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BLIND UNITARY PREWHITENING

WITH A REAL-VALUED

EIGENDECOMPOSITION*

Sergiy A. Vorobyov1

Abstract. Prewhitening is a standard step for the processing of noisy signals. Typically,
eigenvalue decomposition (EVD) of the sample data covariance matrix is used to calculate
the whitening matrix. From a computational point of view, an important problem here is to
reduce the complexity of the EVD of the complex-valued sample data covariance matrix.
In this paper, we show that the computational complexity of the prewhitening step for
complex-valued signals can be reduced approximately by a factor of four when the real-
valued EVD is used instead of the complex-valued one. Such complexity reduction can
be achieved for any axis-symmetric array. The performance of the proposed procedure is
studied in application to a blind source separation (BSS) problem. For this application,
the performance of the proposed prewhitening scheme is illustrated by means of simula-
tions, and compared with the conventional prewhitening scheme. Among a number of BSS
methods which use prewhitening, the second-order blind identification procedure has been
adopted in this paper.
Key words: Prewhitening, unitary transform, centro-Hermitian matrices, blind source sep-
aration.

1. Introduction

For the processing of noisy signals, the prewhitening step is typically used before
applying a particular signal processing procedure [10]. In terms of computational
complexity, the prewhitening step often becomes a bottleneck step. For example,
the complexity of many blind source separation (BSS) methods [3] essentially
depends on the complexity of the prewhitening step. This is especially true for the
processing of complex-valued signals. Therefore, in practice, it is important to
reduce the complexity of the prewhitening step when processing nosy complex-
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valued signals. Reduced complexity of the prewhitening step is also appealing
from a hardware implementation point of view.

A technique that enables us to reduce the computational complexity of the ma-
trix inversion or eigenvalue decomposition (EVD) for centro-Hermitian matrices
has been published in the mathematical literature [6]. This technique makes use of
the result that a complex-valued centro-Hermitian matrix can be uniquely trans-
formed into a real-valued one. Then the computational complexity of the inversion
or EVD of the real-valued matrix can be reduced approximately by a factor of
four as compared to the inversion or EVD of a complex-valued matrix. The latter
fact has been widely exploited in array processing to improve the resolution of
direction-of-arrival (DOA) estimation methods [4], [8]. Specifically, a big class of
DOA estimation methods, such as MUSIC, root-MUSIC, and ESPRIT, exploits
the decomposition of a complex-valued array covariance matrix into signal and
noise subspaces. Such decomposition is usually performed using the EVD. The
modification of the ESPRIT procedure with reduced complexity that is based on
the transformation of the complex-valued covariance matrix into a real-valued one
has been proposed in [4]. A similar approach has been taken in [8] to reduce the
complexity of the root-MUSIC estimator.

Another fruitful application of the technique of [6] as applied to the EVD,
which has not been addressed before, is the prewhitening of complex-valued
signals.

In this paper, we propose a simple procedure that enables the reduction of the
computational complexity of the prewhitening step for complex-valued signals
by a factor of four. The proposed procedure makes use of forward-backward (FB)
averaging [9], [11] and the aforementioned transformation of a complex-valued
covariance matrix into a real-valued one. Therefore, it can be applied only to axis-
symmetrical arrays [7]. However, the latter fact should not be taken as a serious
limitation because the most appealing array geometry in practice—the uniform
linear array (ULA)—belongs to the class of axis-symmetrical arrays. A specific
application to the BSS problem is considered.

2. Data model

We consider an axis-symmetrical array [7] of K sensors receiving the signals
from M narrowband sources, M ≤ K . The K × 1 snapshot vector of antenna
array outputs can be written as

y(n) = x(n) + v(n) = As(n) + v(n), (1)

where, in fairly common notation, x(n) = [x1(n), . . . , xK (n)]T ∈ C
K×1

is the vector that contains the noiseless array output sampled at time n,
A = [a1, . . . , aM ] ∈ C

K×M is the matrix transfer complex operator between
sources and sensors, am = [a1,m, . . . , aK ,m]T ∈ C

K×1 is the spatial signature of
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the mth source signal, s(n) = [s1(n), . . . , sM (n)]T ∈ C
M×1 is the vector of the

source waveforms, v(n) = [v1(n), . . . , vK (n)]T ∈ C
K×1 is the vector of additive

spatially and temporally white Gaussian noise, and [·]T denotes the transpose.
We also assume that the sources are spatially uncorrelated to each other and to
noise.

