and discuss various open questions and confusing points that have arisen from the separate

group conversations.

Computer demonstrations

1. Quadratic regression

We can demonstrate problems with the “too much talent” study (see page 166 of this book) by

simulating data with diminishing returns and fitting a quadratic:

n <- 200

x <- runif(n, 0, 200)

y <- 500 + 1000*(1 - exp(-x/50)) + rnorm(n, 0, 100)

plot(x, y, pch=20, cex=.3)

fake <- data.frame(x, y)

fit_1 <- stan_glm(y ~ x, data=fake, refresh=0)

print(fit_1)

curve(coef(fit_1)[1] + coef(fit_1)[2]*x, add=TRUE, col="blue")

fit_2 <- stan_glm(y ~ x + I(x^2), data=fake, refresh=0)

print(fit_2)

curve(coef(fit_2)[1] + coef(fit_2)[2]*x + coef(fit_2)[3]*x^2, add=TRUE, col="red")

This idea can be expanded by simulation of a nonlinear model of a causal effect with nonrandom

sampling and treatment assignment, following by a comparison of linear and nonlinear models.

2. Bias and unmodeled uncertainty

The first step of this demonstration is to show that a random sample of 10 000 people allows us to

estimate the vote share in the population very precisely. The next step is to consider the case of a
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biased sample (for example, due to response rates that differ by sex): here, the estimate remains

precise but is systematically biased.

# Population characteristics

p_male <- 0.45 # voter support among males

p_female <- 0.60 # voter support among females

share_male <- 0.49 # population share of males

share_female <- 1 - share_male # population share of females

true_support <- p_male * share_male + p_female * share_female

print(round(true_support, 4))

# Estimate of voter support based on unbiased sample (with n = 10000)

n <- 10000

survey <- rbinom(n, size=1, prob=true_support)

p_hat <- mean(survey)

se <- sqrt(p_hat * (1 - p_hat) / n)

ci <- p_hat + c(-2, 2) * se

round(ci, 4)

# Phone response behavior and resulting biased measure of support

p_male_answering <- 0.05 # response probability for men

p_female_answering <- 0.10 # response probability for women

phone_male <- share_male * p_male_answering

phone_female <- share_female * p_female_answering

measured_support <- (phone_male * p_male + phone_female * p_female) /

(phone_male + phone_female)

round(measured_support, 4)

# Estimate of voter support based on biased sample (also with n = 10000)

survey <- rbinom(n, size=1, prob=measured_support)

p_hat <- mean(survey)

se <- sqrt(p_hat * (1-p_hat) / n)

ci <- p_hat + c(-2, 2) * se

round(ci, 4)

Drills

1. Basic statistics and linear regression

(a) Consider the following model of price G and sales ~: when the price is $20, sales are 2000

units, and for every 1% increase in price, sales decrease by 0.8%. Write this as a formula.

Solution: ~ = 2000(G/20)−0.8 or log ~ = log(2000) − 0.8 log(G/20)
(b) You are planning to sample = people in a country in which 80% of the population are native

born and 20% are immigrants. As part of the analysis you will compare these two groups

according to the percentage who support more restrictive immigration laws. You want to

estimate this difference to within a standard error of 5 percentage points. How large should =

be?

(c) Write an R function to compute the average and standard deviation of 1000 random draws

from a Poisson distribution with parameter \.

(d) Write R code to fit a linear regression with predictors G1, G2, G3, and all their two-way

interactions.

(e) List at least four of the assumptions of linear regression, in decreasing order of importance.

2. From logistic regression through causal inference

(a) Here is the result from a fitted logistic regression:
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family: binomial [logit]

formula: y ~ x

observations: 100

predictors: 2

------

Median MAD_SD

(Intercept) 1.0 0.5

x -0.3 0.1

Suppose you define I = 20 + 10 ∗ G. What would be the estimated coefficients of the logistic

regression of ~ on I?

Solution: 1.0 − 0.3G = 1.0 − 0.3(I − 20)/10 = 1.6 − 0.03I, so the estimated coefficients are

1.6 and −0.03.

(b) Give R code for fitting an ordered logistic regression predicting an outcome ~ that can take on

the values 1, 2, 3, 4, 5 from predictors G1 and G2.

(c) You are planning to conduct a randomized experiment with 100 people in the treatment group

and 100 controls. The outcome is test scores, in a population where scores have a mean of 60

and standard deviation 15. You have a pre-test measurement, and you expect that the model

fit to estimate the treatment effect will have an '2 of 50%. Approximately what will be the

standard error of the estimated treatment effect?

(d) In an experiment you have outcome ~, treatment indicator I, and a pre-test variables G in a

data frame called sample. You also have G for a population of interest in a data frame called

pop. Give R code to estimate the average causal effect in the population, allowing for the

treatment effect to vary with G.

Discussion problems

1. Designing an experiment using simulation

Suppose you want to design an experiment to estimate the effects of canvassing (face-to-face

conversations) on voter turnout in an upcoming election.97 You have records on a large number

of registered voters, with data on their past voter turnout, and your plan is to randomly select =

people from this database and randomly chose =/2 to be contacted and encouraged to vote. You

will then follow up after the election to see who actually voted. How someone votes is a secret,

but whether a person votes in a particular election is public record.

The problem here is to choose a reasonable =, and you should do this by simulation, as follows.

First start with a tentative guess, for example = = 1000. Then simulate data. The challenge here is

not so much the programming as it is making reasonable guesses for all the components of the

model. You need to make some assumption about past voter turnout (for example, the number of

times a person has voted in the six previous elections) and then a model for the probability of

voting in the current election, conditional on past voter turnout and the treatment indicator. At this

point you should be able to simulate an experiment and fit a model to estimate the treatment effect

from the simulated data, and then loop this to get a sense of the uncertainty of your estimate. If

this uncertainty is large compared to the assumed true effect size, you can scale up = accordingly.

2. Creating a better electoral integrity index

Suppose you wanted to create a better “electoral integrity index,” improving on the work of the

Harvard team (see page 312). How would you do it? How could you put North Carolina and

North Korea on the same scale? Consider issues of definition, measurement, and validation.

97For background, see Alan Gerber and Donald Green (2000), The effects of canvassing, telephone calls, and direct mail

on voter turnout: A field experiment, American Political Science Review 94, 653–663.
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Appendix A

Pre-test questions

A.1 First semester

We give a short three-part quiz at the beginning of the semester for students to answer at home on

their own time, along with the following instructions:

This pre-test includes questions on statistics, mathematics, programming, and social science

modeling, a mixture of background knowledge that would be useful to learn the course material

and some topics we will cover in the course but you might have already seen in an earlier

statistics course. Please spend no more than 45 minutes on it.

This pre-test will not count toward your course grade. We are giving it to assess your

current state of knowledge, as this will allow us to better structure the course for all of you

this semester. So you will directly benefit by doing your best on this exam and reporting your

answers honestly. You can use pencil and paper but no book, notes, or computer and do not

work with other students on this or get any outside help. You can discuss this pre-test with

other students after you’ve turned it in.

Some of the problems might cover topics you know nothing about. That’s OK. Again, we

just want to get a sense of where everyone is right now, at the start of the semester.

Others of you might find most of these questions to be easy. That’s OK too; this just tells us

that you’re well prepared.

Math:

1. Suppose a variable ~ takes on the value 200 in the year C = 1900 and 240 in the year C = 2000. If

this variable follows a linear time trend, what are the values of 0 and 1 in the equation of the line,

~ = 0 + 1C?

(a) 0 = −560, 1 = 0.4

(b) 0 = 200, 1 = 0.4

(c) 0 = 160, 1 = 4

(d) 0 = −1700, 1 = 40

2. What is the logarithm of 0? (We use natural log, not log base 10.)

(a) −1

(b) 1/4
(c) 0

(d) undefined

3. What is the average of the numbers 1, 2, 3, . . . , 100?

(a) 49.5

(b) 50

(c) 50.5

(d) 51
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4. Which of these functions equals 0 when G = 0 and asymptotes to the value 10 as G → ∞?

(a) ~ = 10G/∞
(b) ~ = 10 exp(−G)
(c) ~ = 10(1 − exp(−G))
(d) ~ = 10 − 0.1G2

5. If the vector ~̂ is defined as ~̂ = - V̂, with - =

©«
1 2

3 4

5 6

ª®¬
and V̂ =

(
2

0

)
, what is ~̂?

(a)

(
0

0

)

(b)

(
2

4

)

(c)
©«

3

7

11

ª®¬
(d)

©«
2

6

10

ª®¬
Computing:

1. What is one way to make a scatterplot of two vectors, G and ~, in R?

(a) plot(x, y)

(b) plot x, y

(c) scatter(x, y)

(d) scatter x, y

2. Which of these lines of R code generates ten random numbers between −2 and +2?

(a) sample(c(-2,2), 10)

(b) seq(-2, 2, length=10)

(c) runif(10, -2, 2)

(d) rnorm(10, -2, 2)

3. Which of these lines of R code fits a regression of y on x, with data set data0, using the lm

command, storing the result in object fit?

(a) lm$fit(y ~ x, data=data0)

(b) fit(y ~ x, data=data0)

(c) fit(y ~ x, data=data0, model=lm)

(d) fit <- lm(y ~ x, data=data0)

4. You want to write a line of R code that regresses income on age and male as well as the interaction

of both variables. The data is stored in the data frame data0. Which of the following does not

work?

(a) lm(income ~ age + sex + age:male, data=data0)

(b) lm(income ~ 0 + age + male + age:male, data=data0)

(c) lm(income ~ age + male + age*male, data=data0)

(d) lm(income ~ (age + male)^2, data=data0)
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5. Which of these lines of R code takes a vector of numbers, a, and centers the observations at their

mean?

(a) a - mean(a)

(b) a/mean(a)

(c) mean(a)

(d) a - mean(a - mean(a))

Statistics:

1. What is the approximate interval containing 95% of observations, if your data are normally

distributed with mean 5 and standard deviation 2?

(a) (3, 7)
(b) (1, 9)
(c) (5 −

√
2, 5 +

√
2)

(d) (5 − 2
√

2, 5 + 2
√

2)

2. Consider the regression line ~ = 0.2 + 0.3G + error, with errors normally distributed with mean

0 and standard deviation 2. You observe a new data point at G = 10. Which of these is a 68%

predictive interval for the corresponding observation ~?

(a) (1.2, 5.2)
(b) (−0.8, 7.2)
(c) (3.2 − 2/

√
=, 3.2 + 2/

√
=)

(d) (~̄ − 2/
√
=, ~̄ + 2/

√
=)

3. You record the median income in each state in 2013 and in 2015, and then you run a linear

regression on these 50 data points, predicting 2015 median income from 2013 median income.

What will be the approximate slope of this regression?

(a) 0

(b) 0.5

(c) 1

(d) 2

4. You find survey data from a random sample of 500 American adults in the year 2020 that includes

their ages and their feeling thermometer scores (a 0–100 measure) toward Donald Trump. You

fit a linear regression predicting feeling thermometer score from age. The result is the line

~ = 0 + 1G + error, with errors normally distributed with mean 0 and standard deviation f. What

is a plausible value for 1?

