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This paper describes a fast adaptive algorithm for noise cancellation using multi-sensory
signal recordings of the same noisy source. It is shown that the performance of the new
procedure for noise cancellation for multi-sensory signals is improved when compared to
previously proposed methods. A short overview of the previously proposed methods is
given. Optimality of the algorithm is discussed and numerical simulation is included to
show the validity and effectiveness of the algorithm.
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1. Introduction

Noise cancellation is a special case of optimal filtering which can be applied when
some information about the reference noise signal is available. The noise cancella-
tion technique has many applications, e.g. speech processing, echo cancellation and
enhancement, antenna array processing, biomedical signal and image processing
and so on [1-4].

The standard methods of noise cancellation use only one primary signal [1].
However, in many applications, especially in biomedical signal processing, we are
able to measure several primary signals. Often this possibility can help to improve
the performance of noise cancellation procedure.

The standard approach is to make use of several noisy signals, by recording from
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the same source. This consists in using a number of noise cancellation systems in
parallel with one primary input to each system [1]. The estimated signal is obtained
by selecting the best one in the sense of some criterion from the multichannel output
signal. This approach can be realized by automatic selection of the best primary
signal [5]. Another approach consists in averaging of outputs of all noise cancellation
systems. In this paper we will show that the approach, based on a linear combination
of outputs of all noise cancellation systems [6] with appropriate adjustment of weight
parameters, is always not worse and typically better than an approach based on
the automatic selection of the best primary signal. It is also easy to see that the
approach based on linear combination of outputs of all noise cancellation systems
includes the averaging method as a particular case. For this approach we use two
adaptive filters for the primary signals and reference noise, respectively.

The paper is organized as follows. In Section 2 we formulate the problem.
Section 3 explains the scheme for noise cancellation for multi-sensory signals and
contains the derivation of our algorithms and comments about a convergence of the
full procedure. Section 4 gives a proof of optimality of the algorithm for the weight
parameter adjustment. Finally, Section 5 presents some simulation results to show
validity and performance of the proposed method.

2. Problem formulation

The standard model for noise cancellation with one noise input and one signal input
[1] is formulated as follows. We observe the source signal corrupted by additive
noise:

d(k) = s(k) + ν(k), (1)

where s(k) is an unknown primary source signal and ν(k) is an undesired interfer-
ence or noise signal. It is assumed that only one noisy signal d(k) and reference
noise νR(k) are available. Moreover, it is assumed that between the reference noise
νR(k) and the non-available interference signal ν(k), there exists an unknown linear
dynamic relationship described by some filter H(z−1). The task is to identify or
design an appropriate transversal filter W (z−1), which estimates filter H(z−1) in
such a way that we optimally estimate the interference ν(k) and subtract it from
the signal d(k).

However, in practice, we often have several observations of the same signal.
Symbolically we can write

di(k) = Gi(z−1)s(k) + νi(k), (i = 1, 2, ..., l), (2)

where Gi(z−1) are the transfer functions of some unknown filters, i = 1, 2, ..., l and l

is the number of observation channels. In this paper we assume that Gi(z−1) ≡ gi,
where gi is an unknown scaling memoryless coefficient and νi(k) is the additive
interference for each transmission channel. Without loss of generality, we also as-
sume that we have only one reference noise signal νR(k). Otherwise, we should only
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slightly modify the transversal filter W (z−1) for processing not only one reference
noise signal νR(k) but a number of reference noise signals νR1(k), νR2(k), ..., νRl(k)
[1]. Thus, in this paper we consider the following simplified model (see Fig. 1):

di(k) = gis(k) + νi(k), (i = 1, 2, ...l), (3)

or in vector form
d(k) = g(k)s(k) + ν(k),

where d(k) = (d1(k), d2(k), ..., dl(k))>, g(k) = (g1(k), g2(k), ..., gl(k))> and ν(k) =
(ν1(k), ν2(k), ..., νl(k))>. The model (3) is realistic for a number of application. The
most important are biomedical applications to noise cancellation for brain signals
such as electroencephalograms and magnetoencephalograms (EEG/MEG).

