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ABSTRACT

Independent Component Analysis (ICA) and related meth-
ods like Adaptive Factor Analysis (AFA) are promising novel
approaches for elimination of artifacts and noise from bio-
medical signals, especially EEG/MEG data. However, most
of the methods require manual detection and classi�cation
of interference components. Main objective of this paper is
to detect and eliminate noise and some artifacts automat-
ically by computer using criteria for classi�cation, order-
ing and detection of noisy and random signals. The auto-
matic detection and on-line elimination of noise and other
interferences is especially important for long recordings, e.g.
EEG/MEG recording during sleep. In this paper we fo-
cus mainly on the problem of `cleaning' or enhancement of
noisy EEG/MEG data from noise and undesired interfer-
ences using several techniques: ICA and HOS measure of
Gaussianity (to detect and eliminate Gaussian noise), linear
predictor (to detect i.i.d. sources and classify temporally
structured sources) and Hurst exponent (to detect random-
ness in independent components and classify independent
signals). Preliminary extensive computer simulation con-
�rmed potential usefulness of proposed methods for wide
class of applications, especially in area of analysis and pro-
cessing of EEG/MEG data.

1. INTRODUCTION AND PROBLEM
DETAILED ELABORATION

The nervous systems of humans and animals must encode
and process sensory information in the context of noise and
interference, and the signals which are encoded (the images,
sounds, etc.) have very speci�c statistical properties. One
of the challenging task is how to reliably detect, enhance
and localize very weak, non-stationary and corrupted by
noise brain source signals (e.g., evoked and event related
potentials EP/ERP) using EEG/MEG data.

Independent Component Analysis (ICA) and related
methods like Adaptive Factor Analysis (AFA) are promis-
ing approaches for elimination of artifacts and noise from
EEG/MEG data [1] - [4], [15], [17], [19]. However, most of
the methods require manual detection and classi�cation of
interference components and/or estimation of cross-correla-
tion between each independent components and reference
signals corresponding to speci�c artifacts [14], [19].

Main objective of this paper is to propose some rela-
tively simple techniques to automatically detect and elimi-
nate noise and some artifacts and classify independent `brain
sources'.

Evoked potentials (EPs) of the brain are meaningful for
clinical diagnosis and they are important factors to under-
stand higher order mechanism in the brain. The EPs are
usually embedded in the ongoing EEG/MEG with signal to
noise ratio (SNR) less than 0 dB, making them very di�cult
to extract using single trial. The traditional method of EPs
extraction is by using ensemble averaging to improve the
SNR. This often requires hundreds or thousands of trails to
obtain a usable noiseless waveform. Therefore, it is impor-
tant to develop novel techniques that can rapidly improve
the SNR and reduce to minimum the number of ensembles
(trials). Traditional signal processing techniques, such as
Wiener �ltering, adaptive noise canceler, latency-corrected
averaging [9] and invertible wavelets transform �ltering [18]
have been recently proposed for SNR improvements and en-
semble reduction. However, these methods require a priori
knowledge pertaining to the nature of the signal. Since EPs
signals are known to be non-stationary, sparse and chang-
ing their characteristic from trial to trail, it will be essential
in the future to develop novel algorithms for enhancement
of single trail EEG/MEG noisy data.

The formulation of the problem could be given in the fol-
lowing form. Denote by x(t) = (x1(t); x2(t); :::; xn(t))

> the
observed n-dimensional vector of noisy signals that must be
cleaned from the noise and interferences. Here we have two
types of noise. The �rst is so called "inner" noise generated
by some primary sources which cannot be observed directly
but contained in the vector of observations that is mixture
of useful signals and random noise signals or other undesir-
able sources, and second type of noise is the sensor additive
noise (observation errors) at the output of measurement sys-
tem. This noise is not measurable directly also. Formally
we can write that observed n-dimensional vector of sensor
signals x(t) = (x1(t); x2(t); :::; xn(t))