(a) −0.20

(b) −0.02

(c) 0.02

(d) 0.20

5. You have a data set with the variables income, age, male. What regression could you fit to

estimate the difference between the average incomes of men and women?

(a) lm(income ~ male)

(b) lm(income ~ age)

(c) lm(income ~ male + age)

(d) lm(income ~ male*age)
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A.2 Second semester

At the beginning of the second semester, we give students the first-semester final exam (two questions

from each chapter; see Section B.1) for students to answer at home on their own time, along with the

following instructions:

This is the final exam from the first semester of this course. Please spend no more than 90

minutes on it.

This pre-test will not count toward your course grade. We are giving it to you to assess

your current state of knowledge, as this will allow us to better structure the course for all of you

this semester. So you will directly benefit by doing your best on this exam and reporting your

answers honestly. You can use pencil and paper but no book, notes, or computer and do not

work with other students on this or get any outside help. You can discuss this pre-test with

other students after you’ve turned it in.

Some of the problems might stump you. That’s OK. If so, please bring up your questions in

class right away so we can all start on the same page.

Others of you might find most of these questions to be easy. That’s OK too; this just tells us

that you’re well prepared.
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Appendix B

Final exam questions

B.1 Multiple-choice questions for the first semester

Here are a few multiple-choice questions we prepared for each chapter in the first half of Regression

and Other Stories, representing a mix of conceptual, programming, and methods problems. As

discussed in Section 1.5 of this book, we sampled one question for each chapter to construct a practice

final exam, then sampled two questions for each chapter to form the exam itself.

Section B.2 gives questions for the second semester. For a faster-moving course that covers all

this material in one semester, we just combine the multiple-choice questions in Sections B.1 and B.2,

sampling one question for each chapter to construct a practice final exam, then sampling a different

question for each chapter to form a 24-question exam.

1. Questions for Chapter 1 of Regression and Other Stories

(a) Here is a regression predicting incumbent party’s vote percentage from economic growth, fit

to several recent elections:

Median MAD_SD

(Intercept) 46.7 1.4

growth 2.8 0.6

Auxiliary parameter(s):

Median MAD_SD

sigma 3.7 0.7

Someone summarizes the model as follows: “A 1% increase in economic growth is predicted

to lead to a 2.8% share in incumbent party’s vote share.” What is wrong with that statement?

i. The estimate of 2.8 is not statistically significant so it is misleading to present it in this

way.

ii. With these observational data we can only make descriptive, not causal, claims.

iii. People are interested in who wins the election, not in vote share.

iv. The model accounts for the economy but leaves out predictors for other important factors

such as foreign policy and social issues.

(b) A group of students are being trained to do a particular skill, and for each student we record the

number of hours they are trained and their score on a later test. We see a pattern of diminishing

returns: at zero hours of training, the test scores are zero; for low values of training, there is

an approximately positive and linear relation between hours of training and test score; for

high values of training, the relationship levels off and becomes flat. We fit a linear regression

of the form, score = 0 + 1 ∗ hours + error. What can we say about the estimates of 0 and 1?

i. 0 will be negative, 1 will be positive.

ii. 0 will be approximately zero, 1 will be positive.

iii. 0 will be positive, 1 will be positive.

iv. It will not be possible to fit the regression because the data show a nonlinear relationship.
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(c) Suppose a variable ~ takes on the value 200 in the year C = 1900 and 240 in the year C = 2000.

If this variable follows a linear time trend, what are the values of 0 and 1 in equation of the

line, ~ = 0 + 1C?

i. 0 = −560, 1 = 0.4

ii. 0 = 200, 1 = 0.4

iii. 0 = 160, 1 = 4

iv. 0 = −1700, 1 = 40

(d) Which of the following statements is correct?

i. “Generalizing from sample to population” is a concern for sample surveys but not for

causal inference from randomized experiments.

ii. “Generalizing from treatment to control group” is a concern for randomized experiments

but not for observational studies.

iii. “Generalizing from observed measurements to the underlying constructs of interest”

refers to the problem of extrapolation to people who are systematically different from

those in the study.

iv. Regression can be used to generalize from sample to population and to generalize from

treatment to control group.

2. Questions for Chapter 2 of Regression and Other Stories

(a) What is one way to make a scatterplot of two vectors, G and ~, in R?

i. plot(x, y)

ii. plot x, y

iii. scatter(x, y)

iv. scatter x, y

(b) Which of these lines of R code graphs the function ~ = 2 + 3G?

i. abline(2, 3)

ii. abline(2 + 3*x)

iii. curve(2 + 3x)

iv. curve(2, 3)

(c) Which of these lines of R code generates 10 random numbers between −2 and +2?

i. runif(10, -2, 2)

ii. rnorm(10, -2, 2)

iii. sample(c(-2,2), 10)

iv. seq(-2, 2, length=10)

(d) Consider these two graphs:

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

0
5

0
1

0
0

1
5

0

Group 1

Group 2

Group 3

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

0
5

0
1

0
0

1
5

0

We typically prefer the line plot to the bar plot. Why?

i. Both plots look good on paper but the line plot will be easier to view on a computer or

mobile device.

ii. The line plot shows more information than the bar plot.

iii. It is easier to read the numbers off the line plot than the bar plot.

iv. The line plot allows a more direct comparison of the time patterns in the three groups.
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3. Questions for Chapter 3 of Regression and Other Stories

(a) A survey is conducted on 100 Americans, who are asked whether they approve of the president’s

job performance. What is the approximate standard error for the resulting estimate?

i. 0.01

ii. 0.03

iii. 0.05

iv. 0.10

(b) A population of heights is normally distributed with mean 65 inches and standard deviation

3.2 inches. Which of the following lines of R code gives the proportion of people who are

taller than 69.5 inches?

i. dnorm(65, 69.5, 3.2)

ii. 1 - dnorm(65, 69.5, 3.2)

iii. 1 - pnorm(69.5, 65, 3.2)

iv. rnorm(69.6, 65, 3.2)

(c) You perform a survey that estimates the average monthly spending on a particular consumption

category to be $50 for men and $55 for women. The standard errors of these estimates are $3

and $4, respectively. What do you estimate the difference in spending to be, and what is your

estimate’s standard error?

i. 5 ± 1

ii. 5 ± 5

iii. 5 ± 7

iv. 5 ± 7/
√
=

(d) A certain town is served by two hospitals. In the larger hospital about 45 babies are born each

day, and in the smaller hospital about 15 babies are born each day. As you know, about 51%

of all babies are boys. However, the exact percentage varies from day to day. Sometimes it

may be higher than 51%, sometimes lower.

For a period of 1 year, each hospital recorded the days on which more than 60% of the babies

born were boys. Which hospital do you think recorded more such days?

i. The larger hospital

ii. The smaller hospital

iii. About the same (that is, within 5% of each other)

4. Questions for Chapter 4 of Regression and Other Stories

(a) You perform an experiment on = people. You get an estimated treatment effect of 0.3 with a

standard error of 0.2. Is this considered “statistically significant”?

i. Yes

ii. No

iii. Yes, if = > 30

iv. It depends on whether the data are normally distributed

(b) A basketball player takes 20 free throws and makes 14 of them. What is the 95% interval for

her success probability?

i. 0.7 ± 2
√

0.7 ∗ 0.3/20

ii. 0.7 ± 2
√

0.7 ∗ 0.3 ∗ 20

iii. 14 ± 2
√

0.7 ∗ 0.3/20

iv. 14 ± 2
√

0.7 ∗ 0.3 ∗ 20

(c) An intervention has a true effect size of 0.2. You design an experiment that will produce an

unbiased estimate with standard error 0.1. If you run the experiment, what is the probability

that your estimate will be positive and “statistically significant”?
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i. 16%

ii. 50%

iii. 95%

iv. 97.5%

(d) Out of a random sample of 100 Americans, zero report having ever been robbed. From this

information, you compute a 95% confidence interval for the proportion of Americans who

have ever been robbed. What should your interval be?

i. (0, 0) using the standard error
√
?̂(1 − ?̂)/= with estimate ?̂ = 0

ii. (0, 0.05) using the standard error
√
?̂∗ (1 − ?̂∗)/=∗ with ?∗ = ~+2

=+2
and =∗ = = + 4

iii. (0, 0.10) using the standard error 0.5/
√
=

iv. (0, 1) because with 0 successes you have no information about ?

(e) What is a ?-value?

i. The width of a 95% confidence interval

ii. The probability of observing something at least as extreme as the observed test statistic

iii. The probability of estimating the correct sign

iv. The probability that the null hypothesis is true

(f) A study aimed to test how different interventions might affect terminal cancer patients’ survival.

Participants were randomly assigned to Group A (where they were asked to write daily about

positive things they were blessed with) or Group B (where they were asked to write daily

about misfortunes that others had to endure). Participants were then tracked until all had died.

Participants who wrote about the positive things they were blessed with lived, on average, 8.2

months after diagnosis whereas participants who wrote about others’ misfortunes lived, on

average, 7.5 months after diagnosis. The standard error of the difference was 1.0, and the

?-value (compared to the hypothesis of no effect) was 0.27. Which statement is the most

accurate summary of the results?

i. Speaking only of the subjects who took part in this particular study, the average number

of post-diagnosis months lived by the participants who were in Group A was greater than

that lived by the participants who were in Group B.

ii. Speaking only of the subjects who took part in this particular study, the average number

of post-diagnosis months lived by the participants who were in Group A was less than

that lived by the participants who were in Group B.

iii. Speaking only of the subjects who took part in this particular study, the average number

of post-diagnosis months lived by the participants who were in Group A was no different

than that lived by the participants who were in Group B.

iv. Speaking only of the subjects who took part in this particular study, it cannot be determined

whether the average number of post-diagnosis months lived by the participants who were

in Group A was greater/no different/less than that lived by the participants who were in

Group B.

5. Questions for Chapter 5 of Regression and Other Stories

(a) A player takes 10 basketball shots, with a 40% probability of making each shot. Assume the

outcomes of the shots are independent. Which of the following lines of code does not create a

random variable ~ representing the number of shots that go in?

i. y <- rbinom(1, 10, 0.4)

ii. y <- sum(rbinom(10, 1, 0.4))

iii. y <- sum(rbinom(10, 10, 0.4))

iv. y <- 0; for (i in 1:10) y <- y + rbinom(1, 1, 0.4)

(b) Two players each take 50 basketball shots. Player A has a 40% chance of making each

shot and player B has a 30% chance of making each shot. Assume the outcomes of the

shots are independent. You write the following code to simulate this contest 1000 times to

approximately compute the probability that Player A makes more shots than player B:
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n_sims <- 1000

y_A <- rbinom(n_sims, 50, 0.4)

y_B <- rbinom(n_sims, 50, 0.3)

print(y_A > y_B)

This code is not right. What is the problem?

i. The code has no loop. To simulate the contest 1000 times you need a loop.

ii. Your goal is to estimate a continuous probability so you should be using rnorm, not

rbinom.

iii. To simulate the contest you need to simulate the outcomes for both players at once, so it’s

wrong to simulate y_A and y_B using two separate lines of code.

iv. y_A > y_B is a vector so you need to take its mean before printing it at the end.