The basic problem of array signal processing is to estimate the signals
s1(n), . . . , sM (n), n = 1, . . . , N using only the array measurements y1(n), . . . ,
yK (n), n = 1, . . . , N , where N is the total number of available snapshots.
Equivalently the problem can be formulated as an estimation of the matrix A
based only on the array measurements y1(n), . . . , yK (n), n = 1, . . . , N .

3. Prewhitening

Prewhitening is achieved by applying to x(n) a whitening matrix W, i.e., an M ×
K matrix verifying

E{Wx(n)xH (n)W H } = W Rx(0)W H = W AAH W H = I (2)

where

Rx(0) = E{x(n)xH (n)} = ARs(0)AH = AAH (3)

is the noiseless array output covariance matrix, E{·} and [·]H stand for expectation
and Hermitian transpose operations, respectively, and I is the identity matrix.
Without any loss of generality, we assume here that the source covariance matrix
Rs(0) = I, i.e., the source signals have unit variance so that the dynamic range of
the sources is accounted for by the magnitude of the corresponding columns of A
[1]. Equation (2) shows that if W is a whitening matrix, then W A is an M × M
unitary matrix. Equivalently, for any whitening matrix W, there exists an M × M
unitary matrix U such that W A = U . Then matrix A can be factored as

A = W†U , (4)

where [·]† denotes the Moore-Penrose pseudoinverse. The whitened process z(n)

obeys a linear model:

z(n) = W y(n) = W[As(n) + v(n)] = Us(n) + Wv(n), (5)

where the signal part of z(n) is a “unitary mixture” of the source signals.
Because the noiseless array output x(n) is not known and Rx(0) cannot be

directly computed, the whitening matrix W can be determined from the noisy
array output covariance matrix

Ry(0) = E{y(n)yH (n)} = AAH + σ 2 I, (6)

provided the noise variance σ 2 (or in general noise covariance matrix) is known
or can be estimated. Obviously, that Rx(0) then can be computed as

Rx(0) = Ry(0) − σ 2 I. (7)
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Typically, W is obtained using the EVD of the sample estimate of the covari-
ance matrix (6) calculated as

R̂y(0) = 1

N

N∑
n=1

y(n)yH (n). (8)

The computation of the EVD of the complex-valued matrix usually constitutes a
significant amount of overall computations required for a specific signal process-
ing algorithm. In this paper, we show that the EVD of the complex-valued sample
covariance matrix R̂y(0) can be equivalently substituted by the EVD of a specially
constructed real-valued covariance matrix. It leads to significant computational
savings, because the real-valued EVD has a reduced computational complexity as
compared to the complex one, approximately by a factor of four [5].

4. Unitary prewhitening

The covariance matrix Ry(0) (6) is centro-Hermitian because the following prop-
erty [6]:

Ry(0) = J R∗
y(0)J (9)

holds. Here [·]∗ stands for the complex conjugate, and J is the exchange matrix:

J =




0 . . . 0 1
0 . . . 1 0
...

...
. . .

...

1 0 . . . 0


 . (10)

However, the sample covariance matrix R̂y(0) (8) is not necessarily centro-
Hermitian because of the finite sample size effect. However, the centro-Hermitian
property can be forced by FB averaging:

R̂F B = 1

2
(R̂y(0) + J R̂

∗
y(0)J). (11)

It is well known that by using FB averaging the number of snapshots can be nearly
doubled and possibly correlated source pairs can be decorrelated [9], [11]. The
latter facts often lead to improvement of the estimation accuracy for the methods
that use R̂F B as compared to the methods that use R̂y(0). It is especially true if
the number of available snapshots is small.

Next we can introduce the real-valued covariance matrix, which uniquely cor-
responds to R̂F B , as

Ĉ = Q H R̂F B Q (12)
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where Q is one of the following K × K sparce unitary matrices [4], [6] matrices:

Q = 1√
2

[
I j I
J − j J

]
, Q = 1√

2


 I 0 j I

0T
√

2 0T

J 0 − j J


 , (13)

where 0 denotes the vector which contains only zeros, and j = √−1. The matrix
of even dimension can be chosen for an array with an even number of sensors,
and the matrix of odd dimension can correspond to an array with an odd number
of sensors.

