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Abstract

In this thesis, we introduce and solve a particular generalization of the quadratically

constrained quadratic programming (QCQP) problem which is frequently encoun-

tered in the fields of communications and signal processing. Specifically, we consider

such generalization of the QCQP problem which can be precisely or approximately

recast as the difference-of-convex functions (DC) programming problem. Although

the DC programming problem can be solved through the branch-and-bound meth-

ods, these methods do not have any worst-case polynomial time complexity guar-

antees. Therefore, we develop a new approach with worst-case polynomial time

complexity that can solve the corresponding DC problem of a generalized QCQP

problem. It is analytically guaranteed that the point obtained by this method sat-

isfies the Karsuh-Kuhn-Tucker (KKT) optimality conditions. Furthermore, there is

a great evidence of global optimality in polynomial time for the proposed method.

In some cases the global optimality is proved analytically as well. In terms of

applications, we focus on four different problems from array processing and coop-

erative communications. These problems boil down to QCQP or its generalization.

Specifically, we address the problem of transmit beamspace design for multiple-input

multiple-output (MIMO) radar in the application to the direction-of-arrival estima-

tion when certain considerations such as enforcement of the rotational invariance

property or energy focusing are taken into account. We also study the robust adap-

tive beamforming (RAB) problem from a new perspective that allows to develop a

new RAB method for the rank-one signal model which uses as little as possible and

easy to obtain prior information. We also develop a new general-rank RAB method

which outperforms other existing state-of-the-art methods. Finally, we concentrate

on the mathematical issues of the relay amplification matrix design problem in a

two-way amplify-and-forward (AF) MIMO relaying system when the sum-rate, the

max-min rate, and the proportional fairness are used as the design criteria.
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Chapter 1

Introduction

In the last decade, there has been a tremendous increase in the number of applica-

tions of optimization theory in signal processing and communications. Indeed, due

to the ever increasing complexity of electronic systems and networks, the optimiza-

tion aspects of such systems come at the frontier of signal processing and commu-

nications research [1] and [2]. Moreover, many other fundamental signal processing

problems such as, for example, subspace tracking [3], parameter estimation [4], and

robust design problems [5] can be converted into optimization problems. The com-

plexity of handling an optimization problem generally depends on the properties of

the problem. Convex optimization problems form the largest known class of opti-

mization problems that can be efficiently addressed. Once a design problem is cast

as a convex optimization problem, it can be considered solved as there are powerful

polynomial time numerical methods for solving such problems globally optimally.

Moreover, there exists rigorous optimality conditions and a duality theory which

can specify the structure of the optimal solution and reveal design insights [6]. The

worst-case-based robust adaptive beamforming [7], [8] and optimal power allocation

in two hop decode-and-forward relay networks [9] are just two among many examples

of signal processing problems that can be cast as convex optimization problems.

As opposed to the convex optimization problems, the non-convex problems are

usually extremely hard to deal with. Particularly, unlike the convex problems,

there exist no rigorous sufficient globally optimality conditions for such problems.

Non-convex problems are very frequently encountered in signal processing and com-

munications applications. For example, the robust adaptive beamforming design

problem for the general-rank (distributed source) signal model with a positive semi-

definite constraint [10], the power control for wireless cellular systems when the rate
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is used as a utility function [11], the dynamic spectrum management for digital sub-

scriber lines [12], the problems of finding the weighted sum-rate optimal point, the

proportional fairness (PF) operating point, and the max-min optimal point (egal-

itarian solution) for the two-user multiple-input single-output (MISO) interference

channel [13] are all non-convex programming problems.

Although the non-convex optimization problems are inherently very challenging,

it is still possible to solve some of these problems by means of convex optimization

techniques. Specifically, it is sometimes possible to relax a non-convex problem

into a set of convex problems and then extract the optimal solution of the original

problem through the solution of the convexly relaxed problems. Relaxation of a non-

convex problem and also the extraction of the optimal solution is typically problem

dependent and there is no general universal solution as in convex optimization.

There is an extensive research on such relaxations of the non-convex problems with

different structures in the optimization theory and thereof applications [14] – [16].

Quadratically constrained quadratic programming (QCQP) problem is one of the

important classes of the non-convex optimization problems which is very frequently

encountered in different fields of signal processing and communications. Despite

being exceedingly difficult, QCQP problems can be approximately solved using the

semi-definite programming relaxation (SDR) techniques [14], [17] – [22]. In particu-

lar, SDR is a very powerful and computationally efficient method which relaxes the

non-convex problem into a convex problem and then extracts a suboptimal solution

of the QCQP problem through the optimal solution of the convexly relaxed prob-

lem. SDR has been successfully adopted in many practical problems that involve

some sort of non-convex QCQP problem [23] – [25]. The authors of [23] consider

the application of SDR method for developing an energy-based localization method

in wireless sensor networks. The coded waveform design for the radar performance

optimization in the presence of colored Gaussian disturbance by means of the SDR

for addressing the non-convex QCQP problem has been considered in [24]. Besides,

the SDR has been applied for the computationally demanding problem of multiuser

detection for decreasing the computational complexity [25].

Despite the profound importance of the QCQP optimization problem and its

approximate solution in the related fields, the more general form of these problems

have not been studied thoroughly. As an instance, the fractional quadratically con-

strained quadratic programming problem [26] is an example of such generalization.
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Specifically, the QCQP problems can be generalized to include the composition

of one-dimensional convex and quadratic functions in the objective and the con-

straint functions. The motivation behind this generalization is the observation of

such composite functions in several interesting problems in signal processing and

communications. For example, such important quantities as the transmit power

of the multi antenna systems and/or the received power of a multi channel single

antenna receiver have quadratic forms with respect to the transmit beamforming

vector/precoding matrix [27]. As a result, the transmission rate, which is a common

quality of service indicator, and the signal-to-interference-plus-noise ratio (SINR)

are in the forms of such compositions. Moreover, the corresponding objective func-

tion of the rate allocation schemes based on different criteria such as, for example,

the sum-rate maximization [28], proportionally fair, and the max-min fair [29] are

one form or another form of the composition of one-dimensional and quadratic func-

tions. The other example is the output power of a minimum variance distortionless

response beamformer which is inversely proportional to a quadratic function with

respect to beamforming vector. Besides, the uncertainty sets [7] and the robust-

ness constraints [30] are also usually in the forms of the composition of norm and

quadratic functions.

1.1 Proposed research problems

In this dissertation, we mostly concentrate on a generalization of the QCQP prob-

lems which can be precisely or approximately represented as the difference-of-convex

functions (DC) programming problems. The existing most typical approaches devel-

oped for addressing DC programming problems are based on the so-called branch-

and-bound methods [13] and [31] – [36]. However, these methods do not have any

(worst-case) polynomial time complexity guarantees which considerably limits or

most often prohibits their applicability in practical communication systems. Ac-

cordingly, methods with guaranteed polynomial time complexity that can solve such

DC programming problems at least suboptimally are of great importance. Thus,

we develop a new approach with (worst-case) polynomial time complexity that can

solve the corresponding DC problem of a generalized QCQP problem. The pro-

posed method is referred to as the polynomial time DC (POTDC) and is based on

semi-definite relaxation, linearization, and an iterative Newton-type search over a

small set of parameters of the problem. It is analytically guaranteed that the point

3



obtained by this method satisfies the Karsuh-Kuhn-Tucker (KKT) optimality con-

ditions. Furthermore, in the application to the problems addressed in this thesis,

there is a great evidence of global optimality for the proposed method. Specifically,

this evidence is shown to reduce to the conjecture that can be checked easily nu-

merically. Such check can be viewed as a simple numerical global optimality test as

it will be explained later in the thesis.

The problems addressed in this thesis are in the general area of multi-antenna

and cooperative systems. Specifically, we have considered the application of SDR

and the proposed POTDC method in multiple-input multiple-output (MIMO) radar

transmit beamspace design with practical considerations, robust adaptive beam-

forming design methods for rank-one and general-rank signal models, and the relay

amplification matrix design of a two-way relaying system. All these design problems

correspond to certain QCQP or its generalizations. A brief description of the tackled

problems is as follows.

Transmit beamspace design in multiple-input multiple-output radar

MIMO radar is a new emerging technique which offers significant performance

improvements compared to its traditional counterpart, that is, single input multiple-

output radar [37]. The performance improvements can be attributed to the fact that

the transmit signals as well as transmit beamforming techniques in MIMO radar

can be chosen/designed quite freely [37], [38]. The additional degrees of freedom

provided by MIMO radar allow for improved direction of arrival (DOA) estima-

tion performance using, for example, search-free estimation of signal parameters via

rotational invariance techniques [39]. However, the known search-free DOA esti-

mation techniques in application to MIMO radar use the conventional idea of the

virtual/receive array partitioning [39]. Thus, for achieving the rotational invariance

property (RIP) between different subarrays, either the transmit or receive arrays

must be a uniform linear array (ULA). It has been shown in [40], [41], however, the

RIP for MIMO radar can be also achieved for transmit and receive arrays of arbi-

trary geometry in unconventional way through an appropriate design of the transmit

beamspace matrix. Specifically, in [41] the idea that the RIP could be enforced at

the transmit antenna array was introduced, and a solution utilizing the method of

spheroidal sequences was used to obtain K data sets with RIP. In addition to the

RIP due to a proper transmit beamspace design, one can obtain a further DOA es-

timation performance improvement by focusing the transmit energy on the desired
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sectors.

The problem of designing such transmit beamspace matrix which satisfies a

number of practical constraints is an open problem of significant interest. In this

thesis, we introduce a new approach based on the optimization theory to guarantee

the satisfaction of the RIP at the transmit array while other practical requirements

are satisfied. Specifically, these requirements are that the transmit beampattern

must be as close as possible to the desired beampattern and the transmit power is

uniform across the transmit antennas [42], [43]. For the case of even but otherwise

arbitrary number of transmit waveforms, the corresponding problem is cast as a non-

convex QCQP problem which is solved using SDR. Our numerical results confirm

the superiority of the proposed transmit beamspace design method.

Robust adaptive beamforming

Robust adaptive beamforming (RAB) is one of the classic array processing prob-

lems with ubiquitous applicability in wireless communications, radar, sonar, micro-

phone array speech processing, radio astronomy, medical imaging, etc. Various

robust adaptive beamforming techniques have been developed in the literature [44]

and [45]. Among first robust adaptive beamforming techniques are the diagonal

loading [46], [47] and the eigenspace-based beamformers [48]. More recent and more

rigorous techniques are the worst-case-based adaptive beamforming [7] and [49] –

[51], the probabilistically constrained robust adaptive beamforming [52], doubly

constrained robust Capon beamforming [53], [54] and the method of [55] based on

steering vector estimation. In general, most of the known minimum variance distor-

tionless response (MVDR) robust adaptive beamforming techniques can be unified

under one framework which can be summarized as follows. Use minimum variance

distortionless response principle for beamforming vector computation in tandem

with sample covariance matrix estimation and steering vector estimation based on

some prior information about steering vector. Based on such unified framework to

robust adaptive beamforming, we develop a new beamforming technique in which

the steering vector is estimated by the beamformer output power maximization un-

der the constraint on the norm of the steering vector estimate and the requirement

that the estimate does not converge to an interference steering vector. To satisfy

the latter requirement, we develop a new constraint which is different from the one

in [55] and is convex quadratic. In general, our new robust adaptive beamforming

technique differers from other techniques by the prior information about steering
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vector. The prior information used in our technique is only the imprecise knowledge

of the antenna array geometry and angular sector in which the actual steering vector

lies. Mathematically, the proposed MVDR RAB is expressed as a non-convex QCQP

problem with two constraints, which can be efficiently and exactly solved. Some new

results for the corresponding optimization problem such as a new algebraic way of

finding the rank-one solution from the general-rank solution of the relaxed problem

and the condition under which the solution of the relaxed problem is guaranteed to

be rank-one are derived. Our simulation results demonstrate the superiority of the

proposed method over other previously developed RAB techniques.

General-rank robust adaptive beamforming

Most of the robust adaptive beamforming methods have been developed for the

case of point source for which the rank of the desired source covariance matrix is

equal to one [44] and [45]. However, in some practical applications such as the in-

coherently scattered signal source or source with fluctuating (randomly distorted)

wavefronts, the rank of the source covariance matrix is higher than one [8]. The ro-

bust adaptive beamformer for the general-rank signal model that is based on explicit

modeling of the error mismatches has been developed in [8]. Despite its simplicity,

the robust adaptive beamformer of [8] is known to be overly conservative [10], [56].

Thus, less conservative approaches have been developed in [10] and [56] by adding an

additional positive semi-definite (PSD) constraint to the beamformer of [8] which

eventually leads to a non-convex optimization problem. The existing approaches

for this non-convex problem are either suboptimal iterative methods for which the

convergence is not guaranteed or a closed-form solution that may be far from the op-

timal solution. These shortcomings have motivated us to look for a new efficient and

exact solution for the aforementioned non-convex problem. Specifically, the robust

adaptive beamforming problem for general-rank signal model with the additional

positive semi-definite constraint is shown to belong to the class of the generalized

QCQP problems which can be precisely expressed as a DC optimization problem.

We solve the corresponding non-convex DC problem by using the proposed POTDC

algorithm and give arguments suggesting that the solution is globally optimal. Par-

ticularly, we rewrite the problem as the minimization of a one-dimensional optimal

value function whose corresponding optimization problem is non-convex. Then,

the optimal value function is replaced with another equivalent one, for which the

corresponding optimization problem is convex. The new one-dimensional optimal
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value function is then minimized iteratively via POTDC algorithm. The solution is

guaranteed to satisfy the KKT optimality conditions and there is a strong evidence

that such solution is also globally optimal. The new RAB method shows superior

performance compared to the other state-of-the-art general-rank RAB methods.

Two-way relaying transmit strategy design

Cooperative relay networks enjoy the advantages of the MIMO systems such as,

for example, high data rate and low probability of outage without applying multiple

antennas at the nodes and by exploiting the inherent spatial diversity [57] – [59]. Al-

though the conventional cooperative relaying systems address the practical problem

of packing multiple antennas in low-cost receivers, they are not spectrally efficient.

Indeed, due to the orthogonal channel assignments of the cooperative relay net-

works, the bidirectional data transmission between two different nodes through the

relays needs to be accomplished in four time slots [60] which is twice larger than

that of the regular transmission. In order to resolve this problem and for a more

efficient spectral usage, the two-way relaying (TWR) systems has been recently pro-

posed [61]. The main idea behind the two-way relaying is to reduce the number of

the required time slots by relaxing the requirement of orthogonal transmissions be-

tween the nodes and the relays [62]. In other words, the simultaneous transmissions

by the nodes to the relay on the same frequencies are allowed in the first time slot,

while a combined signal is broadcast by the relay in the second time slot.

One fundamental problem associated with TWR systems is the relay transmit

strategy design based on the available channel state information (CSI) [61] – [69].

It is usually designed so that a specific performance criterion is optimized under

constraints on the available resources and/or quality-of-service (QoS) requirements.

The design of rate optimal strategies in two-way relaying systems is one of the

most important problems in the area [61]. Although the rate optimal strategy for

two-way relaying is in general unknown, the achievable rate for the case of amplify-

and-forward (AF) MIMO relaying system with two single antenna users has been

discussed in [62]. Moreover, the importance of the user fairness in asymmetric

TWR systems has been recently demonstrated in [67], [68], and [69]. The authors

of [67] study the optimal power allocation problem for single antenna users and

single antenna relay where the sum-rate is maximized under the fairness constraint.

Relay beamforming and optimal power allocation for a pair of single antenna users

and several single antenna relays based on max-min signal-to-noise ratio (SNR) or
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equivalently (data rate) has been also considered in [68] and [69].

In this thesis, we focus on the optimal relay transmit strategy design in a AF

TWR system with two single antenna users and one multi-antenna relay based on

the maximum sum-rate, PF and the max-min rate fairness (MMRF) criteria. This

is a basic model which can be extended in several different ways. First, we consider

the relaying transmit strategy or equivalently the relay amplification matrix design

when the maximum sum-rate is used as the design criterion. It is shown that the

objective function of the sum-rate maximization problem can be represented as a

product of quadratic ratios which is a generalized QCQP optimization problem.

Using the proposed POTDC algorithm, this problem is precisely expressed as a DC

programming problem and then solved to find at least a KKT point. There is a

strong evidence, however, that such a point is actually globally optimal. We derive

an upper-bound for the optimal value of the corresponding optimization problem

and show by simulations that this upper-bound is achieved by POTDC algorithm.

It provides an evidence that the algorithm finds a global optimum.

Next, we consider the relay amplification matrix design based on the max-min

rate fair and the PF criteria. Similar to the maximum sum-rate problem, we show

that the corresponding optimization problems also belong to the class of the gener-

alized QCQP optimization problems which can be precisely recast as DC problems.

The corresponding DC problems are also efficiently addressed by using POTDC

method. In addition, based on our numerical results, the POTDC method always

results in the globally optimal solution of the corresponding optimization problem.

The global optimality of the resulted solution is equivalent to the concavity of a

certain optimal value function which can be easily checked numerically.

1.2 Organization of the thesis

This thesis is organized as follows. Preliminaries are given in Chapter 2 while a

generalization of QCQP and its solution is discussed in Chapter 3. The proposed

transmit beamspace design for DOA estimation in MIMO radar with considering

the practical considerations is given in Chapter 4. In Chapters 5 and 6, respectively,

the robust adaptive beamforming design problem for a rank-one and general-rank

signal models are developed and investigated. Finally, Chapter 7 studies the relay

amplification matrix design in two-way relaying systems. Our conclusions and future

potential research directions are given in Chapter 8.
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Chapter 2

Preliminaries

In this chapter, we first review the basics of the convex optimization theory and par-

ticularly the semi-definite programming. These principles will be required in Chap-

ter 3 for introducing a general form of optimization problems that are frequently

encountered in different fields of communications and signal processing. Next, we

will briefly review the preliminaries of the tackled problems. Specifically, the princi-

ples of MIMO radar, robust adaptive beamforming, and two-way cooperative relay

networks are shortly introduced.

2.1 Convex optimization

Let us consider any two arbitrary points x1,x2 ∈ R
N where x1 6= x2 and R

N×M

denotes the N × M -dimensional Euclidean space. Note that for simplicity, the

space of R
N×1 will be denoted as R

N hereafter. The points of the form y(θ) =

θx1 + (1 − θ)x2 where θ ∈ R correspond to the line which connects the points x1

and x2 in R
N . Moreover, the line segment between x1 and x2 corresponds to the

case where θ is restricted to lie between 0 and 1.

Convex set: The set C ⊂ R
N is defined to be convex if the line segment between

any two arbitrary points in C is a subset of C. More specifically, if for any arbitrary

points x1,x2 ∈ C and 0 ≤ θ ≤ 1, the point θx1 + (1− θ)x2 belongs to C, then C is

a convex set.

Fig. 2.1 shows two example sets in the Euclidean space of R
2. It is easy to observe

that the line segment between any two arbitrary points in the set of Fig. 2.1(a) lies

inside this set and as a result it is convex. However, the set shown in Fig. 2.1(b) is

non-convex because the connecting line segment between the shown two points does

not lie inside this set.
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(a) Convex set. (b) Non-convex set.

Figure 2.1: Simple convex and non-convex sets [70].

Convex hull: The convex hull of a set C is defined as the set of all points that

are in the form of
∑K

i=1 θixi referred to as the convex combination of the points

xi ∈ C, i = 1, · · · ,K where
∑K

i=1 θi = 1, θi ≥ 0 and K ≥ 1. The convex hull of a

set is basically the smallest convex set which contains that set [70].

From the definition, it can be immediately concluded that the convex hull of a

convex set is equal to itself. Fig. 2.2 shows the convex hull of the non-convex set

shown in Fig. 2.1(b).

Figure 2.2: Convex hull of the non-convex set shown in Fig. 2.1(b) [70].

Cone: The set C ⊂ R
N is said to be a cone if for any arbitrary x ∈ C and θ ≥ 0,

the new point θx also belongs to C.

A set is said to be a convex cone if it is a cone and at the same time it is convex.

In other words, C is a convex cone if and only if for any arbitrary points x1,x2 ∈ C
and θ1 ≥ 0 and θ2 ≥ 0 the point θ1x1 + θ2x2 also belongs to C [70].

The set of symmetric and Hermitian positive semi-definite matrices which are
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denoted as SN+ and HN+ , respectively, are among the important convex cones and

are defined as

SN+ = {X ∈ R
N×N | X = XT and X � 0} (2.1)

and

HN+ = {X ∈ C
N×N | X = XH and X � 0} (2.2)

where (·)T and (·)H stands for the transpose and Hermitian operators, respectively,

A � B means that A − B � 0 is a PSD matrix and C
N×M denotes the N ×

M -dimensional complex space. For simplicity, the space of C
N×1 will be denoted

hereafter as C
N .

Convex function: The function f : D ⊂ R
N −→ R is said to be convex if its

domain, D, is convex and for all x,y ∈ D and 0 ≤ θ ≤ 1 the following inequality

holds

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.3)

Similarly, the function f is concave, if −f is convex [70].

For the differentiable function f(x), the convexity is equivalent to the following

inequality

f(y) ≥ f(x) +∇f(x)T (y − x), ∀x,y ∈ D (2.4)

where the vector ∇f(x) denotes the gradient of f(x) at x. Moreover, a twice

differentiable function f(x) is convex if and only if its domain is convex and its

Hessian denoted as ∇2f(x) is positive semi-definite for all x ∈ D [70]. A linear

function in the form of aTx+ b where a,x ∈ R
N is an example of a convex function

and a quadratic function of the form of xTAx + aTx + b where A ∈ R
N×N and

a,x ∈ R
N is convex if and only if the matrix A is positive semi-definite [70].

Two important property of the convex functions is as follows

• Pointwise maximum of the convex functions fi(x), i = 1, · · · , k defined as

g(x) = max
i
fi(x) is a convex function.

• The α-sublevel set of a convex function f(x) defined as Cα = {x | f(x) ≤ α}
is a convex set.
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2.1.1 Composition of convex/concave functions

In the next chapters of this thesis, we will encounter the functions which are the

compositions of convex and concave functions. In this part, we will briefly review the

different possible cases and the sufficient conditions which guarantee the composition

function to be convex/concave. Let us consider the functions h : Dh ⊂ R
k −→ R

and g : Dg ⊂ Rn −→ Rk and define their decomposition as f , h ◦ g = h
(
g(x)

)
=

h
(
g1(x), g2(x), · · · , gk(x)

)
where gi : Dg ⊂ R

n −→ R, i = 1, · · · , k and Df ,

{x | g(x) ∈ Dh, x ∈ Dg}. Depending on the monotonicity and convexity/concavity

of the functions g(x) and h(x), the following sufficient conditions hold true [70]

• f is convex if h is convex, h is non-decreasing in each argument, and gi, i =

1, · · · , k are convex.

• f is convex if h is convex, h is non-increasing in each argument, and gi, i =

1, · · · , k are concave.

• f is concave if h is concave, h is non-decreasing in each argument, and gi, i =

1, · · · , k are concave.

• f is concave if h is concave, h is non-increasing in each argument, and gi, i =

1, · · · , k are convex.

2.1.2 Optimization problem

An optimization problem has the following generic form

min
x

f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m (2.5)

hi(x) = 0, i = 1, · · · , p.

Problem (2.5) describes the problem of minimizing the function f0(x) among all x

which satisfy the constraints fi(x) ≤ 0, i = 1, · · · ,m and hi(x) = 0, i = 1, · · · , p.
The function f0(x) is called the objective function while the functions fi, i =

1, · · · ,m and hi, i = 1, · · · , p are called the inequality constraint and the equality

constraint functions, respectively. Domain of the optimization problem (2.5), de-

noted as D, is defined as the intersection of the domain of the objective function

and all the constraint functions. The point x ∈ D is said to be a feasible point
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of the optimization problem (2.5), if it satisfies all the equality and inequality con-

straints. The set of all the feasible points is referred to as the feasible set. The

feasible point xopt is said to be the globally optimal solution of the problem (2.5),

if p∗ , f0(xopt) ≤ f0(x) for any feasible point x. Furthermore, the point x∗ is said

to be locally optimal, if there exists ǫ > 0 for which the inequality f(x∗) ≤ f(x)

holds for all x such that ‖x− x∗‖ ≤ ǫ where ‖ · ‖ stands for the Euclidean norm of

a vector or Frobenius norm of a matrix.

One of the most important classes of optimization problems is the QCQP. The

general form of a QCQP problem is as follows

min
x

xHA0x

subject to xHAix ≤ αi, i = 1, · · · ,m (2.6)

xHBjx = βj , j = 1, · · · , p

where the matrices Ai, i = 0, · · · ,m and Bj , j = 1, · · · , p are real symmetric or

Hermitian.

The complexity of addressing an optimization problem generally depends on its

properties. Convex optimization problems form the largest known class of optimiza-

tion problems that can be efficiently addressed. Compared to the convex problems,

non-convex problems are generally hard to solve and there is no general efficient

algorithm to solve them [6]. In what follows, the definition of a convex problem is

explained in details.

Convex Optimization:

The optimization problem (2.5) is said to be a convex problem if the objective

function and all the inequality constraint functions, fi, i = 0, · · · ,m, are convex with

respect to x while all the equality constraint functions, hi, i = 1, · · · , p, are affine

with respect to x. In a convex optimization problem, the feasible set is convex. The

latter is due to the fact that the feasible set of the problem (2.5) is the intersection

of the convex feasible set of the constraints and as a result it is convex.

The QCQP problem (2.6), which commonly appears in signal processing and

communications applications, is generally a non-convex problem unless, there is

only inequality constraints and all the matrices Ai, i = 0, · · · ,m are positive semi-

definite. As a result, it is usually hard to deal with such problems.
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2.1.3 Lagrangian dual functions

In optimization theory, the so-called dual problem provides a different perspective

to the optimization problems. The essence of the definition of dual problem is to

utilize the Lagrangian dual function as it is shortly explained.

Lagrangian: The corresponding Lagrangian of the optimization problem (2.5) is

defined as

L(x,λ,ν) , f0(x) +

m∑

i=1

λifi(x) +

p
∑

i=1

νihi(x) (2.7)

where λi is called the Lagrangian multiplier associated with the inequality constraint

fi(x) ≤ 0, νi is the Lagrangian multiplier that corresponds to the equality constraint

hi(x) = 0, and λ , (λ1, · · · , λm) and ν , (ν1, · · · , νp) are the set of Lagrangian

multipliers.

The Lagrangian dual function: For a fixed value of the Lagrangian multipliers λ

and ν, the Lagrangian dual function associated with the optimization problem (2.5)

is defined as

g(λ,ν) , min
x∈D

L(x,λ,ν)

, min
x∈D

f0(x) +
m∑

i=1

λifi(x) +

p
∑

i=1

νihi(x) (2.8)

where D is the domain of the optimization problem (2.5). The Lagrangian dual

function is only defined for the such values of λ and ν for which g(λ,ν) is finite. The

Lagrangian multipliers λ and ν are said to be dual feasible if λi ≥ 0, i = 1, · · · ,m
and g(λ,ν) is finite. It should be emphasized that since the Lagrangian dual function

is the pointwise minimum of a family of the functions that are linear with respect

to λ and ν, it is always concave with respect to λ and ν regardless of the primal

problem (2.5).

For any dual feasible variables λ and ν, the Lagrangian dual function g(λ,ν)

gives a lower-bound for the optimal value of the optimization problem (2.5), i.e.,

g(λ,ν) ≤ p∗ [70]. By utilizing the latter fact, one can find the tightest lower-bound

for the optimization problem (2.5) as it follows

Lagrangian dual problem: Lagrangian dual problem is the problem of finding the

best lower-bound for the optimal value of the problem (2.5) using the Lagrangian

dual function (2.8). Lagrangian dual problem can be expressed as the following

optimization problem
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d∗ , max
λ,ν

g(λ,ν)

subject to λi ≥ 0, i = 1, · · · ,m. (2.9)

Note that since the Lagrangian dual function (2.8) is concave, the Lagrangian dual

problem (2.9) is convex even if the primal problem is not convex. As it was men-

tioned before the Lagrangian dual function gives a lower-bound for the optimal value

of the primal problem (2.5) and as a result, it can be concluded that d∗ ≤ p∗, where

this property is referred to as the weak duality. The difference between the p∗ and

d∗ is called the duality gap between the primal and dual problems.

Duality gap is generally nonzero. When duality gap is zero, i.e., d∗ = p∗, it is

said that the strong duality holds. Convex optimization problems are a big category

of the problems for which the strong duality holds under some mild conditions.

More specifically, if the problem (2.8) is convex and it satisfies certain constraint

qualifications, it is convex. One of the simple constraint qualifications is the Slater’s

condition. Slater’s condition holds if there exists a feasible point x ∈ int{D} for

which all the inequalities fi(x) < 0, i = 1, · · · ,m hold true and int{·} denotes the

interior of a set [70] .

2.1.4 Local optimality conditions

In this part, we will discuss the necessary local optimality conditions for the problem

(2.5) which is not restricted to be convex in general. For this goal, we need to

introduce the notion of regularity. The feasible point x is said to be a regular point

if the gradients of the equality constraints, i.e., the gradients ∇hi(x), i = 1, · · · , p,
and the active inequality constraints, i.e., the gradients ∇fi(x), i ∈ {l | fl(x) =

0, i = 1, · · · ,m}, at this point are all linearly independent.

Let the point x∗ be a feasible point of the problem (2.5). The necessary con-

dition for the regular point x∗ to be locally optimal is that there exist Lagrangian
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multipliers λ∗ and ν∗ such that the following conditions hold true

fi(x
∗) ≤ 0, i = 1, · · · ,m

hi(x
∗) = 0, i = 1, · · · , p

λ∗i ≥ 0, i = 1, · · · ,m (2.10)

λ∗i fi(x
∗) = 0, i = 1, · · · ,m

∇f0(x
∗) +

m∑

i=1

λ∗i∇fi(x∗) +

p
∑

i=1

ν∗i∇hi(x∗) = 0

which are called the KKT conditions [70]. It is noteworthy to mention that if the

optimization problem (2.5) is convex and the strong duality holds then the KKT

conditions are the necessary and sufficient conditions for the point x∗ to be globally

optimal.

2.1.5 Optimization problems with generalized inequalities

A straightforward generalization of the optimization problem (2.5) is obtained by

allowing generalized inequalities. A generalized inequality is a partial ordering in

the space of R
N rather than R. Moreover, generalized inequalities are defined over

specific cones that are referred to as the proper cones. The convex cone K ⊂ R
N is

said to be proper, if it has the following properties

• it is closed, in other words, it includes its boundary.

• It does not have any non-empty interior.

• if x ∈ K and −x ∈ K then x = 0.

The partial ordering over the proper cone K is defined as

x �K y if and only if y − x ∈ K (2.11)

Allowing the generalized inequalities, the generic optimization problem (2.5) can be

generalized as

min
x

f0(x)

subject to fi(x) �Ki
0, i = 1, · · · ,m (2.12)

hi(x) = 0, i = 1, · · · , p

where Ki ⊂ R
Ni , i = 1, · · · ,m are proper cones and fi : Di ⊂ R

N −→ R
Ni , i =

1, · · · ,m are multi-valued functions.
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In order to define the convexity of an optimization problem with generalized

inequalities, the definition of convex functions is required to be extended to multi-

valued functions. In what follows a convex multi-valued function is defined.

Ki−convexity: Let us consider the proper cone Ki ⊂ R
Ni with the corresponding

generalized inequality �Ki
. The multi-valued function fi : Di ⊂ R

N −→ R
Ni is said

to be Ki − convex, if for all x,y ∈ Di and 0 ≤ θ ≤ 1, the following inequality holds

f(θx + (1− θ)y) �Ki
θf(x) + (1− θ)f(y) (2.13)

Based on the new definition, the optimization problem (2.12) is said to be convex

if f0(x) is convex, fi(x) is Ki-convex and all the equality constraints are affine.

The Lagrangian for an optimization problem with generalized inequality is sim-

ilarly defined as

L(x,λ1, · · · ,λm,ν) , f0(x) +
m∑

i=1

λTi fi(x) +

p
∑

i=1

νihi(x) (2.14)

where λi ∈ R
Ni is the Lagrangian multiplier associated with the generalized in-

equality constraint fi(x) �Ki
0, νi is the Lagrangian multiplier associated with the

equality constraint hi(x) = 0 and ν , (ν1, · · · , νp).
The Lagrangian dual function (2.8), the Lagrangian dual problem (2.9) are de-

fined very similarly and the weak duality and strong duality results are also valid

for an optimization problem with generalized inequality [70].

2.1.6 Semi-definite programming

In this thesis, we will frequently encounter the optimization problems with general-

ized inequality constraints over the cone of symmetric positive semi-definite matri-

ces SN+ or the cone of Hermitian positive semi-definite matrices HN+ whose objective

function is linear and there are other linear constraints. The general form of these

problems is as follows and they are referred to as the semi-definite programming

problems (SDP)

min
X

tr{A0X}

subject to tr{AiX} ≤ αi, i = 1, · · · ,m (2.15)

tr{BjX} = βj , j = 1, · · · , p

X � 0
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where tr{·} stands for the trace operator and the matrices Ai, i = 0, · · · ,m and

Bj , j = 1, · · · , p are real symmetric or Hermitian matrices. Semi-definite pro-

gramming is very useful for solving the non-convex QCQP problems approximately

through the semi-definite programming relaxation as it is explained shortly.

2.1.7 Semi-definite programming relaxation

As it was mentioned earlier, QCQP optimization problems are generally non-convex.

One of the most efficient ways of dealing with such generally NP-hard non-convex

problems is through their approximation with SDP problems [17] – [22]. For this

goal, let us consider the following general QCQP problem

min
x

xHA0x

subject to xHAix ≤ αi, i = 1, · · · ,m (2.16)

xHBjx = βj , j = 1, · · · , p.

By defining the new additional variable X , xxH and considering the facts that

X = xxH implies that X is a rank-one positive semi-definite matrix and also the

fact that for any arbitrary matrix D, the following relationship holds xHDx =

tr{DxxH}, the QCQP problem of (2.16) can be equivalently expressed as

min
X

tr{A0X}

subject to tr{AiX} ≤ αi, i = 1, · · · ,m

tr{BjX} = βj , j = 1, · · · , p

X � 0, rank{X} = 1 (2.17)

where X is a real symmetric or Hermitian matrix and rank{·} denotes the rank of

a matrix. The only non-convex constraint in (2.17) is the rank-one constraint while

all other constraint functions and the objective function are linear with respect to

X. The non-convex rank constraint is the main difficulty of QCQP problems. The

SDP relaxation is based on approximating the problem (2.17) by dropping the non-

convex rank constraint and trying to somehow extract the solution of the original

problem from the solution of the relaxed problem [14], [17] – [22]. By dropping the
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non-convex rank-one constraint the following SDP problem is resulted

min
X

tr{A0X}

subject to tr{AiX} ≤ αi, i = 1, · · · ,m

tr{BjX} = βj , j = 1, · · · , p.