(c) Which of these lines of R code prints, successively, the rows of matrix a (with dimensions

5 × 3)?

i. for (i in 1:3) print(a[i,])

ii. for (i in 1:5) print(a[i,])

iii. for (i in 1:3) print(a[,i])

iv. for (i in 1:5) print(a[,i])

(d) You want to write an R function to simulate = data points from a regression model, with

data points G randomly sampled from the range (0, 100), then fit the regression model to the

simulated data, print the fitted model, and return the simulated data. Here is the function you

write:

sim <- function(n, a, b, sigma){

library("rstanarm")

x <- runif(n, 0, 100)

y <- rnorm(a + b*x, sigma)

data <- data.frame(x, y)

fit <- lm(y ~ x, data=data)

print(fit)

data.frame(x, y)}

One of the lines in this code is wrong. What is the mistake?

i. You can’t put a library() call inside a function.

ii. The specification of y is wrong because the error term was not added.

iii. The rnorm function simulating y did not specify n.

iv. The data frame cannot be called data.

6. Questions for Chapter 6 of Regression and Other Stories

(a) Which of these lines of R code fits a regression of y on x, with data set data0, using the lm

command, storing the result in object fit?

i. lm$fit(y ~ x, data=data0)

ii. fit(y ~ x, data=data0)

iii. fit(y ~ x, data=data0, model=lm)

iv. fit <- lm(y ~ x, data=data0)

(b) You record the median income in each state in 2013 and in 2015, and then you run a linear

regression on these 50 data points, predicting 2015 median income from 2013 median income.

What will be the approximate slope of this regression?

i. 0

ii. 0.5

iii. 1

iv. 2
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(c) Consider a pre-test, post-test situation where scores on both tests have mean 50, and the

regression of post-test on pre-test has a slope of 0.6. A student scores 70 on the pre-test. What

is that student’s expected score on the post-test?

i. 42

ii. 62

iii. 72

iv. 92

(d) Suppose you have conducted an experiment on 100 people and you run a regression whose

estimated slope is 2.5 standard errors from zero. You now have cause to gather data on

an additional group of 50 people and fit the regression just to these new data. What is a

reasonable guess of the probability that the estimated slope will be “statistically significant”

in the replication?

i. 5%

ii. 40%

iii. 85%

iv. 95%

7. Questions for Chapter 7 of Regression and Other Stories

(a) One of the questions asked in the 2020 American National Election Study was feeling

thermometer score (a 0–100 measure) toward Donald Trump. We fit a linear regression

predicting feeling thermometer score from age. The result is the line ~ = 0 + 1G + error, with

errors normally distributed with mean 0 and standard deviation f. What is a plausible value

for 1?

i. −0.20

ii. −0.02

iii. 0.02

iv. 0.20

(b) You have a data set with the variables income, age, male. What regression could you fit to

estimate the difference between the average incomes of men and women?

i. lm(income ~ male)

ii. lm(income ~ age)

iii. lm(income ~ male + age)

iv. lm(income ~ male*age)

(c) A survey is done of =/2 women and =/2 men, with the goal being to estimate the gender gap:

the difference in support for some candidate comparing the two sexes. Assuming the survey

is a random sample, approximately how large does = have to be so the standard error of the

estimated gender gap is 5 percentage points?

i. 100

ii. 200

iii. 400

iv. 800

(d) The slope from a regression with an outcome variable ~ and a single predictor variable G that

is a binary indicator variable is the same as what calculation?

i. The difference in the mean of G and the mean of ~

ii. The difference in the mean of G when ~ = mean(~) and the mean of G when G = mean(G)
iii. The difference in the mean of G when ~ = 0 and the mean of G when ~ = 1

iv. The difference in the mean of ~ when G = 0 and the mean of ~ when G = 1

(e) The following graph was presented along with this explanation: “The histogram has two

peaks, at 40% and 60% of the vote. These correspond to second/first ballot position, and

imply a ballot effect of 20 percentage points.”
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How can this comparison be expressed as a regression?

i. Data points are counties, ~ is Paul Green’s vote share in the county, G is Green’s vote share

in the county in the previous election. Regression of ~ on G has estimated slope of 0.20.

ii. Data points are counties, ~ is Paul Green’s vote share in the county, G = 1 if Green was

listed first on the ballot in the county or 0 if he was listed second on the ballot. Regression

of ~ on G has estimated slope of 0.20.

iii. Data points are counties, ~ is Paul Green’s vote share in the county, G is Green’s vote

share in the county in the previous election, I = 1 if Green was listed first on the ballot

in the county or 0 if he was listed second on the ballot. Regression of ~ on G and I has

estimated coefficient of 0.20 for G.

iv. Data points are counties, ~ is Paul Green’s vote share in the county, G is Green’s vote

share in the county in the previous election, I = 1 if Green was listed first on the ballot

in the county or 0 if he was listed second on the ballot. Regression of ~ on G and I has

estimated coefficient of 0.20 for I.

8. Questions for Chapter 8 of Regression and Other Stories

(a) Which of these quantities is not minimized in ordinary linear regression?

i. The average of the residuals

ii. The sum of the squares of the residuals

iii. The residual standard deviation

iv. The negative of the likelihood

(b) A regression is fit predicting final exam scores from midterm exam scores. The midterm exam

scores are approximately normally distributed with mean 50 and standard deviation 15.

Median MAD_SD

(Intercept) 24.8 1.4

midterm 0.5 0.1

Auxiliary parameter(s):

Median MAD_SD

sigma 11.6 0.3

Suppose a student has a midterm exam score of G. Which of the following R functions returns

the point prediction and approximate predictive standard deviation of this student’s final exam

score?

i. c(24.8 + 0.5*x, 11.6)

ii. c(24.8 + 0.5*x, sqrt(1.4^2 + 0.1^2))

iii. c(24.8 + 0.5*(x-50), sqrt(1.4^2 + 0.1^2*(x-50)^2))

iv. c(24.8 + 0.5*(x-50), 11.6)
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(c) Consider the following regression of earnings (in dollars) on height (in inches):

Median MAD_SD

(Intercept) -85000 9000

height 1600 100

Auxiliary parameter(s):

Median MAD_SD

sigma 22000 400

What will the model look like if we instead predict earnings in dollars from height in

centimeters?

i. Median MAD_SD ii. Median MAD_SD

(Intercept) -33500 9000 (Intercept) -33500 3500

height_cm 630 100 height_cm 630 40

Auxiliary parameter(s): Auxiliary parameter(s):

Median MAD_SD Median MAD_SD

sigma 8700 400 sigma 22000 400

iii. Median MAD_SD iv. Median MAD_SD

(Intercept) -85000 9000 (Intercept) -85000 9000

height_cm 630 100 height_cm 630 40

Auxiliary parameter(s): Auxiliary parameter(s):

Median MAD_SD Median MAD_SD

sigma 8700 160 sigma 22000 400

(d) Given these three data points:

x

y

40 50 60

6
0

7
0

8
0

What is the residual sum of squares for the line ~ = 40 + 0.5G?

i. 125

ii. 225

iii. 350

iv. The points don’t fall on a straight line, so the residual sum of squares is undefined.

(e) Which of the following lines of R code returns a regression ~ on G with the intercept fixed at 0?

i. stan_glm(y ~ x, data=data0)

ii. stan_glm(y ~ x, data=data0, intercept=NULL)

iii. stan_glm(y ~ x, data=data0, prior_intercept=NULL)

iv. stan_glm(y ~ 0 + x, data=data0)
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(f) A regression of the form ~ = 0+ 1G +error is fit to data from 50 students, yielding an estimated

slope 1 of 2.4 with standard error 2.0. The residual standard deviation f is estimated as 1.6.

Suppose data were collected from 200 students from the same population and the model was

fit to those 200 students. Which if the following would you expect to see?

i. A standard error of the slope of approximately 0.5 and a residual standard deviation of

approximately 0.4

ii. A standard error of the slope of approximately 1.0 and a residual standard deviation of

approximately 0.8

iii. A standard error of the slope of approximately 2.0 and a residual standard deviation of

approximately 0.8

iv. A standard error of the slope of approximately 1.0 and a residual standard deviation of

approximately 1.6

9. Questions for Chapter 9 of Regression and Other Stories

(a) Consider the regression line ~ = 0.2 + 0.3G + error, with errors normally distributed with

mean 0 and standard deviation 2. You observe a new data point at G = 10. What is a 68%

predictive interval for the corresponding observation ~?

i. (1.2, 5.2)
ii. (−0.8, 7.2)
iii. (3.2 − 2/

√
=, 3.2 + 2/

√
=)

iv. (~̄ − 2/
√
=, ~̄ + 2/

√
=)

(b) What is the approximate interval containing 95% of observations, if your data are normally

distributed with mean 5 and standard deviation 2?

i. (3, 7)
ii. (1, 9)
iii. (5 −

√
2, 5 +

√
2)

iv. (5 − 2
√

2, 5 + 2
√

2)
(c) An experiment is performed by Wikipedia to estimate the effect on donations of a certain

change in the request page. In the experiment, 10 000 people receive the treatment and 10 000

receive the control. The observed proportion of people who donate is 1.2% under the treatment

and 1.4% under the control. The resulting estimated treatment effect is −0.2 percentage points

with a standard error of 0.16 percentage points. Your prior is that the treatment effect is

as equally likely to be positive as negative, and you have a 68% prior probability that the

treatment effect will be between −0.1 and +0.1 percentage points. What is your posterior

estimate of the treatment effect?

i. −0.20 percentage points

ii. −0.14 percentage points

iii. −0.10 percentage points

iv. −0.06 percentage points

(d) Why might we use the R function posterior_linpred() instead of posterior_predict()?

i. When we want the best point prediction

ii. When we want to incorporate uncertainty into our prediction

iii. When we want uncertainty in the predicted average rather than for a single case

iv. When we want to use the normal distribution

(e) Consider this model that was used to predict the yield of mesquite bushes:

fit <- stan_glm(log(weight) ~ log(canopy_volume) +

log(canopy_slope) + group, data=mesquite)

We wish to use this model to make inferences about the average mesquite yield in a new set of

trees which is summarized by a data frame called new_trees. Which of these lines of R code

gives an estimate and standard error for this prediction?
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i. a <- exp(posterior_linpred(fit, newdata=new_trees))

print(c(mean(a), sd(a)))

ii. a <- exp(posterior_predict(fit, newdata=new_trees))

print(c(mean(a), sd(a)))

iii. a <- exp(posterior_linpred(fit, newdata=new_trees))

b <- rowMeans(a)

print(c(mean(b), sd(b)))

iv. a <- exp(posterior_predict(fit, newdata=new_trees))

b <- rowMeans(a)

print(c(mean(b), sd(b)))

10. Questions for Chapter 10 of Regression and Other Stories

(a) You want to write a line of R code that regresses income on age and male as well as the

interaction of both variables. The data are stored in the data frame data0. Which of the

following does not fit this model?

i. lm(income ~ age + male + age:male, data=data0)

ii. lm(income ~ 0 + age + male + age:male, data=data0)

iii. lm(income ~ age + male + age*male, data=data0)

iv. lm(income ~ (age + male)^2, data=data0)