3. Models and algorithms for interference and noise cancellation for
multi-sensory signals

In this section we consider a new scheme for noise cancellation for multi-sensory
signals shown in Fig. 1 and associated learning algorithms for an adaptive filter
W (z−1) and a Linear Combiner (LC). The unknown part of this scheme is de-
scribed by (3). We have observations of l noisy signals di(k) and one reference
noise signal νR(k) that is uncorrelated with the source signal s(k), but is related
to interferences ν1(k), ν2(k), ..., νl(k). This relation is represented symbolically by
filters H1(z−1),H2(z−1), ..., Hl(z−1). Filters H1,H2, ..., Hl may not necessarily be
linear, but nonlinear in general. However, previously proposed standard methods
approximate these nonlinear filters by linear ones. We also assume for simplicity
that H1(z−1),H2(z−1), ..., Hl(z−1) are FIR filters with orders n1, n2, ..., nl. The
results can be generalized for the nonlinear case using neural network models [7,8].
According to our assumptions the transversal filter W (z−1) should be an FIR filter
with adaptive parameters.

Estimation of the original source signal ŝ(k) is found by using an LC defined as
follows:

ŝ(k) =
l∑

i=1

vidi(k)− ν̂(k) = v>d(k)− ν̂(k) (4)

with the natural constraint

l∑

i=1

vi = v>e = 1, (5)

where ν̂(k) is estimation of interference signal, e = (1, 1, ..., 1)> is (l × 1) vector of
all ones and v = (v1, v2, ..., vl)> is the (l × 1) weight parameter vector of the LC.

We should take into account that the one-dimensional corrupted signal d(k) and
estimation ŝ(k) must be unbiased. Constraint (5) is nothing but an unbiasedness
condition.
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Figure 1: Proposed basic interference cancellation system for multi-sensory signals.

The aim is to estimate the coefficients of the filter W (z−1) =
∑m

p=1 wpz
−p and

parameters of the LC v = (v1, v2, ..., vl)>, which give an optimal estimation of the
desired signal s(k) at the output of the noise cancellation system shown in Fig. 1.

3.1. Simultaneous learning of LC and transversal filter W (z−1)

In the noise cancellation problem for learning of the LC we minimize the output
signal power. Generally speaking, what we need is to maximize the Signal to Noise
Ratio (SNR) of ŝ(k). However, this objective is not achievable explicitly. Minimizing
the output signal power under the assumption that ν(k) and ν̂(k) are uncorrelated
with s(k) is equivalent to minimization of the Mean Square Error (MSE) E{e2(k)} =
E{(s(k) − ŝ(k))2}. More precisely, minimization of E{ŝ2(k)} = E{(s(k) + ν(k) −
ν̂(k))2} = E{s2(k)}+ E{(ν̂(k)− ν(k))2} = const + E{(ν̂(k)− ν(k))2} is equivalent
to minimization of E{(s(k)− ŝ(k))2} = E{(ν̂(k)− ν(k))2}. In this way we achieve
maximization of SNR, at the same time.

Taking into account the equation for the LC (4) we can introduce the following
cost function:

J =
1
2

N∑

j=1

ŝ2(j) =
1
2

N∑

j=1

(v>d(j)− ν̂(j))2, (6)

where N is the number of observations. Minimization of the above cost function
under constraint (5) leads to the Lagrangian

L =
1
2

N∑

j=1

(v>d(j)− ν̂(j))2 + λ(v>e− 1), (7)
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where λ is a non-negative Lagrange multiplier.
Optimizing the Lagrangian (7) we can find the saddle point that is the solution

of the Kuhn-Tucker equations

∇vL =
N∑

j=1

d>(j)vd(j)−
N∑

j=1

d(j)ν̂(j) + λe = 0,

∂L

∂λ
= v>e− 1 = 0. (8)

Let us consider new notations for inverse matrix P−1 =
(∑N

j=1 d(j)d>(j)
)−1

and least square estimation ṽ =
(∑N

j=1 d(j)d>(j)
)−1

×
(∑N

j=1 d(j)ν̂(j)
)
. The

solution of the system (8) can be given by:

λ =
e>ṽ − 1
e>P−1e

,

v = ṽ −P−1 e>ṽ − 1
e>P−1e

e. (9)

Using the fact that covariance matrix P can be represented in the form P(k)
=

∑k−1
j=1 d(j)d>(j)+d(k)d>(k) = P(k−1)+d(k)d>(k), we can apply the Sherman-

Morrison inversion lemma and finally write the following recursive fast procedure
for tuning the vector v(k):

P−1(k) = P−1(k − 1)− P−1(k − 1)d(k)d>(k)P−1(k − 1)
1 + d>(k)P−1(k − 1)d(k)

,

ṽ(k) = ṽ(k − 1) +
P−1(k − 1)d(k)

1 + d>(k)P−1(k − 1)d(k)
ŝ(k),

v(k) = ṽ(k)−P−1(k)
e>ṽ(k)− 1
e>P−1(k)e

e. (10)

In (10) least squares estimation ṽ(k) is used as an intermediate for calculation of
the parameter vector v(k) of the LC. This procedure is fully adaptive, very fast and
does not require a priori information about signals except for above assumptions,
which are natural and not very strict.