X � 0. (2.18)

When the relaxed problem (2.18) is solved, extracting the approximate solution of

the original problem (2.17) through the optimal solution of the relaxed problem

(2.18) is done through randomization techniques. In particular, let Xopt denote the

optimal solution of the relaxed problem (2.18). If the rank of Xopt is one, then the

optimal solution of the original problem (2.16) can be obtained by simply finding the

principal eigenvector of Xopt. However, if the rank of the matrix Xopt is higher than

one, we need to resort to the randomization techniques to extract an approximate

solution. A number of different randomization techniques has been developed in the

literature [14]. Briefly, the essence of such techniques is to generate first a set of

candidate vectors using Xopt and then to choose the best vector among all candidate

vectors.

In the next section, the essences of the MIMO radar will be introduced.

2.2 MIMO radar

Radar systems can be used for detecting and measuring the parameters such as ve-

locity, acceleration, range/location, and radar cross section (RCS) of moving targets.

The essence of any radar systems is to transmit energy to the specific directions of

the space and then to process the received echo from the targets to detect or esti-

mate the parameters of interest [71] – [73]. The radar systems are usually formed

by a transmit and a receive array. The transmit array is utilized for transmitting

specific waveforms towards the targets in the space while the receive array collects

the reflected echo from the targets for further processing. Depending on the dis-

tance between the transmit and receive arrays, the radar systems are classified as

mono-static and bi-static [74]. Particularly, in a mono-static radar, the distance

between the transmit and receive arrays is comparatively small and the targets in

the far-field are viewed from the same angle while in a bi-static radar, the array are

widely separated and they view the targets from different angles.
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(a) Phased-array radar (b) MIMO radar

Figure 2.3: Phased-array radar and MIMO radar.

The essence of the conventional radar systems referred to as the phased-array

radar is to exploit the transmit and receive array coherent processing gains [71].

More specifically, phased-array radar coheres beams towards the specific directions

of the space by transmitting a single waveform from different antenna elements

whose phase has been properly rotated. By such phase rotations, the received signal

reflected by the desired targets can be added coherently which can give rise to the

coherent processing gains at the receive array.

MIMO radar is a new emerging technology [41], [75] – [80]. As apposed to the

phased-array radar, the fundamental and enabling concept of the MIMO radar is the

waveform diversity. Specifically, compared to the phased-array radar that transmits

scaled versions of a single waveform, in MIMO radar, the transmitted waveforms

can be chosen quite freely and only are restricted by hardware issues (see Fig. 2.3).

Due to the so provided additional degrees of freedom which is referred to as the

waveform diversity, MIMO radar may show performance improvements compared

to the phased-array radar systems [75] – [80].

The transmit/receive array in MIMO radar can be either widely separated or

colocated. In a MIMO radar with widely separated antennas, the antenna elements

view different aspects of the target [76]. In other words, the RCS factor of each

antenna element is independent from that of the other antenna elements. The

waveform diversity in this case is very similar to the concept of the multi-path

diversity in wireless communication channels [75]. The multi-path diversity of a

wireless communication system is usually realized by transmitting the same source

data to the destination through several independently faded channels [81]. Since

the probability of an unfavorable fading in all the channels is negligible, this form
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of diversity allows more reliable decoding of the transmitted information. In a

very similar way, the waveform diversity of a widely separated MIMO radar allows

more reliable detection as the probability of simultaneous scintillation for all the

transmit antennas is very small [75]. Many works have recently been reported in

the literature that demonstrate the benefits of applying the MIMO radar concept

using widely separated antennas [75] – [78].

MIMO radar with colocated antennas consists of closely spaced transmit anten-

nas [79]. Compared to the widely separated MIMO radar, the antennas cohere the

beam to a certain direction in the space. Using the colocated antennas, the virtual

aperture of the received antenna array can be significantly increased [41]. The in-

creased virtual array size results in improvement in the maximum number of the

targets that can be uniquely identified, enhancement in the angular resolution and

the parameter estimation performance [37]. In this dissertation, we mostly concen-

trate on the MIMO radar with colocated antennas. In order to explain why the

corresponding aperture size of a colocated MIMO radar is increased, let us consider

the mono-static radar in Fig. 2.4 with the transmit and receive arrays of size M and

N , respectively.

Figure 2.4: A mono-static radar system.

It is assumed that the transmitted signals from the transmit array are all narrow-

band and orthogonal. Moreover, the point source signal model is adopted for the tar-

gets. Let xm(t),m = 1, · · · ,M denote the transmitted signal from antenna element

m at time instant t, which has unit energy, i.e.,
∫

T x
2
m(t)dt = 1, where T is the signal

duration. Under the condition that the channel is non-dispersive, the received sig-
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nal at a target with location parameter θ can be written as
∑M

m=1 e
−j2πf0τm(θ)xm(t)

where f0 is the carrier frequency and τm(θ) is the time needed for the emitted signal

from the antenna m to be received at a target whose location parameter is θ [37].

By defining following vectors

a(θ) = [e−j2πf0τ1(θ), e−j2πf0τ2(θ), · · · , e−j2πf0τM (θ)]T (2.19)

and

x(t) = [x1(t), x2(t), ..., xM (t)] (2.20)

the received signal at a target with location parameter θ can be expressed in a

closed-form as aT (θ)x(t). The vector a(θ) is a known function of θ which depends

on the transmit antenna array geometry and it is referred to as the steering vector

of the transmit array. Assuming that L targets are present, the echoes which are

reflected from the targets and are received at the receive array can be written as

y(t, ̺) =
L∑

l=1

βl(̺)b(θl)a
T (θl)x(t) + z(t, ̺) (2.21)

where t is the fast time index, i.e., time within a frame, ̺ is the slow time index,

i.e., number of pulses, βl(̺) is the reflection coefficient of the target located at the

angle θl with variance σ2
β, b(θ) = [e−j2πf0τ̃1(θ), e−j2πf0τ̃2(θ), · · · , e−j2πf0τ̃N (θ)]T is the

steering vector of receive array, τ̃k(θ) is the time needed for the reflected signal to

propagate from the target at location θ to the kth receive antenna element, and

z(t, ̺) is the N × 1 vector of zero-mean white Gaussian noise.

Since the transmit signals xm(t),m = 1, . . . ,M are orthogonal, multiple orthog-

onal waveforms will be received at the receive array. By extracting the orthogo-

nal components from the received signal y(t, ̺), a larger virtual aperture can be

achieved [41]. More specifically, by matched filtering the received signal y(t, ̺) to

each of the orthogonal waveforms xm(t),m = 1, . . . ,M , the N×1 virtual data vector

that corresponds to xm(t) can be obtained as

ym(̺) ,

∫

T
y(t, ̺)xm(t)dt

,

L∑

l=1

βl(̺)e
−j2πf0τm(θl)b(θl) + zm(̺), m = 1, · · · ,M (2.22)

where zm(̺) ,
∫

T z(t, ̺)xm(t)dt is the N × 1 noise term whose covariance is σ2
zIN .

Note that zm(̺) and zn(̺) (m 6= n) are independent due to the orthogonality
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between xm(t) and xn(t). By stacking the data vectors (2.22) obtained by matched

filtering the received signal (2.21), the increased virtual data vector can be expressed

as

y(̺) = [yT1 (̺),yT2 (̺), · · · ,yTM (̺)]T

=
L∑

l=1

βl(̺)a(θl)⊗ b(θl) + z(̺) (2.23)

where ⊗ denotes the Kronecker product, z(̺) = [zT1 (̺), zT2 (̺), · · · , zM (̺)]T is the

stacked noise vector and

c(θ) = a(θ)⊗ b(θ) (2.24)

is the steering vector of the virtual antenna array of size of M ×N .

By defining A = [c(θ1), c(θ2), · · · , c(θL)] as the matrix of the steering vectors

and β = [β1(̺) · · · βL(̺)], the received signal of the virtual array (2.23) can be

rewritten as

y(̺) = Aβ(̺) + z(̺). (2.25)

The sample matrix estimate of the received signal correlation matrix which is of

dimension MN ×MN is defined as

R̃ ,
1

K

K∑

̺=1

y(̺)yH (̺). (2.26)

Under the condition that the additive noise is white, the signal subspace matrix

denoted as E is constructed by considering the first L dominant eigenvectors of

the received signal correlation matrix. For the case that the number of pulses K

approaches infinity, the signal subspace matrix is related to the matrix of steering

vectors A in (2.25) through the following equation

A = ET (2.27)

where T is an L× L non-singular matrix.

2.2.1 Direction of arrival estimation

Estimating the DOA of the targets based on the received reflected signal from the

targets, for example, (2.21) in the case of MIMO radar is one of the most important

radar problems. DOA estimation is a classical parameter estimation problem and
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many different DOA estimation methods, ranging from non-parametric to paramet-

ric high-resolution methods, have been developed in the literature [82] –[90]. Among

the high resolution DOA estimation methods, the most popular ones are multiple

signal classification (MUSIC) and estimation of signal parameters via rotational in-

variance (ESPRIT) [86] – [88]. These methods are the high resolution algorithms

that utilize the underlying model of the received signal and as a result enjoy sub-

stantial performance improvements compared to the non-parametric methods [87].

Spectral MUSIC is based on the exhaustive search over the parameter space which

makes it computationally demanding while ESPRIT exploits the RIP and therefore,

it is very computationally efficient [87]. Both of the aforementioned methods require

the exact knowledge of the antenna array geometry, however, in most practical ap-

plications only approximate knowledge of array geometry is available. The ESPRIT

algorithm is more robust to such array geometry knowledge imperfections and as

a result it is often more interesting than the MUSIC DOA estimation method in

practice [87].

ESPRIT was initially developed for the phased-array radar systems, however,

it has been recently extended to MIMO radar systems as well [39]. In order to

understand how the rotational invariance property is utilized in a MIMO radar

system, let us consider the mono-static radar system of Fig. 2.4 with uniform linear

transmit and receive arrays. In this case, the steering vector of the transmit array

can be expressed as

a(θ) = [1, e−j
2πd
λ

sin(θ), · · · , e−j(M−1) 2πd
λ

sin(θ)]T (2.28)

where d denotes the inter-element spacing between adjacent antenna elements and λ

is the wavelength. Let us define a0(θ) and a1(θ) as the first and lastM−1 elements of

the transmit steering vector a(θ). Since the adjacent antennas are spaced uniformly,

it is obvious that a1(θ) = e−j
2πd
λ

sin(θ)a0(θ). Let us define the following submatrices

of A in (2.25) as

A0 = [a0(θ1)⊗ b(θ1) a0(θ2)⊗ b(θ2) · · · a0(θL)⊗ b(θL)] (2.29)

A1 = [a1(θ1)⊗ b(θ1) a1(θ2)⊗ b(θ2) · · · a1(θL)⊗ b(θL)]. (2.30)

Based on the definitions of a0(θ) and a1(θ), it can be concluded that the submatrix

A0 is related to the submatrix A1 through the following equation

A1 = A0D (2.31)
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where D is an L × L diagonal matrix whose ith diagonal element is equal to

e−j
2πd
λ

sin(θi). By forming the submatrices E0 and E1 from the signal subspace matrix

E in the same way that the submatrices A0 and A1 are formed and by considering

(2.27), it can be concluded that

A0 = E0T (2.32)

A1 = E1T. (2.33)

Based on (2.31), (2.32), and (2.33) and using the fact that the matrix T is invertible,

it can be concluded that

E1 = E0TDT−1. (2.34)

The matrices E0 and E1 are known and therefore, the matrix product TDT−1 can

be estimated using, for example, the least squares (LS) estimation. The diagonal

elements of D are the eigenvalues of the matrix product TDT−1 and therefore the

location of the targets can be estimated [39].

2.3 Array processing and beamforming

In many practical applications such as wireless communications, radar and sonar,

the desired signal is usually received through an array of antenna elements. The

main difficulty of extracting the desired signal from the received signal is due to the

presence of other interfering sources and the noise. If the desired signal and the

interfering sources occupy different frequency bands, then the desired signal can be

easily separated from the interferences by using the temporal filters. However, it is

not usually the case and some of the inference sources are in the same frequency

band as the desired signal [89]. In this particular case, the fact that the desired

signal and the interference sources impinge to the antenna array from different

directions can be utilized to spatially filter the received signal and separate the

desired signal. The process of spatially filtering the received signal is generally

referred to as beamforming [89]. In order to separate the desired signal from the

interference sources, the beamformer linearly combines the received signals from

different antenna elements. The weights of the linear combination are designed

in such a way that the interference sources are suppressed [89]. Depending on

whether the knowledge of the received data is utilized or not, the beamformer may

be data-independent or adaptive. In the case of data-independent beamformer, the
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weights are designed independent of the received data so that the beampattern has

a particular shape and specific directions in the space are suppressed, while, in the

case of adaptive beamformer, the statistics of the received data are used to optimally

adopt the beamforming vector to the data.

Despite the fact that the data-independent beamformers suppress the interfer-

ence sources to some extent, in most practical applications, the data-independent

beamformers do not provide satisfactory performance and adaptive beamforming

methods are required. The main idea behind adaptive beamforming algorithms is

to adjust the weight vectors according to the statistics of the received data.

2.3.1 Adaptive beamforming

In this subsection, we briefly introduce the main concepts behind adaptive beam-

forming techniques. For this goal, let us consider a linear antenna array with M

omni-directional antenna elements. The narrowband signal received by this array

at the time instant k can be written as

x(k) = s(k) + i(k) + n(k) (2.35)

where s(k), i(k), and n(k) are the M × 1 vectors of the desired signal, interference,

and noise, respectively. The desired signal, interference, and noise components of

the received signal (2.35) are statistically independent to each other. The desired

signal can be written as s(k) = s(k)a where s(k) is the signal waveform and a is the

associated steering vector. As it was mentioned earlier, the output of a beamformer

is a linear combination of the received signal from different antenna elements and

at the time instant k, it can be written as

y(k) = wHx(k) (2.36)

where w is the M × 1 complex weight (beamforming) vector of the antenna array.

Assuming that the steering vector a is known, the adaptive beamformer aims at

maximizing the beamformer output SINR [90]

SINR =
σ2

s |wHa|2
wHRi+nw

(2.37)

where σ2
s is the desired signal power, Ri+n , E{(i(k) + n(k))(i(k) + n(k))H} is the

M×M interference-plus-noise covariance matrix, and E{·} stands for the statistical
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expectation. Since Ri+n is unknown in practice, it is substituted in (2.37) by the

data sample covariance matrix

R̂ =
1

K

K∑

i=1

x(i)xH(i) (2.38)

where K is the number of training data samples which also include the desired signal

component.

The problem of maximizing (2.37), where the sample estimate (2.38) is used

instead of Ri+n, is known as the minimum variance (MV) sample matrix inversion

(SMI) beamforming and it is mathematically equivalent to the following convex

optimization problem

min
w

wHR̂w subject to wHa = 1. (2.39)

The adaptive beamformer obtained by solving the problem (2.39) preserves the

desired signal at the beamformer output and meanwhile minimizes the corresponding

power due to the interference sources and the noise. As a result, such adaptive

beamformer has usually null points at the location of the interference sources in its

corresponding beampattern.

The solution of (2.39) can be easily found as wMVDR−SMI = αR̂−1a where

α = 1/aHR̂−1a [90].

2.3.2 Robust adaptive beamforming

When the desired signal is present in the training data, the performance of adaptive

beamforming methods degrades dramatically in the presence of even a very slight

mismatch in the knowledge of the desired signal steering vector a. The mismatch be-

tween the presumed and actual steering vectors of the desired signal occurs because

of, for example, the displacement of antenna elements, time varying environment,

imperfections of propagation medium, etc. Under the presence of such mismatches

between the actual and presumed steering vectors, the robust adaptive beamformer

preserves the received signal from a direction other than the actual desired one and

can even put a null at the corresponding direction of the desired source. As a result,

the desired signal can be suppressed from the beamformer output and it leads to

severe performance degradation. The main goal of any RAB technique is to provide

robustness against any such mismatches.
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The traditional design approaches to adaptive beamforming [90] –[93] do not pro-

vide sufficient robustness and are not applicable in such situations. Thus, various

RAB techniques have been developed [44]. Some examples of popular conventional

RAB approaches are the diagonal loading technique [46], [47], the projection beam-

forming techniques [48], [93], and the eigenspace-based beamforming technique [94].

The disadvantages of these approaches such as, for example, the ad hoc nature of

the former one and high probability of subspace swap at low SNRs for the latter

one [95] are well known.

Among more recent RAB techniques based on MVDR principle are (i) the

worst-case-based adaptive beamforming technique proposed in [7], [49] and fur-

ther developed in [50] – [51]; (ii) the doubly constrained robust Capon beamforming

method [53], [54] (it is based on the same idea of the worst-case performance opti-

mization as (i)); (iii) the probabilistically constrained RAB technique [52]; (iv) the

RAB technique based on steering vector estimation [55]; and others.

All the MVDR RAB methods need some sort of prior information about the

desired signal. In what follows, we briefly review the recent RAB techniques and

explain the type of prior information that they use.

Eigenspace-based beamformer [48], [94]: Taking an inaccurate knowledge of

the actual steering vector a, i.e., the presumed steering vector p, as a prior, the

eigenspace-based beamformer finds and uses the projection of p onto the sample

signal-plus-interference subspace as a corrected estimate of the steering vector. The

eigendecomposition of (2.38) yields

R̂ = EΛEH + GΓGH (2.40)

where the M × (J +1) matrix E and M × (M −J − 1) matrix G contain the signal-

plus-interference subspace eigenvectors of R̂ and the noise subspace eigenvectors,

respectively, while the (J + 1)× (J + 1) matrix Λ and (M − J − 1)× (M − J − 1)

matrix Γ contain the eigenvalues corresponding to E and G, respectively. Here, J

is the number of interfering signals. The eigenspace-based beamformer is obtained

by substituting the so-obtained estimate of the steering vector to the MVDR-SMI

beamformer, and is expressed as

weig = R̂−1â = R̂−1EEHp = EΛ−1EHp (2.41)

where â = EEHp and EEH is the projection matrix.
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The prior information used in this method is the presumed steering vector p and

the number of interfering signals. It is known that the eigenspace-based beamformer

may suffer from a high probability of subspace swap as well as incorrect estimation

of the signal-plus-interference subspace dimension [95].

Worst-case-based and doubly constrained RAB techniques [7], [50], [53]: These

techniques assume the knowledge of the presumed steering vector and model the

actual steering vector a as a = p+δ, where δ is a deterministic unknown mismatch

vector with bounded norm, i.e., ‖δ‖ ≤ ε for some value ε. Assuming, for example,

spherical uncertainty for δ, i.e., A(ε) , {a = p + δ | ‖δ‖ ≤ ε}, the worst-case-

based MVDR RAB can be interpreted as the standard MVDR-SMI used in tandem

with a steering vector estimation obtained by solving the following covariance fitting

problem [50]

max
σ2,â

σ2 subject to R̂− σ2ââH ≥ 0

for any â satisfying ‖δ‖ ≤ ε. (2.42)

The doubly constrained MVDR RAB differs from the aforementioned one only by

adding an additional natural constraint to the norm of the estimate of steering vec-

tor, i.e., ‖â‖2 = M . The latter optimization problem can be, however, significantly

more complex since this additional constraint is non-convex.

The prior information used in these MVDR RAB techniques is the presumed

steering vector and the bound to the norm of the steering vector mismatch ε, which

is difficult to obtain in practice. The uncertainty region for these methods can be

generalized by considering an ellipsoidal region [51], [54]. However, in this case,

a more sophisticated prior information that is needed to define the shape of the

ellipsoid has to be available, which is even more difficult to reliably obtain in practice.

Probabilistically constrained robust adaptive beamforming [52]: This MVDR RAB

technique assumes that the mismatch vector δ is random and is formulated as

min
w

wHR̂w subject to Pr{|wHa| ≥ 1} ≥ p0 (2.43)

where Pr{·} denotes probability and p0 is preselected probability value.

The prior information for this technique is again the presumed steering vector

and a distribution of δ together with p0. This prior information knowledge is more

relaxed as compared to the worst-case-based approach since it is typically easier to

estimate statistics of mismatch distribution reliably and p0 has a physical meaning
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of a non-outage probability for the distortionless response constraint. Moreover,

for the cases of Gaussian and the worst-case distributions of δ, the probabilistically

constrained RAB can be approximated by the same optimization problem as for

the worst-case-based MVDR RAB technique with ε being a function of covariance

matrix of δ and p0.

The MVDR RAB of [55]: In the mismatched case, the solution of (2.39) can be

written as a function of unknown mismatch vector δ, that is, w(δ) = αR̂−1(p + δ).

Thus, the beamformer output power can be also written as a function of δ as

P (δ) =
1

(p + δ)HR̂−1(p + δ)
. (2.44)

Then the best estimate of δ or, equivalently, a is the one which maximizes (2.44) un-

der the requirement that this estimate does not converge to any of the interferences

or their linear combinations. The aforementioned convergence is avoided in [55] by

requiring that

P⊥(p + δ̂) = P⊥â = 0 (2.45)

where P⊥ , I − LLH , L , [l1, l2, . . . , lL], ll, l = 1, . . . , L are the L dominant eigen-

vectors of the matrix C ,
∫

Θ d(θ)dH(θ) dθ, d(θ) is the steering vector associated

with direction θ and having the structure defined by the antenna geometry, Θ is

the angular sector in which the desired signal is assumed to be located, δ̂ and â

stand for the estimate of the steering vector mismatch and the actual steering vec-

tor, respectively, and I is the identity matrix. The steering vector estimation in [55]

is based on splitting the mismatch vector δ̂ into the orthogonal component to the

presumed steering vector p and the parallel one, i.e., δ̂ = δ̂⊥ + δ̂‖, and then the

estimation of δ and a can be found iteratively by finding δ̂⊥ as a solution of the

following convex optimization problem

min
δ̂⊥

(p + δ̂⊥)HR̂−1(p + δ̂⊥)

subject to P⊥(p + δ̂⊥) = 0, pH δ̂⊥ = 0

‖p + δ̂⊥‖2 ≤M (2.46)

(p + δ̂⊥)HC̃(p + δ̂⊥) ≤ pHC̃p

where C̃ ,
∫

Θ̃ d(θ)dH(θ) dθ, the sector Θ̃ is the complement of the sector Θ. Here,

the last constraint limits the noise power collected outside Θ, while the orthogonality

between δ̂⊥ and p is imposed by adding the constraint pH δ̂⊥ = 0.
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It can be seen that the prior information used in this approach is the presumed

steering vector, approximate knowledge of antenna array geometry and the angular

sector Θ in which the desired signal is located. The technique of [55] can be sig-

nificantly simplified if it is known that the array is partly calibrated [96], but the

amount of prior information about the type of uncertainty, i.e., the knowledge that

the array is partially calibrated, then increases.

2.3.3 General-rank signal model and beamforming

Most of the beamforming methods have been developed for the case of point source

signals when the rank of the desired signal covariance matrix is equal to one [44],

[49] – [52] (see Subsection 2.3.2). However, in many practical applications such as,

for example, the incoherently scattered signal source or source with fluctuating (ran-

domly distorted) wavefronts, the rank of the source covariance matrix is higher than

one. Although the RAB methods of [49] – [52] provide excellent robustness against

any mismatch of the underlying point source assumption, they are not perfectly

suited to the case when the rank of the desired signal covariance matrix is higher

than one. In what follows, a brief description of the general-rank adaptive beam-

forming is given and then the robust adaptive beamforming for general-rank signal

models is discussed.

Similar to the rank-one signal model, the beamforming problem in the case

of a general-rank signal is formulated as finding the beamforming vector w which

maximizes the beamformer output SINR given as

SINR =
wHRsw

wHRi+nw
(2.47)

where Rs , E{s(k)sH (k)} is the desired signal covariance matrix. Depending on the

nature of the desired signal source, its corresponding covariance matrix can be of an

arbitrary rank, i.e., 1 ≤ rank{Rs} ≤M . Indeed, in many practical applications, for

example, in the scenarios with incoherently scattered signal sources or signals with

randomly fluctuating wavefronts, the rank of the desired signal covariance matrix

Rs is greater than one [8]. The only particular case in which, the rank of Rs is equal

to one is the case of a point source.

As it was mentioned earlier, the interference-plus-noise covariance matrix Ri+n is

typically unavailable in practice and it is substituted by the data sample covariance

matrix. By such a substitution, the corresponding MVDR beamforming problem
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for general-rank source can be mathematically formulated as

min
w

wHR̂w subject to wHRsw = 1. (2.48)

The solution to the MVDR beamforming problem (2.48) can be found as [44]

wMVDR−SMI = P{R̂−1Rs} (2.49)

which is known as the MVDR-SMI beamformer for general-rank signal model. Here

P{·} stands for the principal eigenvector operator.

In practice, the actual desired signal covariance matrix Rs is usually unknown

and only its presumed value is available. The actual source correlation matrix can

be modeled as Rs = R̃s +∆1, where ∆1 and R̃s denote an unknown mismatch and

the presumed correlation matrices, respectively. Similar to the point source signal

model, the general-rank MVDR beamformer is very sensitive to such mismatches [8]

and the ultimate goal of any general-rank RAB method is to provide robustness

against such mismatches. Moreover, RABs address the situation when the sample

estimate of the data covariance matrix (2.38) is inaccurate (for example, because of

small sample size) and R = R̂+∆2, where ∆2 is an unknown mismatch matrix to the

data sample covariance matrix. The RAB for the general-rank signal model based

on the explicit modeling of the error mismatches has been developed in [8] based

on the worst-case performance optimization principle. Specifically, for providing

robustness against the norm-bounded mismatches ‖∆1‖ ≤ ǫ and ‖∆2‖ ≤ γ, the

RAB of [8] uses the worst-case performance optimization principle of [7] and finds

the solution as

w = P{(R̂ + γI)−1(R̃s − ǫI)}. (2.50)

Although the RAB of [8] has a simple closed-form solution (2.50), it is overly

conservative because the constraint that the matrix R̃s + ∆1 has to be PSD is

not considered [10]. For example, the worst-case desired signal covariance matrix

R̃s − ǫI in (2.50) can be indefinite or even negative definite if R̃s is rank deficient.

Indeed, in the case of incoherently scattered source, R̃s has the following form

R̃s = σ2
s

∫ π/2
−π/2 ζ(θ)a(θ)aH(θ)dθ, where ζ(θ) denotes the normalized angular power

density, σ2
s is the desired signal power, and a(θ) is the steering vector towards di-

rection θ. For a uniform angular power density on the angular bandwidth Φ, the

approximate numerical rank of R̃s is equal to (Φ/π) ·M [97]. This leads to a rank

deficient matrix R̃s if the angular power density does not cover all the directions.
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Therefore, the worst-case covariance matrix R̃s − ǫI is indefinite or negative def-

inite. Note that the worst-case data sample covariance matrix R̂ + γI is always

positive definite. A less conservative robust adaptive beamforming problem formu-

lation which enforces the matrix R̃s + ∆1 to be PSD has been considered in [10]

and [56] will be explained in details in Chapter 6.

2.4 Two-way cooperative communications

Wireless channels have the serious challenge of the signal fading due to the multi-

path propagation and shadowing [81]. As a result of signal fading, the received

signal has a random time-varying power that may give rise to severe loss in terms

of the power usage. Diversity is one of the most efficient ways to alleviate such

adverse effects of signal fading. Diversity means to transmit the same information

over independently faded paths. The basic idea behind the diversity is the fact

that the probability of having deep fading over several independently faded signals

is vanishingly small [81]. Among the different forms of diversity, the spatial di-

versity is the most favorable and common one which can be easily combined with

other forms of diversity such as, for example, time and frequency and can result in

significant performance improvements even when other forms of diversity are not

present in a system. The spatial diversity is usually established by having multi-

ple antennas at transmitter or receiver. More specifically, if the antennas at the

transmitter or receiver are far enough from each other, the received signals will ex-

perience independent fading. However, due to the practical restrictions, it is not

always possible to locate multiple antennas in a small mobile terminal and ensure

that the corresponding paths are independent. To overcome this drawback of the

spatial diversity offered by means of applying multiple antennas at the transmitter

or receiver, the idea of cooperative diversity has been introduced which offers most

of the advantages of MIMO systems such as high data rate and low probability of

outage [57] – [59], [98]. Cooperative diversity utilizes the inherent spatial diversity

of wireless networks and, as a result, does not require to apply multiple antennas.

In order to explain how the inherent spatial diversity can be exploited, let us

consider a simple wireless network in which the source nodes S1 and S2 communicate

with their corresponding destination nodes D1 and D2, respectively, through the

orthogonal channels by means of time division multiplexing. The channel between

the nodes α and β is denoted as hα,β and is assumed to have Rayleigh flat fading
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model [81]. At the first time slot, S1 transmits its information to D1 through the

channel hS1,D1
and the received signal can be written as

yS1,D1
=
√
p1 hS1,D1

x1 + nS1,D1
(2.51)

where x1 is the transmit message of source node S1 of unit power, p1 is the transmit

power of the source node S1, and nS1,D1
is the additive white Gaussian noise in D1.

Due to the broadcast nature of the wireless networks, besides D1, the source node

S2 also receives the noisy and attenuated version of x1 as follows

yS1,S2
=
√
p1 hS1,S2

x1 + nS1,S2
. (2.52)

If the source node S2 processes the received signal yS1,S2
and then retransmits

it to D1 in the second time slot, then D1 will receive two independently faded noisy

versions of x1 [98]. The received signal in D1 from S2 in the second time slot can

be written as

yS2,D1
=
√
p2 hS2,D1

f(yS1,S2
) + nS2,D1

(2.53)

where p2 is the transmit power of the source node S2 and f(yS1,S2
) denotes the

received signal yS1,S2
which has been processed by the source node S2 to remove the

channel imperfections and the noise. By collaboration of S2 and acting as a relay,

a spatial diversity with two different paths can be achieved. The data rate between

S1 and D1 is a function of the received SNR and can be expressed as

rS1,D1
=

1

2
log(1 + SNR(S1→ D1)) (2.54)

where SNR(S1 → D1) is the received SNR at D1, which depends on type of the

diversity combining at the receiver, and the factor of 1/2 appears in this scheme

because two time slots are needed for every data transmission from S1 to D1. This

type of relaying is referred to as the conventional one-way relaying and it is not

optimal in terms of the rate. In particular, by using the one-way relaying scheme,

a bidirectional data exchange between a source and destination would require four

time slots [60].

The idea of the TWR has been proposed to address this spectral inefficiency

of the conventional one-way relaying systems [99], [100]. TWR can be viewed

as a certain form of network coding [101] which allows to reduce the number of

time slots used for transmission in one-way relaying by relaxing the requirement of

‘orthogonal/non-interfering’ transmissions between the terminals and the relay [62].
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Specifically, simultaneous transmissions by the terminals to the relay on the same

frequencies are allowed in the first time slot, while a combined signal is broadcast

by the relay in the second time slot.

The rate-optimal strategy for two-way relaying is in general unknown [61]. How-

ever, some efficient strategies have been developed. Depending on the ability of the

relay to regenerate/decode the signals from the terminals, several two-way trans-

mission protocols have been introduced and studied. The regenerative relay adopts

the decode-and-forward (DF) protocol and performs the decoding process at the

relay [102], while the non-regenerative relay typically adopts a form of AF protocol

and does not perform decoding at the relay, but amplifies and possibly beamforms

or precodes the signals to retransmit them to the terminals [61], [103], [104]. The

advantages of the latter are a smaller delay in the transmission and lower hardware

complexity of the relay. Most of the research on TWR systems concentrates on

studying the corresponding sum-rate, the achievable rate region, and also the bit

error probability of different schemes [105]. The trade-off between the error prob-

ability and the achievable rate has been recently studied in [105] using Gallager’s

random coding error exponent.
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Chapter 3

Generalized Quadratically
Constrained Quadratic
Programming

In this thesis, we are mostly interested in the following optimization problem

min
x,y

f0(x
HA0x) + h0(y)

subject to α2i−1f2i−1(x
HA2i−1x)− α2if2i(x

HA2ix) + hi(y) ≤ 0,

i = 1, · · · ,M (3.1)

where x ∈ C
m, y ∈ R

n, and fi : Dfi
⊂ R −→ R, i = 0, · · · , 2M are one-dimensional

convex differentiable functions. Moreover, the function f0 is assumed to be a mono-

tonic function which is bounded from the below over the feasible set of the problem.

The matrices Ai ∈ Hm, i = 0, · · · , 2M are Hermitian matrices that are not necessar-

ily definite, hi : Dhi
⊂ R

n −→ R, i = 0, · · · ,M are convex differentiable functions,

and αi ∈ {0, 1}, i = 1, · · · , 2M takes value 1 or 0, respectively, depending whether

the function fi(x
HAix) is present or not. Similar to the function f0, the convex

function h0 is also assumed to be lower-bounded.

As it was mentioned earlier in Chapter 1, this type of optimization programming

is frequently encountered in the fields of communications and signal processing due

to the fact that such important properties as the rate, SNR, SINR are generally a

composition of one-dimensional and quadratic functions.

By defining the additional variables δi, i = 1, 2, · · · , 2M and the set C , { k | αk =
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1, 1 ≤ k ≤ 2M}, the problem above can be equivalently expressed as

min
x,y,δ

f0(x
HA0x) + h0(y)

subject to α2i−1f2i−1(δ2i−1)− α2if2i(δ2i) + hi(y) ≤ 0, i = 1, · · · ,M

xHAix = δi, i ∈ C (3.2)

where δ is the set of the variables δi. Let us rewrite problem (3.2) as

min
y,δ

min
x

f0(x
HA0x) + h0(y)

subject to xHAix = δi, i ∈ C (3.3)

α2i−1f2i−1(δ2i−1)−α2if2i(δ2i)+hi(y) ≤ 0, i = 1, · · · ,M.

Since the function h0(y) as well as the constraint functions α2i−1f2i−1(δ2i−1)−
α2if2i(δ2i) + hi(y) ≤ 0, i = 1, · · · ,M do not depend on x, the problem (3.3) can be

further recast as

min
y,δ

h0(y) +

[ Inner Optimization Problem
︷ ︸︸ ︷

min
x | xHAix=δi, i∈C

f0(x
HA0x)

]

subject to α2i−1f2i−1(δ2i−1)−α2if2i(δ2i)+hi(y) ≤ 0, i = 1, · · · ,M. (3.4)

Then the problem (3.4) can be further expressed as

min
y,δ

f0(k(δ)) + h0(y)

subject to α2i−1f2i−1(δ2i−1)− α2if2i(δ2i) + hi(y) ≤ 0, i = 1, · · · ,M (3.5)

where k(δ) is an optimal value function which is defined based on the inner opti-

mization problem in (3.4) for a fixed value of δ ∈ D. Here, D is defined as the set

of all δ such that the corresponding optimization problem obtained from k(δ) for

fixed δ is feasible. If the function f0 is increasing, i.e., f0(x1) ≤ f0(x2), x1 ≤ x2,

the optimal value function k(δ) is defined as

k(δ) ,

{

min
x

xHA0x | xHAix = δi, i ∈ C
}

(3.6)

while for a decreasing f0, i.e., f0(x1) ≥ f0(x2), x1 ≤ x2, the definition of the optimal

value function is as follows

k(δ) ,

{

max
x

xHA0x | xHAix = δi, i ∈ C
}

. (3.7)

In the rest of this chapter, we assume that the function f0 is increasing. However,

all the discussion that follows can be similarly concluded for the case where the
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function f0 is a decreasing function. We first consider the case of card{C} ≤ 3

where card{·} is the cardinality operator. In other words, we first consider the case

when the total number of composite functions fi(x
HAix) in the constraints of the

problem (3.1) does not exceed three or, equivalently, the case when the number of

quadratic constraints in the optimization problem of k(δ) (3.6) is less than or equal

to three.