(b) You are trying to assess the health benefits of walking. Your data variables are called health

(with 0 = bad health and 10 = good health), walks (with 0 = no walking, 1 = infrequent

walking, 2 = regular walks), and smoker (with 0 = nonsmoker and 1 = smoker). Which of

these regression specifications attempts to address the question of whether the benefits of

walking are different for smokers than for non-smokers?

i. walks ~ health + smoker

ii. walks ~ health + smoker + health:smoker

iii. health ~ walks + smoker

iv. health ~ walks + smoker + walks:smoker

(c) Which of the following graphs represents the model, ~ = 15 + 0.4G + I − 0.2GI, for G in the

range (10, 20) and the light and dark lines corresponding to I = 0 and 1, respectively?

i.
x

y

10 20

ii.
x

y

10 20

iii.
x

y

10 20

iv.
x

y

10 20
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(d) Consider the following data:

Suppose this is summarized by a regression predicting probability of supporting Bush given

church attendance (coded as 0 if you never attend church, 1 if you attend once or twice a

month, 2 if you attend more than once per week) and income (coded on a 1–5 scale, with 1

corresponding to poor and 5 corresponding to rich). The regression includes the intercept,

both predictors, and their interaction. What is the approximate value of the coefficient for

income?

i. 0

ii. 0.1

iii. 0.2

iv. 0.3

(e) A regression was fit to country × year data, predicting the rate of civil conflicts given a set

of geographic and political predictors. Here are the estimated coefficients and their I-scores

(estimate divided by standard error):

Estimate (z-score)

(Intercept) -3.814 (-20.178)

Pre-2000 conflict 0.020 (1.861)

Border distance 0.000 (0.450)

Capital distance 0.000 (1.629)

Population 0.000 (2.482)

Percent mountainous 1.641 (8.518)

Percent irrigation -0.027 (-1.663)

GDP per capita -0.000 (-3.589)

Why are the estimated coefficients for border distance, capital distance, population, and

per-capita GDP so small?

i. When you fit a regression with a large number of predictors, you can expect each individual

predictor to have only a small effect.

ii. The analysis has data on multiple years for each country; this will result in smaller

coefficients because of duplication of data.

iii. The coefficient corresponds to comparing items that differ by 1 unit in the predictor, and

a difference of 1 km in distance, one person in population, or one dollar in per-capita

GDP is tiny.

iv. The intercept corresponds to the predicted outcome when all the predictors are set to zero,

and it does not makes sense to think of border distance, capital distance, population, and

per-capita GDP as zero.

(f) Consider the following interaction model: ~ = V0 + V1G + V2I + V3GI + error. How would we

estimate the average difference in ~ between when G = 1 and I = 4 and when G = 2 and I = 4?
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i. The difference between V1 and 2V1 + V3

ii. The difference between V1 + 4V3 and 2V1 + 4V2 + 8V3

iii. The difference between V1 + V3 and 2V1 + 2V3

iv. The difference between V1 + 4V3 and 2V1 + 8V3

11. Questions for Chapter 11 of Regression and Other Stories

(a) Consider the following data:

A regression is fit to these data, predicting state-level income in 2000 from state-level income

in 1929. Then another regression is fit, just to the 25 states that were poorest in 1929 (so,

same regression model, just fit to those 25 data points). What happens to the '2, comparing

these two fits?

i. Fitting the model to just the poorer states, there is less unexplained variance compared to

the full model, so '2 clearly goes up.

ii. Fitting the model to just the poorer states, the unexplained variance is about the same as

in the full model, but the explained variance is lower, so '2 clearly goes down.

iii. The fitted model does not change much, so '2 stays roughly the same.

iv. The model only has state averages, not data on individual people, so '2 is not defined

given the information in the graph.

(b) A linear regression, fit <- stan_glm(y ~ pred + z + pred:z, data=data), is fit; the data

are plotted using plot(pred, y); and the coefficient estimates are saved as b <- coef(fit).

Which of the following R code will plot the regression lines corresponding to I = 0 and 1 in

blue and red, respectively?

i. abline(b[1], b[2], col="blue")

abline(b[3], b[4], col="red")

ii. abline(b[1], b[2], col="blue")

abline(b[1] + b[3], b[2] + b[4], col="red")

iii. abline(b[1], b[3], col="blue")

abline(b[2], b[4], col="red")

iv. abline(b[1], b[3], col="blue")

abline(b[1] + b[2], b[3] + b[4], col="red")

(c) Which of the following assumptions is typically least important for the goal of fitting a

regression model?
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i. Equal variance of errors

ii. Linearity

iii. Additivity

iv. Representativeness

(d) Which of the following is not a possible plot of residuals from a fitted least squares regression

model?

i. ii.

iii. iv.

(e) A researcher plans to fit a linear regression to data from a group of adults, predicting their

physical flexibility given age. Flexibility is defined on a 0–30 scale based on measurements

from a series of stretching tasks. Which of the following represents a concern with the validity

assumption?

i. The stretching measurements do not correspond to aspects of flexibility that are of

real-world interest.

ii. The people in the study are volunteers and are healthier than the general population.

iii. Flexibility declines as a nonlinear function of age.

iv. Flexibility measurements are not close to normally distributed.

12. Questions for Chapter 12 of Regression and Other Stories

(a) Data are collected on the size of the military in a large number of countries,

and then a regression is fit, log(number of active-duty military (in millions)) = 10 +
11 log(population (in millions)) + 12G + error, where G is an indicator that equals 1 if a

country is characterized as a democracy and 0 otherwise. Suppose the coefficient of 11 is 0.6.

Which of the following is a correct interpretations of this coefficient?

i. Increasing the log population of a country by 1 will on average increase its log military

size by 0.6.

ii. Comparing two countries that differ by 1 million in population size, on average we expect

the larger country to have about 600 000 more people in the military.

iii. Comparing two countries that differ by 1 million in population size and have the same

democracy status, on average we expect the larger country to have about 600 000 more

people in the military.

iv. Comparing two countries that differ by 10% in population size and are the same democracy

status, on average we expect the larger country to have about a 6% larger military.
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(b) A linear regression is fit predicting support for marĳuana legalization (on a 0–100 scale) given

age. The model includes age in categories (under 30, 30–44, 45–64, 65+) and also age as

a linear predictor. The estimated coefficient for linear predictor is negative. Which of the

following could represent the resulting fitted curve of predicted support given age?

i.
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(c) Data from a survey of adults from 2004 were used to predict support for same-sex marriage

(coded as 1 if the respondent supported same-sex marriage or 0 for lack of support) as a

function of age and sex. Here is the result of a linear regression using an indicator for each

bin of age:

Median MAD_SD

(Intercept) 0.51 0.01

factor(age_discrete)(29,39] -0.10 0.01

factor(age_discrete)(39,49] -0.14 0.01

factor(age_discrete)(49,59] -0.14 0.01

factor(age_discrete)(59,69] -0.25 0.01

factor(age_discrete)(69,79] -0.28 0.01

factor(age_discrete)(79,100] -0.32 0.01

male -0.10 0.01

Auxiliary parameter(s):

Median MAD_SD

sigma 0.03 0.00

What is the interpretation of the intercept in this regression?

i. The predicted probability of support for same-sex marriage for a hypothetical person with

age of 0 is 51%.

ii. The predicted probability of support for same-sex marriage for a hypothetical woman

with age of 0 is 51%.

iii. The predicted probability proportion of support for same-sex marriage for a hypothetical

woman between 18 and 29 is 51%.

iv. The difference in probability of support for same-sex marriage, comparing two people

who differ by 1 on the intercept but are of identical age and sex, is 51%.
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(d) Here is the result of a linear regression predicting log world population given year divided by

1000:

Median MAD_SD

(Intercept) 18.3 0.5

year_1000 1.7 0.3

Auxiliary parameter(s):

Median MAD_SD

sigma 0.7 0.2

Which of these equations does not express the fitted model?

i. log(population) = 18.3 + 0.0017 ∗ year + error

ii. population = exp(18.3 + 0.0017 ∗ year) ∗ error

iii. population = exp(18.3) ∗ year0.0017 ∗ error

iv. population = exp(18.3) ∗ 1.0017year ∗ error

(e) The coefficients of a log-log model can also be called elasticities. What does it mean to

estimate @ as the elasticity of G on ~?

i. For a 1 unit difference in G, we predict a @% difference in ~.

ii. For a 1 unit difference in G, we predict a @ unit difference in ~.

iii. For a 1% difference in G, we predict a @% difference in ~.

iv. For a 1% difference in G, we predict a @ unit difference in ~.

(f) Here is a log-log model: log ~ = 2 + 3 log G + error. How can we represent the model in the

untransformed scale?

i. ~ = exp(2) + G3 + error

ii. ~ = 2G3 ∗ error

iii. ~ = exp(2) ∗ G3 ∗ error

iv. ~ = exp(2) ∗ 3G ∗ error



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

340 B. FINAL EXAM QUESTIONS

B.2 Multiple-choice questions for the second semester

Here are a few multiple-choice questions we prepared for each chapter in the second half of Regression

and Other Stories, representing a mix of conceptual, programming, and methods problems. As

discussed in Section 1.5 of this book, we sample one question for each chapter to construct a practice

final exam, then sample two questions for each chapter to form the exam itself.

1. Questions for Chapter 13 of Regression and Other Stories

(a) Here are data on success or failure on a particular final exam question plotted vs. total score

on the exam, along with a fitted logistic regression line, Pr(~ = 1) = logit−1 (0 + 1G), and

curves showing draws of its uncertainty:
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What are the approximate intercept and slope of this logistic regression?

i. 0 = 0, 1 = 0.05

ii. 0 = −2, 1 = 0.1

iii. 0 = −1.5, 1 = 0.1

iv. 0 = −10, 1 = 0.5

(b) Here is a fitted model predicting whether a person with high-arsenic drinking water will switch

wells, given the arsenic level in their existing well and the distance to the nearest safe well:

stan_glm(formula = switch ~ dist100 + arsenic,

family=binomial(link="logit"), data=wells)

Median MAD_SD

(Intercept) 0.00 0.08

dist100 -0.90 0.10

arsenic 0.46 0.04

Compare two people who live the same distance from the nearest well but whose arsenic

levels differ, with one person having an arsenic level of 0.5 and the other person having a level

of 1.0. Give an approximate estimate ± standard error for the difference in their probabilities

of switching.

i. 0.11 ± 0.01

ii. 0.11 ± 0.04

iii. 0.05 ± 0.005

iv. 0.05 ± 0.02

(c) Given the logistic regression model, Pr(~ = 1) = logit−1
= (−2.5 + 0.44G), what is the

maximum predictive difference corresponding to a unit difference in G?

i. 0.11

ii. 0.22

iii. 0.44

iv. 1.76
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(d) When interpreting logistic regression coefficients, why is the divide-by-4 rule an upper bound

approximation for the expected difference in ~ associated with a 1-unit difference in G?

i. It is accurate where logit−1 (0 + 1G) = 0, thus where the expected value of ~ is minimized.

ii. It is accurate where logit−1 (0 + 1G) = 1, thus where the expected value of ~ is maximized.

iii. It is accurate where logit−1 (0 + 1G) = 0.5, thus where the slope of the logistic curve is

maximized.

iv. It is accurate where logit−1 (0 + 1G) = 0.5, thus where the intercept of the logistic curve

is maximized.