There is no explicit training set of input-output examples for learning of the
transversal filter W (z−1). Hence, the objective for learning of the filter W (z−1) be-
comes the minimization of the output signal ŝ(k) = e(k) = d(k)−ν̂(k) power. This is
equivalent to minimizing the MSE between ν(k) or ν1(k), ν2(k), ..., νl(k) and ν̂(k)
under assumption that s(k) is uncorrelated with ν(k) or with all ν1(k), ν2(k), ..., νl(k).
Thus, we can use d(k) = s(k)+ ν(k) as the “desired output” and ν̂(k) as the actual
output for learning of an FIR filter W (z−1) that can be formally described as

ν̂(k) =
m∑

i=1

wi(k)νR(k − i) = w>(k)νR(k), (11)
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where w(k) = (w1(k), w2(k), ..., wm(k))> is (m× 1) vector of unknown coefficients
of the FIR transversal filter W (z−1), νR(k) = (νR(k−1), νR(k−2), ..., νR(k−m))>

and m is the order of the filter. The order m must be not less than the maximal
order max1≤i≤l ni of the original filters H1(z−1),H2(z−1), ..., Hl(z−1) which are
unknown. In practice, m can be chosen sufficiently large that desired accuracy will
be achieved.

Minimizing the output signal power E{ŝ2(k)} with the weighting factor ρk(n) =
αk−n, n = 1, 2, ..., k, we obtain the standard Recursive Least Squares (RLS) algo-
rithm [9], which for our application can be written as

w(k) = w(k − 1) +
Q−1(k − 1)νR(k)

α + ν>R(k)Q−1(k − 1)νR(k)
ŝ(k),

Q−1(k) =
1
α

(
Q−1(k − 1)− Q−1(k − 1)νR(k)ν>R(k)Q−1(k − 1)

α + ν>R(k)Q−1(k − 1)νR(k)

)
, (12)

where Q(k) =
∑N

k=1 νR(k)ν>R(k) and α is known as the forgetting factor.
Let us note that other standard algorithms for learning of the transversal filter

W (z−1) can be used. Least Mean Square (LMS) algorithm [1,10,11] is the most
popular. Stochastic Approximation (SA) algorithms [12,13] or generalization of
SA [14] are also widely used. However, for us the speed of convergence is very
import. This follows from a comparison between the algorithms for learning of the
transversal filter (12) and the LC (10). We can easily see that both are based on
an RLS procedure. The important question is the convergence of both algorithms
running simultaneously. This is the reason why we implement both algorithms
as RLS procedures with the same speed of convergence. However, the theoretical
problem of convergence of both filters running simultaneously is not trivial. This
problem is similar to the problem of convergence of two adaptive filters in tandem
[15]. In this paper we do not discuss the details of the convergence analysis.

3.2. Alternative approach with block of FIR filters and optimal LC

Whereas the standard averaging approach use only one filter W (z−1) to ap-
proximate the interference ν(k) with a reasonable accuracy [1], for the proposed ap-
proach possibly better results can be achieved by using a transversal filter Wi(z−1)
for each channel to estimate the interference signal ν̂i(k). Each filter Wi(z−1) is
learned, based on minimization of the output signal power E{ŝ2

i (k)} in correspond-
ing channel. The model of the LC can now be defined as

ŝ(k) =
l∑

i=1

viŝi(k) = v>ŝ(k), (13)

where ŝ(k) = (ŝ1(k), ŝ2(k), ..., ŝl(k))> = (d1(k) − ν̂1(k), d2(k) − ν̂2(k), ..., dl(k) −
ν̂l(k))> is a (l× 1) vector. The learning algorithm for the LC can be derived in the
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same manner as algorithm (10). Here we use the following covariance matrix

R =
N∑

j=1

ŝ(j)ŝ>(j) (14)

instead of the matrix P. The same property as for the matrix P is valid for the
covariance matrix R, i.e. R(k) =

∑k
j=1 ŝ(j)ŝ>(j) =

∑k−1
j=1 ŝ(j)ŝ>(j) + ŝ(k)ŝ>(k)

= R(k − 1) + ŝ(k)ŝ>(k). Hence, the inversion lemma can be applied for R as well
as for P. The derivation will be given in the next section. Here we only write the
final result for the recursive version of the procedure based on covariance matrix R

R−1(k) = R−1(k − 1)− R−1(k − 1)ŝ(k)ŝ>(k)R−1(k − 1)
1 + ŝ>(k)R−1(k − 1)ŝ(k)

,

v(k) =
R−1(k)e

e>R−1(k)e
. (15)

Let us note that computational complexity of the full procedure, including ad-
justment of each transversal filter, is higher than the complexity of the scheme
shown in Fig. 1.