3.1 Number of quadratic functions in the constraints
less than or equal to three

In this case by introducing the matrix X , xxH and observing that for any arbitrary

matrix Y, the relationship xHYx = tr{YxxH} holds, the optimal value function

k(δ) (3.6) can be equivalently recast as [70]

k(δ) =

{

min
X

tr{A0X} | tr{AiX} = δi, i ∈ C, rank{X} = 1, X � 0

}

,

δ ∈ D. (3.8)

In the optimization problem obtained from the optimal value function k(δ) (3.8) by

fixing δ, the rank-one constraint rank{X} = 1 is the only non-convex constraint with

respect to the new optimization variable X. Using the SDP relaxation, the corre-

sponding optimization problem can be relaxed by dropping the rank-one constraint,

and the following new optimal value function h(δ) can be defined

h(δ) ,

{

min
X

tr{A0X} | tr{AiX} = δi, i ∈ C, X � 0

}

, δ ∈ D′ (3.9)

where D′ is the set of all δ such that the optimization problem which corresponds

to h(δ) for a fixed δ is feasible. For brevity, we will refer to the optimization

problems corresponding to the functions k(δ) and h(δ) when δ is fixed simply as

the optimization problems of k(δ) and h(δ), respectively. The following lemma finds

the relationship between the domains of the functions k(δ) and h(δ).

Lemma 3.1. The domains of the functions k(δ) and h(δ) are the same, i.e., D = D′

if card{C} ≤ 3.

Proof. Let us assume that C = {c1, c2, c3} which implies that card{C} = 3. Note

that the other cases of card{C} = 2 and card{C} = 1 can be similarly proved. First,

we prove that if δ ∈ D then δ ∈ D′. Let δ ∈ D. It implies that there exists a vector

x0 such that the constraints x0
HAc1x0 = δc1 , x0

HAc2x0 = δc2 , and x0
HAc3x0 = δc3
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are satisfied. Defining the new matrix X0 , x0x
H
0 , it is easy to verify that X0

satisfies the constraints in the optimization problem of h(δ) and, therefore, δ ∈ D′.

Now, let us assume that δ ∈ D′. Therefore, there exists a positive semi-definite

matrix X0 = Vm×rVH
m×r with rank equal to r and Vm×r being a full rank matrix

such that tr{Ac1X0} = tr{VHAc1V} = δc1 , tr{Ac2X0} = tr{VHAc2V} = δc2 , and

tr{Ac3X0} = tr{VHAc3V} = δc3. If the rank of X0 is one, then x0 = Vm×1 satisfies

the constraints in the optimization problem of k(δ) and trivially δ ∈ D. Thus, we

assume that r is greater than one and aim to show that based on X0, another

rank-one feasible point for the optimization problem of h(δ) can be constructed by

following similar lines as in [106]. To this end, let us consider the following set of

equations

tr{VHAc1VΓ} = 0,

tr{VHAc2VΓ} = 0,

tr{VHAc3VΓ} = 0 (3.10)

where the r × r Hermitian matrix Γ is an unknown variable. Due to the fact that

tr{VHAc1VΓ}, tr{VHAc2VΓ}, and tr{VHAc3VΓ} are all real valued functions

of Γ, the set of equations (3.10) is a linear set of 3 equations with r2 variables,

that is, the total number of real and imaginary variables in the matrix Γ. Since

the number of variables r2, (r ≥ 2) is greater than the number of equations, there

exists a nonzero solution denoted as Γ0 for the linear set of equations (3.10). Let

δ0 denote the eigenvalue of the matrix Γ0 which has the largest absolute value.

Without loss of generality, we can assume that δ0 > 0, which is due to the fact that

both Γ0 and −Γ0 are solutions of (3.10). Using X0 and Γ0, we can construct a new

matrix Xnew
0 = V(Ir − Γ0/δ0)V

H . It is then easy to verify that the expressions

tr{Ac1X
new
0 } = δc1 , tr{Ac2X

new
0 } = δc2 , tr{Ac3X

new
0 } = δc3 , and Xnew

0 � 0 are

valid and the rank of Xnew
0 is less than or equal to r − 1. It is because the rank

of the matrix (Ir − Γ0/δ0) is less than or equal to r − 1 and the fact that rank of

any matrix product is less than or equal to the rank of each of the matrices. It

means that Xnew
0 is another feasible point of the optimization problem of h(δ) and

its rank has reduced at least by one. This process can be repeated until r2 ≤ 3

or, equivalently, a rank-one feasible point is found. After a rank-one feasible point

vm×1v
H
m×1 is constructed, x0 = vm×1 is also a feasible point for the optimization

problem of k(δ). Thus, δ ∈ D which completes the proof.
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So far, we have shown that both optimal value functions k(δ) and h(δ) have

the same domain. Since the feasible set of the optimization problem of k(δ) is a

subset of the feasible set of the optimization problem of h(δ), we expect that k(δ)

is greater than or equal to h(δ) at every feasible point. However, due to the specific

structure of the optimal value function k(δ), these two optimal value functions are

equivalent as it is shown in the following theorem.

Theorem 3.1. The optimal value functions k(δ) and h(δ) are equivalent, i.e.,

k(δ) = h(δ), δ ∈ D if card{C} ≤ 3 and some mild conditions are satisfied. Addi-

tionally, based on the optimal solution of the problem h(δ) the optimal solution of

the problem k(δ) can be extracted.

Proof. Without loss of the generality, let us assume that C = {c1, c2, c3}. Note that

the other cases of card{C} = 2 and card{C} = 1 can be addressed similarly. In

order to show that these optimal value functions are equal, we use the dual problem

of the optimization problems of k(δ) and h(δ). It is easy to verify that both of the

optimization problems of k(δ) and h(δ) have the following same dual problem

max
γ1,γ2,γ3

γ1δc1 + γ2δc2 + γ3δc3

subject to A0 −Aδc1
γ1 −Aδc2

γ2 −Aδc3
γ3 � 0. (3.11)

The following optimal value function can be defined based on (3.11)

l(δ) ,

{

max
γ1,γ2,γ3

γ1δc1 + γ2δc2 + γ3δc3

∣
∣
∣ A0 −Aδc1

γ1 −Aδc2
γ2 −Aδc3

γ3 � 0

}

,

δ ∈ D (3.12)

Since the dual problem (3.11) gives a lower-bound for the optimization problems

of k(δ) and h(δ), consequently, the function (3.12) is less than or equal to k(δ) and

h(δ) for every δ ∈ D. The optimization problem of h(δ) is convex and satisfies

the Slater’s condition [70] for every δ ∈ D, if there exists a strictly feasible point

for its dual problem (3.11). Specifically if there exists a triple (θ1, θ2, θ3) such that

the matrix A0 −Aδc1
θ1 −Aδc2

θ2 −Aδc3
θ3 is positive definite, then the point (γ1 =

θ1, δ2 = θ2, δ3 = θ3) is a strictly feasible point for the dual problem (3.11). It is

assumed that such triple exists. Therefore, the duality gap between the optimization

problem of h(δ) and its dual problem (3.11) is zero [70] which implies that for every

δ ∈ D, h(δ) = l(δ).

40



Regarding the optimization problem of k(δ) which is a QCQP [17] – [22], [106]

it is known that the duality gap between a QCQP problem with three or less con-

straints and its dual problem is zero [106]. Specifically, Corollary 3.3 of [106, Section

3] implies that the duality gap between the optimization problem of k(δ) and its

dual optimization problem (3.11), is zero and hence, k(δ) = l(δ). Since both of

the optimization problems of k(δ) and h(δ) have zero duality gap with their dual

problem (3.11), it can be concluded that in addition to having the same domain, the

functions k(δ) and h(δ) have the same optimal values, i.e., k(δ) = h(δ) for every

feasible δ.

For any feasible point of the optimization problem of k(δ) denoted as x0, the

matrix x0x
H
0 is also a feasible point of the optimization problem of h(δ) and their

corresponding objective values are the same. Based on the later fact and also the fact

that the functions k(δ) and h(δ) have the same optimal values, it can be concluded

that if xopt
δ

denotes the optimal solution of the optimization problem of k(δ), then

xopt
δ

(xopt
δ

)H is also the optimal solution of the optimization problem of h(δ). There-

fore, for every δ ∈ D, there exists a rank-one solution for the optimization problem

of h(δ). The algorithm for constructing such a rank-one solution from a general-rank

solution of the optimization problem of h(δ) has been explained in [106].

Although the optimal value functions k(δ) and h(δ) are equal, however, com-

pared to the optimization problem of k(δ) which is non-convex, the optimization

problem of h(δ) is convex. Using this fact and replacing k(δ) by h(δ) in the original

optimization problem (3.3), this problem can be simplified as

min
y,δ,X

f0(tr{A0X}) + h0(y)

subject to tr{AiX} = δi, i ∈ C, X � 0,

α2i−1f2i−1(δ2i−1)−α2if2i(δ2i)+hi(y) ≤ 0, i = 1, · · · ,M.(3.13)

Therefore, instead of the original optimization problem (3.3), we can solve the

simplified problem (3.13) in which the quadratic functions have been replaced with

their corresponding linear functions. It is noteworthy to mention that in the simpli-

fied problem, the non-convex functions fi(x
HAix), i = {0}⋃C are replaced by the

convex functions fi(tr{AiX}), i = {0}⋃C. The latter is due to the fact that the

composition of a convex function with a linear function is also a convex function.

Based on the optimal solution of the simplified problem, denoted as Xopt, δopt, and
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yopt, the optimal solution of the original problem can be found. The optimal values

of δ and y are equal to the corresponding optimal values of the simplified problem,

while, the optimal value of x can be constructed based on Xopt using rank-reduction

techniques [106] mentioned in the proof of Theorem 3.1.

If the corresponding coefficients of the functions f2i, i = 1, · · · ,M , i.e., α2i,

are all zero, then the problem (3.13) is convex and it can be easily solved. Par-

ticulary, in this case, the objective function and the constraint functions of the

simplified problem (3.13) are all convex. Once this problem is solved, the opti-

mal x can be extracted using Theorem 3.1. However if any of such coefficients

is non-zero, the problem (3.13) is no longer convex and there exists a constraint

which is the difference of two convex function and, therefore, the problem (3.13) is

a DC programming problem. In this case, although the problem (3.13) boils down

to the known family of DC programming problems, still there exists no solution

for such DC programming problems with guaranteed polynomial time complexity.

The typical approach for solving such problems is the various modifications of the

branch-and-bound method [13], [31] – [36] which is an effective global optimization

method. However, it does not have any worst-case polynomial time complexity guar-

antees [32] and [33], which significantly limits or even prohibits its applicability in

practical communication systems. Thus, methods with guaranteed polynomial time

complexity that can find at least a suboptimal solution for different types of DC

programming problems are of a great importance. In what follows, we establish an

iterative method for solving the problem (3.13) when at least one of the coefficients

α2i, i = 1, · · · ,M is non-zero and therefore the relaxed problem is DC.

3.1.1 Polynomial time DC algorithm

We develop an iterative method for solving the DC problem (3.13) at least subop-

timally. The essence of the proposed method is to linearize the non-convex one-

dimensional functions −f2i(δ2i) appearing in the constraints α2i−1f2i−1(δ2i−1) −
α2if2i(δ2i) + hi(y) ≤ 0 around suitably selected points in different iterations. This

new proposed method will be referred to as the Polynomial time DC (POTDC).

As it will be discussed shortly, it is guaranteed that POTDC finds at least a KKT

point, i.e., a point which satisfies the KKT optimality conditions. In order to ex-

plain the intuition behind this method, let us replace the non-convex functions

−f2i(δ2i), i ∈ K , {i | α2i = 1} by their corresponding linear approximations
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around the points δ2i,Lin, i ∈ K, i.e.,

−f2i(δ2i) ≈ −f2i(δ2i,Lin)−
df2i(δ2i)

dδ2i
|δ2i=δ2i,Lin

(δ2i − δ2i,Lin). (3.14)

Performing such replacement results in the following optimization problem

min
y,δ,X

f0(tr{A0X}) + h0(y)

subject to tr{AiX} = δi, i ∈ C, X � 0,

α2i−1f2i−1(δ2i−1)+hi(y)≤0, i = 1,· · ·,M, i /∈ K

α2i−1f2i−1(δ2i−1)− f2i(δ2i,Lin)− df2i(δ2i)

dδ2i
|δ2i=δ2i,Lin

(δ2i − δ2i,Lin)

+hi(y)≤0, i ∈ K. (3.15)

As compared to the original problem (3.13), the relaxed problem (3.15) is convex

and can be efficiently solved up to a desired accuracy using the interior point-

based numerical methods. For the fixed values of δ2i, i ∈ K denoted as ∆, let us

define the optimal value functions f(∆) and g(∆,∆Lin) as the optimal value of the

optimization problems (3.13) and (3.15), respectively, in which ∆Lin denotes the

set of linearizing points, i.e., δ2i,Lin, i ∈ K. Since the optimization problem (3.15)

is convex, its corresponding optimal value function g(∆,∆Lin) is also convex with

respect to ∆ [108]. Furthermore, the optimal value function g(∆,∆Lin) provides

an upper-bound for the optimal value function f(∆), i.e., f(∆) ≤ g(∆,∆Lin). The

latter is due to the fact that the feasible set of the optimization problem (3.15) is a

subset of the feasible set of the problem (3.13). Besides, with the assumption that the

aforementioned optimal value functions are differentiable, it will be formally proved

in Chapter 6, that the optimal value function g(∆,∆Lin) is tangent to f(∆) at ∆ =

∆Lin. The proof in Chapter 6 is for the case that the optimal value functions f(∆)

and g(∆,∆Lin) are one-dimensional. However, the proof can be easily generalized

for the multi-dimensional optimal value functions in a straightforward way. Since

the aforementioned optimal value functions are tangent at the linearizing point,

i.e., ∆Lin, and f(∆) is upper-bounded by g(∆,∆Lin), the optimal minimizer of

the function g(∆,∆Lin) denoted as ∆opt is a decreasing point for f(∆), that is,

f(∆Lin) ≥ f(∆Opt). Based on this observation, the POTDC method first solves

the problem (3.15) for the arbitrary chosen initial point. Once the optimal solution

of this problem, denoted in the first iteration as y
(1)
opt, X

(1)
opt, and δ

(1)
opt is found, the

algorithm proceeds to the second iteration by replacing the functions−f2i(δ2i), i ∈ K
by their linear approximation around δ

(1)
opt,2i, i ∈ K, respectively, found from the
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previous (initially first) iteration. In the second iteration, the resulting optimization

problem has the same structure as the problem (3.15) in which δ2i,Lin, i ∈ K has to

be set to δ
(1)
opt,2i, i ∈ K obtained from the first iteration. This process continues, and

kth iteration is obtained by replacing −f2i(δ2i), i ∈ K by its linearization of type

(7.2) using δ
(k−1)
opt found at the iteration k − 1. The POTDC algorithm for solving

the problem (3.13) is summarized in Algorithm 3.1.

Algorithm 3.1 The POTDC algorithm for solving the optimization problem (3.13)

Initialize: Arbitrarily select feasible points denoted as δ2i,Lin, i ∈ K, set the
counter k to be equal to 1.

while The termination condition is satisfied. do

Use the linearization of type (3.14) and solve the optimization problem (3.15)

to obtain y
(k)
opt, X

(k)
opt, and δ

(k)
opt.

Set Xopt = X
(k)
opt, yopt = y

(k)
opt, and δ2i,Lin = δ

(k)
opt,2i, i ∈ K.

k = k + 1.
end while
Output: Xopt and yopt.

The following lemma about the convergence of the proposed POTDC algorithm

and the optimality of the point obtained by this algorithm is in order. Note that

this lemma makes no assumptions about the differentiability of the optimal value

function f(∆).

Lemma 3.2. The following statements regarding Algorithm 3.1 are true:

i) The optimal value of the optimization problem in Algorithm 3.1 is non-increasing

over iterations, i.e.,

f0(tr{A0X
(k+1)
opt }) + h0(y

(k+1)
opt ) ≤ f0(tr{A0X

(k)
opt}) + h0(y

(k)
opt), k ≥ 1.

ii) The sequence of the optimal values which are generated by Algorithm 3.1, i.e.,

f0(tr{A0X
(k)
opt}) + h0(y

(k)
opt), k = 1, 2, 3, · · · , are convergent. Termination con-

dition is not considered.

iii) If the Algorithm 3.1 (without considering termination condition) converges to a

regular point, that point is a KKT point, i.e., a point which satisfies the KKT

optimality conditions.
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Proof. i) Considering the linearized problem (3.15) at the iteration k+ 1. It is easy

to verify that X
(k)
opt, y

(k)
opt, and δ

(k)
opt is a feasible point for this problem. Therefore,

the optimal value at the iteration k + 1 must be less than or equal to the optimal

value at the iteration k which completes the proof.

ii) Since the sequence of the optimal values which are generated by Algorithm 3.1,

i.e., f0(tr{A0X
(k)
opt}) +h0(y

(k)
opt), k ≥ 1, is non-increasing and bounded from below, it

is convergent [107]. Note that the sequence of the optimal values is bounded from

below because the functions f0 and h0 are assumed to be bounded from below over

the feasible set.

iii) The proof follows straightforwardly from Proposition 3.2 of [15, Section 3].

The essence of the proof in the aforementioned proposition is to show that if the

sequence of the points generated by Algorithm 3.1, i.e., X
(k)
opt, y

(k)
opt, and δ

(k)
opt, con-

verges to a regular point, then the sequence of the gradients of the objective and

constraint functions at the points X
(k)
opt, y

(k)
opt, and δ

(k)
opt also converges to the cor-

responding gradients at the limiting point. Moreover, with such assumption, the

convergence of the Lagrangian multipliers is also proved. It is shown as well that,

the limiting point of the Lagrangian multipliers and the achieved point satisfy the

KKT optimality conditions.

The termination condition is needed to stop the iterative Algorithm 3.1 when the

value achieved by the algorithm is deemed close enough to the optimal solution. The

fact that the sequence of optimal values generated by Algorithm 3.1 is non-increasing

and convergent (see Lemma 3.2) can be used for choosing the termination condition.

Based on the latter fact, the algorithm can be terminated if an improvement to

the value of the objective function is less than a certain desired threshold, i.e.,

f0(tr{A0X
(k)
opt}) + h0(y

(k)
opt) − f0(tr{A0X

(k+1)
opt }) + h0(y

(k+1)
opt ) ≤ ζ, where ζ is said

to be the progress parameter. However, such termination condition may stop the

iterative algorithm prematurely. Specifically, if the value of the objective function

does not change on two consecutive iterations, but the last achieved point is not

close enough to a KKT point, such termination criterion stops the iterations. In

order to avoid this situation, one can define the termination condition based on

approximate satisfaction of the KKT optimality conditions [15]. Specifically, the

point X
(k)
opt, y

(k)
opt, and δ

(k)
opt achieved at iteration k satisfies the KKT optimality
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conditions approximately if ǫk ≤ ǫ where ǫk is defined as

ǫk , min
λi,Z

‖∇XL(X
(k)
opt,y

(k)
opt, λi,Z)‖2 + ‖∇yL(X

(k)
opt,y

(k)
opt, λi,Z)‖2

subject to λi ≥ 0, i = 1, · · · ,M, Z � 0, tr{Z X
(k)
opt} = 0 (3.16)

λi = 0 if α2i−1f2i−1

(
tr{A2i−1X

(k)
opt}

)
−α2if2i

(
tr{A2iX

(k)
opt}

)

+hi(y
(k)
opt) < 0, i = 1, · · · ,M

and L(X,y, λi,Z) is the Lagrangian function of the optimization problem (3.13)

defined as

L(X,y, λi,Z) , f0(tr{A0X}) + h0(y) +

M∑

i=1

λi

(

α2i−1f2i−1

(
tr{A2i−1X}

)

−α2if2i

(
tr{A2iX}

)
+ hi(y)

)

− tr{ZX}.(3.17)

Here ǫ is the accuracy parameter and λi, i = 1, · · · ,M is the Lagrangian multiplier

associated with the constraint

α2i−1f2i−1

(
tr{A2i−1X}

)
−α2if2i

(
tr{A2iX}

)
+ hi(y) ≤ 0. (3.18)

Gradient of the Lagrangian function which appears in the optimization problem

(3.17) can be simply derived as

∇XL(X,y, λi,Z) = A0f
′
0(tr{A0X}) +

M∑

i=1

λi

(

α2i−1A2i−1f
′
2i−1

(
tr{A2i−1X}

)

−α2iA2if
′
2i

(
tr{A2iX}

))

− Z (3.19)

and

∇yL(X,y, λi,Z) = h′0(y) +

M∑

i=1

λih
′
i(y) (3.20)

where (·)′ denotes the derivative operator. Please note that the optimization prob-

lem (3.17) is a convex problem which can be easily solved.

3.2 Number of quadratic functions in the constraints

greater than three

When the total number of the composite functions fi(x
HAix) in the constraints

of the optimization problem (3.1) or equivalently card{C} is greater than or equal

to four, the optimal value functions k(δ) (3.6) and h(δ) (3.9) may not be equal
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in general. In this case, the optimal value function h(δ) is a lower-bound of k(δ),

i.e., h(δ) ≤ k(δ) (h(δ) is an upper-bound of k(δ) if f0 is decreasing). This can be

easily verified by considering the fact that if x is a feasible point of the correspond-

ing optimization problem of the optimal value function k(δ), then xxH is also a

feasible point of the corresponding optimal value function h(δ) which implies that

h(δ) ≤ k(δ). By replacing the optimal value function k(δ) by h(δ) in the original

optimization problem (3.5), this problem can be approximated by the following DC

problem

min
y,δ

f0(h(δ)) + h0(y)

subject to α2i−1f2i−1(δ2i−1)− α2if2i(δ2i) + hi(y) ≤ 0, i = 1, · · · ,M.

(3.21)

Since f0 is a monotonic function, it can be concluded that the objective function

of the optimization problem (3.21) is a lower-bound of the original problem. Thus,

instead of the original objective function, the problem (3.21) aims at minimizing a

lower-bound of the objective function. The problem (3.21) can be similarly solved

by using the proposed POTDC method and the results of Lemma 3.2 hold true.

Indeed, it is guaranteed that the POTDC finds a KKT point of the problem (3.21).

The extraction of the in general suboptimal solution of the original problem from the

optimal solution of the approximate problem (3.21) is done through randomization

techniques.
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Chapter 4

Transmit Beamspace Design for
DOA Estimation in MIMO
Radar

In array processing applications, the DOA parameter estimation problem is most

fundamental [85]. Many DOA estimation techniques have been developed for the

classical array processing single-input multiple output (SIMO) setup which is re-

ferred to as the phased-array radar [82] – [90]. The development of the MIMO

radar [37], [75] has opened new opportunities in parameter estimation. The virtual

array with a larger number of virtual antenna elements in a colocated MIMO radar

can be used for improved DOA estimation performance as compared to traditional

radar systems [39], [109] for relatively high SNRs, i.e., when the benefits of increased

virtual aperture start to show up. The SNR gain for fully MIMO radar, i.e., the case

when all the transmit signals are orthogonal (see Section 2.2), however, decreases

as compared to the phased-array radar where the transmit array radiates a sin-

gle waveform coherently from all antenna elements [38], [110]. A trade-off between

the phased-array and fully MIMO radar system can be achieved [38], [111], [112]

which gives the best of both configurations, i.e., the increased number of virtual

antenna elements due to the use of waveform diversity together with SNR gain due

to subaperture based coherent transmission.

Several transmit beamforming techniques have been developed in the literature

to achieve transmit coherent gain in MIMO radar under the assumption that the

general angular locations of the targets are known a priori to be located within

a certain spacial sector. The increased number of degrees of freedom for MIMO

radar due to the use of multiple waveforms is used for the purpose of synthesizing
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a desired transmit beampattern based on optimizing the correlation matrix of the

transmitted waveforms [37], [42], [43], [113]. To apply the designs obtained using

the aforementioned methods, the actual waveforms still have to be found which is a

relatively difficult and computationally demanding problem [114].

One of the major motivations for designing the transmit beampattern is real-

izing the possibility of achieving SNR gain together with increased aperture for

improved DOA estimation in a wide range of SNRs [40], [41]. In particular, it has

been shown in [41] that the performance of a MIMO radar system with a num-

ber of waveforms less than the number of transmit antennas associated with using

transmit beamforming gain is better than the performance of a MIMO radar system

with full waveform diversity with no transmit beamforming gain. Remarkably, using

MIMO radar with proper transmit beamspace design, it is possible to achieve and

guarantee the satisfaction of such desired property for DOA estimation as RIP at

the receiver [41]. This is somewhat similar in effect to the property of orthogonal

space-time block codes in that the shape of the transmitted constellation does not

change at the receiver independent on a channel. The latter allows for simple de-

coder [115]. Similarly, here the RIP allows for simple DOA estimation techniques at

the receiver although the RIP is actually enforced at the transmitter, and the prop-

agation media cannot break it thanks to the proper design of beamspace. Since the

RIP holds at the receiver independent on the propagation media and receive antenna

array configuration, the receive antenna array can be an arbitrary array. However,

the methods developed in [40], [41] suffer from the shortcomings that the transmit

power distribution across the array elements is not uniform and the achieved phase

rotations comes with variations in the magnitude of different transmit beams which

may affect the performance of DOA estimation at the receiver.

In this chapter, we consider the problem of transmit beamspace design for DOA

estimation in MIMO radar with colocated antennas. We propose a new method for

designing the transmit beamspace that enables the use of search-free DOA estima-

tion techniques at the receiver. The essence of the proposed method is to design

the transmit beamspace matrix based on minimizing the difference between a de-

sired transmit beampattern and the actual one while enforcing the uniform power

distribution constraint across the transmit array elements. The desired transmit

beampattern can be of arbitrary shape and is allowed to consist of one or more

spatial sectors.
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The case of even but otherwise arbitrary number of transmit waveforms is consid-

ered. To allow for a simple search-free DOA estimation algorithms at the receiver,

the RIP is established at the transmit array by imposing a specific structure on

the transmit beamspace matrix. The proposed structure is based on designing the

transmit beams in pairs where the transmit weight vector associated with a certain

transmit beam is the conjugate flipped version of the weight vector associated with

another beam, i.e., one transmit weight vector is designed for each pair of transmit

beams. All pairs are designed jointly while satisfying the requirements that the two

transmit beams associated with each pair enjoy rotational invariance with respect to

each other. Semi-definite relaxation is used to relax the proposed formulations into

a convex problem that can be solved efficiently using, for example, interior point

methods.

In comparison to previous methods that achieve phase rotation between two

transmit beams, the proposed method enjoys the following advantages: (i) It en-

sures that the magnitude response of the two transmit beams associated with any

pair is exactly the same at all spatial directions, a property that improves the DOA

estimation performance; (ii) It ensures uniform power distribution across transmit

antenna elements; (iii) It enables estimating the DOAs via estimating the accumu-

lated phase rotations over all transmit beams instead of only two beams; (iv) It only

involves optimization over half the entries of the transmit beamspace matrix which

decreases the computational load.

We also propose an alternative formulation based on splitting the overall trans-

mit beamspace design problem into several smaller problems. The alternative for-

mulation is referred to as the spatial-division based design (SDD) which involves

dividing the spatial domain into several subsectors and assigning a subset of trans-

mit beamspace pairs to each subsector. The SDD method enables post processing of

data associated with different subsectors independently with estimation performance

comparable to the performance of the joint transmit beamspace design. Simulation

results demonstrate the improvement in the DOA estimation performance that can

be achieved by using the proposed joint transmit beamspace design and SDD meth-

ods as compared to the traditional MIMO radar technique.

The rest of this chapter is organized as follows. Section 4.1 introduces the system

model for mono-static MIMO radar system with transmit beamspace. The problem

formulations in terms of the unknown transmit beamspace matrix is derived in
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Section 4.2. The transmit beamspace design problem for the case of two transmit

waveforms as well as for the general case of even but otherwise arbitrary number

of transmit waveforms is considered in Section 4.3. Section 4.4 gives simulation

examples for the DOA estimation in a MIMO radar with the proposed transmit

beamspace and the concluding remarks are drawn in Section 4.5.

4.1 System model

Consider a mono-static MIMO radar system equipped with a ULA of M colocated

antennas with inter-element spacing d measured in wavelength and a receive array

of N antennas configured in a random shape. The transmit and receive arrays

are assumed to be close enough to each other such that the spatial angle of a

target in the far-field remains the same with respect to both arrays. Let φ(t) =

[φ1(t), . . . , φK(t)]T be the K × 1 vector that contains the complex envelopes of the

waveforms φk(t), k = 1, . . . ,K which are assumed to be orthogonal, i.e.,

∫ Tp

0
φi(t)φ

∗
j (t) = δ{i − j}, i, j = 1, 2, · · · ,K (4.1)

where Tp is the pulse duration, (·)∗ stands for the conjugate, and δ{·} is the Kro-

necker delta. The actual transmitted signals are taken as linear combinations of the

orthogonal waveforms. Therefore, the M × 1 vector of the baseband representation

of the transmitted signals can be written as [41]

s(t) = [s1(t), . . . , sM (t)]T = Wφ(t) (4.2)

where si(t) is the signal transmitted from antenna i and

W =








w1,1 w2,1 · · · wK,1
w1,2 w2,2 · · · wK,2

...
...

. . .
...

w1,M w2,M · · · wK,M








(4.3)

is the M × K transmit beamspace matrix. It is worth noting that each of the

orthogonal waveforms φk(t), k = 1, . . . ,K is transmitted over one transmit beam

where the kth column of the matrix W corresponds to the transmit beamforming

weight vector used to form the kth beam.

Let a(θ) , [1, e−j2πd sin(θ), . . . , e−j2πd(M−1) sin(θ)]T be the M × 1 transmit array

steering vector. The transmit power distribution pattern can be expressed as [43]

G(θ) =
1

4π
dH(θ)Rd(θ), −π/2 ≤ θ ≤ π/2 (4.4)
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where d(θ) = a∗(θ), and

R =

∫ Tp

0
s(t)sH(t)dt (4.5)

is the cross-correlation matrix of the transmitted signals (4.2). One way to achieve a

certain desired transmit beampattern is to optimize over the cross-correlation matrix

R such as in [43], [113]. In this case, a complementary problem has to be solved

after obtaining R in order to find appropriate signal vector s(t) that satisfies (4.5).

Solving such a complementary problem is in general difficult and computationally

demanding [114]. However, in this chapter, we extend our approach of optimizing

the transmit beampattern via designing the transmit beamspace matrix. According

to this approach, the cross-correlation matrix is expressed as

R = WWH (4.6)

that holds due to the orthogonality of the waveforms (see (4.1) and (4.2)). Then the

transmit beamspace matrix W can be designed to achieve the desired beampattern

while satisfying many other requirements mandated by practical considerations such

as equal transmit power distribution across the transmit array antenna elements,

achieving a desired radar ambiguity function, etc. Moreover, this approach en-

ables enforcing the RIP which facilitates subsequent processing steps at the receive

antenna array, e.g., it enables applying accurate computationally efficient DOA es-

timation using search-free direction finding techniques such as ESPRIT.

Similar to the Section 2.2, the signal measured at the output of the receive array

due to echoes from L narrowband far-field targets can be modeled as

x(t, ̺) =

L∑

l=1

βl(̺)
[
dH(θl)Wφ(t)

]
b(θl) + z(t, ̺) (4.7)

where t is the time index within the radar pulse, ̺ is the slow time index , i.e.,

the pulse number, βl(̺) is the reflection coefficient of the target located at the

unknown spatial angle θl, b(θl) is the receive array steering vector, and z(t, ̺) is

the N × 1 vector of zero-mean white Gaussian noise with variance σ2
z . In (4.7), the

target reflection coefficients βl(̺), l = 1, . . . , L are assumed to obey the Swerling II

model [109], i.e., they remain constant during the duration of one radar pulse but

change from pulse to pulse. Moreover, they are assumed to be drawn from a normal

distribution with zero mean and variance σ2
β .
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By matched filtering x(t, ̺) to each of the orthogonal basis waveforms φk(t), k =

1, . . . ,K, the N × 1 virtual data vectors can be obtained as1

yk(̺) ,

∫

Tp

x(t, ̺)φ∗k(t)dt

,

L∑

l=1

βl(̺)
(
dH(θl)wk

)
b(θl) + zk(̺) (4.8)

where wk is the kth column of the transmit beamspace matrix W and zk(̺) ,
∫

Tp
z(t, ̺)φ∗k(t)dt is the N × 1 noise term whose covariance is σ2

zIN .

Let y̆l,k(̺) be the noise free component of the virtual data vector (4.8) associated

with the lth target, i.e., y̆l,k(̺) , βl(̺)
(
dH(θl)wk

)
b(θl). Then, one can easily

observe that the kth and the k′th components associated with the lth target are

related to each other through the following relationship

y̆l,k′(̺) = βl(̺)
(
dH(θl)wk′

)
b(θl)

=
dH(θl)wk′

dH(θl)wk
· y̆l,k(̺)

= ej(ψk′(θl)−ψk(θl))

∣
∣dH(θl)wk′

∣
∣

|dH(θl)wk|
· y̆l,k(̺) (4.9)

where ψk(θ) is the phase of the inner product dH(θ)wk. The expression (4.9) means

that the signal component yk(̺) corresponding to a given target is the same as the

signal component yk′(̺) corresponding to the same target up to a phase rotation

and a gain factor.

The RIP can be enforced by imposing the constraint |dH(θ)wk| = |dH(θ)wk′ |
while designing the transmit beamspace matrix W. The main advantage of enforcing

the RIP is that it allows us to estimate DOAs via estimating the phase rotation

associated with the kth and k′th pair of the virtual data vectors using search-free

techniques, e.g., ESPRIT. Moreover, if the number of transmit waveforms is more

than two, the DOA estimation can be carried out via estimating the phase difference

∠

K/2
∑

i=1

dH(θl)wi −∠

K∑

i=K/2+1

dH(θl)wi (4.10)

and comparing it to a precalculated phase profile for the given spatial sector in which

we have concentrated the transmit power. However, in the latter case, precautions

1Practically, this matched filtering step is performed for each Doppler-range bin, i.e., the received
data x(t, ̺) is matched filtered to a time-delayed Doppler shifted version of the waveforms φk(t), k =
1, . . . , K.
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should be taken to assure the coherent accumulation of the K/2 components in

(4.10), i.e., to avoid gain loss as will be shown later in the chapter.