(e) You first run this:

n_loop <- 100

est <- rep(NA, n_loop)

se <- rep(NA, n_loop)

for (loop in 1:n_loop){

n <- 50

x <- runif(n, 0, 10)

y <- rbinom(n, 1, invlogit(-0.2 + 0.3*x))

fake <- data.frame(x, y)

fit <- stan_glm(y ~ x, family=binomial(link="logit"), data=fake)

est[loop] <- coef(fit)["x"]

se[loop] <- se(fit)["x"]

}

Which of the following lines of code, when run next, will be expected to give a value close to

0.95?

i. mean((est + 0.2)/se)

ii. mean((est - 0.3)/se)

iii. mean(abs(est - 0.3)/se < 2)

iv. mean(est - 0.3)/sd(est) < 2

(f) A logistic regression is fit, using grade point average (on a 0–4 scale) to predict whether a

student will drop out of college. Which of these is a plausible value for the coefficient of

grade point average in this model?

i. −1

ii. 0

iii. 0.1

iv. 1

2. Questions for Chapter 14 of Regression and Other Stories

(a) Consider the model, Pr(~ = 1) = logit−1 (0.1 + 0.2G + 0.3I − 0.4GI), where ~ is an outcome

variable, G is a pre-treatment variable, and I is a randomly assigned treatment. For what value

of G does the treatment have no effect?

i. −3/2
ii. 1/2
iii. 3/4
iv. There is no value of G for which the treatment has no effect.

(b) 100 people are surveyed and asked about their happiness. 75 say they are happy and 25 say

they are not. A logistic regression is then fit, predicting this survey response on a constant

term. Approximately what will be the estimated coefficient?

i. 0.25

ii. 0.8

iii. 1.1

iv. 3.0
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(c) Which of the following graphs represents the model, ~ = logit−1 (−2 + G − 10I + 3GI), with

light and dark lines corresponding to I = 0 and 1, respectively?

i.
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(d) The following two plots show two different logistic regression fits.

Which of the following statements is true?

i. The intercept of the fitted logistic regression model in plot A is greater than the intercept

of the fitted logistic regression model in plot B.

ii. The intercept of the fitted logistic regression model in plot A is less than the intercept of

the fitted logistic regression model in plot B.

iii. The slope of the fitted logistic regression model in plot A is greater than the slope of the

fitted logistic regression model in plot B.

iv. The data in plot B show imbalance so it is not appropriate to fit a logistic regression there.

(e) You perform the following simulation:

x <- seq(0, 1, length=50)

y <- c(rep(1,25), rep(0,25))

fake <- data.frame(x, y)

fit <- stan_glm(y ~ x, family=binomial(link="logit"), data=fake)

print(fit)

What will you see?
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i. The estimated coefficient for G will be −∞.

ii. The estimated coefficient for G will be a large negative number.

iii. The estimated coefficient for G will be a large positive number.

iv. The estimated coefficient for G will be ∞.

3. Questions for Chapter 15 of Regression and Other Stories

(a) Here is the result of a fitted logistic regression:

Median MAD_SD

(Intercept) -0.31 0.13

x 0.44 0.65

z 0.10 0.05

What will approximately be the coefficient and standard error of the coefficient for G if you fit

a probit regression to these data?

i. The estimate is scaled by a factor of 1.6; thus, 0.28 ± 0.65.

ii. The estimate and standard error are scaled by a factor of 1.6; thus, 0.28 ± 0.40.

iii. There is no simple approximate rule mapping from logit to probit coefficients.

iv. It is not possible to fit a probit model to logistic data.

(b) A negative binomial regression is fit to data from many country-years estimating the number

of public protests in the country-year, given many predictors including per-capita GDP in

dollars. The model is re-fit using, as a predictor, per-capita GDP in tens of thousands of

dollars. What happens to the coefficient estimate and standard error?

i. The estimate and standard error both are multiplied by 10 000.

ii. The estimate and standard error both are divided by 10 000.

iii. The estimate is multiplied by 10 000 and the standard error is multiplied by 100.

iv. The estimate is divided by 10 000 and the standard error is divided by 100.

(c) Which of the following statements regarding Poisson and negative binomial regression is not

correct?

i. If you were going to fit a Poisson regression, you’re generally better off fitting a negative

binomial regression.

ii. If you include a variable as an offset, you cannot also include it as a predictor in the

model.

iii. Poisson regression corresponds to a negative binomial regression with a very large value

of the reciprocal overdispersion parameter.

iv. If you simulate fake data from one of these models and then fit that model and look at a

particular coefficient, then there will be an approximate 68% chance that the estimated

coefficient will be within 1 standard error of the true value.

(d) Which of the following conditions must hold for a negative binomial regression to be equivalent

to a Poisson regression?

i. The reciprocal dispersion parameter is equal to 0.

ii. The reciprocal dispersion parameter is equal to 1.

iii. The predictive standard deviation of a data point is equal to its expected value.

iv. The predictive standard deviation of a data point is equal to the square root of its expected

value.

4. Questions for Chapter 16 of Regression and Other Stories

(a) A survey experiment is conducted in which each respondent is randomly assigned to

read one of two vignettes—a neutral story or an anti-immigration story—and then is

asked, “Do you support an increase in the country’s immigration levels?” Suppose the

baseline support for this position is 30%. Which of following code computes the power

for this experiment, assuming that the result will only be reported if it is statistically significant?
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i.

power <- function(n, theta){

significant <- rep(NA, 1000)

for (i in 1:1000){

n0 <- rbinom(1, n, 0.5)

n1 <- n - n0

y0 <- rbinom(1, n0, 0.3)

y1 <- rbinom(1, n1, 0.3 + theta)

diff <- y1 - y0

se <- sqrt((y0/n0)*(1-y0/n0)*n0 + (y1/n1)*(1-y1/n1)*n1)

significant[i] <- abs(diff) > 2*se

}

mean(significant)

}

ii.

power <- function(n, theta){

correct_sign <- rep(NA, 1000)

for (i in 1:1000){

n0 <- rbinom(1, n, 0.5)

n1 <- n - n0

y0 <- rbinom(1, n0, 0.3)

y1 <- rbinom(1, n1, 0.3 + theta)

diff <- y1 - y0

correct_sign[i] <- sign(diff) == sign(theta)

}

mean(correct_sign)

}

iii.

power <- function(n, theta){

significant <- rep(NA, 1000)

for (i in 1:1000){

n0 <- rbinom(1, n, 0.5)

n1 <- n - n0

y0 <- rbinom(1, n0, 0.3)

y1 <- rbinom(1, n1, 0.3 + theta)

diff <- y1/n1 - y0/n0

se <- sqrt((y0/n0)*(1-y0/n0)/n0 + (y1/n1)*(1-y1/n1)/n1)

significant[i] <- abs(diff) > 2*se

}

mean(significant)

}

iv.

power <- function(n, theta){

z_score <- rep(NA, 1000)

for (i in 1:1000){

n0 <- rbinom(1, n, 0.5)

n1 <- n - n0

y0 <- rbinom(1, n0, 0.3)

y1 <- rbinom(1, n1, 0.3 + theta)

diff <- y1/n1 - y0/n0

se <- sqrt((y0/n0)*(1-y0/n0)/n0 + (y1/n1)*(1-y1/n1)/n1)

z_score[i] <- diff/se

}

mean(abs(z_score))

}
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(b) You conduct an experiment in which half the people get a special get-out-the-vote message

and the others do not. Then you follow up after the election with a new random sample of 500

people to see if they voted. What is the approximate standard error of your estimated effect

size?

i. 0.015

ii. 0.03

iii. 0.05

iv. 0.07

(c) A study is designed which would have 80% power if it had 600 participants. But for budgetary

reasons, only 300 people could be included in the study. What is the approximate power of

this new study?

i. 30%

ii. 40%

iii. 50%

iv. 60%

(d) In a recent survey, 15% of Americans surveyed said they were crime victims in the past year.

When the survey is done again in a year, how large a sample would be needed to estimate this

proportion to within a standard error of 2 percentage points?

i. 0.15 ∗ 0.85/0.022

ii.
√

0.15 ∗ 0.85/0.02

iii. 0.15 ∗ 0.85 ∗ 0.022

iv.
√

0.15 ∗ 0.85 ∗ 0.02

5. Questions for Chapter 17 of Regression and Other Stories

(a) You are creating a data set with two variables, G and ~, simulated as follows:

n <- 100

x <- rnorm(n, 0, 1)

y <- 2 + 3*x + rnorm(n, 0, 2)

Which of the following code simulates a pattern of data that are missing at random?

i.
is_missing_x <- rbinom(n, 1, 0.2) == 1

is_missing_y <- rbinom(n, 1, invlogit(x)) == 1

x[is_missing_x] <- NA

y[is_missing_y] <- NA

ii.
is_missing_y <- rbinom(n, 1, invlogit(x)) == 1

y[is_missing_y] <- NA

iii.
is_missing_x <- rbinom(n, 1, invlogit(x)) == 1

x[is_missing_x] <- NA

iv.
is_missing_y <- rbinom(n, 1, invlogit(y)) == 1

y[is_missing_y] <- NA

(b) Consider the following regression and poststratification code:

fit <- stan_glm(vote ~ factor(partyid), data=poll)

poststrat_data <- data.frame(partyid=c("R","D","I"),

N=c(0.31,0.32, 0.37))

predict <- posterior_linpred (fit, newdata=poststrat_data)

poststrat_est < -predict %*% poststrat_data$N / sum(poststrat_data$N)

print(c(median(poststrat_est), mad(poststrat_est)), digits=2)
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What is wrong with this code?

i. You need to regress on other variables—you cannot poststratify on the variable you

regress on.

ii. You need to use predict rather than posterior_linpred because you need a point

estimate without uncertainty.

iii. You need to flip predict and poststrat_data$N/sum(poststrat_data$N) for the

matrix multiplication %*% to work.

iv. Nothing is wrong with the code.