4. Optimality of algorithms (10) and (15)

The optimality of the proposed algorithms can be formulated in the form of the
following theorem.

Theorem: The minimal value of the cost function (6) E{ŝ2(k)}, for output signal
of the noise cancellation system shown in Fig. 1, that can be achieved using the
algorithm (10) for learning of the LC will be always not larger than one achieved
for the best channel.

Remark: For the same transversal filter W (z−1), the channel in which the best
result of noise cancellation is achieved (best channel) corresponds to the channel
with the best primary signal [5]. Hence, the approach based on automatic selection
of the best primary signal is identical to finding the single channel di∗(k) for which
we obtain min1≤i≤l E{ŝ2

i (k)} after noise cancellation. More rigorously, the state-
ment of the theorem is: for a given transversal filter W (z−1) the inequality
E{ŝ2(k)} ≤ min1≤i≤l E{ŝ2

i (k)} is always valid.
Proof: Let us rewrite the procedure (10) in equivalent form. LC is defined now

by the equation (13) which is equivalent to equation (4) because
∑l

i=1 viŝi(k) =∑l
i=1 vi ×(di(k) − ν̂(k)) =

∑l
i=1 vidi(k) − ∑l

i=1 viν̂(k), where the second term∑l
i=1 viν̂(k) = ν̂(k), ν̂(k) does not depend on i and

∑l
i=1 vi = 1 by definition (5).

Then the Lagrangian (7) can be rewritten as

L =
N∑

j=1

v>ŝ(j)ŝ>(j)v + λ(v>e− 1) = v>Rv + λ(v>e− 1). (16)

It is easy to find the saddle point of the Lagrangian (16):

L∗ = (e>R−1e)−1 (17)
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and the solution for weight parameter vector of the LC

v =
R−1e

e>R−1e
. (18)

Finally, let us note that (18) is equivalent to the second equation of (9). The
diagonal elements of the covariance matrix R are E{ŝ2

i (k)}, i = 1, 2, ..., l. Thus,
the diagonal elements of the covariance matrix R are simply the variances of the
corresponding local estimations of the unknown signal s(k).

Now, we can begin the proof of the theorem. Let us consider two arbitrary (l×1)
vectors: x and z and write the obvious relationship:

(x>z)2 =
(
x>R

1
2 R− 1

2 z
)2

=
((

R
1
2 x

)> (
R− 1

2 z
))2

. (19)

Using the Cauchy-Schwarz inequality we can write
((

R
1
2 (k)x

)> (
R− 1

2 (k)z
))2

≤ ‖R 1
2 (k)x‖2‖R− 1

2 (k)z‖2. (20)

For the right-hand part of inequality (20) the following equation

‖R 1
2 (k)x‖2‖R− 1

2 (k)z‖2 = (x>R(k)x)(z>R−1(k)z) (21)

is valid. Hence, using (19) and (21) and substituting them into (20) we obtain

(x>z)2 ≤ (x>R(k)x)(z>R−1(k)z). (22)

Letting ei denote the l×1 vector of all zeros except in the ith place where there
is a 1, and taking x = e and z = ei, we can rewrite (22) in the form

(e>ei)2 ≤ (e>i R(k)ei)(e>R−1(k)e). (23)

Here (e>ei)2 = 1 and e>i R(k)ei = Rii(k) is i-th diagonal element of the covariance
matrix R(k) that is nothing but the variance of ŝi(k). Thus, we can see that the
following inequality

1 ≤ Rii(k)(e>R−1(k)e) (24)

is always valid. Explicitly we have

E{ŝ2
i (k)} ≥ (e>R−1(k)e)−1 = L∗ = E{ŝ2(k)}. (25)

The inequality (25) is valid for all i = 1, 2, ..., l because 1 can be written in any
place of vector ei. Hence, (25) is also true for min1≤i≤l E{ŝ2

i (k)} corresponded to
the best channel and the best primary signal.