4.2 Problem formulation

The main goal is to design a transmit beamspace matrix W which achieves a spatial

beampattern that is as close as possible to a certain desired one. Substituting (4.6)

in (4.4), the spatial beampattern can be rewritten as

G(θ) =
1

4π
dH(θ)WWHd(θ)

=
1

4π

K∑

i=1

wH
i d(θ)dH(θ)wi. (4.11)

Therefore, we design the transmit beamspace matrix W based on minimizing the

difference between the desired beampattern and the actual beampattern given by

(4.11). Using the minimax criterion, the transmit beamspace matrix design problem

can be formulated as

min
W

max
θ

∣
∣
∣
∣
∣
Gd(θ)− 1

4π

K∑

i=1

wH
i d(θ)dH(θ)wi

∣
∣
∣
∣
∣

subject to

K∑

i=1

|wi(j)|2 =
Pt

M
, j = 1, · · · ,M (4.12)

where Gd(θ), θ ∈ [−π/2, π/2] is the desired beampattern and Pt is the total transmit

power. The M constraints enforced in (4.12) are used to ensure that individual

antennas transmit equal powers given by Pt/M . It is equivalent to having the norms

of the rows of W to be equal to Pt/M . The uniform power distribution across the

array antenna elements given by (4.12) is necessary from a practical point of view. In

practice, each antenna in the transmit array typically uses the same power amplifier,

and thus has the same dynamic power range. If the power used by different antenna

elements is allowed to vary widely, this can severely degrade the performance of the

system due to the nonlinear characteristics of the power amplifier.

Another goal that we wish to achieve is to enforce the RIP to enable for search-

free DOA estimation. Enforcing the RIP between the kth and (K/2+k)th transmit

beams is equivalent to ensuring that the following relationship holds

∣
∣wH

k d(θ)
∣
∣ =

∣
∣
∣wH

K
2

+k
d(θ)

∣
∣
∣ , θ ∈ [−π/2, π/2]. (4.13)
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Ensuring (4.13), the optimization problem (4.12) can be reformulated as

min
W

max
θ

∣
∣
∣
∣
∣
Gd(θ)− 1

4π

K∑

i=1

wH
i d(θ)dH(θ)wi

∣
∣
∣
∣
∣

subject to
K∑

i=1

|wi(j)|2 =
Pt

M
, j = 1, · · · ,M (4.14)

∣
∣wH

k d(θ)
∣
∣ =

∣
∣
∣wH

K
2

+k
d(θ)

∣
∣
∣ , θ ∈ [−π/2, π/2], k = 1, . . . ,

K

2
.

It is worth noting that the constraints
∑K

i=1 |wi(j)|2 = Pt/M as well as the

constraints
∣
∣wH

k d(θ)
∣
∣ =

∣
∣
∣
∣
wH

K
2

+k
d(θ)

∣
∣
∣
∣

correspond to non-convex sets and, therefore,

the optimization problem (4.14) is a non-convex problem which is difficult to solve in

a computationally efficient manner. Moreover, the fact that that the last constraint

in (4.14) should be enforced for every direction θ ∈ [−π/2, π/2], i.e., the number of

equations in (4.14) is significantly larger than the number of the variables, makes

it unlikely to satisfy (4.14) unless a specific structure on the transmit beamspace

matrix W is imposed.

In the following section we propose a specific structure to W to overcome the

difficulties caused by (4.14) and show how to use SDP relaxation to overcome the

difficulties caused by the non-convexity of (4.14).

4.3 Transmit beamspace design

4.3.1 Two transmit waveforms

We first consider a special, but practically important case of two orthonormal wave-

forms. Thus, the dimension of W is M×2. Then under the aforementioned assump-

tion of ULA at the MIMO radar transmitter, the RIP can be satisfied by choosing

the transmit beamspace matrix to take the form

W = [w, w̃∗] (4.15)

where w̃ is the flipped version of vector w, i.e., w̃(i) = w(M − i+ 1), i = 1, . . . ,M

and (̃·) denotes the flipping operator. Indeed, in this case, |dH(θ)w| = |dH(θ)w̃∗|
and the RIP is clearly satisfied.

To prove that the specific structure (4.15) achieves the RIP, let us represent the

vector w as a vector of complex numbers

w = [z1 z2 . . . zM ]T (4.16)
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where zm, m = 1, . . . ,M are complex numbers. Then the flipped-conjugate version

of w has the structure w̃∗ = [z∗M z∗M−1 . . . z
∗
1 ]T . Examining the inner products

dH(θ)w and dH(θ)w̃∗ we see that the first inner product produces the sum

dH(θ)w = z1 + z2e
−j2πd sin(θ) + . . .+ zMe

−j2πd sin(θ)(M−1) (4.17)

and the second produces the sum

dH(θ)w̃∗
i = z∗M + z∗M−1e

−j2πd sin(θ) + . . .+ z∗1e
−j2πd sin(θ)(M−1). (4.18)

Factoring out the term e−j2πd sin(θ)(M−1) from (4.18) and conjugating, we can see

that the sums are identical in magnitude and indeed are the same up to a phase

rotation ψ. This relationship is precisely the RIP, and it is enforced at the transmit

antenna array by the structure imposed on the transmit beamspace matrix W.

Substituting (4.15) in (4.14), the optimization problem can be reformulated for

the case of two transmit waveforms as follows

min
w

max
θ

∣
∣Gd(θ)− ‖[w w̃∗]Hd(θ)‖2

∣
∣

subject to |w(i)|2 + |w̃(i)|2 =
Pt

M
, i = 1, . . . ,M. (4.19)

It is worth noting that the last constraints in (4.14) are not shown in the optimization

problem (4.19) because they are inherently enforced due to the use of the specific

structure of W given in (4.15).

Introducing the auxiliary variable δ and assuming that the number of transmit

antenna elements M is even2, the optimization problem (4.19) can be approximately

rewritten on a grid over a certain interval as

min
w,δ

δ

subject to
Gd(θq)

2
−|wHd(θq)|2 ≤ δ, q = 1, . . . , Q

Gd(θq)

2
−|wHd(θq)|2 ≥ −δ, q = 1, . . . , Q

|w(i)|2+|w(M− i+1)|2 =
Pt

M
, i = 1, . . .,

M

2
. (4.20)

where θq ∈ [−π/2, π/2], q = 1, . . . , Q is a continuum of directions that are properly

chosen (uniform or nonuniform) to approximate the spatial domain [−π/2, π/2]. In

our numerical results, we will consider a uniform grid over the interval [−π/2, π/2]
2The case of odd M can be considered in a completely similar way.
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excluding the transition regions. It is worth noting that the optimization problem

(4.20) has significantly larger number of degrees of freedom than the beamforming

problem for the phased-array case where the magnitudes of w(i), i = 1, . . . ,M are

fixed.

The problem (4.20) is a non-convex QCQP which is NP-hard in general. How-

ever, a well developed SDP relaxation technique can be used to solve it [17] –[22]. In-

deed, using the facts that |wHd(θq)|2 = tr{d(θq)d
H(θq)wwH} and |w(i)|2+|w(M−

i + 1)|2 = tr{wwHAi}, i = 1, . . . ,M/2, where Ai is an M ×M matrix such that

Ai(i, i) = Ai(M − (i − 1),M − (i − 1)) = 1 and the rest of the elements are equal

to zero, the problem (4.20) can be cast as

min
w,δ

δ

subject to
Gd(θq)

2
−tr{d(θq)d

H(θq)wwH}≤δ, q = 1, . . . , Q

Gd(θq)

2
−tr{d(θq)d

H(θq)wwH}≥−δ, q = 1, . . . , Q

tr{wwHAi} =
Pt

M
, i = 1, . . . ,

M

2
. (4.21)

Introducing the new variable X , wwH and by following the same steps as in

Subsection 2.1.7, the problem (4.21) can be equivalently written as

min
X,δ

δ

subject to
Gd(θq)

2
−tr{d(θq)d

H(θq)X}≤δ, q = 1, . . . , Q

Gd(θq)

2
−tr{d(θq)d

H(θq)X}≥−δ, q = 1, . . . , Q

tr{XAi} =
Pt

M
, i = 1, . . . ,

M

2
; rank{X} = 1 (4.22)

where X is a Hermitian matrix. Note that the last two constraints in (4.22) imply

that the matrix X is positive semi-definite. The problem (4.22) is non-convex with

respect to X because the last constraint is not convex. However, by means of the

SDP relaxation technique, this constraint can be replaced by another constraint,

that is, X � 0. The resulting problem is the relaxed version of (4.22) and it is

a convex SDP problem which can be efficiently solved using, for example, interior

point methods. As it was explained in Section 2.1, extraction of the solution of the

original problem is typically done via the so-called randomization techniques.

In order to explain the randomization technique used in this work, let Xopt

denote the optimal solution of the relaxed problem. If the rank of Xopt is one,
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the optimal solution of the original problem (4.20) can be obtained by simply find-

ing the principal eigenvector of Xopt. However, if the rank of the matrix Xopt is

higher than one, the randomization approach can be used. Various randomization

techniques have been developed and are generally based on generating a set of can-

didate vectors and then choosing the candidate which gives the minimum of the

objective function of the original problem. Our randomization procedure can be

described as follows. Let Xopt = UΣUH denote the eigendecomposition of Xopt.

The candidate vector k can be chosen as wcan,k = UΣ1/2vk where vk is a ran-

dom vector whose elements are random variables uniformly distributed on the unit

circle in the complex plane. Candidate vectors are not always feasible and should

be mapped to a nearby feasible point. This mapping is problem dependent [14].

In our case, if the condition |wcan,k(i)|2 + |wcan,k(M − i + 1)|2 = Pt/M does not

hold, we can map this vector to a nearby feasible point by scaling wcan,k(i) and

wcan,k(M − i+ 1) to satisfy this constraint. Among the candidate vectors we then

choose the one which gives the minimum objective function, i.e., the one with min-

imum maxθq

∣
∣
∣Gd(θq)/2 − |wH

can,kd(θq)|2
∣
∣
∣.

4.3.2 Even number of transmit waveforms

Let us consider now the M ×K transmit beamspace matrix W = [w1,w2, · · · ,wK ]

where K ≤ M and K is an even number. For convenience, the virtual received

signal vector matched to the basis waveform φk(t) is rewritten as

yk(̺) ,

∫

Tp

x(t, ̺)φ∗k(t)dt

,

L∑

l=1

βl(̺)e
jψk(θl)

∣
∣dH(θl)wk

∣
∣b(θl) + zk(̺). (4.23)

From (4.23), it can be seen that the RIP between yk(̺) and yk′(̺), k 6= k′ holds if

∣
∣dH(θ)wk

∣
∣ =

∣
∣dH(θ)wk′

∣
∣ , θ ∈ [−π/2, π/2]. (4.24)

In the previous subsection, we saw that by considering the following specific

structure [w w̃∗] for the transmit beamspace matrix with only two waveforms, the

RIP is guaranteed at the receive antenna array. In this part, we obtain the RIP

for more general case of more than two waveforms which provides more degrees of

freedom for obtaining a better performance. For this goal, we first show that if for
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some k′ the following relation holds
∣
∣
∣
∣
∣

k′∑

i=1

dH(θ)wi

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

K∑

i=k′+1

dH(θ)wi

∣
∣
∣
∣
∣
, ∀θ ∈ [−π/2, π/2] (4.25)

then the two new set of vectors defined as the summation of the first k′ data vectors

yi(̺), i = 1, · · · , k′ and the last K − k′ data vectors yi(̺), i = k′ + 1, · · · ,K will

satisfy the RIP. More specifically, by defining the following vectors

g1(̺) ,

k′∑

i=1

yi(̺)

=
L∑

l=1

βl(̺)

(
k′∑

i=1

dH(θl)wi

)

b(θl)+
k′∑

i=1

zi(̺) (4.26)

g2(̺) ,

K∑

i=k′+1

yi(̺)

=

L∑

l=1

βl(̺)

(
K∑

i=k′+1

dH(θl)wi

)

b(θl)+

K∑

i=k′+1

zi(̺) (4.27)

the corresponding signal component of target l in the vector g1(̺) has the same

magnitude as in the vector g2(̺) if the equation (4.25) holds. In this case, the

only difference between the signal components of the target l in the vectors g1(̺)

and g2(̺) is the phase which can be used for DOA estimation. Based on this

fact, for ensuring the RIP between the vectors g1(̺) and g2(̺), equation (4.25)

needs to be satisfied for every angle θ ∈ [−π/2, π/2]. By noting that the equation

|dH(θ)w| = |dH(θ)w̃∗| holds for any arbitrary θ, it can be shown that the equation

(4.25) holds for any arbitrary θ only if the following structure on the matrix W is

imposed:

• K is an even number,

• k′ equals to K/2,

• wi = w̃∗
K/2+i, i = 1, · · · ,K/2.

More specifically, if the transmit beamspace matrix has the following structure

W = [w1, · · · ,wK/2, w̃
∗
1, · · · , w̃∗

K/2] (4.28)

then the signal component of g1(̺) associated with the lth target is the same as the

corresponding signal component of g2(̺) up to phase rotation of

∠

K/2
∑

i=1

dH(θl)wi −∠

K∑

i=K/2+1

dH(θl)wi (4.29)
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which can be used as a look-up table for finding DOA of a target. By considering the

aforementioned structure for the transmit beamspace matrix W, it is guaranteed

that the RIP is satisfied and other additional design requirements can be satisfied

through the proper design of w1, · · · ,wK/2.

Substituting (4.28) in (4.14), the optimization problem of transmit beamspace

matrix design can be reformulated as

min
wk

max
θq

∣
∣
∣
∣
∣
∣

Gd(θq)−
K/2
∑

k=1

‖[wk w̃∗
k]
Hd(θq)‖2

∣
∣
∣
∣
∣
∣

subject to

K/2
∑

k=1

|wk(i)|2 + |w̃k(i)|2 =
Pt

M
, i = 1, . . . ,M. (4.30)

For the case when the number of transmit antennas is even3 and using the facts that

‖[wk w̃∗
k]
Hd(θq)‖2 = 2|wH

k d(θq)|2 (4.31)

|wH
k d(θq)|2 = tr{d(θq)d

H(θq)wkw
H
k } (4.32)

|wk(i)|2 + |wk(M − i+ 1)|2 = tr{wkw
H
k Ai}, i = 1, . . . ,M/2 (4.33)

the problem (4.30) can be recast as

min
wk

max
θq

∣
∣
∣
∣
∣
∣

Gd(θq)/2 −
K/2
∑

k=1

∣
∣dH(θq)wk

∣
∣
2

∣
∣
∣
∣
∣
∣

subject to

K/2
∑

k=1

tr{wkw
H
k Ai} =

Pt

M
, i = 1, . . . ,

M

2
(4.34)

where as it was introduced earlier, Ai is an M ×M matrix such that Ai(i, i) =

Ai(M − (i − 1),M − (i − 1)) = 1 and the rest of the elements are equal to zero.

Introducing the new variables Xk , wkw
H
k , k = 1, . . . ,K/2 and following similar

steps as in the case of two transmit waveforms, the problem above can be equiva-

lently rewritten as

min
Xk

max
θq

∣
∣
∣
∣
∣
∣

Gd(θq)/2−
K/2
∑

k=1

tr

{

d(θq)d
H(θq)Xk

}
∣
∣
∣
∣
∣
∣

subject to

K/2
∑

k=1

tr{XkAi} =
Pt

M
, i = 1, . . . ,

M

2

rank{Xk} = 1, k = 1, · · · ,K/2 (4.35)

3The case when the number of transmit antennas is odd can be carried out in a straightforward
manner.
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where Xk, k = 1, · · · ,K/2 are Hermitian matrices. The problem (4.35) can be

solved in a similar way as the problem (4.22). Specifically, the optimal solution of

the problem (4.35) can be approximated using the SDP relaxation [14], [22], i.e.,

dropping the rank-one constraints and solving the resulting convex problem.

By relaxing the rank-one constraints, the optimization problem (4.35) can be

approximated as

min
Xk

max
θq

∣
∣
∣
∣
∣
∣

Gd(θq)/2−
K/2
∑

k=1

tr

{

d(θq)d
H(θq)Xk

}
∣
∣
∣
∣
∣
∣

subject to

K/2
∑

k=1

tr{XkAi} =
Pt

M
, i = 1, . . . ,

M

2

Xk � 0, k = 1, · · · ,K/2. (4.36)

The problem (4.36) is convex and, therefore, it can be solved efficiently using in-

terior point methods. Once the matrices Xk � 0, k = 1, · · · ,K/2 are obtained,

the corresponding weight vectors wk, k = 1, · · · ,K/2 can be obtained using ran-

domization techniques. Specifically, we use the randomization method introduced

in Subsection 4.3.1 over every Xk, k = 1, · · · ,K/2 separately and then map the

resulted rank-one solutions to the closest feasible points. Among the candidate

solutions, the best one is then selected.

4.3.3 Optimal rotation of the transmit beamspace matrix

The solution of the optimization problem (4.34) is not unique and as it will be

explained shortly in details, any spatial rotation of the optimal transmit beamspace

matrix is also optimal. Among the set of the optimal solutions of the problem

(4.34), the one with better energy preservation is favorable. As a result, after the

approximate optimal solution of the problem (4.34) is obtained, we still need to find

the optimal rotation which results in the best possible transmit beamspace matrix

in terms of the energy preservation.

More specifically, since the DOA of the target at θl is estimated based on the

phase difference between the signal components of this target in the newly defined

vectors, i.e., g1(̺) =
∑K/2

i=1 dH(θl)wi and g2(̺) =
∑K

i=K/2+1 dH(θl)wi, to obtain

the best performance, W should be designed in a way that the magnitudes of the

summations
∑K/2

i=1 dH(θl)wi and
∑K

i=K/2+1 dH(θl)wi take their largest values.

Since the phase of the product term dH(θl)wi in
∑K/2

i=1 dH(θl)wi (or equivalently

in
∑K

i=K/2+1 dH(θl)wi) may be different for different waveforms, the terms in the
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summation
∑K/2

i=1 dH(θl)wi (or equivalently in the summation
∑K

i=K/2+1 dH(θl)wi)

may add incoherently and, therefore, it may result in a small magnitude which in

turn degrades the DOA estimation performance. In order to avoid this problem, we

use the property that any arbitrary rotation of the transmit beamspace matrix does

not change the transmit beampattern. Specifically, if

W = [w1, · · · ,wK/2, w̃
∗
1, · · · , w̃∗

K/2] (4.37)

is a transmit beamspace matrix with the introduced structure, then the new beamspace

matrix defined as

Wrot = [wrot,1, · · · ,wrot,K/2, w̃
∗
rot,1, · · · , w̃∗

rot,K/2] (4.38)

has the same beampattern and the same power distribution across the antenna

elements. Here [wrot,1, · · · ,wrot,K/2] = [w1, · · · ,wK/2]UK/2×K/2 and UK/2×K/2 is

a unitary matrix. Based on this property, after proper design of the beamspace

matrix with a desired beampattern and the RIP, we can rotate the beams so that

the magnitude of the summation
∑K/2

i=1 dH(θl)wi is increased as much as possible.

Since the actual locations of the targets are not known a priori, we design a

unitary rotation matrix so that the integration of the squared magnitude of the

summation
∑K/2

i=1 dH(θ)wi over the desired sector is maximized. As an illustrating

example, we consider the case when K is 4. In this case,

[wrot,1,wrot,2] = [w1,w2]U2×2 (4.39)

and the integration of the squared magnitude of the summation
∑2

i=1 dH(θ)wrot,i

over the desired sectors can be expressed as

∫

Θ
|wH

rot,1d(θ)+wH
rot,2d(θ)|2dθ =

∫

Θ

(

dH(θ)wrot,1w
H
rot,1d(θ)+dH(θ)wrot,2w

H
rot,2d(θ)

+2Re
{
dH(θ)wrot,1w

H
rot,2d(θ)

}
)

dθ

=

∫

Θ

(

dH(θ)w1w
H
1 d(θ)+dH(θ)w2w

H
2 d(θ)

+2Re
{
dH(θ)wrot,1w

H
rot,2d(θ)

}
)

dθ (4.40)

where Θ denotes the desired sectors and Re{·} stands for the real part of a complex

number. The last line follows from the equation (4.39). Defining the new vector
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e = [1,−1]T , the expression in (4.40) can be equivalently recast as

∫

Θ

(

dH(θ)w1w
H
1 d(θ)+dH(θ)w2w

H
2 d(θ) + 2Re

{
dH(θ)wrot,1w

H
rot,2d(θ)

}
)

dθ =

∫

Θ

(

2dH(θ)w1w
H
1 d(θ)+2dH(θ)w2w

H
2 d(θ)− |dH(θ)WUe|2

)

dθ. (4.41)

We aim at maximizing the expression (4.41) with respect to the unitary rotation

matrix U. Since the first two terms inside the integral in (4.41) are independent

of the unitary matrix, it only suffices to minimize the integration of the last term.

Using the property that ‖X‖2 = tr{XXH}, and the cyclical property of the trace,

i.e., tr{XXH} = tr{XHX}, the integral of the last term in (4.41) can be equivalently

expressed as
∫

Θ
tr
{
UeeHUHWHd(θ)dH(θ)W

}
dθ. (4.42)

The only term in the integral (4.42) which depends on θ is WHd(θ)dH(θ)W. There-

fore, the minimization of the integration of the last term in (4.41) over the sector Θ

can be stated as the following optimization problem

min
U

tr{UEUHD}

subject to UUH = I (4.43)

where E , eeH and D ,
∫

Θ WHd(θ)dH(θ)Wdθ. Because of the unitary constraint,

the optimization problem (4.43) is an optimization problem over the Stiefel mani-

fold [116] – [119]. Note that since the objective function in the optimization problem

(4.43) depends not only on the subspace spanned by U, but on the basis as well, the

corresponding manifold is Steifel manifold, in contrast to a more common Grass-

mannian manifold. In order to address this problem, we have adopted the steepest

decent algorithm on the Lie group of unitary matrices which has been developed

in [118]. This algorithm moves towards the optimal point over the iterations.

4.3.4 Spatial-division based design

It is worth noting that instead of designing all transmit beams jointly, an easy alter-

native for designing W is to design different pairs of beamforming vectors {wk, w̃∗
k},

k = 1, · · · ,K/2 separately. Specifically, in order to avoid the incoherent summation

of the terms in
∑K/2

i=1 dH(θl)wi (or equivalently in
∑K

i=K/2+1 dH(θl)wi), the matrix

W can be designed in such a way that the corresponding transmit beampatterns

of the beamforming vectors w1, · · · ,wK/2 do not overlap and they cover different
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parts of the desired sector with equal energy. This alternative design is referred to

as the SDD method. The design of one pair {wk, w̃∗
k} has been already explained

in Subsection 4.3.1.

4.4 Simulation results

Throughout our simulations, we assume a uniform linear transmit array with M =

10 antennas spaced half a wavelength apart, and a non-uniform linear receive array

of N = 10 elements. The locations of the receive antennas are randomly drawn from

the set [0, 9] measured in half a wavelength. Noise signals are assumed to be Gaus-

sian, zero-mean, and white both temporally and spatially. In each example, targets

are assumed to lie within a given spatial sector. From example to example the sector

widths in which transmit energy is focussed is changed, and, as a result, so does

the optimal number of waveforms to be used in the optimization of the transmit

beamspace matrix. The optimal number of waveforms is calculated based on the

number of dominant eigenvalues of the positive definite matrix A =
∫

Θ a(θ)aH(θ)dθ

(see [41] for explanations and corresponding Cramer-Rao bound derivations and

analysis). We assume that the number of dominant eigenvalues is even; otherwise,

we round it up to the nearest even number. The reason that an odd number of

dominant eigenvalues is rounded up, as opposed to down, is that overusing wave-

forms is less detrimental to the performance of DOA estimation than underusing,

as it is shown in [41]. Four examples are chosen to test the performance of our

algorithm. In Example 1, a single centrally located sector of width 20◦ is chosen

to verify the importance of the uniform power distribution across the orthogonal

waveforms. In Example 2, two separated sectors each with a width of 20◦ degrees

are chosen. In Example 3, a single, centrally located sector of width 10◦ degrees is

chosen. Finally, in Example 4, a single, centrally located sector of width 30◦ degrees

is chosen. The optimal number of waveforms used for each example is two, four, two,

and four, respectively. The methods tested by the examples are traditional MIMO

radar with uniform transmit power density and K = M and the proposed jointly

optimum transmit beamspace design method. In Example 3, we also consider the

SSD method which is an easier alternative to the jointly optimal method. Through-

out the simulations, we refer to the proposed transmit beamspace method as the

optimal transmit beamspace design (although the solution obtained through SDP

relaxation and randomization is suboptimal in general) to distinguish it from the
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SDD method in which different pairs of the transmit beamspace matrix columns are

designed separately. In Examples 1 and 3, the SDD is not considered since there is

no need for more than two waveforms. We also do not apply the SDD method in the

last example due to the fact that the corresponding spatially divided sectors in this

case are adjacent and their sidelobes result in energy loss and performance degra-

dation as opposed to Example 2. For the traditional MIMO radar, the following set

of orthogonal baseband waveforms is used

φm(t) =

√

1

Tp
e
j2π m

Tp
t
, m = 1, . . . ,M (4.44)

while for the proposed transmit beamspace-based method, the first K waveforms of

(4.44) are employed.

Throughout all simulations, the total transmit power remains constant at Pt =

M . The root mean square error (RMSE) and probability of target resolution are

calculated based on 500 independent Monte-Carlo runs.

4.4.1 Example 1 : Effect of the uniform power distribution across
the waveforms

In this example, we aim at studying how the lack of uniform transmission power

across the transmit waveforms affects the performance of the new proposed method.

For this goal, we consider two targets that are located in the directions −5◦ and 5◦

and the desired sector is chosen as θ = [−10◦, 10◦]. Two orthogonal waveforms are

considered and optimal transmit beamspace matrix denoted as W0 is obtained by

solving the optimization problem (4.19). To simulate the case of non-uniform power

distribution across the waveforms while preserving the same transmit beampattern

of W0, we use the rotated transmit beamspace matrix W0U2×2, where U2×2 is a

unitary matrix defined as

U2×2 =

[
0.6925 + j0.3994 0.4903 + j0.3468

−0.4755 + j0.3669 0.6753 − j0.4279

]

.

Note that W0 and W0U2×2 lead to the same transmit beampattern and as a result

the same transmit power within the desired sector, however, compared to the former,

the latter one does not have uniform transmit power across the waveforms and

therefore it does not satisfy RIP. The RMSE curves of the proposed DOA estimation

method for both W0 and W0U2×2 versus SNR are shown in Fig. 4.1. It can be seen

from this figure that the lack of uniform transmission power across the waveforms

can degrade the performance of DOA estimation significantly.
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Figure 4.1: Example 1: Performance of the new proposed method with and without uniform
power distribution across transmit waveforms.

4.4.2 Example 2 : Two separated sectors of width 20
◦ degrees each

In the second example, two targets are assumed to lie within two spatial sectors: one

from θ = [−40◦,−20◦] and the other from θ = [30◦, 50◦]. The targets are located at

θ1 = −33◦ and θ2 = 41◦. Fig. 4.2 shows the transmit beampatterns of the traditional

MIMO with uniform transmit power distribution and both the optimal and SDD

designs for W. It can be seen in the figure that the optimal transmit beamspace

method provides the most even concentration of power in the desired sectors. The

SDD technique provides concentration of power in the desired sectors above and

beyond traditional MIMO; however, the energy is not evenly distributed with one

sector having a peak beampattern strength of 15 dB, while the other has a peak of

no more than 12 dB. Fig. 4.3 shows the individual beampatterns associated with

individual waveforms as well as the overall beampattern.

The performance of all three methods is compared in terms of the corresponding

RMSEs versus SNR as shown in Fig. 4.4. As we can see in the figure, the jointly

optimal transmit beamspace and the SDD methods have lower RMSEs as compared

to the RMSE of the traditional MIMO radar. It is also observed from the figure

that the performance of the SDD method is very close to the performance of the
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jointly optimal one.

To assess the proposed method’s ability to resolve closely located targets, we

move both targets to the locations θ1 = 38◦ and θ2 = 40◦. The performance of all

three methods tested is given in terms of the probability of target resolution. Note

that the targets are considered to be resolved if there are at least two peaks in the

MUSIC spectrum and the following is satisfied [90]

∣
∣
∣θ̂l − θl

∣
∣
∣ ≤ ∆θ

2
, l = 1, 2

where ∆θ = |θ2 − θ1|. The probability of source resolution versus SNR for all

methods tested are shown in Fig. 4.5. It can be seen from the figure that the SNR

threshold at which the probability of target resolution transitions from very low

values (i.e., resolution fail) to values close to one (i.e., resolution success) is lowest

for the jointly optimal transmit beamspace design-based method, second lowest for

the SDD method, and finally, highest for the traditional MIMO radar method. In

other words, the figure shows that the jointly optimal transmit beamspace design-

based method has a higher probability of target resolution at lower values of SNR

than the SDD method, while the traditional MIMO radar method has the worst

resolution performance.

4.4.3 Example 3 : Single and centrally located sector of width 10
◦

degrees

In the third example, the targets are assumed to lie within a single thin sector of

θ = [−10◦, 0◦]. Due to the choice of the width of the sector, the optimal number

of waveforms to use is only two. For this reason, only two methods are tested:

the proposed transmit beamspace method and the traditional MIMO radar. The

beampatterns for these two methods are shown in Fig. 4.6. It can observed from

the figure that our method offers a transmit power gain that is 5 dB higher than the

traditional MIMO radar. In order to test the RMSE performance of both methods,

targets are assumed to be located at θ1 = −7◦ and θ2 = −2◦. The RMSE’s are

plotted versus SNR in Fig. 4.7. It can be observed from this figure that the proposed

transmit beamspace method yields lower RMSE as compared to the traditional

MIMO radar based method at moderate and high SNR values. In order to test the

resolution capabilities of both methods tested, the targets are moved to θ1 = −3◦

and θ2 = −1◦. The same criterion as in Example 2 is then used to determine the
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Figure 4.2: Example 2: Transmit beampatterns of the traditional MIMO and the proposed
transmit beamspace design-based methods.

−50 0 50
−35

−30

−25

−20

−15

−10

−5

0

5

10

15

Angle(θ)

T
ra

ns
m

it 
B

ea
m

pa
tte

rn
(d

B
)

 

 

φ
1
(t)

φ
3
(t)

φ
2
(t)

φ
4
(t)

Overall Beampattern
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Figure 4.4: Example 2: Performance comparison between the traditional MIMO and the
proposed transmit beamspace design-based methods.

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P
ro

ba
bi

lit
y 

of
 R

es
ol

ut
io

n 

 

 

Optimal Tx Beamspace Design
SDD
Traditional MIMO

Figure 4.5: Example 2: Performance comparison between the traditional MIMO and the
proposed transmit beamspace design-based methods.
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Figure 4.6: Example 3: Transmit beampatterns of the traditional MIMO and the proposed
transmit beamspace design-based method.

target resolution. The results of this test are displayed in Fig. 4.8 and agrees with

the similar results in Example 2.

4.4.4 Example 4 : Single and centrally located sector of width 30
◦

degrees

In the last example, a single wide sector is chosen as θ = [−15◦, 15◦]. The optimal

number of waveforms for such a sector is found to be four. Similar to the previous

Example 3, we compare the performance of the proposed method to that of the

traditional MIMO radar. Four transmit beams are used to simulate the optimal

transmit beamspace design-based method. Fig. 4.9 shows the transmit beampat-

terns for the methods tested. In order to test the RMSE performance of the methods

tested, two targets are assumed to be located at θ1 = −12◦ and θ2 = 9◦. Fig. 4.10

shows the RMSEs versus SNR for the methods tested. As we can see in the figure,

the RMSE for the jointly optimal transmit beamspace design-based method is lower

than the RMSE for the traditional MIMO radar based method. Moreover, in order

to test resolution, the targets are moved to θ1 = −3◦ and θ2 = −1◦. The same

criterion as in Example 2 is used to determine the target resolution. The results of
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Figure 4.7: Example 3: Performance comparison between the traditional MIMO and the
proposed transmit beamspace design-based method.
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Figure 4.8: Example 3: Performance comparison between the traditional MIMO and the
proposed transmit beamspace design-based methods.
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Figure 4.9: Example 4: Transmit beampatterns of the traditional MIMO and the proposed
methods.

this test are similar to those displayed in Fig. 4.5, and, therefore, are not displayed

here.

4.5 Chapter summary

The problem of transmit beamspace design for MIMO radar with colocated anten-

nas with application to DOA estimation has been considered. A new method for

designing the transmit beamspace matrix that enables the use of search-free DOA

estimation techniques at the receiver has been introduced. The essence of the pro-

posed method is to design the transmit beamspace matrix based on minimizing the

difference between a desired transmit beampattern and the actual one. The case of

even but otherwise arbitrary number of transmit waveforms has been considered.

The transmit beams are designed in pairs where all pairs are designed jointly while

satisfying the requirements that the two transmit beams associated with each pair

enjoy rotational invariance with respect to each other. Unlike previous methods that

achieve phase rotation between two transmit beams while allowing the magnitude

to be different, a specific beamspace matrix structure achieves phase rotation while

ensuring that the magnitude response of the two transmit beams is exactly the same
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Figure 4.10: Example 4: Performance comparison between the traditional MIMO and the
proposed methods.

at all spatial directions has been proposed. The SDP relaxation technique has been

used to relax the proposed formulation into a convex optimization problem that

can be solved efficiently using interior point methods. An alternative SDD method

that divides the spatial domain into several subsectors and assigns a subset of the

transmit beamspace pairs to each subsector has been also developed. The SDD

method enables post processing of data associated with different subsectors inde-

pendently with DOA estimation performance comparable to the performance of the

joint transmit beamspace design-based method. Simulation results have been used

to demonstrate the improvement in the DOA estimation performance offered by us-

ing the proposed joint and SDD transmit beamspace design methods as compared

to the traditional MIMO radar.

73



Chapter 5

A New Robust Adaptive
Beamforming

RAB has been an intensive research topic over several decades due to, on one hand,

its importance in wireless communications, radar, sonar, microphone array speech

processing, radio astronomy, medical imaging, and other fields; and on the other

hand, because of the challenges related to the practical applications manifesting

themselves in the robustness requirements. As it was explained in Section 2.3, the

presence of the desired signal component in the training data, small sample size,

and imprecise knowledge of the desired signal steering vector are the main causes

of performance degradation in adaptive beamforming. The main goal of any RAB

method is to provide robustness against such imperfections.