(c) Here is a logistic regression fit predicting a binary response (“Are you satisfied with your

educational experience?”) from a survey of students in a four-year college:

Median MAD_SD

(Intercept) -1.6 0.7

male -0.1 1.1

factor(year)2 0.5 0.9

factor(year)3 1.4 2.2

factor(year)4 2.6 2.3

male:factor(year)2 -0.3 1.4

male:factor(year)3 -1.5 2.3

male:factor(year)4 -1.8 2.5

You plan to estimate the average for all the students in the college by taking the predictions

from the fitted model and poststratifying them on sex and year. To do so, what assumption are

you implicitly making about the students in the survey?

i. That they are a random sample of the students in the college

ii. That the proportion of men and women and the proportion of students in each year in the

sample are close to the corresponding proportions in the college

iii. That, within each of the categories defined by sex and year, they are a random sample

from the corresponding group in the college

iv. That there are no important predictors of the response that have not been included in this

model

(d) In studying a national survey of smoking among high school students, a researcher writes the

following code to estimate the average smoking rate in the population:

fit <- stan_glm(smoking ~ female*(factor(ethnicity) + factor(age) +

parents_SES + parents_smoking), family=binomial(link="logit"),

data=survey)

epred_fit <- posterior_epred(fit, newdata=population)

avg_pop <- epred_fit %*% population$N / sum(population$N)

print(c(mean(avg_pop), sd(avg_pop)))

What is wrong with the above code?

i. When using logistic regression, you should not poststratify by simply averaging; instead

you need to account for the nonlinearity in the prediction.

ii. Because female is interacted with the other predictors, you should not simply predict

and poststratify all at once; instead you need to make separate predictions for male and

female students and then average these predictions at the end.

iii. Because you already are starting from a national survey, you do not need to do any

poststratification; you should instead estimate the smoking rate directly from the sample.

iv. Nothing is wrong with the code.

6. Questions for Chapter 18 of Regression and Other Stories

(a) An experiment is performed estimating the effect of a treatment on a sample of people who

are 45% women and 55% men, and the goal is to estimate the average effect in a population

that is 52% women and 48% men. Which of the following statements is not necessarily true?
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i. The sample average treatment effect is between the conditional average treatment effect

for women and the conditional average treatment effect for men.

ii. The population average treatment effect is between the conditional average treatment

effect for women and the conditional average treatment effect for men.

iii. If the treatment is assigned completely at random, then you can get an unbiased estimate

of the sample average treatment effect.

iv. If the people in the experiment are a simple random sample from the population, then

you can get an unbiased estimate of the population average treatment effect.

(b) A researcher conducts a randomized experiment and estimates the treatment effect by

comparing the average outcome in the treatment group to the average outcome in the control

group. The resulting standard error is extremely high. Which of the statement is not necessarily

true?

i. A regression conditioning on pre-treatment variables that are highly predictive of the

outcome should reduce the standard error.

ii. The estimate is unbiased.

iii. Increasing the sample size should reduce the standard error.

iv. The randomization was not implemented properly.

(c) Consider the following small experiment:

Unit 8 Female, G18 Age, G28 Treatment, I8 Outcome, ~8

Audrey 1 40 0 140

Anna 1 40 1 140

Bob 0 50 1 150

Bill 0 50 0 150

Caitlin 1 60 0 155

Cara 1 60 0 155

Dave 0 70 1 160

Doug 0 70 1 160

Suppose the treatment effect is −5 for men and −10 for women. What is the sample average

treatment effect for the 8 people in the experiment?

i. −2.5

ii. −5

iii. −7.5

iv. It cannot be determined from the information given.

(d) Consider the following small experimental setup including potential outcomes:

Potential outcomes

Unit 8 Female, G18 Age, G28 Treatment, I8 ~0
8

~1
8

Audrey 1 40 0 4 4

Anna 1 40 0 4 4

Bob 0 50 0 5 6

Bill 0 50 0 5 6

Caitlin 1 60 1 6 6

Cara 1 60 1 6 6

Dave 0 70 1 7 8

Doug 0 70 1 7 8

What is the estimated treatment effect from these data?

i. 0.5

ii. 2.0

iii. 2.5

iv. It cannot be determined from the information given.
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(e) A researcher conducts a randomized experiment and estimates the treatment effect by regressing

the outcome on a treatment indicator and several pre-treatment predictors. Which of the

following is estimated by the coefficient of the treatment indicator?

i. The sample average treatment effect (SATE)

ii. The population average treatment effect (PATE)

iii. The conditional average treatment effect (CATE)

iv. The average treatment effect among the treated (ATT)

(f) Which experiment is likely to violate the stable unit treatment value assumption (SUTVA)?

i. A field experiment that randomizes students within a school to test the effect of healthy

snacks on health outcomes

ii. An online survey experiment that randomizes participants to test the effect of reading

fake news on policy support

iii. A lab experiment that randomizes participants to test the effect of a new drug

iv. None of the above

(g) Which of the following is a property of a randomized block design?

i. The same proportion of units is treated in each block.

ii. Each block has the same probability of treatment as all other blocks.

iii. Each unit has the same probability of being treated as all other units in its block.

iv. Every unit has the same probability of being treated as all other units in the sample.

7. Questions for Chapter 19 of Regression and Other Stories

(a) The following model is fit to data from a randomized experiment on a group of students:

Median MAD_SD

(Intercept) 39.41 4.90

treatment 11.61 7.98

pre_test 0.68 0.05

treatment:pre_test -0.09 0.07

Auxiliary parameter(s):

Median MAD_SD

sigma 2.17 0.25

Let Ḡ be the average value of the pre-test for the students in the experiment and - be the

average value of the pre-test in the population. Pre-test scores fall in the range from 0 to 100.

Which of the following statements is incorrect?

i. The treatment is estimated to be more effective for students with lower pre-test scores.

ii. The estimated treatment effect is positive for some students and negative for others.

iii. The estimated sample average treatment effect is 11.61 − 0.09Ḡ.

iv. The estimated population average treatment effect is 11.61 − 0.09- .

(b) An experiment is performed in which children are randomly assigned at age 10 to a growth-

enhancing drug or a placebo. The goal is to estimate the effect of the drug on adult height, and

the height of participants is measured at ages 6, 8, 12, and adulthood. The treatment effect is

estimated as follows: adult_height ~ z + height_6 + height_8 + height_12. What

is the most important problem with this estimate?

i. Height at age 12 is a post-treatment variable so you should not adjust for it.

ii. Heights at age 6 and 8 will be nearly collinear, so you should not include both of these in

the regression.

iii. Given the importance of pre-treatment height, you should include an interaction of this

with the treatment indicator.

iv. It makes sense to consider the effect as multiplicative so you should fit the model on the

log scale.
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(c) An experiment is performed on a treatment intended to improve college admissions test scores.

Every student in the experiment has already taken the test once, and for each student we have

this pre-test score, a measure of socioeconomic status, a randomized treatment assignment,

the post-test score, and the gain score (post-test minus pre-test). Two models are fit:

(1) post_test ~ pre_test + SES + z,

(2) gain_score ~ pre_test + SES + z

Which of the following statements is correct about the estimated treatment effect under the

two models?

i. Model 1 is better because it is predicting the outcome directly.

ii. Model 2 is better because the goal is to estimate improvement.

iii. Which model is better depends on the data.

iv. The two models are the same.

(d) Assume you have an unbiased estimate of the sample average treatment effect (SATE). Which

of these would make it an unbiased estimate of the population average treatment effect (PATE)?

i. Ignorability of treatment assignment

ii. Sample is representative of the population

iii. Stable unit treatment value assumption

iv. Efficiency property

8. Questions for Chapter 20 of Regression and Other Stories

(a) An observational study is simulated using the following code for pre-test G, treatment I, and

post-test ~:

n <- 100

x <- runif(n, -1, 1)

z <- rbinom(n, 1, invlogit(x))

y <- 0.2 + 0.3*x + 0.5*z + rnorm(n, 0, 0.4)

fake <- data.frame(x, y, z)

fit <- lm(y ~ x + z, data=fake)

estimate <- coef(fit)["z"]

In this simulation, the true treatment effect is 0.5. Which of the following statements is

correct?

i. The estimate will probably be less than 0.5 because the model also adjusts for G, which is

positively correlated with I, and this adjustment for G will suck up some of the explanatory

power of G.

ii. The estimate will probably be greater than 0.5 because there is imbalance in the treatment

assignment: the treatment is more likely to be assigned to people with higher pre-test

scores, which will artificially make the treatment look more effective.

iii. The estimate will probably be greater than 0.5 because, given the finite sample size, the

adjustment for G is noisy and is likely to undercorrect for imbalance in the design.

iv. The estimate is unbiased because the model correctly adjusts for differences in pre-test

between treatment and control groups.

(b) Consider the following simulation of pre-test G and treatment I:

n <- 100

x <- runif(n, -2, 2)

z <- rbinom(n, 1, invlogit(2 + 3*x))

How would you characterize this assignment rule?

i. No problem with balance or overlap

ii. Problem with balance; no problem with overlap

iii. No problem with balance; problem with overlap

iv. Problem with balance; problem with overlap
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(c) Which of the following models, predicting outcome ~ from pre-treatment predictor G and

treatment indicator I, corresponds to a constant treatment effect?

i. y ~ x + z

ii. y ~ x + z + x:z

iii. y ~ x + z, family=binomial(link="logit")

iv. y ~ x + z + x:z, family=binomial(link="logit")

(d) The following model is fit to data from an observational study with pre-treatment variables D

and {, treatment indicator I, and outcome ~: ~ = 10 + 11D + 12{ + 13I + 14D{ + 15DI + error.

Assuming ignorability of treatment assignment, what is the estimated treatment effect?

i. 13

ii. 13 + 15D

iii. 13I + 15DI

iv. 13I + 14D{ + 15DI

(e) Consider a propensity score used for matching. What does this propensity score represent?

i. The estimated probability that a unit receives treatment, given pre-treatment predictors

ii. The estimated probability that a unit is in an area of overlap, given pre-treatment predictors

iii. The estimated probability that a unit is in an area of balance, given pre-treatment predictors

iv. The estimated probability that a unit is representative, given pre-treatment predictors

9. Questions for Chapter 21 of Regression and Other Stories

(a) In a simple instrumental variables problem, there are four compliance types (Compliers,

Always Takers, Never Takers, and Defiers). If the standard assumptions for instrumental

variables estimation hold, which of the following statements must be true?

i. People are randomly assigned to the Always Takers and Never Takers groups.

ii. The expected number of Compliers equals the expected number of Defiers.

iii. Compliers and Always Takers will be approximately balanced in any pre-treatment

predictors.

iv. There are no Defiers.

(b) An experiment is performed in which students are randomly assigned to participate or not

participate in a study program. For each student, the following variables are recorded: a

pre-test score G, an encouragement indicator I, a participation indicator ) , and a post-test score

~. Of the following assumptions, which is not required for instrumental variables estimation?

i. The effect of encouragement on participation for individual students is sometimes positive.

ii. The effect of encouragement on participation for individual students is never negative.

iii. Encouragement can affect post-test scores only for those students where it has a nonzero

effect on participation.

iv. The effect of the encouragement treatment cannot depend on the pre-test score.

(c) The following code is intended to simulate a scenario where an instrumental variables analysis

is appropriate; we simulate an observed pre-treatment predictor G, an unobserved pre-treatment

predictor D, an encouragement I, a treatment ) , and an outcome ~:

n <- 1000

x <- runif(n, -2, 2)

u <- runif(n, -1, 1)

z <- rbinom(n, 1, 0.5)

T <- rbinom(n, 1, invlogit(u + z))

y <- 0.2 + 0.3*x + 0.4*u + 0.5*T + rnorm(n, 0, 0.2)

data <- data.frame(x, z, T, y)

fit_1 <- stan_glm(T ~ x + z, data=data, refresh=0)

fit_2 <- stan_glm(y ~ x + T + z, data=data, refresh=0)

iv_estimate <- coef(fit_2)["z"] / coef(fit_1)["z"]
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What is wrong with the above code?

i. The models adjust for x; it is not appropriate in instrumental variable estimation to adjust

for a pre-treatment predictor.

ii. The simulation violates the exclusion restriction.

iii. We have included u in the simulation but not in the regression so this cannot work.

iv. The model fit_2 should not include T as a predictor.