> is mixture of source
signals plus observation errors:

x(t) = As(t) + v(t); (1)

where t = 0; 1; 2; ::: is discrete time; A is a full rank (n �
m) mixing matrix; s(t) = (s1(t); s2(t); :::; sm(t))

> is m-
dimensional vector of sources containing useful signals and
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Figure 1: Conceptual model for cleaning multisensory (e.g.
EEG/MEG) data.

noise and v(t) is n-dimensional vector of additive white
noise. We assume also here that some useful sources could
be not necessarily statistically independent. It means that
we can not achieve perfect separation of primary sources
using any ICA procedure. However, our purpose is not sep-
aration of the sources but removing of independent noisy
sources.

Let us emphasize that the problem consists in cancel-
lation of the noise sources and reduce observation errors
based on only information about observed vector x(t).

Conceptual model for elimination of noise and other un-
desirable components from multi-sensory data is depicted
in Figure 1. Firstly, ICA is performed using any robust
algorithms (in respect to Gaussian noise) [1], [2], [4], [6],
[8], [12], [15] by linear transformation of sensory data as
y(t) = Wx(t), where vector y(t) represents independent
components. However, robust ICA methods allow us only
to obtain unbiased estimation of demixing matrix W, but
due to memoryless they by de�nition can not remove the
additive noise. This can be done using optional nonlinear
adaptive �ltering and nonlinear noise shaping (see Figure
2). In the next stage, we classify independent signals ŷi(t)
and remove noise and undesirable components by switching
corresponding switches "o�".

Projection of interesting or useful independent compo-
nents (e.g. independent activation maps) ~yi(t) back onto
the sensors (electrodes) can be done by: x̂(t) = W+~y(t),
whereW+ is pseudo inverse of demixing matrixW. In the
typical case, when the number of independent components
is equal to the number of sensor W+ =W�1.

The standard adaptive noise and interference cancella-
tion systems may be subdivided into the following classes
[7], [9]:

1. Noise cancellation (see Figure 2). This term is nor-
mally referred to the case, when we have both a primary
signal yi(t) = ŷi(t) + ni(t) contaminated with noise and
a reference noise nri(t), which is correlated with the noise
ni(t) but independent of the primary signal ŷi(t). By feed-
ing the reference signal to the linear adaptive �lter we able
to estimate or reconstruct the noise and subtract it from
the primary signal thus enhancing the signal to noise ratio.

2. Deconvolution - Reverberation and echo canceling.
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Figure 2: Adaptive �lter con�gured for deconvolution
(switches in position 1) and for standard noise cancellation
(switches in position 2).

This kind of interference canceling is often referred to as
echo canceling because it enables the removal of reverber-
ations and echo from a single observed signal. A delayed
version of the primary input signal is fed to the linear adap-
tive �lter thus enabling the �lter to reconstruct and remove
reverberation from the undelayed primary signal. The de-
convolver may also be used to cancel periodic interference
components in the primary input such as power line in-
terference etc. The adaptive �lter is able to extrapolate
the periodic interference and subtract this component from
the undelayed primary input (see Figure 2). The adaptabil-
ity normally provide superior performance compared to e.g.
standard notch or comb �ltering.

3. Line Enhancement. In this case the objective is to
�nd a periodic or quasi periodic signal which is buried in
noise. The adaptive �lter is receiving the same input as the
deconvolver, however, instead of subtracting the extrapo-
lated periodic signal from the input it is output directly.

4. Adaptive bandpass �ltering. Often we may take ad-
vantage of some a priori knowledge regarding the bandwidth
of the signal we wish to cleanse. By bandpass �ltering the
signal we eliminate parts of the frequency range where the
useful signal is weak and the noise is comparatively strong
thus enhancing the overall signal to noise ratio.