The most popular RAB methods that are based on the MVDR principle includ-

ing (i) the worst-case-based adaptive beamforming techniques [7], [49], [50] – [51];

(ii) the doubly constrained robust Capon beamforming methods [53], [54]; (iii) the

probabilistically constrained RAB technique [52]; (iv) the RAB technique based on

steering vector estimation [55] have been clearly explained in Section 2.3.

Although the relationships between these MVDR RAB techniques have been es-

tablished in the literature, the general notion of robustness and a unified principle for

all MVDR RAB techniques have been missing. For example, the worst-case-based

design is related to the diagonal loading principle [7], [50], while the probabilistically

constrained design can be approximated by the worst-cases-based design [52]. More-

over, the worst-cases-based and doubly-constrained RAB techniques can be derived

via steering vector estimation approach [50], [53].

In this chapter, we rethink the notion of robustness and present a unified princi-

ple to MVDR RAB design, that is, to use standard MVDR beamformer in tandem
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with steering vector estimation based on some prior information and data covariance

matrix estimation. This unified principle motivates us to develop a new technique

which uses as little as possible, imprecise, and easy to obtain prior information

about the desired signal/source, the antenna array, and the propagation media. We

develop such a new RAB technique in which the steering vector is estimated through

the beamformer output power maximization under the requirement that the esti-

mate does not converge to any of the interference steering vectors and their linear

combinations. The only prior information used is the imprecise knowledge of the

angular sector of the desired signal and antenna array geometry, while the knowl-

edge of the presumed steering vector is not needed. Such MVDR RAB technique

can be mathematically formulated as a non-convex (due to an additional steering

vector normalization condition) QCQP problem.

Moreover, our specific optimization problem allows for an exact solution using,

for example, the duality theory [16], [54] or the iterative rank reduction technique

[106]. In the optimization context, we develop some new results when answering the

questions of (i) how to obtain a rank-one solution from a general-rank solution of the

relaxed problem algebraically and (ii) when it is guaranteed that the solution of the

relaxed problem is rank-one. The latter question, for example, is important because

it had been observed that the probability of obtaining a rank-one solution for the

class of problems similar to the one considered in this chapter is close to 1, while

the theoretical upper-bound suggests a significantly smaller probability [14], [130].

Our result proves the correctness of the experimental observations about the high

probability of a rank-one solution for the relaxed problem.

This chapter is organized as follows. A general notion of robustness and a unified

principle for MVDR RAB design are given in Section 5.1 and the existing MVDR

RAB techniques are summarized and shown to satisfy the general principle under

their specific notions of robustness. In Section 5.2, we formulate a new MVDR

RAB technique which uses as little as possible, imprecise, and easy to obtain prior

information. An analysis of the problem as well as some new optimization related

results are given in Section 5.3. Simulation results comparing the performance of

the proposed method to the existing methods are shown in Section 5.4. Finally,

Section 5.5 presents our conclusions.
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5.1 The unified principle to MVDR RAB design

The MVDR-SMI beamformer is known to be not robust to any imperfect knowledge

of the desired signal steering vector. Different RAB techniques have been developed

which use different specific notions of robustness. However, the general meaning

of robustness for any RAB technique is the ability to compute the beamfoming

vector so that the SINR is maximized despite possibly imperfect and little knowledge

of prior information. Specifically, the main cause of performance degradation of

MVDR-SMI beamformer is the situation when the desired signal steering vector is

mixed with any of the interference steering vectors. Thus, if with little and imperfect

prior information, an adaptive beamforming technique is able to estimate the desired

signal steering vector so that it does not converge to any of the interferences and

their linear combinations, such technique is called robust. Using this notion of

robustness, the unified principle to MVDR RAB design can be formulated as follows.

Use the standard MVDR-SMI beamformer (2.39) in tandem with steering vector

estimation based on some prior information. Difference between various MVDR

RAB techniques can be then shown to boil down to the differences in the assumed

prior information, the specific notions of robustness used, and the corresponding

steering vector estimation techniques used.

In this chapter, we consider the system model that was introduced in Subsec-

tion 2.3.1. As it was mentioned in Subsection 2.3.2, in the case of steering vector

mismatch δ, the beamformer output power can be also written as a function of δ as

P (δ) =
1

(p + δ)HR̂−1(p + δ)
. (5.1)

where a = p + δ is the actual steering vector and p is the presumed one. Then the

best estimate of δ, denoted as δ̂ (the estimate of a is â = p + δ̂), is the one which

maximizes (5.1) under the constraint that â does not converge to any interference

steering vectors and their linear combinations.

The well known MVDR RAB techniques are summarized in Table 5.1 where

the corresponding notions of robustness and prior information used by the tech-

niques are listed. In this table, the multi-rank beamformer matrix of the eigenvalue

beamforming method of [97] is computed as W = R̂−1Ψ(ΨHR̂−1Ψ)−1Q, where

Q is a data dependent left-orthogonal matrix, i.e., QHQ = I, Ψ is the linear sub-

space in which the desired signal is located. For resolving a signal with a rank-one

covariance matrix and an unknown but fixed angle of arrival, the columns of Q
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should be selected as the dominant eigenvectors of the error covariance matrix, i.e.,

Re = (ΨHR−1Ψ)−1. If it is assumed that the signal lies in a known subspace, but

the angle of arrival is unknown and unfixed (for example, it randomly changes from

snapshot to snapshot), it is the subdominant eigenvectors of the error covariance

matrix that should be used as the columns of the matrix Q.

It can be seen from Table 5.1 that the main problem for any MVDR RAB

technique is to estimate the steering vector, while avoiding its convergence to any of

the interferences and their linear combinations. It is achieved in different techniques

by exploiting different prior information and solving different optimization problems.

The complexity of the corresponding steering vector estimation problems can vary

from the complexity of eigenvalue decomposition to the complexity of solving QCQP

programming problem. All known MVDR RAB techniques require the knowledge of

the presumed steering vector that, in turn, implies that the antenna array geometry,

propagation media, and desired source characteristics such as the presumed angle of

arrival are known. Therefore, it is of great importance to develop an MVDR RAB

technique that requires as little as possible and easy to obtain prior information.

5.2 New beamforming problem formulation

For estimating the actual steering vector a, we first observe that the maximization

of the output power (5.1) is equivalent to the minimization of the denominator

of (5.1). One obvious constraint that must be imposed on the estimate â is the

norm constraint ‖â‖2 = M . To avoid the convergence of the estimate â to any of

the interference steering vectors and their linear combinations, we introduce a new

constraint in what follows.

In order to establish such a new constraint, we assume that the desired source is

located in the known angular sector of Θ = [θmin, θmax] which can be obtained, for

example, using low resolution direction finding methods. This angular sector is as-

sumed to be distinguishable from general locations of the interfering signals. Let C̃ =

UΛUH denote the eigenvalue decomposition of the matrix C̃ ,
∫

Θ̃ d(θ̃)dH(θ) dθ

where d(θ) is the steering vector associated with direction θ and having the struc-

ture defined by the antenna geometry, the sector Θ̃ is the complement of the sector

Θ, and U and Λ are unitary and diagonal matrices, respectively. Column i of the

unitary matrix U denoted as ui and the ith diagonal element of the diagonal ma-

trix Λ denoted as λi are, respectively, the ith eigenvector and the ith eigenvalue of
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Table 5.1: Different robust adaptive beamforming methods.

RAB Notion of
robustness

Assumptions/ Prin-
ciples

Method Prior Informa-
tion

Disadvantages

Eigenspace-
based beam-
former [94]

Projection
of the
presumed
steering
vector to
the signal-
plus-
interference
subspace

Signal-plus-
interference sub-
space denoted as E
is obtained through
eigendecomposition
of R̂

â = EEHp

weig = R̂−1â

The presumed
steering vector
p and the num-
ber of interfer-
ing signals

High prob-
ability of
subspace
swap and
incorrect esti-
mation of the
signal-plus-
interference
subspace di-
mension at
low SNR [95]

Worst-case-
based and
doubly con-
strained RAB
techniques [7],
[50], [53]

Presumed
steering
vector and
its un-
certainty
region

The actual steering
vector a is modeled
as a = p + δ where
δ is an unknown
deterministic norm-
bounded (‖δ‖ ≤ ε, ε
is some bound) mis-
match vector

max
σ2,â

σ2

subject to
R̂− σ2ââH≥0,
‖â−p‖ ≤ ε and
also ‖â‖2 = M
for doubly-
constrained
method

The presumed
steering vector
p and the
uncertainty
bounding value
ε

Difficult to
obtain ε in
practice

Probabilist-
ically con-
strained
RAB [52]

The non-
outage
probabil-
ity

The steering vec-
tor a is modeled as
a = p+δ where δ is
a random mismatch
vector with known
or worst-case distri-
bution

min
w

wHR̂w

subject to
Pr{|wHa|≥1}≥
p0

The presumed
steering vec-
tor p, the
preselected
non-outage
probability
value p0, and
possibly dis-
tribution of
δ

The value
p0 and the
mismatch
distributions
may not be
known

Eigenvalue
RAB of [97]

General as
in [55]

Steering vector lies
in a known signal
subspace and the
rank of the signal
correlation matrix is
known

min
W

tr{WHR̂W}
subject to
WHΨ = QH

The linear sub-
space in which
the desired sig-
nal is located
and the rank of
the desired sig-
nal covariance
matrix

Very specific
modeling of
the covariance
matrix. The
signal sub-
space has to
be known
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C̃. It is assumed without loss of generality that the eigenvalues λi, i = 1, · · · ,M
are ordered in the descending order, i.e., λi ≥ λi+1, i = 1, · · · ,M − 1. By split-

ting matrix U to the M × K matrix U1 and the M × (M − K) matrix U2 as

U = [U1 U2], the matrix C̃ can be decomposed as C̃ = U1Λ1U
H
1 + U2Λ2U

H
2 ,

where the K ×K diagonal matrix Λ1 contains the K dominant eigenvalues, while

the other (M−K)× (M−K) diagonal matrix Λ2 contains the M−K subdominant

eigenvalues. Since the matrix C̃ is computed by the integration over the comple-

ment of the desired sector, it can be concluded that for the properly chosen K,

the steering vector in the desired sector and its complement can be approximately

expressed as linear combinations of the columns of U2 and U1, respectively, that is,

d(θ) ∼= U2v2, θ ∈ Θ (5.2)

d(θ) ∼= U1v1, θ ∈ Θ̃ (5.3)

where v1 and v2 are some coefficient vectors.

Example 1: As an illustrative example, let us consider the squared norm of

the vectors that are obtained by projecting the vector d(θ) onto the subspaces

spanned by U1 and U2. Fig. 5.1 depicts such squared norms, i.e., ‖PU1
d(θ)‖2 =

‖U1U
H
1 d(θ)‖2 and ‖PU2

d(θ)‖2 = ‖U2U
H
2 d(θ)‖2, versus θ. The example set up is

the following. The angular sector is Θ = [−35◦,−15◦], K = 5, and M = 20. It can

be observed from the figure that the approximations (5.2) and (5.3) are accurate

and the squared norms of the projections of the vector d(θ) on U2 and U1, i.e.,

inside and outside of the desired sector, respectively, are almost equal to M .

Using (5.2) and (5.3), we know that ‖v1‖2 = M and ‖v2‖2 = M , and the

following equations are in order

dH(θ)C̃d(θ) ∼= (U1v1)
HC̃(U1v1)

= vH1 Λ1v1, θ ∈ Θ̃ (5.4)

dH(θ)C̃d(θ) ∼= (U2v2)
HC̃(U2v2)

= vH2 Λ2v2, θ ∈ Θ. (5.5)

Note that since Λ1 is the diagonal matrix of K dominant eigenvalues of C̃ and

Λ2 contains the remaining eigenvalues, the quadratic form dH(θ)C̃d(θ) takes larger

values outside of the desired sector. Based on this observation, the estimate â can be

forced not to converge to any vector with direction located within the complement
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Figure 5.1: Squared norm of the projection of vector d(θ) on the linear subspaces spanned by
the columns of U1 and U2 versus θ.

of Θ including the interference steering vectors and their linear combinations by

means of the following new constraint

âHC̃â ≤ ∆0 (5.6)

where ∆0 is a uniquely selected value for a given angular sector Θ, that is,

∆0 , max
θ∈Θ

dH(θ)C̃d(θ). (5.7)

Using the definition of ∆0 (5.7) together with (5.5), we can find that

∆0 = max
θ∈Θ

vH(θ)Λ2v(θ) ≤MλK+1. (5.8)

It is interesting that as compared to [55], where the number of K is required,

the proposed constraint (5.6) does not depend on K. In order to explain how the

constraint (5.6) avoids the convergence of the steering vector estimate to any linear

combination of the steering vectors of the interferences, let A , [a1, · · · ,aJ ] denote

a set of J plane wave steering vectors corresponding to the interferences that are

located outside of the desired sector. Using (5.2) and (5.3), these steering vectors

can be approximated as aj = U1rj, j = 1, · · · , J where rj , j = 1, · · · , J are some

K × 1 coefficient vectors. Then every linear combination of these steering vectors
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which has norm squared equal to M can be expressed as

f = Aη = U1z (5.9)

where η is a J×1 coefficient vector, z , [r1, · · · , rJ ]η, [r1, · · · , rJ ] is K×J matrix,

and ‖z‖2 = ‖a‖2 = M . Then the following is true

fHC̃f = (U1z)
HC̃U1z = zHΛ1z

≥ MλK ≥MλK+1 ≥ ∆0 (5.10)

where the last inequality follows from (5.8). In fact, (5.10) implies that f obtained

as a linear combination of all interference steering vectors does not satisfy the con-

straint (5.6). Thus, (5.6) prevents the convergence of the estimate â to any of the

interference steering vectors or their linear combination.

It is worth stressing that no restrictions/assumptions on the structure of the

interferences are needed. Moreover, the interferences do not need to have the same

structure as the desired signal. The constraint (5.6) does not use any of such infor-

mation. Indeed, interferences may have a rank-one or multi-rank covariance matrix.

Specifically, an interference source with a rank-one covariance matrix corresponds

to either a plane wave source or a locally coherent scattered source [120]. An inter-

ference source with a multi-rank covariance matrix corresponds, for example, to a

locally incoherent scattered source [97].

Steering vector of an interference with a locally coherent scattered source can

be expressed as [120]

ãi = ai +
T∑

l=1

ejψlb(θl) (5.11)

where ai corresponds to the direct path of the interference and b(θl), l = 1, · · · , T
correspond to the coherently scattered paths. Here b(θl) is a plane wave impinging

on the array from the direction θl which is fixed for different snapshots. The pa-

rameters ψl ∈ [0, 2π], l = 1, · · · , T denote the phase shift of different paths that are

also fixed for different snapshots. Thus, the spatial signature of a locally coherent

scattered source (5.11) is fixed over different snapshots and is a linear combination

of plane wave steering vectors. A normalized linear combination of plane wave steer-

ing vectors that all lie outside of the desired sector does not satisfy the quadratic

constraint (5.10). Thus, the interferences with rank-one covariance matrix will be

avoided by means of the new constraint (5.6).
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Steering vector of a locally incoherent scattered source is time-varying and can

be modeled as [97]

ãi(k) = s0(k)ai +

T∑

l=1

sl(k)b(θl) (5.12)

where sl(k), l = 0, · · · , T are independently and identically distributed (i.i.d.) zero-

mean random variables with variances νl, l = 0, · · · , T . The random variables sl(k)

change from snapshot to snapshot. The correlation matrix of a locally incoherent

scattered source (5.12) can be written as

Ri = ν0aia
H
i +

T∑

l=1

νlb(θl)b
H(θl). (5.13)

Based on (5.13), it can be concluded that a locally incoherent scattered source

is equivalent to T + 1 independent plane wave sources that impinge on the array

from T + 1 different directions. Thus, as long as all such plane waves lie outside

of the desired sector Θ, they do not satisfy the quadratic constraint (5.6) and the

interferences with multi-rank covariance matrix will be avoided as well by means of

the constraint (5.6).

To further illustrate how the constraint (5.6) works, let us consider the following

example.

Example 2: Consider a ULA of 10 omni-directional antenna elements spaced half

wavelength apart from each other. Let the range of the desired signal angular loca-

tions be Θ = [0◦, 10◦]. Fig. 5.2 depicts the values of the quadratic term dH(θ)C̃d(θ)

for different angles. The rectangular bar in the figure marks the directions within

the presumed angular sector Θ. It can be observed from this figure that the term

dH(θ)C̃d(θ) has the smallest values within the angular sector Θ and increases out-

side of the sector. Therefore, if ∆0 is selected to be equal to the maximum value of

the term dH(θ)C̃d(θ) within the presumed angular sector Θ, the constraint (5.6)

guarantees that the estimate of the desired signal steering vector does not converge

to any of the interference steering vectors and their linear combinations. It is worth

noting that dH(θ)C̃d(θ) = ∆0 must occur at one of the edges of Θ. However, the

value of the quadratic term at the other edge of Θ may be smaller than ∆0. There-

fore, we define another sector Θa ≥ Θ at which the equality dH(θ)C̃d(θ) = ∆0 holds

at both edges, i.e., the sector Θa is the actual sector at which the constraint (5.6)

must be satisfied.

In order to compute the matrix C̃, the presumed knowledge of the antenna
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Figure 5.2: Values of the term dH(θ)C̃d(θ) in the constraint (5.6) for different angles.

array geometry is required. Due to the imperfect array calibration, the precise

knowledge of the antenna array geometry may be unavailable. If array perturbation

is present, the curve for the quadratic form dH(θ)C̃d(θ) versus θ can deviate from

the one drawn under the assumption of no array perturbation. This situation is

demonstrated in Fig. 5.3 which depicts the quadratic term dH(θ)C̃d(θ) versus θ

in the presence and in the absence of array perturbations. Although the angular

sector Θa computed for a given ∆0 using (5.7) under the assumption of no array

perturbation may change if the array is perturbed, the constraint (5.6) still remains

precise as long as Θa contains the desired signal and does not contain any interfering

sources. Therefore, an inaccurate information about the antenna array geometry is

sufficiently good. In fact, in one of our simulation examples we show that even if the

perturbations of the antenna array geometry are the highest possible, the constraint

(5.6) remains precise.

Taking into account the normalization constraint and the constraint (5.6), the

problem of estimating the desired signal steering vector based on the knowledge of
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Figure 5.3: Comparison between the quadratic term dH(θ)C̃d(θ) with and without array
perturbations.

the sector Θ can be formulated as the following optimization problem

min
â

âHR̂−1â

subject to ‖â‖2 = M

âHC̃â ≤ ∆0. (5.14)

Unlike the last constraint in the problem (2.46) which was used for avoiding the noise

power magnification, the second constraint in (5.14) is enforcing â not to converge to

any steering vector associated with the interferences and their linear combinations.

Compared to the other MVDR RAB methods, which require the knowledge of the

presumed steering vector and, thus, the knowledge of the presumed antenna array

geometry, propagation media, and source characteristics, only imprecise knowledge

of the antenna array geometry and approximate knowledge of the angular sector Θ

are needed for the proposed method.

Due to the non-convex equality constraint in problem (5.14), the QCQP problem

(5.14) is non-convex. Although the problem (5.14) is non-convex, the strong duality

holds for the problems of this type and, thus, the solution based on SDR is the exact

one. In the following section we develop some new results regarding this problem

while looking for a new algebraic way of finding the rank-one solution from the
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general-rank solution of the relaxed problem. We also obtain the condition under

which the solution of the relaxed problem is guaranteed to be rank-one.

It is interesting that the steering vector estimation problem in [55] can be also

expressed as a QCQP problem that makes it possible to find a much simpler solu-

tion than the sequential quadratic programming of [55] and draw some insightful

connections to the newly proposed problem (5.14). Let us first find the set of vectors

satisfying the constraint P⊥â = 0 in problem (2.46). Note that P⊥â = 0 implies

that â = LLH â where L has been defined after equation (2.45) and, therefore, we

can write that

â = Lb (5.15)

where b is an L× 1 complex valued vector. Using (5.15), the optimization problem

for estimating the steering vector in [55], i.e., (2.46), can be equivalently rewritten

in terms of b as

min
b

bHLHR̂−1Lb

subject to ‖b‖2 = M

bHLHC̃Lb ≤ pHC̃p (5.16)

which is a QCQP problem. Thus, as compared to (5.16), where the constraint

P⊥â = 0 enforces the estimated steering vector to be a linear combination of L

dominant eigenvectors [l1, . . . , lL], the steering vector in (5.14) is not restricted by

such requirement, while the convergence to any of the interference steering vectors

and their linear combinations is avoided by means of the constraint (5.6). As a

result, the problem (5.14) has more degrees of freedom. Thus, it is expected that

the new RAB method will outperform the one of [55].

As it has been explained in [55], the solution of the problem (2.46) leads to a bet-

ter performance for the corresponding RAB compared to the other RAB techniques

and, particularly, the worst-case-based and probabilistically constrained techniques.

This performance improvement is the result of forming the beam toward a single cor-

rected steering vector yielding maximum output power, while the worst-case-based

method maximizes the output power for all steering vectors in its corresponding

uncertainty set. Thus, despite a significantly more relaxed assumptions on the prior

information, the performance of the new MVDR RAB technique based on (5.14) is

expected to be superior to that of the other RAB techniques.
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5.3 Steering vector estimation via SDP relaxation

The first step is to make sure that the problem (5.14) is feasible. Fortunately, it can

be easily verified that (5.14) is feasible if and only if ∆0/M is greater than or equal

to the smallest eigenvalue of the matrix C̃. Indeed, if the smallest eigenvalue of C̃ is

larger than ∆0/M , then the second constraint of (5.14) can not be satisfied for any

estimate â. The selection of ∆0 according to (5.7) satisfies the feasibility condition

that guarantees the feasibility of (5.14).

5.3.1 SDP relaxation

If the problem (5.14) is feasible, the equalities âHR̂−1â = tr{R̂−1ââH} and âHC̃â =

tr{C̃ââH} can be used to rewrite it as

min
â

tr{R̂−1ââH}

subject to tr{ââH} = M

tr{C̃ââH} ≤ ∆0. (5.17)

Introducing the following positive semi-definite matrix variable A , ââH , A � 0,

the problem (5.17) can be recast as

min
A

tr{R̂−1A}

subject to tr{A} = M

tr{C̃A} ≤ ∆0

rank{A} = 1. (5.18)

The only non-convex constraint in (5.18) is the rank-one constraint while all other

constraint functions and the objective function are linear with respect to A. Using

the SDP relaxation technique, the relaxed problem can be obtained by dropping

the non-convex rank-one constraint and requiring that A � 0. Thus, the problem

(5.18) is replaced by the following relaxed convex problem

min
A

tr{R̂−1A}

subject to tr{A} = M

tr{C̃A} ≤ ∆0

A � 0. (5.19)
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5.3.2 Rank of the optimal solution

If ∆0 is selected differently from (5.7), the original problem may be infeasible, while

the relaxed one is feasible. However, by using the Lemma 3.1, the exact equivalence

between the feasibility of the original and relaxed problem is concluded. In other

words, the problem (5.19) is feasible if and only if the problem (5.14) is feasible.

If the optimal solution A of the relaxed problem (5.19) is a rank-one matrix, then

the principal eigenvector of A scaled by the square root of the largest eigenvalue is

the exact solution of the problem (5.14). However, even if A is not rank-one, it has

been shown in [16], [54] that the rank-one solution for the problems of type (5.14) can

be found using the duality theory based on the fact that the strong duality holds

for such problems. Moreover, the rank-one solution can be found using the well

known rank reduction technique [106]. A new algebraic way of extracting the rank-

one optimal solution of the problem (5.14) from the non-rank-one optimal solution

of the problem (5.19) is summarized by means of the following new constructive

theorem.

Theorem 5.1. Let A∗ be the rank r optimal minimizer of the relaxed problem

(5.19), i.e., A∗ = YYH where Y is an M × r full rank matrix. If r = 1, the

optimal solution of the original problem simply equals Y. Otherwise, it equals Yv

where v is an r × 1 vector such that ‖Yv‖ =
√
M and vHYHC̃Yv = tr{YHC̃Y}.

One possible solution for the vector v is proportional to the sum of the eigenvectors

of the following r × r matrix

D =
1

M
YHY − YHC̃Y

tr{YHC̃Y}
. (5.20)

Proof: See Appendix A.

One more important question is under which condition the solution of the relaxed

problem (5.19) is always rank-one. The importance of this question also follows

from the fact that it has been observed that the probability of obtaining a rank-one

solution for the class of considered problems is close to 1, while the theoretical upper-

bound suggests a significantly smaller probability [14]. Our next result precisely

explains and approves the correctness of the experimental observation about the

high probability of the rank-one solution for the relaxed problem (5.19).

It is worth noting that any phase rotation of â does not change the SINR at the

output of the corresponding RAB. Therefore, we say that the optimal solution â is
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unique when the value of the output SINR or output power (5.1) is the same for

any â′ = âejφ. Then the following lemma holds.

Lemma 5.1. Under the condition that the solution of the original problem (5.14)

is unique in the sense mentioned above, the solution of the relaxed problem (5.19)

always has rank one.

Proof: See Appendix B

Under the condition of Lemma 5.1, the solution of (5.19) is rank-one and the

solution of (5.14) can be found as a scaled version of the dominant eigenvector of

the solution of (5.19). If the uniqueness condition of Lemma 5.1 is not satisfied for

(5.14), we resort to the constructive result of Theorem 5.1 for finding the rank-one

solution of (5.14) algebraically. An example of a situation when the condition of

Lemma 5.1 is not satisfied is given next. In general, such situations are rare that,

in fact, has been also observed by means of simulations in other works.

Example 3: Let us consider a ULA with 10 omni-directional antenna elements.

The presumed direction of arrival of the desired user is assumed to be θp = 3◦

with no interfering sources and the range of the desired signal angular locations is

equal to Θ = [θp − 12◦, θp + 12◦]. The actual steering vector of the desired user is

perturbed due to the incoherent local scattering effect and it can be expressed as

ã(k) = v0(k)p + v1(k)b, where p = d(3◦) is the steering vector of the direct path,

b is the steering vector of the scattered path, and v0(k) and v1(k) are i.i.d. zero

mean complex Gaussian random variables with unit variance which change from

snapshot to snapshot. If b is orthogonal to p, that is the case when b is selected as

d(−8.4916◦), both p and b are the eigenvectors of the matrix R−1 which correspond

to the smallest eigenvalue. Since, these vectors satisfy the constraints the constraints

of the problem (5.14) and correspond to the minimum eigenvalue, both of them are

optimal solutions of (5.14). Thus, the solution of (5.14) is not unique.

5.4 Simulation results

Throughout the simulations, a ULA of 10 omni-directional antenna elements with

the inter-element spacing of half wavelength is considered unless otherwise is spec-

ified. Additive noise in antenna elements is modeled as spatially and temporally

independent complex Gaussian noise with zero mean and unit variance. Two inter-

fering sources are assumed to impinge on the antenna array from the directions 30◦
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and 50◦, while the presumed direction towards the desired signal is assumed to be

θp = 3◦ unless otherwise is specified. In all simulation examples, the interference-

to-noise ratio (INR) equals 30 dB and the desired signal is always present in the

training data. For obtaining each point in the curves, 100 independent runs are

used.

The proposed beamformer is compared with the following four methods in terms

of the output SINR: (i) the eigenspace-based beamformer of [94], (ii) the worst-case-

based RAB of [7], (iii) the beamformer of [55], and (iv) the diagonally loaded SMI

(LSMI) beamformer [46]. Moreover, in the last simulation example, a comparison is

made with the multi-rank eigenvalue beamformer of [97]. For the proposed beam-

former and the beamformer of [55], the angular sector of interest Θ is assumed to be

Θ = [θp−5◦, θp +5◦]. The CVX MATLAB toolbox is used for solving the optimiza-

tion problem (5.19). The value δ = 0.1 and 8 dominant eigenvectors of the matrix

C are used in the beamformer of [55] and the value ε = 0.3M is used for the worst-

case-based beamformer as it has been recommended in [7]. The dimension of the

signal-plus-interference subspace is assumed to be always estimated correctly for the

eigenspace-based beamformer of [94]. Diagonal loading factor of the SMI beaformer

is selected as twice the noise power as recommended by Cox et al. in [46].

5.4.1 Example 1 : Exactly known signal steering vector

In this example, we consider the case when the actual steering vector is known

exactly. Even in this case, the presence of the desired signal in the training data

can substantially reduce the convergence rates of adaptive beamforming algorithms

as compared to the signal-free training data case [48].

In Fig. 5.4, the mean output SINRs for the four methods tested are illustrated

versus the number of training snapshots for the fixed single-sensor SNR = 20 dB.

Fig. 5.5 displays the mean output SINR of the same methods versus the SNR for

fixed training data size of K = 30. It can be seen from these figures that the

proposed beamforming technique outperforms the other techniques. Only in the

situation when the number of snapshots is larger than 70, the technique of [55]

results in slightly better performance. It is because if the desired signal steering

vector is known precisely, the only source of error is the finite sample size used,

but the difference between the sample data covariance matrix and the theoretical

data covariance matrix due to finite sample size can be equivalently transferred to
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the error in the steering vector [48]. Therefore, as the number of samples increases

and the variance of the steering vector mismatch decreases, the estimator with

more restrictive constraints, that is the one of [55], may indeed result in a better

performance.
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Figure 5.4: Example 1: Output SINR versus training sample size K for fixed SNR = 20 dB
and INR = 30 dB.

5.4.2 Example 2 : Desired signal steering vector mismatch due to
wavefront distortion

In the second example, we consider the situation when the signal steering vector is

distorted by wave propagation effects in an inhomogeneous medium. Specifically,

independent-increment phase distortions are accumulated by the components of the

presumed steering vector. It is assumed that the phase increments remain fixed in

each simulation run and are independently chosen from a Gaussian random generator

with zero mean and standard deviation 0.04.

The output SINR curves for the proposed, SMI, and worst-case-based methods

are shown versus the SNR for fixed training data size K = 30 in Fig. 5.6. It can

be seen that the proposed beamforming technique outperforms the worst-case-based

one at low and moderate SNRs. However, when SNR is much larger than INR so that

signal-to-interference ratio goes to infinity, the proposed and the worst-case-based

MVDR RAB techniques perform almost equivalently. Indeed, in the latter case, it is

90



−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

25

30

SNR (dB)

O
ut

pu
t S

IN
R

 (
dB

)

 

 

Optimal SINR
Worst−Case−Based Beamformer
Eigenspace−Based Beamformer
Proposed Beamformer
Beamformer of 
LSMI Beamformer

[55]

Figure 5.5: Example 1: Output SINR versus SNR for training data size of K = 30 and
INR = 30 dB.

guaranteed that the estimate of the desired signal steering vector does not converge

to an interference steering vector and, thus, the second constraint of (5.14) is never

active and can be dropped. The solution of the problem (5.14) without considering

the second constraint is â =
√
MP(R̂−1). However, the problem (5.14) without

the second constraint coincides with the problem [53, (39)] obtained after dropping

the constraint ‖δ‖ ≤ ε. Thus, the proposed and the worst-case-based MVRD RAB

techniques should indeed yield the same solution w1 = R̂−1P

{

R̂−1
}

.

5.4.3 Example 3 : Effect of the error in the knowledge of the an-
tenna array geometry

In this example, we first aim at checking how the presence of antenna array per-

turbations affect the sector Θa. Specifically, we want to characterize quantitatively

the dependence of Θa on the level of antenna array perturbations, which grows from

zero to its maximum value, for a given ∆0. The presumed angular sector is assumed

to be [0◦, 10◦] for θp = 5◦. Let the antenna array perturbations be caused by errors

in the antenna element positions which are drawn uniformly from [−α, α] where α is

the level of perturbations measured in wavelength. Table 5.2 illustrates the average

width of Θa for different values of α. It can be seen from this table that the deviation

of Θa due to array perturbations compared to the case of no perturbations is 0% for
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Figure 5.6: Example 2: Output SINR versus SNR for training data size of K = 30 and
INR = 30 dB.

small perturbations and near 0% even for the highest levels of perturbations. Here

the term ‘deviation’ stands for the percent of non-overlap between angular sectors

corresponding to the cases of no perturbations and perturbations present. Based

on this observation, one can conclude that the matrix C̃ required for implementing

the constraint (5.6) can be computed using the presumed array geometry which is

not required to be precise and can be, in fact, very approximate. It is worth noting

that we also observed throughout extensive simulations that if the sector Θ gets

away from the broadside (it is near −90◦ or 90◦), then the length of the associated

sector Θa increases. Such increase can be noticeable especially when the number

of antenna elements in the antenna array is small. To avoid the situation when Θa

may contain interference sources because of its bigger size, the presteering filter-type

technique [121] can be used, for example, to ensure that the center of the sector Θ

for the signal at the output of the presteering filter is around the broadside.

We also study the effect of the error in the knowledge of antenna array geometry

used for the computation of the matrix C̃ on the performance of the proposed

MVDR RAB technique. The difference between the presumed and actual positions

of each antenna element is modeled as a uniform random variable distributed in the

interval [−0.05, 0.05] measured in wavelength. In addition to the antenna element
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Table 5.2: Width of the feasible set Θa versus the level of perturbations α.

Level of perturba-
tions α

0 0.05 0.1 0.15 0.2 0.25

Width of Θa 10.80◦ 10.80◦ 10.72◦ 10.57◦ 10.53◦ 10.42◦

Deviation(%) 0% 0% 0.7% 2.06% 2.48% 3.48%

displacements, the signal steering vector is distorted as in our Simulation Example 2.

Figs. 5.7 and 5.8 depict the output SINR performance of the RAB techniques tested

versus the number of training snapshots for fixed single-sensor SNR= 20 dB and

versus the SNR for fixed training data size K = 30, respectively. As it can be

observed from the figures, the proposed method has a better performance even if

there is an error in the knowledge of the antenna array geometry.
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Figure 5.7: Example 3: Output SINR versus training sample size K for fixed SNR = 20 dB
and INR = 30 dB for the case of perturbations in antenna array geometry.

5.4.4 Example 4 : Desired signal steering vector mismatch due to
coherent local scattering [120]

In this example, the desired signal steering vector is distorted by local scattering

effects so that the actual steering vector is formed by five signal paths as a =

p +
∑4

i=1 e
jψib(θi) where p corresponds to the direct path and b(θi), i = 1, 2, 3, 4

correspond to the coherently scattered paths. The ith path b(θi) is modeled as a
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Figure 5.8: Example 3: Output SINR versus SNR for training data size of K = 30 and
INR = 30 dB for the case of perturbations in antenna array geometry.

plane wave impinging on the array from the direction θi. The angles θi, i = 1, 2, 3, 4

are independently drawn in each simulation run from a uniform random generator

with mean 3◦ and standard deviation 1◦. The parameters ψi, i = 1, 2, 3, 4 represent

path phases that are independently and uniformly drawn from the interval [0, 2π]

in each simulation run. Note that θi and ψi, i = 1, 2, 3, 4 change from run to run

but do not change from snapshot to snapshot.