Consequence: Using algorithm (10) or (15) for learning of the LC (see Fig. 1) we
will always achieve better than or equivalent performance of noise cancellation upon
comparison to the method based on automatic selection of the best primary signal.
This follows from the theorem and the fact that minimization of the output signal
power is equivalent to the minimization of the MSE E{e2(k)} = E{(s(k)− ŝ(k))2},
which simultaneously leads to the maximization of the SNR.
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Figure 2: The reference noise signal νR(k) and three observed signals d1(k), d2(k),
d3(k) contaminated by interference signals.

5. Simulations

The following simulations have been done in order to evaluate the performance of
the proposed method for noise cancellation for multi-sensory signals. We also make
a comparison of the proposed method with other methods. These methods are:
a) the method based on synchronous signal averaging of the primary signals, which
is widely used in practice and will be considered here as the averaging method; b) the
method based on selection of the best primary signal [5], which will be considered
here as the Best Primary Signal Selection (BPSS) method.

The reference noise signal νR(k) and three noisy observed signals d1(k), d2(k),
d3(k) are shown in Fig. 2. The signal to estimate is a simulated Evoked Potential
(EP) embedded in interference signals which are different for each measurement
channel. Reference noise is modelled as the sum of the signal generated from uniform
distribution in the interval [1, 3] and the sawtooth signal with amplitude 1 and
frequency 0.145573 rad/sec. Interference signals are generated as follows. For the
first channel a highpass filter of order 38 with the cutoff frequency 0.7 and a Kaiser
window is used. Interference signal in the second channel is generated using a
multiband filter of order 50 with the cutoff frequency vector [0.2, 0.5, 0.8] and a
Hamming window. The gain in the first band is equal to 1. For the third channel
a bandstop filter of order 26 with the lower cutoff frequency 0.5 and upper cutoff
frequencies 0.6, Chebyshev window and stopband attenuation of 10 dB is used.

For each channel we use individual transversal RLS adaptive filters. Character-
istics of these filters are the following. For the transversal filters in the first and
second channels the length of the FIR filters is equal to 32, the forgetting factor is
equal to 1.0, the initial value of filter taps is 0 and the initial input variance estimate
is 0.1. Similarly, for the third channel the transversal FIR filter length is equal to
27, the forgetting factor is equal to 0.999 and the initial conditions are the same
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Figure 3: The results of noise cancellation for each individual channel.

as for the filters for the first and second channels. The algorithm (15) is used for
learning of the LC. Setting the initial values of the weight parameters as vi = 1

3 ,
i = 1, 2, 3 corresponds to the averaging method.

The results of noise cancellation for each individual channel are shown in Fig. 3.
It is easy to see that the best result is achieved for the first channel, which corre-
sponds at the same time to the best primary signal. However, the results of noise
cancellation for the method based on selection of the best primary signal depend
also on a good choice of order of the transversal filter. Moreover, this method does
not work for time-varying systems, when the best primary channel can change with
a time.

Fig. 4 shows the estimated signals using the three methods and Fig. 5 shows
the Normalized Mean Square Errors (NMSEs), NMSE = E{(ŝ(k)−s(k))2}

E{ν2(k)} , for each
method depending on the time. The worst result was obtained by the averaging
method. This is due to the few number of averaged signals. For practical applica-
tions, especially in biomedical signal processing, where the number of channels is
big enough, averaging methods give better results and are the most popular. How-
ever, we can see that even for a few number of channels the best result is obtained
by our proposed method. This is due to optimal adjustment of weight parameters
of the LC.

It is important to note that the proposed method will also work for time-varying
systems due to the recursive estimation of weight parameters of the LC. The output
of the noise cancellation system tends to estimate signal ŝ(t) but not to zero. Hence,
the algorithm does not tend to a stable solution. Changes lead to variations of both
transversal filters coefficients and weight parameters of the LC from their optimal
values. However, according to above theorem, weight parameters of the LC tend
again to optimal values after changes. Let us also note that often the reference signal
νR(k) is not available, however for a number of real problems it can be approximated
as standard Gaussian noise.
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Figure 4: The results of noise cancellation for the averaging method, for the method
based on selection of the best primary signal and for the proposed method.
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6. Conclusions

In this topical review, simple and fast algorithms for noise cancellation for multi-
sensory signals have been proposed. The theorem proved in Section 4 allows us
to assert that using the proposed noise cancellation system for a multi-sensory
signal we will achieve better then or equivalent performance of noise cancellation in
comparison to the method based on automatic selection of the best primary signal
and the averaging method. Simulation results confirm theoretical consequences and
demonstrate the effectiveness of the proposed algorithm.
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