In traditional linear Finite Impulse Response (FIR) ada-
ptive noise cancellation �lter, the noise is estimated as a
weighted sum of delayed samples of reference interference.
However, linear adaptive noise cancellation systems men-
tioned above may not achieve acceptable level of cancella-
tion of noise for many real world problems when interfer-
ence signals are related the measured reference signals in a
complex dynamic and nonlinear way. Optimum interference
and noise cancellation usually requires nonlinear adaptive
processing of recorded and measured on-line signals [7], [11].

A common technique for noise reduction is to split the
signal in two or more bands. The high-pass bands are sub-
jected to a threshold nonlinearity that suppresses low am-
plitude values while retaining high amplitude values [11].

2. STANDARD PCA AND ICA APPROACHES
FOR PRELIMINARY NOISE REDUCTION

PCA is a standard technique for the computation of eigen-
vectors and eigenvalues of an estimated autocorrelation ma-

trix bRxx =


xxT

�
= 1

M

PM

t=1
x(t)x>(t) = V�V> 2 Rm�m.



PCA enables to decompose mixed signals into two sub-
spaces: the signal subspace corresponding to principal com-
ponents associated with the largest eigenvalues �1; �2; :::;
�n, (m > n) and the noise subspace corresponding to the
minor components associated with the smallest eigenvalues
�n+1; :::; �m, where �1 � �2 � : : : � �m � 0 is assumed.
The standard numerical procedure is as follows. First, es-
timate the m �m autocorrelation matrix Rxx of the zero-
mean mixed signal vector x(t). Then compute the m eigen-
values �1 � �2 � ::: � �m � 0 and corresponding eigen-
vectors v1;v2; :::;vm. These eigenvalues and eigenvectors
are obtained by the standard PCA. The subspace spanned
by the n eigenvectors vi corresponding to n largest eigen-
values be considered as an approximation of the noiseless
signal subspace. Having constructed the signal and noise
subspaces, we can project the original data onto the signal
subspace by:

x̂(t) = Qx(t) = ��1=2VTx(t); (2)

where � = diag f�1; �2; :::; �ng is the diagonal matrix con-
taining the n largest eigenvalues and V = [v1;v2; :::;vn] is
the matrix of the associated eigenvectors. It is not di�-
cult to show that the �ltering problem is related to PCA
method. Indeed, the �ltering problem can be formulated
as �nding an estimate x̂(t) = Qx(t) such that the mean

square error E
�
k~x(t)� x̂(t)k2

	
is minimized, where ~x(t) =

x(t)�v(t). Obviously that the �lter based on minimization
of the mean square error is nothing but inverse transforma-
tion of x(t) to the PCA basis of ~x(t) for the assumption
that the additive noise is uncorrelated with vector ~x(t) and
is white. One important advantage of this approach is that
it enables not only reduction in the noise level, but also
allows us to estimate the number of sources [15]. This ap-
proach have been applied to noise reduction in electroen-
cephalographic signals [5], [17]. A problem arising from this
approach, however, is how to correctly set or estimate the
threshold which divides eigenvalues into the two subsets,
especially when the noise is large (i.e., the SNR is low) [5],
[15]. The uncorrelated principal components are ordered by
decreasing values of their values.

Recently, it has been realized that ICA or at least com-
bining of both techniques: PCA and ICA, is more appropri-
ate for noise reduction and moreover such approach reveal
underlying structure of signals better than PCA alone [11],
[14], [19]. Moreover, using ICA we can achieve better re-
sults in the sense that PCA use only second-order statistics,
but ICA can estimate a better basis by taking into account
higher-order statistics inherent in the data and allow to
build nonlinear estimator instead of linear one. ICA algo-
rithms can be also robust, what is very important for noise
cancellation applications. ICA allows to separate sources
s(t) based on observations x(t) using maximum a posteri-
ori method that is dispose of a priory information problem
and allows to realize blind scenario. Using ICA we can �nd
independent components, which are undesirable and can be
thought as noisy sources and eliminated.