Fig. 5.9 displays the output SINR performance of all four methods tested versus

the number of training snapshots K for fixed single-sensor SNR = 20 dB. Note that

the SNR in this example is defined by taking into account all signal paths. The

output SINR performance of the same methods versus SNR for the fixed training

data size K = 30 is displayed in Fig. 5.10. Similar to the previous example, the

proposed beamformer significantly outperforms other beamformers due to its abil-

ity to estimate the desired signal steering vector with higher accuracy than other

methods. As compared to the eigespace-based method, the proposed technique does

not suffer from the subspace swap phenomenon at low SNRs since it does not use

eigenvalue decomposition of the sample covariance matrix.
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Figure 5.9: Example 4: Output SINR versus training sample size K for fixed SNR = 20 dB
and INR = 30 dB.

5.4.5 Example 5 : Comparison with eigenvalue beamforming-based
methods of [97]

In this example, we consider the case where the desired and interference signals have

the same structure and are modeled as signals with a rank-one covariance matrix

from a p-dimensional subspace. Specifically, the model introduced in [97] for the

desired and interference signals is adopted. The corresponding steering vector of

the desired and interference signals are all modeled as s = Ψb0s where Ψ is an

M × p (p < M) matrix whose columns are orthogonal (ΨHΨ = Ip×p) and b0 is an

unknown but fixed vector from one snapshot to another. The matrix Ψ (different

for each signal) is obtained by choosing p = 3 dominant eigenvectors of the matrix
∫ φp+∆φ
φp−∆φ d(θ)dH(θ)dθ as the columns of Ψ where φp denotes the presumed location of

the source and ∆φ equals to 5◦ for all the signals. In order to satisfy the assumption

of the proposed RAB which requires the desired user to lie inside the desired sector,

the number of the antenna elements is taken to be equal to M = 30. Note that if

M = 10 the matrix
∫ φ+∆φ
φ−∆φ d(θ)dH(θ)dθ does not have three dominant eigenvectors.

To obtain the signal subspace which corresponds to the desired signal, we find

the maximum of the bearing pattern response defined as

P0(θ) = tr
{
QH(ΨH(θ)R−1Ψ(θ))−1Q

}
(5.21)
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Figure 5.10: Example 4: Output SINR versus SNR for training data size of K = 30 and
INR = 30 dB.

in the desired sector where Ψ(θ) is the orthogonal matrix whose columns are equal

to the three dominant eigenvectors of the M × p matrix
∫ θ+∆φ
θ−∆φ d(θ)dH(θ)dθ [97].

Fig. 5.11 shows the sample bearing pattern response. As it is expected, the maximum

occurs exactly around 3◦.

It is noteworthy to mention that the proposed RAB, the RAB of [55], and the

eigenvalue beamformer of [97] all use the knowledge of approximate antenna array

geometry. In order to evaluate how the error in the knowledge of antenna array

geometry affects these methods, two different cases are considered. In the first

case, knowledge of antenna array geometry is accurate while in the second case,

antenna array perturbations are considered. Similar to our Simulation Example 3,

antenna array perturbations are modeled as errors in the antenna element positions

which are drawn uniformly from the interval [−0.05, 0.05] measured in wavelength.

For the multi-rank beamformer of [97], we use tr{WHRsW}/tr{WHRi+nW} as

the output SINR where Rs denotes the correlation matrix of the desired signal.

Figs. 5.12 and 5.13 illustrate the performance of the aforementioned methods for the

cases when the knowledge of antenna array geometry is accurate and approximate,

respectively. The best performance by the eigenvalue beamformer of [97] is obtained

when Q only contains the most dominant eigenvector of the error covariance matrix.
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As it can be seen from the figures, the proposed RAB method outperforms all other

RAB methods.
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Figure 5.11: Example 5: Bearing beampattern corresponding to the eigenvalue beamforming
method of [97].

5.5 Chapter summary

The MVDR RAB techniques have been considered from the viewpoint of a single

unified principle, that is, to use standard MVDR beamfoming in tandem with an

estimate of the signal steering vector found based on some prior information. It has

been demonstrated that differences between various MVDR RAB techniques occur

only because of the differences in the assumed prior information and the correspond-

ing signal steering vector estimation techniques. The latter fact has motivated us

to develop a new MVDR RAB technique that uses as little as possible, imprecise,

and easy to obtain prior information. The new MVDR RAB technique, which as-

sumes only an imprecise knowledge of antenna array geometry and angular sector

in which the actual steering vector lies, has been developed. It is mathematically

expressed as the well known non-convex QCQP problem with one convex quadratic

inequality constraint and one non-convex quadratic equality constraint. A num-

ber of methods for finding efficiently the exact optimal solution for such problem

is known. In addition to the existing methods, we have developed a new algebraic
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Figure 5.12: Example 5: Output SINR versus SNR for training data size of K = 30 and
INR = 30 dB.

method of finding the rank-one solution from the general-rank solution of the re-

laxed problem. The condition under which the solution of the relaxed problem is

guaranteed to be rank-one has been also derived. Our simulation results demon-

strate the superior performance for the proposed MVDR RAB technique over the

existing state-of-the-art RAB methods.
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Figure 5.13: Example 5: Output SINR versus SNR for training data size of K = 30 and
INR = 30 dB.
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Chapter 6

Robust Adaptive Beamforming
for General-Rank Signal Model
with Positive Semi-Definite
Constraint

In the previous chapter, we introduced a unified principle for the MVDR RAB design

problem. Based on the newly introduced unified principle, we then developed a new

approach to RAB problem in the presence of signal steering vector mismatches. The

newly developed approach had the advantage of using as little as possible and easy

to obtain prior information. The RAB methods that were discussed and established

in the previous chapter are based on the point source signal model assumption,

i.e., when the rank of the desired signal covariance matrix is equal to one [49] –

[52]. Despite the excellent robustness of these methods against mismatches of the

underlying point source assumption, they do not provide enough robustness when

the rank of the desired signal covariance matrix is higher than one. Therefore in

this chapter, we consider the RAB problem when the rank of the source covariance

matrix is higher than one.

The RAB for the general-rank signal model based on the explicit modeling of the

error mismatches has been developed in [8] based on the worst-case performance op-

timization principle. Although the RAB of [8] has a simple closed-form solution, it

is overly conservative because the worst-case correlation matrix of the desired signal

may be negative definite [10], [56] (see also Subsection 2.3.3). Thus, less conserva-

tive approaches have been developed in [10], [56] by considering an additional PSD

constraint to the worst-case signal covariance matrix. The major shortcoming of the

RAB methods of [10], [56] is that they find only a suboptimal solution and there may
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be a significant gap to the globally optimal solution. For example, the RAB of [10]

finds a suboptimal solution in an iterative way, but there is no guarantee that such

iterative method converges [56]. A closed-form approximate suboptimal solution is

proposed in [122], however, this solution may be quite far from the globally optimal

one as well. All these shortcomings motivate us to look for new efficient ways to

solve the aforementioned non-convex problem hopefully globally optimally.

Interestingly, the resulted non-convex optimization problem is a special case of

the general form of the QCQP problems (3.1) that was introduced in Chapter 3 of

this thesis. As a result, we can solve the corresponding non-convex optimization

problem by means of the POTDC algorithm (see Subsection 3.1.1). Specifically,

the original non-convex optimization problem is first recast as the minimization of

a one-dimensional optimal value function. Although the corresponding optimiza-

tion problem of the newly introduced optimal value function is non-convex, it is

then replaced with another equivalent function. The optimization problem that

corresponds to such new optimal value function is convex and can be solved effi-

ciently. The new one-dimensional optimal value function is then minimized using

the POTDC algorithm. The point found by the POTDC algorithm for RAB of

general-rank signal model with positive semi-definite constraint is guaranteed to be

a KKT point. We prove a number of results that lead us to the equivalence between

the claim of global optimality for the POTDC algorithm as applied to the problem

under consideration and the convexity of the newly obtained one-dimensional op-

timal value function. The latter convexity of the newly obtained one-dimensional

optimal value function can be checked numerically by using the convexity on lines

property of convex functions. The fact that enables such numerical check is that the

argument of such optimal value function is proved to take values only in a closed

interval. In addition, we also develop tight lower-bound for such optimal value

function that is used in the simulations for further confirming global optimality of

the POTDC method. The rest of the chapter is organized as follows. Problem is

formulated in Section 6.1. A new method is developed in Section 6.2 followed by

simulation results in Section 6.3. Finally, Section 6.4 presents our conclusions.
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6.1 Problem formulation

Decomposing Rs as Rs = QHQ, the RAB problem for a norm-bounded mismatch

‖∆‖ ≤ η to the matrix Q is given as [10]

min
w

max
‖∆2‖≤γ

wH(R̂ + ∆2)w

subject to min
‖∆‖≤η

wH(Q+∆)H(Q+∆)w≥1. (6.1)

Note that the norm-bounded mismatch to the matrix Q has been first adopted in

[10]. For every ∆ in the optimization problem (6.1) whose norm is less than or equal

to η, the expression wH(Q+∆)H(Q+∆)w≥ 1 represents a non-convex quadratic

constraint with respect to w. Because there exists infinite number of mismatches

∆, there also exists infinite number of such non-convex quadratic constraints. By

finding the minimum possible value of the quadratic term wH(Q+∆)H(Q+∆)w

with respect to ∆ for a fixed w, the infinite number of such non-convex quadratic

constraints can be replaced with a single constraint. For this goal, we consider the

following optimization problem

min
∆

wH(Q+∆)H(Q+∆)w

subject to ‖∆‖2 ≤ η2. (6.2)

This problem is convex and its optimal value can be expressed as a function of w

as given by the following lemma.

Lemma 6.1. The optimal value of the optimization problem (6.2) as a function of

w is equal to

min
‖∆‖2≤η2

wH(Q+∆)H(Q+∆)w=

{
(‖Qw‖ − η‖w‖)2, ‖Qw‖ ≥ η‖w‖
0, otherwise.

(6.3)

Proof: See Appendix C.

Maximum of the quadratic term wH(R̂+∆2)w with respect to ∆2, ‖∆2‖ ≤ γ

that appears in the objective of the problem (6.1) can be easily derived as wH(R̂+

γI)w. It is obvious from (6.3) that the desired signal can be totally removed from

the beamformer output if ‖Qw‖ < η‖w‖. Based on the later fact, ‖Qw‖ − η‖w‖
should be greater than or equal to zero. For any such w, the new constraint in

the optimization problem (6.1) can be expressed as ‖Qw‖ − η‖ w‖ ≥ 1. Since
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‖Qw‖−η‖w‖ ≥ 1 also implies that ‖Qw‖−η‖w‖ ≥ 0, the RAB problem (6.1) can

be equivalently rewritten as

min
w

wH(R̂ + γI)w

subject to ‖Qw‖ − η‖w‖ ≥ 1 . (6.4)

Due to the non-convex DC constraint, the problem (6.4) is non-convex DC pro-

gramming problem. DC optimization problems are believed to be NP-hard in gen-

eral [32], [33]. There is a number of methods that can be applied to address DC

problem of type (6.4) in the literature. Among these methods are the general-

ized polyblock algorithm, the extended general power iterative algorithm [28], DC

iteration-based method [123], etc. However, the existing methods do not guarantee

to find the solution of (6.4), i.e., to converge to the global optimum of (6.4), in poly-

nomial time. This means that the problem (6.4) may be NP-hard. The best what

is possible to show, for example, for the DC iteration-based method is that it can

find a KKT point. The overall computational complexity of the DC iteration-based

method can be, however, quite high because the number of iterations required to

converge grows dramatically with the dimension of the problem.

Recently, the problem (6.4) has also been suboptimally solved using an iterative

SDR-based algorithm in [10] which also does not result in the globally optimal

solution and for which the convergence even to a KKT point is not guaranteed. A

closed-form suboptimal solution for the aforementioned non-convex DC problem has

been also derived in [122]. Despite its computational simplicity, the performance of

the method of [122] may be far from the global optimum and even the KKT point.

Another iterative algorithm has been proposed in [56], but it modifies the problem

(6.4) and solves the modified problem instead which again gives no guarantees for

finding the globally optimal solution of the original problem (6.4). In what follows,

we develop a new polynomial time algorithm for addressing the DC programming

problem of (6.4) by means of the POTDC algorithm.
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6.2 New proposed method

By introducing the auxiliary optimization variable α ≥ 1 and setting ‖Qw‖ =
√
α,

the problem (6.4) can be equivalently rewritten as

min
w,α

wH(R̂ + γI)w

subject to wHQHQw = α

wHw ≤ (
√
α− 1)2

η2
, α ≥ 1. (6.5)

Note that α is restricted to be greater than or equal to one because ‖Qw‖ is greater

than or equal to one due to the constraint of the problem (6.4). For future needs,

we find the set of all α’s for which the optimization problem (6.5) is feasible. Let

us define the following set for a fixed value of α ≥ 1,

S(α) , {w | wHw ≤ (
√
α− 1)2/η2}. (6.6)

It is trivial that for every w ∈ S(α), the quadratic term wHQHQw is non-negative

as QHQ is a positive semi-definite matrix. Using the minimax theorem [124], it can

be easily verified that the maximum value of the quadratic term wHQHQw over

w ∈ S(α) is equal to
(
(
√
α− 1)2/η2

)
· λmax{QHQ} and this value is achieved by

wα =

√
α− 1

η
P{QHQ} ∈ S(α). (6.7)

Here λmax{·} stands for the largest eigenvalue operator. Due to the fact that for any

0 ≤ β ≤ 1, the scaled vector βwα lies inside the set S(α) (6.6), the quadratic term

wHQHQw can take values only in the interval [0,
(
(
√
α− 1)2/η2

)
· λmax{QHQ}]

over w ∈ S(α).

Considering the later fact and also the optimization problem (6.5), it can be

concluded that α is feasible if and only if α ∈ [0,
(
(
√
α− 1)2/η2

)
· λmax{QHQ}]

which implies that
(
√
α− 1)2

η2
· λmax{QHQ} ≥ α (6.8)

or, equivalently, that
(
√
α− 1)2

α
≥ η2

λmax{QHQ} . (6.9)

The function (
√
α− 1)2/α is strictly increasing and it is also less than or equal

to one for α ≥ 1. Therefore, it can be immediately found that the problem (6.5) is

infeasible for any α ≥ 1 if λmax{QHQ} ≤ η2. Thus, hereafter, it is assumed that
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λmax{QHQ} > η2. Moreover, using (6.9) and the fact that the function (
√
α−1)2/α

is strictly increasing, it can be found that the feasible set of the problem (6.5)

corresponds to

α ≥ 1
(

1− η√
λmax{QHQ}

)2 ≥ 1. (6.10)

As we will see in the following sections, for developing a lower-bound for the

problem (6.5), an upper-bound for the optimal value of α in (6.5) is needed. Such

upper-bound is obtained in terms of the following lemma.

Lemma 6.2. The optimal value of the optimization variable α in the problem (6.5)

is upper-bounded by λmax

{

(R̂ + γI)−1QHQ
}

wH
0 (R̂ + γI)w0, where w0 is any ar-

bitrary feasible point of the problem (6.5).

Proof: See Appendix D.

Using Lemma 6.2, the problem (6.5) can be equivalently stated as

min
θ1≤α≤θ2

Inner Problem
︷ ︸︸ ︷

min
w

wH(R̂ + γI)w

subject to wHQHQw= α,

wHw≤ (
√
α−1)2

η2
(6.11)

where

θ1 =
1

(

1− η√
λmax{QHQ}

)2 (6.12)

and

θ2 = λmax

{

(R̂ + γI)−1QHQ
}

wH
0 (R̂ + γI)w0. (6.13)

For a fixed value of α, the inner optimization problem in (6.11) is non-convex with

respect to w. Based on the inner optimization problem in (6.11) when α is fixed,

we define the following optimal value function

h(α) ,

{

min
w

wH(R̂+γI)w | wHQHQw= α,wHw≤ (
√
α−1)2

η2

}

,

θ1 ≤ α ≤ θ2. (6.14)

Using the optimal value function (6.14), the problem (6.11) can be equivalently

expressed as

min
α

h(α) subject to θ1 ≤ α ≤ θ2. (6.15)
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The corresponding optimization problem of h(α) for a fixed value of α is non-

convex. In what follows, we aim at replacing h(α) with an equivalent optimal value

function whose corresponding optimization problem is convex.

Introducing the matrix W , wwH and using the fact that for any arbitrary ma-

trix A, wHAw = tr{AwwH}, the optimal value function (6.14) can be equivalently

recast as

h(α) =
{

min
W

tr
{
(R̂ + γI)W

}
| tr{QHQW} = α,

tr{W}≤ (
√
α−1)2

η2
, W � 0, rank{W} = 1

}

, θ1 ≤ α ≤ θ2
(6.16)

By dropping the rank-one constraint in the corresponding optimization problem of

h(α) when α is fixed, (θ1 ≤ α ≤ θ2), a new optimal value function denoted as k(α)

can be defined as

k(α) ,

{

min
W

tr
{
(R̂ + γI)W

}
| tr{QHQW} = α,

tr{W}≤ (
√
α−1)2

η2
, W � 0

}

, θ1 ≤ α ≤ θ2.

(6.17)

For brevity, we will refer to the optimization problems that correspond to the

optimal value functions h(α) and k(α) when α is fixed, as the optimization problems

of h(α) and k(α), respectively. Although the corresponding optimization problem

of h(α) and k(α) have different convexity properties, they are indeed equivalent,

i.e., h(α) = k(α) for any α ∈ [θ1, θ2] according to the Lemma 3.1 and Theorem 3.1.

Furthermore, based on the optimal solution of the optimization problem of k(α)

when α is fixed, the optimal solution of the optimization problem of h(α) can be

constructed.

Using the equivalence between the aforementioned optimal value functions, the

original problem (6.15) can be expressed as

min
α

k(α) subject to θ1 ≤ α ≤ θ2. (6.18)

It is noteworthy to mention that based on the optimal solution of (6.18) denoted

as αopt, we can easily obtain the optimal solution of the original problem (6.15) or,

equivalently, the optimal solution of the problem (6.11). Specifically, since the opti-

mal value functions h(α) and k(α) are equivalent, αopt is also the optimal solution
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of the problem (6.15) and, thus, also the problem (6.11). Moreover, the optimiza-

tion problem of k(αopt) is convex and can be easily solved. In addition, using the

results in Theorem 3.1, based on the optimal solution of the optimization prob-

lem of k(αopt), the optimal solution of the optimization problem of h(αopt) can be

constructed. Therefore, in the rest of the chapter, we concentrate on the problem

(6.18).

Since for every fixed value of α, the corresponding optimization problem of k(α)

is a convex SDP problem, one possible approach for solving (6.18) is based on

exhaustive search over α. In other words, α can be found by using an exhaustive

search over a fine grid on the interval of [θ1, θ2]. Although this search method is

inefficient, it can be used as a benchmark.

Using the definition of the optimal value function k(α), the problem (6.18) can

be equivalently expressed as

min
W,α

tr
{

(R̂+γI)W
}

subject to tr{QHQW}=α

η2tr{W}≤(
√
α−1)2

W � 0, θ1 ≤ α ≤ θ2. (6.19)

Note that replacing h(α) by k(α) results in a much simpler problem. Indeed, com-

pared to the original problem (6.11), in which the first constraint is non-convex,

the corresponding first constraint of (6.19) is convex. All the constraints and

the objective function of the problem (6.19) are convex except for the constraint

tr{W} ≤ (
√
α − 1)2/η2 which is non-convex only in a single variable α and which

makes the problem (6.19) non-convex overall. This single non-convex constraint can

be rewritten equivalently as η2tr{W} − (α + 1) + 2
√
α ≤ 0 where all the terms

are linear with respect to W and α except for the concave term of
√
α. The lat-

ter constraint can be handled iteratively by building a POTDC-type algorithm (see

Section 3.1.1) based on the iterative linear approximation of the non-convex term
√
α around suitably selected points. It is interesting to mention that this iterative

linear approximation can be also interpreted in terms of DC iteration over a single

non-convex term
√
α. The fact that iterations are needed only over a single variable

helps to reduce dramatically the number of iterations of the algorithm and allows

for very simple interpretations shown below.
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6.2.1 Iterative POTDC algorithm

Let us consider the optimization problem (6.19) and replace the term
√
α by its

linear approximation around αc, i.e.,
√
α ≈ √αc + (α− αc)/(2

√
αc). It leads to the

following SDP problem

min
W,α

tr
{

(R̂ + γI)W
}

subject to tr{QHQW} = α

η2tr{W}+(
√
αc−1)+α

(
1√
αc
−1

)

≤0

W � 0, θ1 ≤ α ≤ θ2. (6.20)

To understand the POTDC algorithm intuitively and also to see how the lineariza-

tion points are selected in different iterations, let us define the following optimal

value function based on the optimization problem (6.20)

l(α,αc) ,

{

min
W

tr
{
(R̂ + γI)W

}
| tr{QHQW} = α,

η2tr{W}+(
√
αc−1)+α

(
1√
αc
−1

)

≤0,W � 0
}

, θ1 ≤ α ≤ θ2

(6.21)

where αc in l(α,αc) denotes the linearization point. The optimal value function

l(α,αc) can be also obtained through k(α) in (6.17) by replacing the term
√
α in

η2tr{W} − (α + 1) + 2
√
α ≤ 0 with its linear approximation around αc. Since

√
α

and its linear approximation have the same values at αc, l(α,αc) and k(α) take the

same values at this point. The following lemma establishes the relationship between

the optimal value functions k(α) and l(α,αc).

Lemma 6.3. The optimal value function l(α,αc) is a convex upper-bound of k(α) for

any arbitrary αc ∈ [θ1, θ2], i.e., l(α,αc) ≥ k(α), ∀α ∈ [θ1, θ2] and l(α,αc) is convex

with respect to α. Furthermore, the values of the optimal value functions k(α) and

l(α,αc) as well as their right and left derivatives are equal at the point α = αc. In

other words, under the condition that k(α) is differentiable at αc, l(α,αc) is tangent

to k(α) at this point.

Proof: See Appendix E.

In what follows, for the sake of clarity of the explanations, it is assumed that the

function k(α) is differentiable over the interval of (θ1, θ2), however, this property

is not generally required as we will see later. Let us consider an arbitrary point,
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denoted as α0, α0 ∈ (θ1, θ2) as the initial linearization point, i.e., αc = α0. Based

on Lemma 6.3, l(α,α0) is a convex function with respect to α which is tangent to

k(α) at the linearization point α = α0, and it is also an upper-bound to k(α). Let

α1 denote the global minimizer of l(α,α0) that can be easily obtained due to the

convexity of l(α,α0) with polynomial time complexity.

Since l(α,α0) is tangent to k(α) at α = α0 and it is also an upper-bound for

k(α), it can be concluded that α1 is a descend point for k(α), i.e., k(α1) ≤ k(α0)

as it is shown in Fig. 6.1. Specifically, the fact that l(α,α0) is tangent to k(α) at

α = α0 and α1 is the global minimizer of l(α,α0) implies that

l(α1, α0) ≤ l(α0, α0) = k(α0). (6.22)

Furthermore, since l(α,α0) is an upper-bound for k(α), it can be found that k(α1) ≤
l(α1, α0). Due to the later fact and also the equation (6.22), it is concluded that

k(α1) ≤ k(α0).

 

 

Optimal Value Function k(α)
Optimal Value Function l(α,α
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Figure 6.1: Iterative method for minimizing the optimal value function k(α). The convex
optimal value function l(α, α0) is an upper-bound to k(α) which is tangent to it at α = α0, and
its minimum is denoted as α1. The point α1 is used to establish another convex upper-bound
function denoted as l(α, α1) and this process continues.

Choosing α1 as the linearzation point in the second iteration, and finding the

global minimizer of l(α,α1) over the interval [θ1, θ2] denoted as α2, another descend
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point can be obtained, i.e., k(α2) ≤ k(α1). This process can be continued until

convergence.

Then the proposed iterative descend method can be described as shown in Al-

gorithm 6.1. Since the optimization problem (6.5) is an special case of the problem

(3.1) with two only quadratic functions in the constraints with a non-negative objec-

tive function, the corresponding results holds true. Indeed, according to Lemma 3.2,

the Algorithm 6.1 converges to a KKT point, i.e., a point which satisfies the KKT

optimality conditions. In our simulations, we choose the stopping criteria in Algo-

rithm 6.1 based on the difference between two consecutive optimal values, however,

the stopping criteria can be also defined based on the approximate satisfaction of

the KKT optimality conditions (see Subsection 3.1.1 ).

Algorithm 6.1 The iterative POTDC algorithm

Require: An arbitrary αc ∈ [θ1, θ2],
the progress parameter ζ,
set i equal to 1.

repeat
Solve the following optimization problem using αc to obtain Wopt and αopt

min
W,α

tr
{

(R̂ + γI)W
}

subject to tr{QHQW} = α

η2tr{W}+(
√
αc−1)+α

(
1√
αc
−1

)

≤0

W � 0, θ1 ≤ α ≤ θ2

and set
Wopt,i ←Wopt, αopt,i ← αopt

αc ← αopt, i← i+ 1
until

tr
{

(R̂ + γI)Wopt,i−1

}

−tr
{

(R̂ + γI)Wopt,i

}

≤ ζ for i ≥ 2 .

Moreover, the point obtained by Algorithm 6.1 is guaranteed to be the global

optimum of the problem considered if the optimal value function k(α) is a convex

function of α. The convexity of k(α) under certain conditions is established in the

following theorem.

Theorem 6.1. Let the covariance matrices of the desired and interference sources

have, respectively, the following structures Rs = U1VsU
H
1 and Ri = U2ViU

H
2 , i =

1, . . . , N , where U1 and U2 span orthogonal subspaces, and Vs and Vi, i = 1, . . . , N

are some positive semi-definite matrices. Then the optimal value function k(α) is
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convex assuming that the received signal covariance matrix is known perfectly.

Proof: See Appendix F.

The conditions of Theorem 6.1 are somewhat idealistic in real applications since

the received signal covariance matrix is not precisely known in reality and the sub-

spaces spanned by U1 and U2 may overlap in general. However, there have been

developed various covariance matrix estimation techniques, which improve the esti-

mation of R even for the small sample size case [125] – [127]. Moreover, under the

condition that the desired and interfering sources are locally incoherently scattered

and the desired source is well-separated from the interfering sources, i.e., the angular

power density of the interfering sources equals zero over the angles in which the de-

sired source is spread, it is guaranteed that U1 and U2 span orthogonal subspaces.

The later is not uncommon in practical applications or can be achieved by using

well known de-correlation techniques for the desired and interference sources such

as forward-backward averaging and/or spatial smoothing.

Let us show for completeness that if the desired and interfering sources are locally

incoherently scattered and the desired source is well-separated from the interfering

sources, then U1 and U2 span orthogonal subspaces. The covariance matrices of

the desired and interference sources can be expressed, respectively, as

Rs = σ2
s

∫ π/2

−π/2
ζs(θ)a(θ)aH(θ)dθ (6.23)

and

Ri = σ2
i

∫ π/2

−π/2
ζi(θ)a(θ)aH(θ)dθ, i = 1, · · · , N (6.24)

where ζs(θ) and ζi(θ) denote the normalized angular power densities of the desired

source and the ith interference, and σ2
s and σ2

i are the desired source and ith inter-

ference source powers, respectively. Let Θs denote the angular sector in which the

desired source is spread. Then the condition that the desired source is well-separated

from other interfering sources can be mathematically expressed as ζi(θ) = 0, θ ∈ Θs.

Defining the matrix C ,
∫

Θ̃s
a(θ)aH(θ)dθ where Θ̃s denotes the complement of Θs,

it was shown in Section 5.2 that for the properly chosen K, the steering vector in Θs

and its complement Θ̃s can be approximately expressed as the linear combination

of the column of U2 and U1, respectively, that is,

d(θ) ∼= U2v2(θ), θ ∈ Θ̃s (6.25)

d(θ) ∼= U1v1(θ), θ ∈ Θs (6.26)
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where U2 and U1 denote the corresponding eigenvectors of the K largest eigenvalues

and the rest of the eigenvalues of the matrix C, respectively, and v1(θ) and v2(θ)

are some coefficient vectors. Based on (6.25) and (6.26), the covariance matrices of

the desired and the inference sources have the structure used in Theorem 6.1 and

U1 and U2 are approximately orthogonal.

It is also worth noting that even a more relaxed property of the optimal value

function k(α) would be sufficient to guarantee global optimality for the POTDC

algorithm. Specifically, if k(α) defined in (6.17) is a strictly quasi-convex function

of α ∈ [θ1, θ2], then the point found by the POTDC algorithm is still guaranteed to

be the global optimum of the optimization problem (6.4) [128]. Thus, the conditions

of Theorem 6.1 can be possibly further relaxed.

The worst-case computational complexity of a general SDP problem can be ex-

pressed as O(n2
c n

2.5
v + nc n

3.5
v ) where nc and nv denote, respectively, the number

of constraints and the number of variables of the primal problem (2.18) [129] and

O(·) stands for the big-O (the highest order of complexity). Therefore, the com-

putational complexity of Algorithm 6.1 is equal to that of the SDP optimization

problem in Algorithm 6.1, that is, O((M2 + 1)3.5) times the number of iterations

(see also Simulation Example 1 in Section 6.3). The RAB algorithm of [10] is it-

erative as well and its computational complexity is equal to O(M2×3.5) times the

number of iterations. The complexity of the RABs of [8] and [122] is O(M3). The

comparison of the overall complexity of the proposed POTDC algorithm with that

of the DC iteration-based method will be explicitly performed in Simulation Exam-

ple 4. Although the computational complexity of the new proposed method may be

slightly higher than that of the other RABs, it finds the global optimum and results

in superior performance as it is shown in the next section.

6.2.2 Lower-bounds for the optimal value

We also aim at developing a tight lower-bound for the optimal value of the optimiza-

tion problem (6.19). Such lower-bound can be used for assessing the performance

of the proposed iterative algorithm.

As it was mentioned earlier, although the objective function of the optimization

problem (6.19) is convex, its feasible set is non-convex due to the second constraint

in problem (6.19). A lower-bound for the optimal value of the optimization problem

(6.19) can be achieved by replacing the second constraint in (6.19) by its correspond-
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ing convex-hull. However, such lower-bound may not be tight. In order to obtain a

tight lower-bound, we can divide the sector [θ1, θ2] into N subsectors and solve the

optimization problem (6.19) over each subsector in which the second constraint of

(6.19) has been replaced with the corresponding convex hull. The minimum of the

optimal values of such optimization problem over the subsectors is the lower-bound

for the problem (6.19). It is obvious that by increasing N , the lower-bound becomes

tighter.

6.3 Simulation results

Let us consider a ULA of 10 omni-directional antenna elements with the inter-

element spacing of half wavelength. Additive noise in antenna elements is modeled

as spatially and temporally independent complex Gaussian noise with zero mean and

unit variance. Throughout all simulation examples, it is assumed that in addition

to the desired source, an interference source with the INR of 30 dB impinges on the

antenna array. For obtaining each point in the simulation examples, 100 independent

runs are used unless otherwise is specified and the sample data covariance matrix is

estimated using K = 50 snapshots.

The new proposed method is compared in terms of the output SINR to the

general-rank RAB methods of [8], [10], [122] and to the rank-one worst-case-based

RAB of [7]. Moreover, the proposed method and the aforementioned general-rank

RAB methods are also compared in terms of the achieved values for the objective

function of the problem (6.4). The diagonal loading parameters of γ = 10 and

η = 0.5
√

tr{Rs} are chosen for the proposed RAB and the RAB methods of [10]

and [122], and the parameters of γ = 10 and ǫ = 8σ2
s are chosen for the RAB of [8].

The initial point α0 in the first iteration of the proposed method equals to (θ1+θ2)/2

unless otherwise is specified. The progress parameter ζ for the proposed method is

chosen to be equal to 10−6.

6.3.1 Example 1 : Parameter mismatch

In this example, the desired and interference sources are locally incoherently scat-

tered with Gaussian and uniform angular power densities with central angles of 30◦

and 10◦, respectively. The angular spreads of the desired and the interfering sources

are assumed to be 4◦ and 10◦, respectively. The presumed knowledge of the de-

sired source is different from the actual one and is characterized by an incoherently
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scattered source with Gaussian angular power density whose central angle and an-

gular spread are 34◦ and 6◦, respectively. Note that, the presumed knowledge about

the shape of the angular power density of the desired source is correct while the

presumed central angle and angular spread deviate from the actual one.

In Figs. 6.2 and 6.3, the output SINR and the objective function values of the

problem (6.4), respectively, are plotted versus SNR. It can be observed from the

figures that the new proposed method based on the POTDC algorithm has superior

performance over the other RABs. Although the method of [10] does not have a

guaranteed convergence, it results in a better average performance as compared to

the methods of [8] and [122] at low SNR values while the method of [122] outper-

forms [10] at higher SNRs. Moreover, the Fig. 6.3 confirms that the new proposed

method achieves the global minimum of the optimization problem (6.4) since the

corresponding objective value coincides with the lower-bound on the objective func-

tion of the problem (6.4). Fig. 6.4 shows the convergence of the iterative POTDC

method. It shows the average of the optimal value found by the algorithm over it-

erations for SNR=15 dB. It can be observed that the proposed algorithm converges

to the global optimum in about 4 iterations.
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Figure 6.2: Example 1: Output SINR versus SNR, INR=30 dB and K = 50.
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Figure 6.3: Example 1: Objective function value of the problem (6.4) versus SNR, INR=30
dB and K = 50.

6.3.2 Example 2 : Effect of the rank of desired signal covariance
matrix

In the second example, we study how the rank of the actual correlation matrix of

the desired source Rs affects the performance of the proposed general-rank RAB

and other methods tested. The same simulation set up as in the previous example

is considered. The only difference is that the actual angular spread of the desired

source varies and so does the actual rank of the desired source covariance matrix.

The angular spread of the desired user is chosen to be 1◦, 2◦, 5◦,9◦, and 14◦. Figs. 6.5

and 6.6 show, respectively, the output SINR and the objective function values of

the problem (6.4) versus the rank of the actual correlation matrix of the desired

source when SNR=10 dB. It can be seen from the figures that the proposed method

outperforms the methods tested in all rank in terms of the objective value of the op-

timization problem (6.4) and it achieves the globally optimal solution as it coincides

with the lower-bound.
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Figure 6.4: Example 1: Objective function value of the problem (6.4) versus the number of
iterations, SNR=15 dB, INR=30 dB and K = 50.

6.3.3 Example 3 : Distribution mismatch

In this example, we also consider the locally incoherently scattered desired and inter-

ference sources. However, compared to the previous example, there is a substantial

error in the knowledge of the desired source angular power density.

The interference source is modeled as in the previous example, while the angular

power density of the desired source is assumed to be a truncated Laplacian function

distorted by severe fluctuations. The central angle and the scale parameter of the

Laplacian distribution is assumed to be 30◦ and 0.1, respectively, and it is assumed

to be equal to zero outside of the interval [15◦, 45◦] as it has been shown in Fig. 6.7.