It is interesting to note that the real-valued covariance matrix (12) can also be
obtained via the forward-only covariance matrix R̂y(0) as

Ĉ = 1

2
(Q H R̂y(0)Q + Q H J R̂

∗
y(0)J Q) = Re{Q H R̂y(0)Q}, (14)

where Re{·} stands for the real part of the complex matrix. The property (14) helps
to further reduce the computational complexity by reducing the number of alge-
braic operations required for calculation of Ĉ . Thus, the increase in complexity
caused by having to compute (14) for given R̂y(0) is negligible.

In order to estimate the whitening matrix W, we propose to use the EVD of the
real-valued matrix Ĉ instead of the EVD of the complex-valued matrix R̂y(0).
This reduces the computational complexity of the prewhitening step approxi-
mately by a factor of four [5]. The EVDs of matrices Ĉ and R̂F B can be written
as

Ĉ = ÊsΛ̂s Ê
H
s + ÊnΛ̂n Ê

H
n (15)

R̂F B = L̂sΓ̂s L̂
H
s + L̂nΓ̂n L̂

H
n , (16)

where Ês = [ê1, . . . , êM ], Ên = [êM+1, . . . , êK ], Λ̂s = diag(λ̂1, . . . , λ̂M ), and
Λ̂n = diag(λ̂M+1, . . . , λ̂K ) are the matrices of eigenvectors and eigenvalues,
which correspond, respectively, to the signal and noise subspaces of the real-
valued covariance matrix Ĉ , and L̂s = [l̂1, . . . , l̂ M ], L̂n = [l̂ M+1, . . . , l̂ K ],
Γ̂s = diag(γ̂1, . . . , γ̂M ), and Γ̂n = diag(γ̂M+1, . . . , γ̂K ) are the matrices of
eigenvectors and eigenvalues, which correspond, respectively, to the signal and
noise subspaces of the FB covariance matrix R̂F B .

Using the properties that Ê = Q H L̂ and Λ̂ = Γ̂, the complex-valued whitening
matrix can be calculated as

Ŵ = L̂s(Γ̂s − σ̂ 2 I)−1/2 = Q−H Ês(Λ̂s − σ̂ 2 I)−1/2, (17)

where

σ̂ 2 = 1

K − M

K∑
i=M+1

λ̂i (18)

is the averaging of the K − M smallest eigenvalues of Ĉ , which correspond to the
noise variance.
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Note that in the last expression of (17) only the matrices of eigenvectors and
eigenvalues of the real-valued covariance matrix Ĉ are used. Then, the whitened
signals can be written as

z(n) = Ŵ y(n) = Q−H Ês(Λ̂s − σ̂ 2 I)−1/2 y(n). (19)

The proposed blind unitary prewhitening procedure gives significant computa-
tional savings and, as we demonstrate next by the example of the BSS problem,
can lead to a better performance if the sample size is small and the source pairs
are possibly correlated.

5. Second-order blind identification with unitary
prewhitening

As an interesting application of the proposed unitary prewhitening scheme, we
consider the BSS problem. In particular, we propose a modification of the second-
order blind identification (SOBI) procedure by Belochrani et al. [1]. It is important
to note that the two most computationally expensive steps in the SOBI algorithm
are the prewhitening and the joint approximate diagonalization [2]. The precise
estimate of the computational complexity of the joint approximate diagonalization
is not known and depends on the specific set of matrices that should be jointly
diagonalized. However, based on extensive simulations, we observed that it is
comparable to the complexity of the prewhitening of the complex-valued signals.
The computational complexity of the prewhitening is defined by the complexities
of the EVD and inversion operations, where the complexity of each operation is
O(K 3). Thus, the prewhitening step is indeed a bottleneck of the SOBI algorithm,
and by reducing the computational complexity of this step by a factor of four in
the case of separation of complex-valued signals, the complexity of the overall
SOBI procedure can be reduced at least by a factor of eight.