In this paper we propose to apply �rst ICA and next or-
dering the independent components (ICs) according to de-
creasing absolute value of their normalized kurtosis rather
than their variances; since the normalized kurtosis �4(yi) =

Efy4
i
g

E2fy2
i
g
�3 is natural measure of Gaussianity of signals. Us-

ing �4(yi) we can easily detect and remove white (colored)
Gaussian noises form raw sensory data. Optionally we can
use more robust measures to detect and classify speci�c ICs
[10]. This is also the subject of next 2 sections.

2.1. Detection of i.i.d. and temporally structured
components using linear predictor (e.g. enhance-
ment of EPs)

In many applications only temporally structured sources
are subject of interest where all i.i.d. (independent identi-
cally distributed) components should be removed. Lets us
assume that primary source signals are modeled by stable
autoregressive process as

si(t) = esi(t)� LX
p=1

aipsi(t� p)

= esi(t)�Ai(z)si(t); (3)

where Ai(z) =
PL

p=1
aipz

�p and esi(t) are i.i.d. unknown

innovation processes. In order to estimate primarily inno-
vative source signal ei(t) � ciesi(t � di) (here di is some
possible delay and ci is some possible scaling coe�cient) we
consider a linear predictor [1], [9]

ei(t) = yi(t)�Bi(z)yi(t) = yi(t)� b>i yi(t); (4)

where Bi(z) =
PM

p=1
bipz

�p withM � L, bi = [bi1 � � � biM ]T

and yi(t) = [yi(t� 1); yi(t� 2); : : : ; yi(t�M)]T .
Applying the standard gradient descent technique for

minimization of cost function J(bi) =
1
2
Efe2i (k)g, we ob-

tain simple LMS on-line learning rule:

bi(t+ 1) = bi(t) + �iei(t)yi(t); (5)

where �i > 0 is the learning rate. Instead of on-line LMS
algorithm we can use well known Wiener �lter batch esti-
mation as [9]

bi = R�1yiyipi; (6)

where Ryiyi = Efyiy
T
i g and pi = Efyiyig. It should be

noted that for a white (i.i.d.) signal yi the cross-correlation
vector pi equal zero, so vector bi also will be zero. This
fact enable us very easily to detect and eliminate the white
sources. In more general case, the vector bi represents the
temporal structure of the corresponding signal yi, so some
classi�cation of temporal correlated sources is possible on
basis of vector bi.

Temporal structure of sources can be described by more
general means, e.g. using ARMA (autoregressive moving-
average) process or HMM (Hidden Markov Model) which is
able to represent high-order temporal statistics and facili-
tates EM learning rules [1], [3].

2.2. Detection and classi�cation of independent com-
ponents on basis of Hurst exponent

Studying of living organisms as complex nonlinear dynamic
systems generating time series is of increasing interest to



biology and neuroscience [13], [16], [20], [22]. The Hurst ex-
ponentH and associated fractal dimensionD = 2�H is one
possible parameter that characterize time series [13], [20].
Hurst in 1965 [13] develop the rescaled range (R=S) anal-
ysis for time series y(t), (t = 0; 1; 2; :::). Firstly, the range
R de�ned as a di�erence between maximum and minimum
"accumulated" values:

R(T ) = max
1�t�T

fY (t; T )g � min
1�t�T

fY (t; T )g; (7)

where

Y (t; T ) =

TX
t=1

fy(t)� < y(t) >g;

and secondly, standard deviation S estimated from the ob-
served value y(t)

S =

 
1

T

TX
t=1

[y(t)� < y(t) >]2

! 1

2

: (8)

Hurst found that the ration R=S is very well described
for large number of phenomena by the following nonlinear
empirical relation:

R

S
= (cT )H ; (9)

where T is the number of samples, c is some constant (typi-
cally c = 1

2
) and H is the Hurst exponent in the range from

0 to 1.
With this de�nition a Hurst exponent of value 0:5 cor-

respond to a time series that is a truly random (e.g. Brown
noise or Brownian motion). A Hurst exponent of 0 < H <
0:5 shows so called antipersistent behavior, e.g. white uni-
form distributed noise has H �= 0:15. At limit of H = 0
the time series must change direction every sample. On the
other hand, a Hurst exponent of 0:5 < H < 1 describes a
temporally persistent or trend reinforcing time series. At
limit a straight line with non zero slope will have a Hurst
exponent of 1.