(d) A researcher is interested in estimating the effect of campaign spending following a new

policy that has been enacted in some states but not others. The researcher gathers data on

campaign spending and voter turnout by state for each of several elections before and after the

policy has been implemented. Which of the following analyses would not be a reasonable

way of studying this policy?

i. A regression on outcomes at the state-year level, including state-level policy and adjusting

for state-level indicators (fixed effects)

ii. An instrumental variables analysis, considering state-level policy change as the instrument

and the amount of spending in the state post-policy as the treatment

iii. A regression discontinuity analysis, considering time as the forcing variable

iv. A difference-in-difference analysis, comparing states with and without the policy change,

before and after the year the policy was implemented

(e) A team of researchers performed a regression discontinuity (RD) study purporting to

demonstrate that unionization reduces the probability of a company’s stock price crashing.

The analysis looked at a number of companies that had experienced labor union elections

which followed the rule that unionization happened if the union received at least half the vote,

and then used this variable to predict certain outcomes related to stock crashes. Here is one of

the fitted models showing binned data averages:

The estimated treatment effect was negative and statistically significant, leading the researchers

to claim that unionization leads to a decline in crash risk. Which of the following statements

is not correct?

i. The difference in the ~-values between the two curves at G = 0.5 is the estimated treatment

effect from the RD analysis.

ii. A problem with this RD analysis is that the fitted quadratic curves are not plausible.

iii. This fails as an RD design because there is no overlap between the treatment and control

groups.

iv. The analysis could be more trustworthy if it were performed on a narrow band of G near

0.5, but then the standard error would go up.

(f) When interpreting an analysis using instrumental variables, when would the intent to treat

effect (ITT) be a more useful estimand than the conditional average treatment effect (CATE)?
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i. When you want to know the aggregate effect of a treatment across compliers and

non-compliers

ii. When you want to isolate the causal effect for compliers

iii. When the monotonicity assumption is violated

iv. When the exclusion restriction is violated

10. Questions for Chapter 22 of Regression and Other Stories

(a) A researcher would like to measure the effect of a drug that is intended to reduce blood

pressure. Let G be a patient’s pre-treatment blood pressure, D be the concentration of the

drug in the patient’s blood, and ~ be post-treatment blood pressure. Suppose these data,

if available, could be well fit by the model ~ = 00 + 01G + 02D + error. However, in this

experiment, D is not known, it is only measured with error. So instead the researcher fits the

model, ~ = 10 + 11G + 12{ + error, where { is the noisy measure of drug concentration. What

can we typically say about the treatment effect?

i. 02 and 12 will be about the same.

ii. 02 will be higher in absolute value than 12.

iii. 02 will be lower in absolute value than 12.

iv. At least one of 02 or 12 will be approximately zero.

(b) In which of the following models is ~ an increasing function of G with an asymptotic threshold?

i. ~ = 0 − 1G − 2G2, where 1 and 2 are positive

ii. ~ = 1/(0 + 1G), where 1 is positive

iii. ~ = 0 ∗ log(−1G), where 1 is positive

iv. ~ = 0 − 1 ∗ exp(−2G), where 1 and 2 are positive

11. Review questions for the first half of Regression and Other Stories

(a) Data are collected on each of 50 states for 10 years, and a regression is fit predicting crime

rate given a continuous measure of state policy. The model looks like this:

crime ~ policy + year + factor(state) + year*factor(state)

How many coefficients are in this model?

i. 53

ii. 101

iii. 493

iv. 562

(b) 200 women and 200 men are interviewed in a survey and asked their opinion on the death

penalty. 60% of the women surveyed and 70% of the men surveyed support the death penalty.

A linear regression is fit, predicting the survey response given a predictor, sex, that equals 1

for women and 2 for men. Approximately what will be the estimate and standard error for the

coefficient of sex?

i. 0.05 ± 0.05

ii. 0.05 ± 0.10

iii. 0.10 ± 0.05

iv. 0.10 ± 0.10

12. Review questions for the second half of Regression and Other Stories

(a) In order to estimate the effect of an intervention designed to increase the rate at which its

employees use its health plan’s counseling services, a company performs an experiment on

500 of its employees, in which 250 are assigned the treatment and 250 are not. They use the

following code to estimate the treatment effect:

fit <- stan_glm(counseling_use ~ z + previous_counseling_use +

female + age + employee_rank + z*previous_counseling_use, data=expt)
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Which of the following code gives the estimate and standard error of the population average

treatment effect (PATE)?

i.
epred_fit <- posterior_epred(fit, newdata=company)

avg_pop <- epred_fit %*% company$N / sum(company$N)

print(c(mean(avg_pop), sd(avg_pop)))

ii.
effect_pop <- posterior_epred(fit, newdata=company)

print(c(mean(effect_pop), sd(effect_pop)))

iii.
effect_pop <- posterior_epred(fit, newdata=data.frame(company, z=1) -

posterior_epred(fit, newdata=data.frame(company, z=0)

c(mean(effect_pop), sd(effect_pop))

iv.
c(coef(fit)["z"], se(fit)["z"])

(b) A campaign is studied that is intended to increase blood donation. The outcome measurement

is the number of times that a person gives blood in the forthcoming year. The campaign is

estimated to have a positive effect of 0.2. Which of the following stories is not consistent with

this information?

i. The campaign increases each person’s response by 0.2 units.

ii. For each person, the campaign has a 20% chance of increasing the response by 1 unit.

iii. The campaign increases the response by 1 unit for 20% of the people and leaves it

unchanged for the other 80%.

iv. The campaign increases the response by 1 unit for 40% of the people, decreases it by 1

unit for 20% of the people, and leaves it unchanged for the remaining 40%.

(c) 1000 people in an experiment are randomly assigned to read two different vignettes and are

then asked their opinion about a particular political issue. Assume a binary response, that is, a

yes/no answer. Of the 500 who receive vignette A, 300 respond Yes to the issue question and

200 respond No. Of the 500 who receive vignette B, 250 respond Yes to the issue question and

250 respond No. A logistic regression is fit, predicting the survey response given a treatment

indicator. Approximately what will be the estimated coefficient for the treatment indicator?

i. −0.025

ii. −0.1

iii. −0.4

iv. −0.5
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B.3 Take-home exam

An alternative form of final exam is structured by giving students a series of tasks to be applied to a

single example, going through all the materials in the course. Here are instructions for such an exam.

We will send you a topic and a dataset. You will have 48 hours to do this exam. The exam will

be handed out at 8am. Submission deadline is two days later at 8am. You should be able to do

it in one day; we’re giving you two days so that you can do the exam on day 1, get a good sleep,

and then go over your answers on day 2 before submitting.

Select questions that are jointly worth 130 points.

At the top of your submission you should indicate which questions you intend to address

with the data. Answer in full sentences. Your submission should be a Rmarkdown file rendered

as a pdf. Run stan_glm using the refresh=0 setting to suppress intermediate output. Please

also provide your code in a separate R file. The R file should include all commands from the

Rmarkdown file and should run independently. It should include library calls and the data

should be loaded in the environment from the same folder as the R file is in.

Answer all questions which you have chosen below in the context of this applied problem

and the data you have downloaded.

1. Chapter 1 of Regression and Other Stories (10 points):

• Discuss the challenges in this example of generalizing from sample to population, from

treatment to control group, and from observed measurements to the underlying construct of

interest. Give two sentences for each.

2. Chapter 2 of Regression and Other Stories (10 points):

• Discuss issues of reliability and validity for this example, giving two sentences for each.

• Make a grid of graphs exploring your data, along with a paragraph describing what you

have learned. Add another paragraph explaining how you have used the principles of

statistical graphics in making your plots, and another paragraph discussing what important

aspects of the data you were not able to include in these graphs. Your graphs should clearly

communicate key features of the data. Use base graphics via par(mfrow()) or ggplot via

facet_wrap/facet_grid.

3. Chapter 3 of Regression and Other Stories (10 points):

• Consider a deterministic model on the linear or logarithmic scale that would arise here. Graph

the model and discuss its relevance to this example.

4. Chapter 4 of Regression and Other Stories (10 points):

• Perform a simple comparison of treated vs. control or exposed vs. unexposed in your data.

Compute the standard error and 95% confidence interval for this comparison.

• Discuss a possible source of bias or unmodeled uncertainty and estimate its magnitude,

in comparison to the standard error you just calculated. Give a sentence discussing the

relative importance of the bias or unmodeled uncertainty, compared to the uncertainty in the

comparison from the data.

5. Chapter 5 of Regression and Other Stories (20 points):

• Construct a probability model—a function in R that first generates unobserved data and then

generates potentially observed data, possibly with measurement error and selection bias.

The process should be relevant to your applied problem but does not need to capture all its

complexity. Graph your simulated data, compare to a graph of real data, and discuss the

connections between your model and your larger substantive questions.

6. Chapter 6 of Regression and Other Stories (10 points):
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• Take two variables that represent before-and-after measurements of some sort. Make a

scatterplot and discuss challenges of “regression to the mean” when interpreting before-after

changes here.

7. Chapter 7 of Regression and Other Stories (10 points):

• Fit a linear regression with a single predictor, graph the data along with the fitted line, and

interpret the estimated parameters and their uncertainties. Write three sentences, one for each

parameter in the model.

8. Chapter 8 of Regression and Other Stories (10 points):

• Use lm to fit a regression model with one predictor using least squares. Perform a calculation

in R to demonstrate that the estimated slope equals a weighted average of slopes from all

pairs of points.

9. Chapter 9 of Regression and Other Stories (10 points):

• Fit a linear regression to your data and use predict, posterior_epred, and

posterior_predict to make predictions for a new data point with the predictor set to

a reasonable value. In three sentences, summarize the results from these predictions and

explain how they differ.

10. Chapter 10 of Regression and Other Stories (10 points):

• Fit a linear regression with multiple predictors including at least one interaction. The model

should make sense; that is, there should be a good applied reason for fitting it. Explain each

of the estimated parameters and their uncertainties, using one sentence for each parameter.

11. Chapter 11 of Regression and Other Stories (20 points):

• Fit a linear regression with multiple predictors. List all six of the assumptions of the model

and explain, in one sentence for each, how these are relevant to this example.

• Fit a linear regression with multiple predictors. Use residual plots (at least two) to assess the

fit, and describe in two sentences what you found.

• Fit two different linear regressions, each with multiple predictors. Both models should make

sense; that is, there should be good applied reasons for fitting them. Compare the fits using

leave-one-out cross validation, and in one sentence discuss what you found.

12. Chapter 12 of Regression and Other Stories (15 points):

• Fit a linear regression including a log transformation of predictors, outcome, or both. The

model should make sense in the applied context. Graph the data and fitted model, and in a

few sentences explain the result including the transformation.