The presumed knowledge of the desired source is different from the actual one and

is characterized by an incoherently scattered source with Gaussian angular power

density whose central angle and angular spread are 32◦ and 6◦, respectively.

Fig. 6.8 depicts the corresponding output SINR of the problem (6.4) obtained by

the beamforming methods tested versus SNR. It can be concluded from the figure

that the proposed method has superior performance over the other methods.
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Figure 6.5: Example 2: Output SINR versus the actual rank of Rs, SNR=10 dB, INR=30 dB
and K = 50.

6.3.4 Example 4 : Complexity Comparison

In this example, we compare the efficiency of the proposed POTDC method to

that of the DC iteration-based method that can be written for the problem under

consideration as

min
w

wH(R̂ + γI)w

subject to f(w(k))+〈▽f(w(k)),w −w(k)〉−η‖w‖≥1 (6.27)

where 〈·, ·〉 denotes the inner product and the function f(w) = ‖Qw‖ is replaced

with the first two terms of the Taylor expansion of f(w) around w(k). At the first

iteration w(0) is initialized and in the next iterations w(k) is selected as the optimal

w obtained from solving (6.27) in the previous iteration. Thus, the iteration are

performed over the whole vector of variables of the problem.

The simulation set up is the same as in our Simulation Example 1 except that

different number of antennas are used. For a fair comparison, the initial point α0 in

the proposed POTDC method and w(0) in (6.27) are chosen randomly. Particularly,

the initialization point for the proposed POTDC method is chosen uniformly over

the interval [θ1, θ2] while the imaginary and real parts of the initial vector w(0)

117



3 4 5 6 7
34

36

38

40

42

44

46

48

50

52

Rank of R
s

O
bj

ec
tiv

e 
V

al
ue

 

 

Proposed Method
Lower-Bound
General-Rank RAB of [10]
General-Rank RAB of [8]
General-Rank RAB of [122]

Figure 6.6: Example 2: Objective function value of the problem (6.4) versus the actual rank
of Rs, SNR=10 dB, INR=30 dB and K = 50.

in (6.27) are chosen independently as zero mean, unit variance, Gaussian random

variables. If the so-generated w(0) is not feasible, another initialization point is

generated and this process continues until a feasible point is resulted. Note that

the time which is consumed during the generation of a feasible point is negligible

and it has not been considered in the average CPU time comparison. Table 6.1

shows the average number of the iterations for the aforementioned methods versus

the size of the antenna array. The accuracy is set to 10−6, SNR= −5 dB, and each

number in the table is obtained by averaging the results from 200 runs. From this

table, it can be seen that the number of the iterations for the POTDC method is

almost fixed while it increases for the DC-iteration method as the size of the array

increases. The latter phenomenon can be justified by considering the DC iteration-

type interpretation of the POTDC method over the one-dimensional function of

k(α). The dimension of k(α) is independent of the size of the array (thus, the size

of the optimization problem), while the size of search space for the DC iteration-

based method (6.27), that is, 2M , increases as the size of the array increases. The
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Figure 6.7: Example 3: Actual and presumed angular power densities of general-rank source.

Table 6.1: Average number of the iterations

Array size 8 10 12 14 16 18 20

POTDC 3.29 3.24 3.03 3.12 3.20 3.28 3.11

DC iteration 4.87 5.82 5.98 6.82 7.62 8.24 8.95

average (over 200 runs) CPU time for the aforementioned methods is also shown in

Table 2. Both methods have been implemented in Matlab using CVX software and

run on the same Notebook with AMD A8-4500m APU CPU 1.90 GHz. Table 6.2

Table 6.2: Average CPU time

Array size 8 10 12 14 16 18 20

POTDC 0.591 0.582 0.578 0.682 0.838 1.076 1.183

DC iteration 1.880 2.243 2.344 2.752 3.323 4.012 4.762

confirms that the proposed method is more efficient than the DC iteration-based

one in terms of the time which is spent for solving the same problem. Note that

although the number of variables in the matrix W of the optimization problem

(6.20) is in general M2 + 1 (since W has to be a Hermitian matrix, after the rank-

one constraint is relaxed), the probability that the optimal W is rank-one has been
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Figure 6.8: Example 3: Output SINR versus SNR, INR=30 dB and K = 50.

shown to be very high [14], [22], [130], and [131]. It is also approved by these

simulations. Thus, in almost all cases, for different data sets, the actual dimension

of the problem (6.20) is 2M + 1. As a result, the average complexity of solving

(6.20) is significantly smaller than the worst-case complexity. The latter is due to

the fact that the worst-case computational complexity of a general SDP problem is

a function of the number of the variables and also the number of constraints in the

primal problem (see Subsection 6.2.1).

6.4 Chapter summary

We have considered the RAB problem for general-rank signal model with additional

positive semi-definite constraint. Such RAB problem corresponds to the class of

generalized QCQP problems which can be precisely recast as a non-convex DC

optimization problem. We have studied this non-convex DC problem and designed

the POTDC-type algorithm for solving it. It has been proved that the point found

by the POTDC algorithm for RAB for general-rank signal model with positive

semi-definite constraint is a KKT point. Moreover, the problem considered can
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be solved globally optimally under certain conditions. Specifically, we have proved

a number of results that lead us to the equivalence between the claim of global

optimality and convexity of the one-dimensional optimal value function (6.17). The

latter convexity has been then proved under the conditions of Theorem 6.1. The

resulted RAB method shows superior performance compared to the other existing

methods in terms of the output SINR. It also has complexity that is guaranteed to

be polynomial.
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Chapter 7

Two-Way AF MIMO Relay
Amplification Matrix Design

TWR has been a very attractive research topic recently due to its ability to over-

come the rate loss associated with the conventional one-way relaying systems. More-

over, most of communications are actually two-way communications. Thus, TWR

has a wide range of applications. As it was explained in Section 2.4, the spectral

efficiency of the TWR can be attributed to the relaxation of the requirement of

‘orthogonal/non-interfering’ transmissions between the terminals and the relay.

One fundamental problem associated with TWR systems is the relay transmit

strategy design based on the available CSI [61] – [69]. It is usually designed in

such a way that a particular performance criterion is optimized, while keeping some

constraints on the available resources. The main difficultly of the TWR transmit

strategy design is the non-convex nature of its corresponding optimization problem.

In this chapter, we consider the AF TWR system with two terminals equipped

with a single antenna and one relay with multiple antennas. Note that the relay

transmit strategy design of an AF relay is equivalent to the optimal design of its

amplification matrix. We study the optimal amplification matrix design when the

maximum sum-rate, PF and the MMRF are used as the design criteria. This is

a basic model which can be extended in many ways. The significant advantage of

considering this basic model is that the corresponding achievable rate is analyzed in

the existing literature [62]. It enables us to concentrate on the mathematical issues

of the corresponding optimization problem which are of significant and ubiquitous

interest. We first concentrate on the design of the relay transmit strategy that

maximizes the sum-rate of both terminals when there is a constraint on the total

relay transmit power.
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It is shown that the optimization problem of finding the relay amplification ma-

trix for the sum-rate maximization in the considered AF two-way relaying system

is equivalent to finding the maximum of the product of quadratic fractional func-

tions under a quadratic power constraint on the available power at the relay. Such

a problem is a specific realization of the generalized QCQP problem which was

introduced in Chapter 3, and therefore, it can be precisely recast as a DC optimiza-

tion problem. The typical approach for solving DC problems is the use of various

modifications of the branch-and-bound method [13], and [31] – [36] that is an ef-

fective global optimization method. However as it was mentioned earlier, it does

not have any worst-case polynomial time computational complexity guarantees [13],

and [31] – [36]. Thus, in order to address this problem, we resort to the proposed

POTDC algorithm that can be adopted for corresponding DC problem and that has

polynomial time complexity.

It is noteworthy to mention that, the problem considered in [26] is somehow

related to our problem. Specifically, the work in [26] considers the fractional QCQP

problem that is closest mathematically to the one addressed in this chapter with

the significant difference though that the objective in [26] contains only a single

quadratic fractional function that simplifies the problem dramatically.

By means of the POTDC method, we aim at developing a polynomial time al-

gorithm for solving the non-convex problem of maximizing a product of quadratic

fractional functions under a quadratic constraint, which precisely corresponds to the

sum-rate maximization in AF MIMO TWR. Specifically and similar to the previous

chapter, we first rewrite the original non-convex problem as the maximization of an

optimal value function. Despite the fact that the corresponding optimization prob-

lem of the newly defined optimal value function is non-convex, it is replaced with

another equivalent function. The optimization problem that corresponds to such

new optimal value function is convex and it simplifies the problem significantly.

The new resulted optimal value function is then maximized recursively using the

POTDC method. The proposed algorithm is guaranteed to find at least a KKT

point, i.e., a point which satisfies the KKT optimality conditions. Moreover, ac-

cording to our numerous numerical simulations, the obtained point is also globally

optimal. The latter is confirmed by the fact that the point found by the algorithm

coincides with the newly developed upper-bound for the optimal value of the prob-

lem. Similar to the previous chapter, the global optimality of the point found by
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the POTDC method is equivalent to the concavity of an optimal value function of

single parameter. Such Concavity can be checked numerically as it was explained

in Section 6.3.

We also consider the relay amplification matrix design when the max-min rate

and PF are used as the design criteria. Similar to the maximum sum-rate criterion,

it is shown that the corresponding optimization problems for the max-min rate and

PF criteria are also in the form of the generalized QCQP problems that can be

precisely recast as the corresponding DC programming problems. These problems

are then addressed similarly using the POTDC algorithm. Our numerical results

confirm the superiority of the proposed relay transmit strategy design over other

the state-of-the-art methods. Moreover, they confirm the global optimality of the

proposed method.

The rest of this chapter is organized as follows. The AF MIMO TWR system

model is given in Section 7.1 while the sum-rate maximization problem for the

corresponding system is formulated in Section 7.2. The POTDC algorithm for the

sum-rate maximization is developed in Section 7.3 and an upper-bound for the

optimal value of this maximization problem is found in Section 7.4. In Section 7.5,

the relay amplification matrix design problems based on PF and MMRF criteria are

formulated and then they are solved using the POTDC method. Simulation results

are reported in Sections 7.6 and 7.7. Finally, Section 7.8 presents our conclusions

and discussions.

7.1 System model

We consider a TWR system with two single antenna terminals and an AF relay

equipped with MR antennas. Fig. 7.1 shows the system we study in this chapter.

In the first transmission phase, both terminals transmit to the relay. Assuming

frequency-flat quasi-static block fading, the received signal at the relay can be ex-

pressed as

r = h
(f)
1 x1 + h

(f)
2 x2 + nR (7.1)

where h
(f)
i , [hi,1, . . . , hi,MR

]T ∈ C
MR represents the (forward) channel vector be-

tween terminal i and the relay, xi is the transmitted symbol from terminal i, nR ∈
C
MR denotes the additive noise component at the relay. Let PT,i , E{|xi|2} be the
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Figure 7.1: Two-way relaying system model.

average transmit power of terminal i and RN,R , E{nRnHR } be the noise covariance

matrix at the relay. For the special case of white noise we have RN,R = PN,RIMR

where PN,R = tr{RN,R}/MR, IMR
is the identity matrix of size MR ×MR. The re-

lay amplifies the received signal by multiplying it with a relay amplification matrix

G ∈ C
MR×MR , i.e., it transmits the signal

r̄ = Gr. (7.2)

The transmit power used by the relay can be expressed as

E{‖r̄‖22} = E
{
tr
{
GrrHGH

}}
= tr

{
GRRGH

}
= tr

{
GHGRR

}
(7.3)

where RR , E{rrH} is the covariance matrix of r which is given by

RR = h
(f)
1

(

h
(f)
1

)H
PT,1 + h

(f)
2

(

h
(f)
2

)H
PT,2 + RN,R. (7.4)

The covariance matrix RR is assumed to be full rank which is true under the common

practical assumption that the noise covariance matrix RN,R is full rank. However,

the case of rank deficient RR is considered for completeness in Appendix I as well.

Using the equality

tr{AHB} = vec{A}Hvec{B} (7.5)

which holds for any arbitrary square matrices A and B, the total transmit power of

the relay (7.3) can be equivalently expressed as

E{‖r̄‖22} = vec{G}Hvec{GRR}, (7.6)

where vec{·} stands for the vectorization operation that transforms a matrix into

a long vector stacking the columns of the matrix one after another. Finally, using

the equality vec{AB} = (BT ⊗ I)vec{A}, which is valid for any arbitrary square
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matrices A and B, (7.6) can be equivalently rewritten as the following quadratic

form

E{‖r̄‖22} = gH
(
RT
R ⊗ IMR

)

︸ ︷︷ ︸

Q

g = gHQg (7.7)

where g , vec{G}, Q , RT
R ⊗ IMR

. Since Q is the Kronecker product of the two

full rank positive definite matrices RT
R and IMR

, it is also full rank and positive

definite [132].

In the second phase, the terminals receive the relay’s transmission via the (back-

ward) channels (h
(b)
1 )T and (h

(b)
2 )T (in the special case when reciprocity holds we

have h
(b)
i = h

(f)
i for i = 1, 2). Consequently, the received signals yi, i = 1, 2 at both

terminals can be expressed, respectively, as

y1 = h
(e)
1,1 x1 + h

(e)
1,2 x2 + ñ1 (7.8)

y2 = h
(e)
2,2 x2 + h

(e)
2,1 x1 + ñ2 (7.9)

where h
(e)
i,j ,

(

h
(b)
i

)T
Gh

(f)
j is the effective channel between terminals i and j for

i, j = 1, 2 and ñi ,

(

h
(b)
i

)T
GnR + ni represents the effective noise contribution

at terminal i which comprises the terminal’s own noise as well as the forwarded

relay noise. The first term in the received signal of each terminal represents the

self-interference, which can be subtracted by the terminal since its own transmitted

signal is known. The required channel knowledge for this step can be easily obtained,

for example, via the LS compound channel estimator of [133].

After the cancelation of the self-interference, the two-way relaying system is

decoupled into two parallel single-user single-input single-output (SISO) systems.

Consequently, the rate ri of terminal i can be expressed as

ri =
1

2
log2

(

1 +
PR,i

P̃N,i

)

=
1

2
log2

(

P̃R,i

P̃N,i

)

(7.10)

where PR,i and P̃N,i are the powers of the desired signal and the effective noise

term at terminal i, respectively, and P̃R,i , PR,i + P̃N,i. Specifically, PR,1 ,

E

{∣
∣
∣h

(e)
1,2 x2

∣
∣
∣

2
}

, PR,2 , E

{∣
∣
∣h

(e)
2,1 x1

∣
∣
∣

2
}

, and P̃N,i , E
{
|ñi|2

}
for i = 1, 2. Note that

the factor 1/2 results from the two time slots needed for the bidirectional transmis-

sion. The powers of the desired signal and the effective noise term at terminal i can
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be equivalently expressed as

PR,1 = PT,2

∣
∣
∣
∣

(

h
(b)
1

)T
Gh

(f)
2

∣
∣
∣
∣

2

(7.11)

PR,2 = PT,1

∣
∣
∣
∣

(

h
(b)
2

)T
Gh

(f)
1

∣
∣
∣
∣

2

(7.12)

P̃N,i = E

{∣
∣
∣
∣

(

h
(b)
i

)T
GnR + ni

∣
∣
∣
∣

2
}

=
(

h
(b)
i

)T
GRN,RGH

(

h
(b)
i

)∗
+ PN,i (7.13)

where the expectation is taken with respect to the transmit signals and also the

additional noise terms, PN,i denotes the variance of the additive noise at terminal

i, i.e., ni. Moreover, these powers can be further expressed as quadratic forms in g.

For this goal, first note that by using the following equality

vec{ABC} = (CT ⊗A)vec{B} (7.14)

which is valid for any arbitrary matrices A, B and C of compatible dimensions, the

term
(

h
(b)
i

)T
Gh

(f)
j can be modified as follows

(

h
(b)
i

)T
Gh

(f)
j = vec

{(

h
(b)
i

)T
Gh

(f)
j

}

=

((

h
(f)
j

)T
⊗
(

h
(b)
i

)T
)

vec{G}. (7.15)

Using (7.15), the power of the desired signal at the first terminal can be expressed

as

PR,1 = gH
((

h
(f)
2

)T
⊗
(

h
(b)
1

)T
)H ((

h
(f)
2

)T
⊗
(

h
(b)
1

)T
)

g · PT,2. (7.16)

Applying also the equality (A⊗B)(C⊗D) = (AC)⊗ (BD) to (7.16) which is valid

for any arbitrary matrices A, B, C and D of compatible dimensions, PR,1 can be

expressed as the following quadratic form

PR,1 = gH
[(

h
(f)
2

(

h
(f)
2

)H
)

⊗
(

h
(b)
1

(

h
(b)
1

)H
)]T

g · PT,2. (7.17)

The power of the desired signal at the second terminal, i.e., PR,2, can be obtained

similarly. By defining the matrices K2,1 and K1,2 as follows

K2,1 ,

[(

h
(f)
2

(

h
(f)
2

)H
)

⊗
(

h
(b)
1

(

h
(b)
1

)H
)]T

(7.18)

K1,2 ,

[(

h
(f)
1

(

h
(f)
1

)H
)

⊗
(

h
(b)
2

(

h
(b)
2

)H
)]T

(7.19)

the powers of the desired signal can be expressed as

PR,1 = gHK2,1g · PT,2 (7.20)

PR,2 = gHK1,2g · PT,1. (7.21)
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Since the matrices h
(f)
i

(

h
(f)
i

)H
, i = 1, 2 and h

(b)
i

(

h
(b)
i

)H
, i = 1, 2 are all posi-

tive semi-definite and the Kronecker product of positive semi-definite matrices is

a positive semi-definite matrix [132], the matrices K2,1 and K1,2 are also positive

semi-definite. As the last step, the effective noise P̃N,i can be converted into a

quadratic form of g through the following train of equalities

P̃N,i = E

{∣
∣
∣
∣

(

h
(b)
i

)T
GnR + ni

∣
∣
∣
∣

2
}

=
(

h
(b)
i

)T
GRN,RGH

(

h
(b)
i

)∗
+ PN,i

= tr

{

GH
(

h
(b)
i

)∗ (
h

(b)
i

)T
GRN,R

}

+ PN,i (7.22)

= vec{G}Hvec

{(

h
(b)
i

)∗ (
h

(b)
i

)T
GRN,R

}

+ PN,i (7.23)

= vec{G}H
[

RN,R ⊗
(

h
(b)
i

)(

h
(b)
i

)H
]T

vec{G}+ PN,i (7.24)

= gHJig + PN,i (7.25)

where (7.23) is obtained from (7.22) by applying the equality (7.5), (7.24) is obtained

from (7.23) by applying the equality (7.14), and the matrix Ji in (7.25) is defined

as

Ji ,

[

RN,R ⊗
(

h
(b)
i

(

h
(b)
i

)H
)]T

. (7.26)

Note that, Ji, i = 1, 2 are positive semi-definite matrices because the matrices RN,R

and h
(b)
i

(

h
(b)
i

)H
, i = 1, 2 are positive semi-definite.

7.2 Problem statement for sum-rate maximization

Our goal is to find the relay amplification matrix G which maximizes the sum-

rate r1 + r2 subject to a power constraint at the relay. For convenience we express

the objective function and its solution in terms of g. Then the power constrained

sum-rate maximization problem can be expressed as

gopt = arg max
g|gHQg≤PT,R

(

r1 + r2

)

(7.27)
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where PT,R is the total available transmit power at the relay. Using the definitions

from the previous section, this optimization problem can be rewritten as

gopt = arg max
g|gHQg≤PT,R

1

2
log2

[(

1 +
PR,1

P̃N,1

)

·
(

1 +
PR,2

P̃N,2

)]

= arg max
g|gHQg≤PT,R

(

1 +
PR,1

P̃N,1

)

·
(

1 +
PR,2

P̃N,2

)

(7.28)

= arg max
g|gHQg≤PT,R

P̃R,1

P̃N,1
· P̃R,2
P̃N,2

(7.29)

where we have used the fact that 0.5 · log2(x) is a monotonic function in x ∈ R
+

where R
+ is the set of positive real numbers, and P̃R,i, i = 1, 2 are defined after

(7.10).

It is worth noting that the inequality constraint in the optimization problem

(7.29) has to be active at the optimal point. This can be easily shown by contra-

diction. Assume that gopt satisfies gHoptQgopt < PT,R. Then we can find a constant

c > 1 such that ḡopt = c · gopt satisfies ḡHoptQḡopt = PT,R. The latter follows from

the fact that Q is positive definite and, therefore, gHoptQgopt is positive. However,

inserting ḡopt in the objective function of (7.28), we obtain

(

1 +
c2 · gHoptK2,1goptPT,2

c2 · gHoptJ1gopt + PN,1

)

·
(

1 +
c2 · gHoptK1,2goptPT,1

c2 · gHoptJ2gopt + PN,2

)

=

(

1 +
gHoptK2,1goptPT,2

gHoptJ1gopt +
PN,1

c2

)

·
(

1 +
gHoptK1,2goptPT,1

gHoptJ2gopt +
PN,2

c2

)

(7.30)

which is monotonically increasing in c. Since we have c > 1, the vector ḡopt provides

a larger value of the objective functions than gopt which contradicts the assumption

that gopt was optimal.

As a result, we have shown that the optimal vector gopt must satisfy the total

power constraint of the problem (7.29) with equality, i.e., gHoptQgopt = PT,R. Using

this fact, the inequality constraint in the problem (7.29) can be replaced by the

constraint gHQg = PT,R. This enables us to substitute the constant term PN,i,

which appears in the effective noise power at terminal i (7.25), with the quadratic

term of (PN,i/PT,R)·gHoptQgopt. This leads to an equivalent homogeneous expression

for the ratio of P̃R,i/P̃N,i, i = 1, 2. Thus, by using such substitution, P̃N,i, i = 1, 2

from (7.25) can be equivalently written as

P̃N,i = gHBig, i = 1, 2 (7.31)
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where Bi is defined as

Bi , Ji +
PN,i
PT,R

·Q. (7.32)

Inserting (7.20), (7.21), and (7.32) into (7.29), the optimization problem becomes

gopt = arg max
g|gHQg=PT,R

gHA1g

gHB1g
· g

HA2g

gHB2g
(7.33)

where we have defined the new matrices A1 , K2,1 · PT,2 + B1 and A2 , K1,2 ·
PT,1 + B2. Since the matrices Ji, i = 1, 2, K1,2, and K2,1 are positive semi-definite

and Q is a full rank positive definite matrix, the matrices A1, A2, B1, and B2 are

all full rank positive definite matrices and hence invertible. Moreover, A1, A2, B1,

and B2 are all M2
R ×M2

R matrices.

As a final simplifying step we observe that the objective function of (7.33) is

homogeneous in g, meaning that an arbitrary rescaling of g has no effect on the

value of the objective function. Consequently, the equality constraint can be dropped

since any solution to the unconstrained problem can be rescaled to meet the equality

constraint without any loss in terms of the objective function. Therefore, the final

form of our problem statement is given by

gopt = arg max
g

gHA1g

gHB1g
· g

HA2g

gHB2g
. (7.34)

The optimization problem (7.34) can be interpreted as the product of two Rayleigh

quotients (quadratic fractional functions). Moreover, it can be expressed as a DC

programming problem. Indeed, as we will show later the objective function of the

problem (7.34) can be written as a summation of two concave functions with pos-

itive sign and one concave function with negative sign. Thus, the objective of the

equivalent problem is, in fact, the difference of convex functions which is in general

non-convex. As it was mentioned earlier, the available algorithms for solving such

DC programming problems are based on the branch-and-bound method that does

not have any polynomial time computational complexity guarantees [13], and [31] –

[36]. However, as we show next by means of the POTDC, at least a KKT point of

the problem (7.34) can be found in polynomial time with a great evidence that such

a solution is also globally optimal.

7.3 POTDC algorithm in the sum-rate maximization

Since the problem (7.34) is homogeneous, without loss of generality, we can fix the

quadratic term gHB1g to be equal to one at the optimal point. By doing so and also
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by defining the additional variables τ and β, the problem (7.34) can be equivalently

recast as

max
g,τ,β

gHA1g ·
τ

β

subject to gHB1g = 1, gHA2g = τ, gHB2g = β. (7.35)

For future reference, we need the range of the variable β. Due to the fact that

the quadratic function gHB1g is set to one, this range can be easily obtained.

Specifically, the smallest value of β for which the problem (7.35) is still feasible can

be obtained by solving the following problem

min
g

gHB2g subject to gHB1g = 1. (7.36)

Note that τ does not impose any restriction on the smallest possible value of β,

because if gmin,β denotes the optimal solution of the problem (7.36), then τ can

be chosen as τ = gHmin,βA2gmin,β. Since the matrix B1 is positive definite, it can

be decomposed as B1 = B
1/2
1 (B

1/2
1 )H where B

1/2
1 is a square root of B1 and it is

invertible due to the properties in [134]. By defining the new vector y , (B
1/2
1 )Hg,

i.e., g = (B
−1/2
1 )Hy the problem (7.36) is equivalent to

min
y

yHB
−1/2
1 B2(B

−1/2
1 )Hy subject to yHy = 1. (7.37)

It is well known that according to the minimax Theorem [124], the optimal value of

(7.37) is the smallest eigenvalue of the matrix B
−1/2
1 B2(B

−1/2
1 )H . Using the fact that

for any arbitrary square matrices Z1 and Z2, the eigenvalues of the matrix products

Z1Z2 and Z2Z1 are the same [135], it can be concluded that the smallest eigenvalue

of B
−1/2
1 B2(B

−1/2
1 )H is the same as the smallest eigenvalue of (B

−1/2
1 )HB

−1/2

1 B2

or, equivalently, B−1
1 B2.

The largest value of β for which the problem (7.35) is still feasible can be obtained

in a similar way, and it is equal to the largest eigenvalue of the matrix B−1
1 B2. As

a result, the range of β is [λmin{B−1
1 B2}, λmax{B−1

1 B2}] where λmin{·} denotes the

smallest eigenvalue operator. Note that, since the matrices B1 and B2 are positive

definite (hence B−1
1 is also positive definite), the eigenvalues of the product B−1

1 B2

are all positive due to the properties in [134] including λmin{B−1
1 B2}.

For future reference, we define the following optimal value function function of

τ and β

g(τ, β) ,

{

max
g

gHA1g
∣
∣gHB1g = 1, gHA2g = τ, gHB2g = β

}

,

(τ, β) ∈ D(7.38)
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where D ⊂ R
2 is the set of all pairs (τ, β) such that the corresponding optimiza-

tion problem obtained from g(τ, β) for fixed τ and β is feasible. Therefore, using

the optimal value function g(τ, β), the original optimization problem (7.35) can be

equivalently recast as

max
τ,β

g(τ, β) · τ
β
. (7.39)

Introducing the matrix X , ggH and observing that for any arbitrary matrix

Y, the relationship gHYg = tr{YggH} holds, the optimal value function g(τ, β)

can be equivalently recast as

g(τ, β) =

{

max
X

tr{A1X}
∣
∣ tr{B1X} = 1, tr{A2X} = τ, tr{B2X} = β,

rank{X} = 1,X � 0

}

, (τ, β) ∈ D. (7.40)

In the optimization problem obtained from the optimal value function g(τ, β) (7.40)

by fixing τ and β, the rank-one constraint rank{X} = 1 is the only non-convex

constraint with respect to the new optimization variable X. Using SDR, the corre-

sponding optimization problem can be relaxed by dropping the rank-one constraint,

and the following new optimal value function h(τ, β) can be defined

h(τ, β) ,

{

max
X

tr{A1X}
∣
∣ tr{B1X} = 1, tr{A2X} = τ, tr{B2X} = β,

X � 0

}

, (τ, β) ∈ D′ (7.41)

where D′ ⊂ R
2 is the set of all pairs (τ, β) such that the optimization problem

corresponding to h(τ, β) for fixed τ and β is feasible. For brevity, we will refer

to the optimization problems corresponding to the functions g(τ, β) and h(τ, β)

when τ and β are fixed simply as the optimization problems of g(τ, β) and h(τ, β),

respectively. The optimal value functions g(τ, β) and h(τ, β) are special cases of the

optimal value functions (3.6) and (3.9) that were defined in Chapter 3. Therefore,

according to the Lemma 3.1, the domains of these optimal value functions are the

same, i.e., D = D′. Moreover, the Theorem 3.1 implies that these optimal value

functions are equivalent, i.e., g(τ, β) = h(τ, β), (τ, β) ∈ D. Furthermore, based on

the optimal solution of the optimization problem of h(τ, β) when τ and β are fixed,

the optimal solution of the optimization problem of g(τ, β) can be constructed by

means of the Theorem 3.1.
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Although the optimal value functions g(τ, β) and h(τ, β) are equal, however,

compared to the optimization problem of g(τ, β) which is non-convex, the optimiza-

tion problem of h(τ, β) is convex. Using this fact and replacing g(τ, β) by h(τ, β) in

the original optimization problem (7.39), the problem (7.35) can be simplified as

max
X,τ,β

tr{A1X} ·
τ

β

subject to tr{B1X} = 1, tr{A2X} = τ

tr{B2X} = β, X � 0. (7.42)

Therefore, instead of the original optimization problem (7.35), we can solve the

simplified problem (7.42). Based on the optimal solution of the simplified problem,

denoted as Xopt, τopt, and βopt, the optimal solution of the original problem can be

found. The optimal values of τ and β are equal to the corresponding optimal values

of the simplified problem, while the optimal g can be constructed based on Xopt

using rank-reduction techniques [106].

It is worth stressing that for every feasible point of the optimization problem

(7.42) denoted as X, the terms tr{A1X}, tr{A2X}, and tr{B2X} are positive,

and therefore, the corresponding objective value is positive as well. The latter can

be easily verified by applying Lemma 1 of [137, Section 2] which states that for

every Hermitian matrix A and Hermitian positive semi-definite matrix B, tr{AB}
is greater than or equal to λmin{A}tr{B}. Applying this lemma, it can be found

that

tr{A1X} = tr{XA1} = tr
{

XB
1/2
1 B

−1/2
1 A1(B

1/2
1 B

−1/2
1 )H

}

= tr
{

(B
1/2
1 )HXB

1/2
1 B

−1/2
1 A1(B

−1/2
1 )H

}

≥ tr{B1X}λmin{B−1
1 A1}

= λmin{B−1
1 A1} (7.43)

where Lemma 1 of [137, Section 2] has been applied in the second line of (7.43)

and the last equality follows from the fact that tr{B1X} = 1 as X is a feasible

point. Since B−1
1 and A1 are positive definite, all the eigenvalues of the product

B−1
1 A1 are positive [134], and therefore, λmin{A1B

−1
1 } is positive. In a similar

way, it can be proved that tr{A2X} and tr{B2X} are necessarily positive, and

therefore, the variables τ and β are also positive. Thus, the task of maximizing the

objective function in the problem (7.42) is equivalent to maximizing the logarithm
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of this objective function because ln(x) is a strictly increasing function and the

objective function in (7.42) is positive. Then, the optimization problem (7.42) can

be equivalently rewritten as

max
X,τ,β

ln(tr{A1X}) + ln(τ)− ln(β)

subject to tr{B1X} = 1, tr{A2X} = τ

tr{B2X} = β, X � 0. (7.44)

In summary, by replacing g(τ, β) by h(τ, β), we are able to write our optimization

problem as a DC programming problem, where the fact that ln(tr{A1X}) in the

objective of (7.44) is a concave function is also considered. Although the problem

(7.44) boils down to the known family of DC programming problems, still there exists

no solution for such DC programming problems with guaranteed polynomial time

complexity. However, the problem (7.44) has a very particular structure, such as,

all the constraints are convex and the terms ln(tr{A1X}) and ln(τ) in the objective

are concave. Thus, the only term that makes the problem overall non-convex is the

term − ln(β) in the objective. If − ln(β) is piece-wise linearized over a finite number

of intervals1, then the objective function becomes concave on these intervals and

the whole problem (7.44) becomes convex. The resulting convex problems over

different linearization intervals for − ln(β) can be solved efficiently in polynomial

time, and then, the suboptimal solution of the problem (7.44) can be found. The

fact that such a solution is suboptimal follows from the linearization, which has

a finite accuracy. The smaller the intervals are, the more accurate the solution of

(7.44) becomes. However, such a solution procedure is not the most efficient in terms

of computational complexity. Thus, we resort to the POTDC method which was

introduced in Chapter 3. For this goal, let us introduce a new additional variable t

and then express the problem (7.44) equivalently as

max
X,τ,β,t

ln(tr{A1X}) + ln(τ)− t

subject to tr{B1X} = 1, tr{A2X} = τ

tr{B2X} = β, ln(β) ≤ t, X � 0. (7.45)

The objective function of the optimization problem (7.45) is concave and all the

constraints except the constraint ln(β) ≤ t are convex. The POTDC is based on

1As explained before, the parameter β can take values only in a finite interval. Thus, a finite
number of linearization intervals for − ln(β) is needed.
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linearizing the non-convex term ln(β) in the constraint ln(β) ≤ t suitably selected

points in different iterations. More specifically, the linearizing point in each iteration

is selected so that the objective function increases in every iteration of the iterative

algorithm. In the first iteration, we start with an arbitrary point selected in the

interval [λmin{B−1
1 B2}, λmax{B−1

1 B2}] and denoted as βc. Then the non-convex

function ln(β) is replaced by its linear approximation around this point βc, that is,

ln(β) ≈ ln(βc) +
1

βc
(β − βc) (7.46)

which results in the following convex optimization problem

max
X,τ,β,t

ln(tr{A1X}) + ln(τ)− t

subject to tr{B1X} = 1, tr{A2X} = τ, tr{B2X} = β

ln(βc) +
1

βc
(β − βc) ≤ t, X � 0. (7.47)

The problem (7.47) can be efficiently solved using the interior point-based nu-

merical methods. As it is mentioned in Chapter 6, the worst-case computational

complexity of solving a general SDP problem is equal to O(n2
c n

2.5
v + nc n

3.5
v ) [129]

where nc and nv denote, respectively, the number of the constraints and the number

of the variables of the primal problem (2.18). Therefore, the worst-case computa-

tional complexity of solving the problem (7.47) is O((M4
R + 3)3.5) where M4

R + 3 is

the total number of optimization variables in the problem (7.47) including the real

and imaginary parts of the elements of X as well as τ , β, and t. Once the optimal

solution of this problem, denoted in the first iteration as X
(1)
opt, τ

(1)
opt, β

(1)
opt, and t

(1)
opt, is

found, the algorithm proceeds to the second iteration by replacing the function ln(β)

by its linear approximation around β
(1)
opt found from the previous (first) iteration.