It was found by many researchers that a Hurst exponent
H has value 0:70 � 0:76 for many natural, economic and
human phenomena.

In this paper we propose to apply the Hurst exponent
H and/or fractal dimension D to classify and detect of in-
dependent components ŷi(t) of EEG/MEG signals. Usually
independent components ŷi(t) can be considered as random
or temporally independent processes if H � 0:6. These
components can be easily eliminated by open of switches
in corresponding channels (see Figure 1). From the other
hand, the most interesting or desirable components will
have a Hurst exponent in the range H = 0:70�0:76. These
components can be projected by pseudo inverse matrixW+

so corrected sensor signals enable us to localize correspond-
ing "interesting" brain sources. Furthermore we have found
by extensive computer experiments that some artifacts like
eye blinking or heart beat artifacts have characteristic value
of H, so they could be automatically identi�ed and removed
from sensor signals on basis of value of a Hurst exponent.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−10

0

10

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

0

2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

0

2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−5

0

5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

0

2

Figure 3: Set of sources for arti�cial data simulation.

For calculation of Hurst exponent we use recurrent me-
thod proposed in [20] in order to reduce the computation
complexity. The recurrent method can be written in the
following form

H(t+ 1) =
lg
�
R(t+1)
S(t+1)

�
lg
�
t+1
2

� ;

R(t+ 1) = Ymax(t+ 1)� Ymin(t+ 1);

Ymax(t+ 1) =

�
Y (t+ 1); Y (t+ 1) > Ymax(t);

Ymax(t+ 1); Y (t+ 1) � Ymax(t);

Ymin(t+ 1) =

�
Y (t+ 1); Y (t+ 1) < Ymin(t);

Ymin(t+ 1); Y (t+ 1) � Ymin(t);

Y (t+ 1) = Y (t) +
t

t+ 1
(y(t+ 1)� < y(t) >);

< y(t) > =
t� 1

t
< y(t� 1) > +

1

t
y(t);

S(t+ 1) = D
1

2 (t+ 1);

D(t+ 1) =
t

t+ 1
D(t) +

t2

(t+ 1)3

� (y(t+ 1)� < y(t) >)2;
Ymax(0) = Ymin(0) = y(0);

H(0) = D(0) = Y (0) = 0: (10)

3. SIMULATION RESULTS

In this section we present the exemplary results of a com-
puter simulations. We performed simulations both for ar-
ti�cially generated noisy signals as well as real-world single
trial EEG/MEG data with 21/149 channels.

3.1. Arti�cial data simulation

In order to get an idea about the e�ectiveness and validity of
proposed techniques for noise and interference cancellation
for multi-sensory observations we performed experiments
with set of known signals.

The set of useful signals was generated as follows: s1(t) =

sinc
�
t
15

�
, s2(t) = sin

�
!0�t
p

�
, s3(t) = sin

�
7!0�t
p

�
, where

!0 = 50 and p = 755 in our simulation example. It is
easy to see that sources are independent expect of s2(t) and
s3(t). The set of noise sources consists of two sources, where
one of them was generated according to normal distribution
low N(0; 1) and another was uniformly distributed in range
[�1; 1]. The full set of sources is shown on the Figure 3. All
signals were mixed using randomly chosen mixing matrix.
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Figure 4: Sensor signals for arti�cial data simulation.
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Figure 5: Separated signals (independent components) for
arti�cial data simulation.

The Gaussian noise N(0; 1) with SNR 20dB was added
to the outputs x(t) of mixture system. We assume in this
simulation that only these noisy outputs of mixture system
can be observed. The noisy outputs are shown in the Figure
4.