• Fit a linear regression with multiple predictors. Take one of the continuous predictors, bin it

into discrete categories, and use these discrete indicators as predictors. Plot the data and both

fitted models on the same graph.

13. Chapter 13 of Regression and Other Stories (10 points):

• Fit a logistic regression that makes sense in the applied context. Plot the data and fitted

regression line. Interpret the coefficients and their uncertainties on the probability scale using

the divide-by-4 rule.

14. Chapter 14 of Regression and Other Stories (20 points):

• Evaluate logistic regression using fake-data simulation. Check that the coefficients parameter

estimates are approximately unbiased and that 95% intervals have approximate 95% coverage.

Your simulation should be realistic in that the simulated data should be similar to the real

data you are working with.
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15. Chapter 15 of Regression and Other Stories (10 points):

• Fit a negative binomial regression that makes sense in the applied context. Plot the data and

fitted regression line. Interpret the coefficients and their uncertainties.

16. Chapter 16 of Regression and Other Stories (15 points):

• Design a new study, including decisions about measurements and sample size. Use existing

data and knowledge to come up with reasonable assumptions about effect size and variation.

Then simulate fake data from this design, analyze the fake data, and discuss the results.

17. Chapter 17 of Regression and Other Stories (15 points):

• Consider how to generalize inferences from your fitted model to new scenarios. What

information would be required for poststratification? Make some reasonable assumptions and

use these to generalize your inferences to a relevant population.

• If your data have missingness, come up with a procedure to randomly impute the missing

data and apply it to your example.

18. Chapter 18 of Regression and Other Stories (10 points):

• Frame a question of interest in terms of the effect of a binary treatment. For this example,

explain what are the outcome variable ~, the treatment indicator I, the pre-treatment variables

G, and the potential outcomes ~0 and ~1. Be precise.

19. Chapter 19 of Regression and Other Stories (10 points):

• Estimate a causal effect by linear or logistic regression of an outcome on a binary treatment

variable, some pre-treatment predictors, and at least one treatment interaction. Interpret the

coefficient estimates and standard errors from your fitted model. What are the assumptions

required for you to interpret the coefficients on the treatment indicator as causal effects? Are

these assumptions reasonable here?

20. Chapter 20 of Regression and Other Stories (20 points):

• Set up a causal inference problem with your data where you have an outcome variable, a

binary treatment indicator, and some pre-treatment predictors, where there is noticeable lack

of overlap, comparing treatment and control groups. Assess balance and overlap with graphs.

Perform matching to get a subset of data with adequate overlap, and then fit a regression

model on the subset. Discuss your results and their interpretation. In particular, how is your

interpretation affected by the fact that you’ve analyzed only this subset?

21. Chapter 21 of Regression and Other Stories (20 points, either/or):

• Clearly define a causal effect of interest and perform an instrumental variables analysis

using your data using the two regressions. Interpret each regression result along with the

instrumental variables estimate. Compare to the result of a direct regression. In the context

of this example, discuss the assumptions under which the direct and instrumental-variables

regressions give good estimates of the causal effect.

• Perform a regression discontinuity analysis using your data. Discuss the choices involved

in setting up this regression. Include other pre-treatment predictors in your model, not just

the assignment variable. Interpret your result and discuss the assumptions required for it to

represent a good causal inference.



This book has been published by Cambridge University Press as Active Statistics by Andrew Gelman and Aki Vehtari. This PDF is free

to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works.

© Copyright by Andrew Gelman and Aki Vehtari 2024. The book web page https://avehtari.github.io/ActiveStatistics/

Appendix C

Outlines of classroom activities
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358 C. OUTLINES OF CLASSROOM ACTIVITIES

C.1 First semester
Computer Discussion

Week Stories Activities demonstrations problems

1. Introduction Wikipedia Design a study Collect and Find the

to quantitative experiment to measure some analyze hidden

social science quantity of interest simulated data assumption

Literary Digest Design experiment Predict Find the

poll of 1936 to distinguish elections hidden

two hypotheses from economy assumption

2. Overview of United Nations Bag of candies Graph of Height and

applied regression peacekeeping and sampling data and earnings

(Chapter 1 of bias fitted line

Regression and Girls and Gather and Tinker Graph

Other Stories ) sports plot data with an hypothetical

from students example data

3. Data collection Political Measure Download Tell stories

and visualization leanings of handedness and work with graphs

(Chapter 2 sports fans with data

of ROS ) Use Scatterplot Make plots Plots of

comparisons to charades clearer baby names

redraw a graph

4. Basics of Death rate Amoebas and Matrix College

math and in the exponential growth manipulations admissions

probability pandemic and decline

(Chapter 3 Galton’s Squares, cubes, Compute Probability

of ROS ) giants and power-law weighted of a rare

growth averages event

5. Statistical They got Design a Simulate fake Confidence

inference the wrong bogus study data and intervals and

(Chapter 4 standard error conf interval true values

of ROS ) Claims of Think about Proportions, Standard error

implausibly effect sizes means, and for feeling

large effects differences thermometers

6. Simulation Proportion Real vs. fake Break Discrete /

(Chapter 5 of identical coin flips R functions continuous

of ROS ) twins distribution

Simulate a Simulate a Simulate Simulate

process of probability 100 clustering

innovation process coin flips of buses
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C.1. FIRST SEMESTER 359

Computer Discussion

Week Stories Activities demonstrations problems

7. Background Slope when Simulate fake Play with Examples of

on regression predicting elections data and fit a simulated regression

modeling from the economy a regression regression to the mean

(Chapter 6 Clinton/Trump Memory quiz Challenges in Uniform

of ROS ) vote vs. polls, and regression setting up partisan

and predictions to the mean a simulation swing

8. Linear 52 + 122
= 132 African Regression, Predict

regression countries transformations, elections from

with a single in the U.N. and sample size incumbency

predictor Interpret the Socioeconomic Take average How large

(Chapter 7 regression of status and or regress on was the

of ROS ) earnings on height political views a constant term sample size?

9. Fitting Ronald Reagan Simulate Play with the From

regression and the and recover regression inference

models evangelical vote regression lines estimate to decision

(Chapter 8 Does having a girl Move a point Compare lm Sample size

of ROS ) make you more and shift the and stan_glm and statistical

conservative/liberal? regression line significance

10. Prediction Fairness of Coverage of Different forms Coverage of

and Bayesian random exams prediction of predictive prediction

inference intervals uncertainty intervals

(Chapter 9 Uncertainties Prior for Bayes estimate Prior for

of ROS ) in election a real-world of childhood a real-world

forecasts parameter intervention parameter

11. Linear Incumbency Memory quiz Regression Regression

regression advantage in with pre-test with adjustment

with multiple elections and treatment interactions

predictors Beauty and Design a study Adding Why look

(Chapter 10 teaching with regression interactions at a pre-test?

of ROS ) evaluations in mind to a model

12. Assump-, Actual vs. Sample size Take difference Assumptions

tions, guessed and statistical or regress on of regression

diagnostics, exam scores significance an indicator

evaluation Model checking Assumptions Simulate Patterns

(Chapter 11 for baseball of regression and debug of residuals

of ROS ) analytics

13. Transfor- Logarithm Predictive Centered and When to

mations and of world uncertainties standardized use the

regression population predictors log scale

(Chapter 12 Price Combining Regressions Straight line

of ROS ) elasticity predictors to with logged fit to non-

of demand create a score variables linear data
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360 C. OUTLINES OF CLASSROOM ACTIVITIES

C.2 Second semester
Computer Discussion

Week Stories Activities demonstrations problems

14. Review of Biased samples Self-selected Causal inference Sampling

statistics and and coverage treatment adjusting for and

regression of intervals assignment pre-treatment adjustment

(Chapters 1–12 of The problem Design a study Simulating Causal

Regression and of too much to explore patterns inference,

Other Stories) talent? nonlinearity of bias adjustment

15. Logistic Item-response “Two truths Displaying Real-world

regression analysis of and a lie” a logistic logistic

(Chapter 13 final exams game curve regression

of ROS ) Survey Predict the Logistic Where logistic

nonresponse views of others regression regression

probabilities makes no sense

16. Working with “Keys to the Job training Predictions Experimental

logistic regression White House” and predictive from logistic design

(Chapter 14 comparisons regression

of ROS ) Opiate of Logistic Linear or Design

the masses regression with logistic with

interactions regression pre-test

17. Other Patterns How similar Simulating Identification

generalized of gun are you to overdispersed in linear

linear models ownership your friends? data models

(Chapter 15 Structure Alternative Generalized Functional

of ROS ) in social models for linear model forms for non-

networks discrete data with offset linear models

18. Design and The multiverse Design Design Designing

sample size and the an experiment analysis by a survey

decisions feedback loop from scratch simulation

(Chapter 16 Lucky golf balls Hypothetical Design for Designing

of ROS ) and implausible study of left- estimating future

effect sizes handedness interactions studies

19. Poststrati- Estimating Generalizing Regression Network

fication and state-level from class to and post- sampling

missing-data opinion population stratification

imputation Environmental Experimental Random Problems

(Chapter 17 Sustainability design and imputation with

of ROS ) Index effect sizes missing data
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C.2. SECOND SEMESTER 361

Computer Discussion

Week Stories Activities demonstrations problems

20. Causal Varying Potential Data analysis Randomiza-

inference and treatment outcomes for for basketball tion and

randomized effects basketball activity ethics

experiments Ballot- Potential Sample and Assumptions

(Chapter 18 order outcomes for population in randomized

of ROS ) effects ballot order averages experiments

21. Causal Pest Adjustments Benefits of Causal

inference using control in causal pre-treatment logistic

regression on experiment inference data regression

treatment Social Average Combining Holding

(Chapter 19 penumbras treatment pre-treatment all else

of ROS ) effects predictors equal?

22. Causal No effect Components of Playing Individual

inference of heart an observational with least and average

(Chapters 18–19 stents? study squares effects

of ROS ) The Study makers Don’t adjust Nudge

freshman vs. study for intermedi- meta-

fallacy breakers ate outcomes analysis

23. Observational Retrospective Imbalance Poststratifica- Effects of

studies with evaluation and lack tion for causal campaign

measured of a policy of overlap inference contributions

confounders Postal Victimization Measurement Effects

(Chapter 20 service and views on error and

of ROS ) modeling crime policy models variation

24. Additional Deterrent Two measures Instrumental Effects of

topics in effect of of the same variables masks

causal death penalty quantity

inference Regression “Why” questions Adjustment Admissions

(Chapter 21 discontinuity and causal in regression test

of ROS ) mishaps inference discontinuity coaching

25. Advanced Nonlinearity Nonlinear Modeling Noisy

regression and in leafout treatment golf putting time

multilevel dates effect in Stan series

models Governors’ When do students Opinions on 20 data

(Chapter 22 elections and stop coming same-sex points and

of ROS ) lifespans to class? marriage 16 predictors

26. Review of Randomized trials Designing Quadratic Design

the course in international a paper regression using

(Chapters 1–22 development helicopter simulation

of ROS ) Is North Carolina Review Bias and Electoral

less democratic in groups unmodeled integrity

than North Korea? uncertainty index