Following the steps of the original SOBI procedure [1] and taking into ac-
count the previously proposed prewhitening algorithm, the SOBI with unitary
prewhitening can be defined by the following implementation:

(1) Estimate the sample data covariance matrix R̂y(0) and calculate the real-
valued covariance matrix Ĉ using (14).

(2) Estimate the noise variance σ̂ 2 using (18) and calculate the whitening ma-
trix and whitened signals using (17) and (19), respectively.

(3) Compute the sample covariance matrices R̂z(τ ) for a fixed set of time lags
τ ∈ {τi | i = 1, . . . , I }, where I is the total number of time lags.

(4) Find the estimate of the unitary matrix U (see (4)) by applying the joint ap-
proximate diagonalization procedure [2] to the set {R̂z(τi ) | i = 1, . . . , I }.

(5) Using (4), estimate the mixing matrix A, which we denote as Â.
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6. Simulations

In this section, we numerically compare the performance of the SOBI with the
proposed unitary prewhitening to that of the SOBI with conventional prewhiten-
ing [1]. The performances are compared in terms of the root-mean-square error
(RMSE):

RMSE =
√√√√ 1

L M K

L∑
l=1

‖Â(l) − A‖2
F, (20)

where L = 100 is the number of independent simulation runs, Â(l) is the estimate
of A obtained from the lth run, and ‖ · ‖2

F stands for the Frobenius norm of matrix.
Permutation and scaling of columns (which are inherent in the BSS problem)
are fixed by means of a least-squares ordering and normalization of the columns
of Â(l). In particular, we first form an M × M distance matrix whose (m, n)th
element contains the Euclidean distance between the mth column of A and the
nth column of Â(l). The smallest element of this distance matrix determines the
first match, and the respective row and column of this matrix are deleted. The
process is then repeated with the reduced-size distance matrix.

A 10-element ULA with half-wavelength sensor spacing receives two signals
in the presence of stationary complex white Gaussian noise. The source signals
are narrowband far-field unit variance complex circular Gaussian, and arrive from
different directions θ1 = 2◦ and θ2 = 15◦. The source waveforms are gener-
ated by filtering a complex circular white Gaussian process by autoregressive
(AR) models of first order with the coefficients a1 = 0.85 exp{ j0.5} and a2 =
0.85 exp{ j0.55}, respectively. Six time lags are used to compute six covariance
matrices Rz(τi ), i = 1, . . . , 6 for each aforementioned method, and the single-
sensor signal-to-noise ratio (SNR) is taken to be equal to 10 dB.

In our first example, the sources are assumed to be uncorrelated. However,
the correlation between sources can be caused in this case by the finite sample
size effect. Figure 1 shows the RMSEs of the aforementioned methods versus the
number of snapshots.

In the second example, mutually correlated sources are assumed with the corre-
lation coefficient equal to 0.99. Note that the assumption of spatially uncorrelated
sources which enables us to use the conventional SOBI is violated in this example.
Figure 2 shows the RMSEs of the tested methods versus the number of snapshots.

From the figures we observe that the SOBI with unitary prewhitening outper-
forms the SOBI with conventional prewhitening. This is especially true if the
sample size is small or the pairs of source signals are correlated. The latter im-
provements take place due to the fact that FB averaging of the sample covariance
matrix is used in the proposed scheme. However, the performance improvement
may not be achieved if the number of correlated signals is larger than two. At the
same time, the computational complexity of the prewhitening step for SOBI with
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Figure 1. Spatial signature estimation RMSEs versus number of snapshots. Uncorrelated sources.
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Figure 2. Spatial signature estimation RMSEs versus number of snapshots. Correlated pair of sources.

unitary prewhitening is reduced by approximately a factor of four, and the overall
complexity reduced by a factor of eight.
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7. Conclusions

A new prewhitening scheme has been proposed whereby a complex-valued EVD
is equivalently substituted by the real-valued EVD. The computational complexity
of the new prewhitening scheme compared to the conventional one can be reduced
approximately by a factor of four. The proposed scheme is applied to the BSS
problem, where the prewhitening step is a bottleneck step from the point of view
of computational complexity. For this application, the improvement in the per-
formance due to exploiting the proposed unitary prewhitening scheme is clearly
shown by means of simulations. Such an improvement is especially pronounced
in the cases of short sample size and correlated pairs of source signals.
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