The purpose is to cancel all type of noise and inter-
ferences from observed signals. The scenario of numerical
simulation is follows. At the �rst stage we separate signals
from the noisy mixture using robust ICA algorithm. For
our simulation we use High-Order Statistics (HOS) based
algorithm proposed in [8]. The separated signals are shown
in the Figure 5.

At the second stage Hurst exponents Hi and norms of
FIR �lter parameter vector kbi(t)k are calculated and com-
pared with some thresholds for observed and separated sig-
nals. For calculation of Hurst exponent we use recurrent
method (10) and for FIR �lter parameter vector estimation
we use method proposed in [21].

Based on comparison of Hurst exponents and norms of
linear predictor parameter vector with correspondent thresh-
olds the decision to switch o� or switch on the correspond-
ing independent component is taken automatically.

The results for calculation of Hurst exponents and norms
of linear predictor parameter vector are shown in the Ta-
ble 1. It is obvious that we can say nothing about which
signals are noise and which signals are useful for sensor ob-
servations but it is relatively easy to �nd noisy signals for
separated sources. The thresholds for Hurst exponent and
norm of linear predictor parameter vector are 0:6 and 0:05.

The separated signals 4 and 5 can be removed. Then re-
constructed sensor signals are as shown on the Figure 6. In-
version and projection of separated signals that were passed
through on-line switching system (see Figure 1) is the last
third stage of our procedure.

Table 1: Hurst exponent and norm of vector bi of linear
predictor for each signal shown in Figure 4 and Figure 5.

Signal number i Hi max kbi(t)k
xi(t) yi(t) xi(t) yi(t)

1 0.7297 0.7997 0.8797 2.4555
2 0.7353 0.7220 1.1638 1.7780
3 0.7523 0.6255 1.3596 0.3541
4 0.7559 0.5182 1.2208 0.0221
5 0.7429 0.4949 1.0621 0.0151
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Figure 6: Reconstructed sensor signals after removing ICs
4 and 5 for arti�cial data simulation.

3.2. Real data analysis application

Similar experiments were performed for real-world data -
EEG and MEG signals with 21 and 149 channels respec-
tively. The exemplary observed selected EEG signals are
shown in Figure 7. Here we plotted only 5 from 21 sen-
sor signals. After application of ICA procedure for sepa-
ration of the sensor 21 EEG signals we have obtained the
results shown in the Figure 8. Analysis of the values Hi

and kbik for observed sensor signals and separated signals
(independent components) have completely di�erent distri-
butions and identi�cation or detection of random signals is
only possible after applying ICA. For this case ICs number
3 should be removed.

4. CONCLUSIONS

In this paper we have proposed several methods for signal
detection (identifying the presence in independent compo-
nents random signals or deterministic signals with speci�c
features or temporal structure) and classi�cation (assign-
ment of a independent component to a particular class) par-
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Figure 7: Exemplary observed noisy EEG data.
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Figure 8: Plots of the �rst 5 ICs for EEG data.

Table 2: Hurst exponent and norm of vector bi of linear
predictor for each signal shown in Figure 7 and Figure 8.

Signal number i Hi max kbi(t)k
xi(t) yi(t) xi(t) yi(t)

1 0.7290 0.7513 0.3657 1.0431
2 0.7117 0.6989 0.3348 0.4245
3 0.6970 0.5418 0.4647 0.0173
4 0.7120 0.7361 0.5257 0.9348
5 0.7232 0.6452 0.5333 0.2197

ticularly in the high noise regime. Especially, application of
Hurst exponent together with ICA has been investigated to
our knowledge for the �rst time for automatic elimination of
noise and undesirable interference. Of course, these meth-
ods exploit only small part of possible techniques which can
be used together with ICA for noise and interference can-
cellation. Especially, higher order and nonlinear correlation
methods are very promising. However, the proposed and
investigated methods appear to be simple and e�cient for
speci�c applications, especially for enhancement of single
trial EEG/MEG data, what has been con�rmed by exten-
sive computer simulation experiments.
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