Fig. 7.2 shows how ln(β) is replaced by its linear approximation around βc where

βopt is the optimal value of β obtained through solving (7.47) using such a linear

approximation. In the second iteration, the resulting optimization problem has the

same structure as the problem (7.47) in which βc has to be set to β
(1)
opt obtained

from the first iteration. This process continues, and kth iteration is obtained by

replacing ln(β) by its linearization of type (7.46) around β
(k−1)
opt found at the itera-

tion k− 1. The POTDC algorithm for solving the problem (7.45) is summarized in

Algorithm 7.1.

According to the Lemma 3.2, the optimal values of the objective function of the

optimization problem (7.47) obtained over the iterations of the POTDC algorithm
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Figure 7.2: Linear approximation of ln(β) around βc. The region above the dashed curve is
non-convex.

are non-decreasing. Moreover, this Lemma implies that the solution obtained using

the Algorithm 7.1 satisfies the KKT conditions.

As soon as the solution of the relaxed problem (7.45) is found, the solution

of the original problem (7.35), which is equivalent to the solution of the sum-rate

maximization problem (7.34), can be found using one of the existing methods for

extracting a rank-one solution [106], [136]. The rank reduction-based technique

of [106] and the algebraic technique of [136] have been mentioned earlier, while

the method based on solving the dual problem (see [16]) exploits the fact the a

QCQP with only two constraints has zero duality gap. Note that the computational

complexity of the POTDC algorithm is equivalent to that of solving an SDP problem,

i.e., O((M4
R+3)3.5), times the number of iterations. It is noteworthy to mention that

the computational complexity comparison between the new proposed method and

the branch-and-bound method confirms the superiority of the proposed method [28].

Although the POTDC algorithm finds a KKT point for the considered sum-rate

maximization problem, we also aim at showing the evidence that such a point is

the globally optimal point. Toward this end, we will need an upper-bound for the
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Algorithm 7.1 The POTDC algorithm for solving the optimization problem (7.45)

Initialize: Select an arbitrary βc from the interval
[λmin{B−1

1 B2}, λmax{B−1
1 B2}], set the counter k to be equal to 1 and choose an

progress parameter ǫ.
while The difference between the values of the objective function in two consec-
utive iterations is larger than ǫ. do

Use the linearization of type (7.46) and solve the optimization problem (7.47)

to obtain X
(k)
opt, τ

(k)
opt, β

(k)
opt and t

(k)
opt.

Set Xopt = X
(k)
opt, and βc = β

(k)
opt.

k = k + 1.
end while
Output: Xopt.

optimal value.

7.4 An upper-bound for the optimal value

Through extensive simulations we have observed that regardless of the initial value

chosen for βc in the first iteration of the POTDC algorithm, the proposed iterative

method always converges to the global optimum of the problem (7.45). However,

since the original problem is not convex, this can not be easily verified analytically.

A comparison between the optimal value obtained by using the proposed iterative

method and also the globally optimal value can be, however, done by developing a

tight upper-bound for the optimal value of the problem and comparing the solution

to such an upper-bound. Thus, in this section, we find such an upper-bound for the

optimal value of the optimization problem (7.45). For this goal, we first consider the

following lemma which gives an upper-bound for the optimal value of the variable

β in the problem (7.45). This lemma will further be used for obtaining the desired

upper-bound for our problem.

Lemma 7.1. The optimal value of the variable β in (7.45) or equivalently (7.44),

denoted as βopt is upper-bounded by e(q
⋆−p⋆), where p⋆ is the value of the objective

function in the problem (7.45) or equivalently (7.44) corresponding to any arbitrary

feasible point and q⋆ is the optimal value of the following convex optimization prob-
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lem2

q⋆ = max
X,τ,β

ln(tr{A1X}) + ln(τ)

subject to tr{B1X} = 1, tr{A2X} = τ, X � 0. (7.48)

Proof: See Appendix G.

Note that as mentioned earlier, p⋆ is the objective value of the problem (7.44)

that corresponds to an arbitrary feasible point. In order to obtain the tightest pos-

sible upper-bound for βopt, we choose p⋆ to be the largest possible value that we

already know. A suitable choice for p⋆ is then the one which is obtained using the

POTDC algorithm. In other words, we choose p⋆ as the corresponding objective

value of the problem (7.44) at the optimal point which is resulted from the POTDC

algorithm. Thus, we have obtained an upper-bound for βopt which makes it further

possible to develop an upper-bound for the optimal value of the optimization prob-

lem (7.44). To this end, we consider the only non-convex constraint of this problem,

i.e., ln(β) ≤ t. Fig. 7.3 illustrates a subset of the feasible region corresponding to the

non-convex constraint ln(β) ≤ t where βmin equals λmin{B−1
1 B2}, i.e., the smallest

value of β for which the problem (7.45) is feasible, and βmax is the upper-bound for

the optimal value βopt given by Lemma 7.1 (βmax is equal to λmax{B−1
1 B2} if it is

smaller than the upper-bound of βopt obtained using Lemma 7.1). For obtaining

an upper-bound for the optimal value of the problem (7.45), we divide the inter-

val [βmin, βmax] into N sections as it is shown in Fig. 7.3. Then, each section is

considered separately. In each such section, the corresponding non-convex feasible

set is replaced by its convex-hull and each corresponding optimization problem is

solved separately as well. The maximum optimal value of such N convex optimiza-

tion problems is then the upper-bound. Indeed, solving the resulting N convex

optimization problems and choosing the maximum optimum value among them is

equivalent to replacing the constraint ln(β) ≤ t with the feasible set which is de-

scribed by the region above the solid line in Fig. 7.3. The upper-bound becomes

more and more accurate when the number of the intervals, i.e., N increases.

2Note that this optimization problem can be solved efficiently using numerical methods, for
example, interior point methods.
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Figure 7.3: Feasible region of the constraint ln(β) ≤ t and the convex hull in each sub-division.

7.5 Proportional fair and max-min rate fair approaches

In the previous section, we considered the relay amplification matrix design to max-

imize the overall sum-rate. Although, the maximum sum-rate is a common perfor-

mance criterion in relay transmit strategy design, it does not result in a fair resource

distribution among different users. Specifically, it assigns the majority of the avail-

able resources to the users with better channel qualities so that the highest possible

overall sum-rate can be achieved. Such resource allocation is not fair as the users

with lower channel qualities are not able to communicate properly. The importance

of the user fairness in asymmetric TWR systems has been recently demonstrated

in [67], [68] and [69]. The authors of [67] study the optimal power allocation problem

for single antenna users and single antenna relay where the sum-rate is maximized

under the fairness constraint. Relay beamforming and optimal power allocation for

a pair of single antenna users and several single antenna relays based on max-min

SNR (data rate) has been also considered in [68] and [69].

In this section, we study the relay amplification matrix design for the same setup

that was introduced in Section 7.1 when the MMRF and PF are used as the design

criteria. It will be shown that the corresponding optimization problems of such

design problems are also specific realizations of the introduced generalized QCQP
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problem which can be precisely recast as DC programming problems. Since the

approach for solving the corresponding optimization problems is so similar to the

sum-rate maximization problem, the following steps will be only explained briefly.

7.5.1 Proportional fairness

PF has been initially introduced and applied in game theory [138]. In application to

the resource allocation problem, it is known to provide a good trade-off between the

maximum sum-rate and the user fairness [139]. It is also well known that a propor-

tionally fair resource allocation/beamformer maximizes the sum of the logarithmic

average sum-rate [140]. The relay amplification matrix design problem based on the

PF criterion and subject to the total power constraint of the relay can be expressed

as the following optimization problem

gopt = arg max
g|gHQg≤PT,R

1

4
ln
(

1 +
PR,1

P̃N,1

)

ln
(

1 +
PR,2

P̃N,2

)

(7.49)

By following the same steps as in Section 7.2, the optimization problem (7.49) can

be expressed as the following homogeneous problem

gopt = arg max
g

ln

(
gHA1g

gHB1g

)

ln

(
gHA2g

gHB2g

)

(7.50)

Note that since the objective function of the optimization problem (7.50) is ho-

mogeneous, the equality constraint has been dropped. Moreover, since logarithm is

a strictly increasing function and the objective function of the optimization problem

(7.49) or, equivalently, (7.50) is positive, by taking logarithm of (7.50), the problem

can be equivalently recast as

gopt = arg max
g

ln

(

ln
(gHA1g

gHB1g

))

+ ln

(

ln
(gHA2g

gHB2g

))

. (7.51)

Using the fact that the problem (7.51) is homogeneous and by defining additional

variables α and β, (7.51) can be equivalently rewritten as

max
g,α,β

ln
(

ln(gHA1g)
)

+ ln
(

ln(α)− ln(β)
)

subject to gHB1g = 1, gHA2g = α,

gHB2g = β. (7.52)

Problem (7.52) is an special case of the generalized QCQP problem (3.1) that was

introduced in Chapter 3 with only three quadratic constraints. Similar to the max-

imum sum-rate design problem and by defining the matrix X = ggH and based on
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the Lemma 3.1 and Theorem 3.1, the problem (7.52) can be equivalently expressed

as

max
X,α,β

ln

(

ln
(

tr{A1X}
))

+ ln
(

ln(α)− ln(β)
)

subject to tr{B1X} = 1, tr{A2X} = α,

tr{B2X} = β. (7.53)

The optimal solution of the problem (7.52) can be easily extracted from the optimal

solution of the problem (7.53) using Theorem 3.1. By defining the additional variable

γ, the problem (7.53) can be finally recast as

max
X,α,β,γ

ln

(

ln
(

tr{A1X}
))

+ ln
(

ln(α) − γ
)

subject to tr{B1X} = 1, tr{A2X} = α,

tr{B2X} = β, ln(β) ≤ γ. (7.54)

This is a DC programming problem and it has similar mathematical structure to

the sum-rate maximization problem (7.45). It can be similarly handled using the

POTDC algorithm. Specifically, the objective is concave and all the constraints

except the last one are convex where the last one is a DC constraint. The point

found by the POTDC algorithm is guaranteed to be a KKT point. However, based

on our extensive simulation results for different scenarios, the POTDC algorithm

actually finds the globally optimal solution of the problem (7.54). Indeed similar to

the Subsection (6.2.1), the global optimality of this method reduces to the concavity

of the one-dimensional optimal value function that is defined using the optimization

problem (7.54) when β is fixed. The concavity of the optimal value function denoted

as k(β) can be numerically checked. Note that similar to the sum-rate maximization

problem, it can be shown that β takes values in a closed interval. Therefore, k(β)

is defined only in a closed interval. The numerical check for the concavity of k(β)

is based on a search for a counterexample. Specifically, since k(β) is defined over a

closed interval [θ1, θ2], the concavity can be checked probabilistically by generating

three random points β1, β2, and θ over the intervals [θ1, θ2], [θ1, θ2], and [0, 1],

respectively, and checking the validity of the inequality f(θβ1+(1−θ)β2) < θf(β1)+

(1− θ)f(β2) in order to find a counterexample to concavity of k(α). If such a point

can not be found over numerous realization of β1, β2, and θ, then it can be concluded

that k(β) is most probably a concave function.
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7.5.2 Max-min rate fairness

MMRF resource allocation/berfomer aims at maximizing the minimum received rate

for each terminal subject to the total power constraint at the relay. The correspond-

ing optimization problem can be expressed as

gopt = arg max min
g|gHQg≤PT,R

{

1

2
ln
(

1 +
PR,1

P̃N,1

)

,
1

2
ln
(

1 +
PR,2

P̃N,2

)
}

. (7.55)

Similar to the PF beamforming problem (7.49), this problem can be equivalently

expressed as the following homogeneous problem

gopt = arg max
g

min

{

ln

(
gHA1g

gHB1g

)

, ln

(
gHA2g

gHB2g

)}

. (7.56)

By defining the additional variables α and β and using the fact that the problem

(7.56) is homogeneous, (7.56) can be equivalently recast as

max
α,β

max
g

min
{

ln
(

gHA1g
)

, ln(α)−ln(β)
}

subject to gHB1g = 1, gHA2g = α,

gHB2g = β. (7.57)

Exchanging the order of maximum and minimum in the objective of (7.57) can

simplify this problem so that POTDC algorithm can then be directly applied to

it. The following lemma considers the possibility of such exchange in the order of

maximum and minimum.

Lemma 7.2. For fixed values of α and β, the following optimization problems have

the same optimal values, i.e., p1 = p2,

p1 , max
g

min
{

ln(gHA1g), ln(α)− ln(β)
}

subject to gHB1g = 1, gHA2g = α,

gHB2g = β (7.58)

and

p2 , min
{

max
g

ln(gHA1g), ln(α)− ln(β)
}

subject to gHB1g = 1, gHA2g = α,

gHB2g = β. (7.59)
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Proof: See Appendix H.

Using Lemma 7.2, the optimization problem (7.57) can be equivalently rewritten

as

max
α,β

min

{

max
g

ln(gHA1g), ln(α) − ln(β)

}

subject to gHB1g = 1, gHA2g = α,

gHB2g = β. (7.60)

The inner optimization problem in (7.60) is also a realization of the generalized

QCQP problem (3.1) with only three quadratic constraints. Therefore, according to

the Lemma 3.1 and Theorem 3.1 and by defining the matrix X = ggH , the problem

(7.60) can be equivalently recast as

max
α,β

min

{

max
X

ln(tr{A1X}), ln(α) − ln(β)

}

subject to tr{B1X} = 1, tr{A2X} = α,

tr{B2X} = β (7.61)

where the optimal solution of the problem (7.60) can be extracted form the optimal

solution of the problem (7.61) as it has been explained in Theorem 3.1. Therefore,

these two problems are equivalent. Eventually by defining the additional variable t,

the problem (7.61) can be recast as

max
α,β,X,t

t

subject to tr{B1X} = 1, tr{A2X} = α,

tr{B2X} = β, ln( tr{A1X}) ≥ t,

ln(α)− ln(β) ≥ t. (7.62)

The objective function is concave and all the constraints of the problem (7.62) except

the last constraint are convex. The last constraint is a DC constraint. Thus, (7.62)

can be handled by using POTDC algorithm as well.

7.6 Simulation results for sum-rate maximization prob-

lem

In this section, we evaluate the performance of the new proposed methods via numer-

ical simulations. Consider a communication system consisting of two single antenna

terminals and an AF MIMO relay with MR antenna elements. The communication
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between the terminals is bidirectional, i.e., it is performed based on the two-way

relaying scheme. It is assumed that perfect channel knowledge is available at the

terminals and at the relay, while the terminals use only effective channels (scalars),

but the relay needs full channel vectors. The relay estimates the corresponding

channel coefficients between the relay antenna elements and the terminals based on

the pilots which are transmitted from the terminals. Then based on these channel

vectors, the relay computes the relay amplification matrix G and then uses it for

forwarding the pilot signals to the terminals. After receiving the forwarded pilot

signals from the relay via the effective channels, the terminals can estimate the ef-

fective channels using a suitable pilot-based channel estimation scheme, e.g., the

LS.

The noise powers of the relays and the terminals PN,R, PN,1, and PN,2 are

assumed to be equal to σ2 unless otherwise specified. Uncorrelated Rayleigh fading

channels are considered and it is assumed that reciprocity holds, i.e., h
(f)
i = h

(b)
i

for i = 1, 2. The relay is assumed to be located over a line of unit length which

connects the terminals to each other and the variances of the channel coefficients

between terminal i and the relay antenna elements are all assumed to be proportional

to 1/dνi , where di ∈ (0, 1) is the distance between the relay and the terminal i

and ν is the path-loss exponent which is assumed to be equal to 3 throughout the

simulations.3 For obtaining each point, 100 independent simulation runs are used

unless otherwise is specified.

In order to design the relay amplification matrix G, five different methods are

considered including the proposed POTDC method for sum-rate maximization, 2-D

RAte-maximization via Generalized EigenvectorS (RAGES) and 1-D RAGES algo-

rithms [65], the algebraic norm-maximizing (ANOMAX) transmit strategy of [66]

and the discrete Fourier transform (DFT) method that chooses the relay precod-

ing matrix as a scaled DFT matrix. Note that the ANOMAX strategy provides

a closed-form solution for the problem. Also note that for the DFT method no

channel knowledge is needed. Thus, the DFT method serves as a benchmark for

evaluating the gain achieved by using channel knowledge. The upper-bound is also

shown in Simulation Examples 1 and 2. For obtaining the upper-bound, the inter-

val [βmin, βmax] is divided in 30 segments. In addition, the proposed techniques are

3It is experimentally found that typically 2 ≤ ν ≤ 6 (see [81, p. 46–48] and references therein).
However, ν can be smaller than 2 when we have a wave-guide effect, i.e., indoors in corridors or in
urban scenarios with narrow street canyons.
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compared to the SNR-balancing technique of [69] for the scenario when multiple

single antenna relay nodes are used and the method of [69] is applicable.

7.6.1 Example 1 : Symmetric channel conditions

In our first example, we consider the case when the channels between the relay an-

tenna elements and both terminals have the same channel quality. More specifically,

it is assumed that the relay is located in the middle of the connecting line between

the terminals and the transmit powers PT,1 and PT,2 and the total transmit power

of the MIMO relay PT,R are all assumed to be equal to 1.

Fig. 7.4 shows the sum-rate achieved by different aforementioned methods versus

σ−2 for the case of MR = 3. It can be seen in this figure that the performance

of the proposed method, 1-D RAGES, and 2-D RAGES coincide with the upper-

bound. Thus, the proposed method, 1-D RAGES, and 2-D RAGES perform globally

optimally in terms of providing the maximum sum-rate. The ANOMAX technique

performs close to the optimal, while the DFT method gives a significantly lower

sum-rate. It is noteworthy to mention that although the RAGES-based methods

achieve the globally optimal solution, they are heuristic and can not be generalized.
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Figure 7.4: Example 1: The case of symmetric channel conditions. Sum-rate r1 + r2 versus
σ−2 for MR = 3 antennas.
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7.6.2 Example 2 : Asymmetric channel conditions

In the second example, we consider the case when the channels between the relay

antenna elements and the second terminal have better channel quality than the

channels between the relay antenna elements and the first terminal. Thus, we eval-

uate the effect of the relay location on the achievable sum-rate. Particularly, we

consider the case when the distance between the relay and the second terminal d2

is less than or equal to the distance between the relay and the first terminal d1.

The total transmit power of the terminals, i.e., PT,1 and PT,2 and the total transmit

power of the MIMO relay PT,R all are assumed to be equal to 1 and the noise power

in the relay antenna elements and the terminals all are assumed to be equal to 1.

Fig. 7.5 shows the sum-rate achieved in this scenario by different methods tested

versus the distance between the relay and the second terminal d2, for the case of

MR = 3. It can be seen in this figure that the proposed method and the RAGES-

based methods perform optimally, while the performance (sum-rate) of ANOMAX

is slightly worse.
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Figure 7.5: Example 2: The case of asymmetric channel conditions. Sum-rate r1 + r2 versus
the distance between the relay and the second terminal d2 for MR = 3 antennas.

As mentioned earlier, it is guaranteed that the POTDC algorithm converges

to at least a KKT point of the sum-rate maximization problem. However, our
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extensive simulation results confirm that the POTDC algorithm converges to the

global maximum of the problem in all simulation runs. It is approved by the fact

that the performance of the POTDC algorithm coincides with the upper-bound.

Moreover, the 2-D RAGES and 1-D RAGES are, in fact, globally optimal, too.

Note that although the 2-D RAGES and 1-D RAGES achieve the globally optimal

solution, they are largely heuristic methods and are applicable only to the sum-

rate maximization in a two-way relaying system with two single antenna users.

In other words, they can not be extended to problems of a more general form.

For example, in contrast to our proposed method which can be easily applied to

the multi-operator two-way relay networks, the RAGES is not applicable in that

case [141]. The ANOMAX and DFT methods, however, do not achieve the maximum

sum-rate. The loss in sum-rate related to the DFT method is quite significant

while the loss in sum-rate related to the ANOMAX method grows from small in

the case of symmetric channel conditions to significant in the case of asymmetric

channel conditions. Although ANOMAX enjoys a closed-form solution and it is

even applicable in the case when terminals have multiple antennas, it is not a good

substitute for the proposed methods because of the significant gap in performance

in the asymmetric case.

7.6.3 Example 3 : Effect of the number of relay antenna elements

In this example, we consider the effect of the number of relay antenna elements MR

on the achievable sum-rate for the aforementioned methods. The powers assigned

to the first and second terminals as well as to the relay are all equal to 1. The relay

is assumed to be located at the distance of 1/5 from the second user. Moreover, the

noise powers at the terminals and at the relay antenna elements are all assumed to

be equal to 1. For obtaining each point in this simulation example, 200 independent

runs are used.

Fig. 7.6 depicts the sum-rates achieved by different methods versus the number

of relay antenna elements MR. As it is expected, by increasing MR (thus, increasing

the number of degrees of freedom), the sum-rate increases. For the DFT method,

the sum-rate does not increase with the increase of MR because of the lack of

channel knowledge for this method. The proposed methods achieve higher sum-rate

compared to ANOMAX.
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Figure 7.6: Example 3: The case of asymmetric channel conditions. Sum-rate r1 + r2 versus
the number of the relay antenna elements MR.

7.6.4 Example 4 : Performance comparison for the scenario of two-
way relaying via multiple single antenna relays

In our last example, we compare the proposed POTDC method with the SNR

balancing-based approach of [69]. The method of [69] is developed for two-way

relaying systems which consist of two single antenna terminals and multiple single

antenna relay nodes. Subject to the constraint on the total transmit power of the

relay nodes and the terminals, the method of [69] designs a beamforming vector for

the relay nodes and the transmit powers of the terminals to maximize the minimum

received SNR at the terminals. In order to make a fair comparison, we consider a

diagonal structure for the relay amplification matrix G that corresponds to the case

of [69] when multiple single antenna nodes are used for relaying. It is worth mention-

ing that for imposing such a diagonal structure for the relay amplification matrix

G in POTDC and RAGES, the vector gM2
R
×1 = vec{G} is replaced with gMR×1 =

diag{G} and the matrices Ai and Bi, i = 1, 2 are replaced with new square matrices

Ãi and B̃i, i = 1, 2 of size MR×MR such that [Ãi]m,n = [Ai](m−1)·MR+m,(n−1)·MR+n

and [B̃i]m,n = [Bi](m−1)·MR+m,(n−1)·MR+n, m, n = 1, · · · ,MR. Moreover, for the

proposed POTDC method and the RAGES-based methods, we assume fixed trans-

mit powers at the terminals and fixed total transmit power at the relay nodes that
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are all equal to 1, while for the method of [69], the total transmit power at the

relay nodes and the terminals is assumed to be equal to 3. Thus, the overall con-

sumed power by the proposed POTDC method, the RAGES-based methods and

the method of [69] is the same, however, compared to [69], which also optimizes the

power usage of the terminals, the transmit powers of the terminals in the proposed

POTDC method and the RAGES-based methods are fixed. The relay is assumed

to lie in the middle in between the terminals. Fig. 7.7 shows the corresponding per-

formance of the methods tested. From this figure it can be seen that the proposed

POTDC method and the RAGES-based methods demonstrate a better performance

compared to the method of [69] as it may be expected even though they use a fixed

transmit power for the terminals.
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Figure 7.7: Example 4: The case of symmetric channel conditions and distributed single
antenna relays. Sum-rate r1 + r2 versus σ−2 for MR = 3 antennas.

7.7 Simulation results for PF and MMRF relay ampli-
fication matrix design

For evaluating the performance of the proportionally fair and max-min rate fair relay

amplification matrix design, we consider a similar simulation set up as in Section 7.6.
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7.7.1 Example 1 : Symmetric channel conditions

More specifically, the same single antenna terminals are considered that are com-

municating through the AF MIMO relay equipped with MR = 3 antennas. The

transmit powers of the terminals PT,1 and PT,2 and the total transmit power of the

MIMO relay PT,R are all assumed to be equal to 1. The relay is assumed be located

at the middle of the terminals while the path-loss parameter is selected to be equal

to 2. The noise power for all the antenna elements is assumed to be the same, and

it is denoted as σ2 except the second terminal whose noise power is 20 dB larger

than for the rest of the noises. The difference in noise power is used for modeling

the asymmetric environmental conditions for the users.

We compare the proposed PF and the max-min fairness beamforming methods

with other relay beamforming methods in terms of the fairness index defined as

(r21 + r22)/(2 · (r1 + r2)
2) [142], [143] and the minimum user data rate, respectively.

The methods used for performance comparison are the sum-rate maximization based

relay amplification matrix design which was developed in Section 7.3, ANOMAX

and DFT that were introduced in the previous section. Furthermore, the proposed

relay beamforming methods are compared with upper-bound of the optimization

problems (7.49) and (7.55) found in a similar way as in Section 7.4. Fig. 7.8 shows

the fairness index for the PF beamforming method in comparison to that of the

other methods tested versus σ−2.

Fig. 7.9 shows the minimum data rate of the max-min fairness beamformer in

comparison to that of the other aforementioned methods also versus σ−2. From

these figures, it can be seen that the proposed methods outperform the other state-

of-art relay beamforming methods in the scenario with the noise power asymmetry

at the terminals. Moreover, the POTDC algorithm is able to find global optimums

of the corresponding optimization problems.

7.8 Chapter summery

We have shown that the sum-rate maximization problem in two-way AF MIMO re-

laying can be cast as a generalized QCQP problem. By means of the SDR, the cor-

responding optimization problem is recast precisely as a DC programming problem.

Although DC programming problems can be solved using the branch-and-bound

method, this method does not have any polynomial time guarantees for its worst-
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Figure 7.8: Example 1: Fairness index versus σ−2.

case complexity. Therefore, we have applied the proposed POTDC algorithm for

finding a KKT point for the aforementioned problem with polynomial time worst-

case complexity. There is, however, a great evidence that the globally optimal

solution is also achieved. Moreover, a tight upper-bound for the maximum possi-

ble sum-rate is developed and it is demonstrated by simulations that the solution

obtained by the POTDC method achieves the upper-bound and is, thus, globally

optimal.

Next, we considered the relay amplification matrix design problem based on the

max-min rate and PF criteria. It is shown that these design problems can also

be recast as DC programming problems as well which can be addressed using the

POTDC algorithm. In application to the corresponding optimization problems,

the POTDC algorithm finds the KKT point. Moreover, its global optimality in

each specific case can be easily checked by the means of a simple numerical global

optimality test that aims at ensuring that a certain one-dimensional optimal value

function is convex.
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Chapter 8

Conclusion

The contributions of this dissertation are briefly summarized in this chapter. More-

over, the potential future research directions are discussed at the end of the chapter.

8.1 Summary of contributions

In this thesis, we introduced a generalization of the QCQP optimization problem

which appears in many signal processing and communications applications. More

specifically, such generalization involves the composition of one-dimensional convex

and quadratic functions in the constraint and the objective functions. It is shown

that this generalization of the QCQP problem can be precisely or approximately re-

cast as a DC optimization problem by using the semi-definite relaxation technique.

Although the DC programming problems can be solved globally optimally using var-

ious modification of the so-called branch-and-bound methods, there is no guarantee

of worst-case polynomial time complexity for these methods. For addressing this

problem, which may prohibit the practical applicability of the branch-and-bound

methods in the real-time applications, we proposed a new method for solving the

resulted DC optimization problems at least suboptimally. Particularly, the new pro-

posed method is based on the linearization and an iterative Newton-type search over

a small set of optimization variables. The global optimality of the solution by the

proposed method is discussed while a geometric interpenetration of the iterations is

given. Next, we consider the application of the introduced generalized QCQP and

the pure QCQP optimization problems for four different problems in array process-

ing and wireless communications. The new contributions in the tackled problems

comes in order.
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8.1.1 Transmit beamspace design for DOA estimation in MIMO
radar

We studied the MIMO radar transmit beamspace design problem which allows to

achieve a virtual array with a large number of elements and at the same time to enjoy

large SNR gains in different virtual elements. Specifically, we studied the design of

the transmit beamspace matrix in such a way that its actual transmit beampattern

is as close as possible to a desired one and the power is uniformly distributed across

the transmit antenna elements which is important due to practical consideration.

By a proper choice of the desired beampattern, this way of designing can result

in large SNR gains through the focus of the transmit energy in the desired sectors

where the targets are likely to be located. In addition to these design requirement

and for allowing for a simple search-free DOA estimation algorithm at the receive

array with arbitrary shape, the rotational invariance property (RIP) for the virtual

array was also established by a proper design of transmit beamspace at the transmit

array. More specifically, it was shown that by imposing a specific structure on

the beamspace matrix the RIP can be enforced at the transmit array. For the

case of even but otherwise arbitrary number of transmit waveforms, the design

problem of such transmit beamspace matrix is formulated as non-convex QCQP

problem. Then, this non-convex problem is approximately solved by using the SDR

techniques. Numerical results confirm the superiority of the proposed transmit

beamspace design in DOA estimation as compared to the traditional MIMO radar

techniques.

8.1.2 A new robust adaptive beamforming

We studied the MVDR RAB design problem from a new perspective. Specifically, we

showed that all the MVDR RAB methods can be viewed based on a single unified

principle, i.e., to use standard MVDR beamfoming in tandem with an estimate

of the signal steering vector found based on some prior information. According

to this unified principle, the differences between different MVDR RAB methods

can be attributed to the difference in the available prior information as well as the

estimation method which is applied. By means of this unified principle, we developed

a new MVDR RAB technique which uses only imprecise knowledge of antenna array

geometry and angular sector in which the actual steering vector is located. The new

proposed RAB deign is then expressed as a non-convex QCQP problem with only
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two constraints which can be precisely solved by using some known results. However,

we have developed a new algebraic method of finding the rank-one solution from the

general-rank solution of the relaxed problem. Moreover, the condition under which

the solution of the relaxed problem is guaranteed to be rank-one has been discussed.

The numerical results confirm the superior performance of the new proposed method

as opposed to the existing state-of-the-art RAB methods.

8.1.3 Robust adaptive beamforming for general-rank signal model
with positive semi-definite constraint

The RAB problem for the general-rank signal model with the additional PSD con-

straint was considered. The existing approaches for solving the corresponding non-

convex optimization problem are iterative methods for which the convergence is

not guaranteed and they solve the problem only suboptimally. These shortcom-

ings motivated us to find a better method. Specifically, we were able to show that

the aforementioned non-convex problem belongs to the class of generalized QCQP

optimization problems which was introduced in Chapter 3. Using the newly devel-

oped POTDC method, we designed a polynomial time algorithm for addressing the

corresponding optimization problem. It is guaranteed that the point found by the

POTDC algorithm for this problem is a KKT point. Moreover, there is a strong

evidence that the POTDC method actually finds the globally optimal point of the

problem under consideration, which is shown in terms of a number of lemmas and

one theorem. Furthermore, we demonstrated the equivalence between the claim of

global optimality for the POTDC algorithm as applied to the problem under consid-

eration and the convexity of the one-dimensional optimal value function (6.17). As

opposed to the other existing methods, the proposed RAB method shows superior

performance in terms of the output SINR.

8.1.4 Two-way AF MIMO relay transmit strategy design

We considered the two-way relaying transmit strategy design problems based on

the maximum sum-rate, MMRF, and the PF criteria. Such design problems were

shown to belong to the class of generalized QCQP optimization problems which

can be precisely recast as DC programming problems. Although DC programming

problems can be solved by the branch-and-bound method, this method does not

have any polynomial time complexity (worst-case) guarantees. Therefore, we have
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applied the proposed POTDC algorithm for finding a KKT point of the aforemen-

tioned problems with polynomial time worst-case complexity. There is, however, a

great evidence that the globally optimal solution is also achieved. Moreover, tight

upper-bounds for the corresponding optimization problems have been developed

and it is demonstrated by simulations that the solutions obtained by the POTDC

method achieve the upper-bounds and are, thus, globally optimal for each criterion

considered. The claim of global optimality in application to the these problems is

equivalent to the concavity of one-dimensional optimal value functions which can

be checked numerically.

8.1.5 Probable future research

Global optimality of the POTDC method

In application to the general-rank RAB and the relay amplification matrix design,

we have always observed that the proposed POTDC method results in the glob-

ally optimal solution of the corresponding optimization problems. Moreover, it was

demonstrated that the claim of global optimality for the POTDC method is equiva-

lent to the convexity/concavity of a certain optimal value function. Despite its very

significant effect on the related fields, a rigorous proof of the convexity/concavity for

the aforementioned optimal value function remains in general still an open problem

of significant interest.

Other applications of the POTDC method

We studied the optimal relay amplification matrix design for an AF TWR system

with two terminals equipped with a single antenna and one relay with multiple an-

tennas. An interesting research direction is the extension of this basic model in

different ways. One particular example of such an extension is the optimal ampli-

fication matrix design when the users are allowed to have multiple antennas and

there is a direct link between the users.
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Appendix A

Proof of Theorem 5.1

Let A∗ be the optimal minimizer of the relaxed problem (5.19), and its rank be r.

Consider the following decomposition of A∗

A∗ = YYH (A.1)

where Y is an M × r complex valued full rank matrix. It is trivial to see that if the

rank of the optimal minimizer of the relaxed problem (5.19), i.e., A∗, is one, then

Y is also the optimal minimizer of the original problem (5.14). Thus, it is assumed

in the following that r > 1.

Following similar steps as in [144], we start by considering the following auxiliary

optimization problem

min
G

tr{R̂−1YGYH}

subject to tr{YGYH} = M

tr{C̃YGYH} = tr{C̃A∗}

G � 0 (A.2)

where G is an r × r Hermitian matrix. The matrix A in (5.19) can be expressed

as a function of the matrix G in (A.2) as A(G) = YGYH . Moreover, it can

be easily shown that if G is a positive semi-definite matrix, then A(G) is also a

positive semi-definite matrix. In addition, if G is a feasible point of the problem

(A.2), A(G) is also a feasible point of (5.19). The latter is true because A(G) is

a positive semi-definite matrix and it satisfies the constraints tr{A(G)} = M and

tr{C̃A(G)} = tr{C̃A∗} ≤ ∆0. This implies that the minimum value of the problem

(A.2) is greater than or equal to the minimum value of the problem (5.19).

It is then easy to verify that G∗ = Ir×r is a feasible point of the auxiliary opti-

mization problem (A.2). Moreover, the fact that tr{R̂−1YG∗YH} = tr{R̂−1A∗} ,
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β (here β denotes the minimum value of the relaxed problem (5.19)) together with

the fact that the minimum value of the auxiliary problem (A.2) is greater than or

equal to β, implies that G∗ = Ir×r is the optimal solution of the auxiliary problem

(A.2).

In what follows, we show that every feasible point of the problem (A.2) denoted

as G′ is also an optimal minimizer of the same problem. Thus, A(G′) = YG′YH

is an optimal minimizer of (5.19).

Let us start by considering the following dual problem of (A.2)

max
ν1,ν2,Z

ν1M + ν2tr{C̃A∗}

subject to YHR̂−1Y − ν1Y
HY − ν2Y

HC̃Y � Z

Z � 0 (A.3)

where ν1 and ν2 are the Lagrangian multipliers associated with the first and second

constraints in (A.2), respectively, and Z is an r× r Hermitian matrix of Lagrangian

multipliers associated with the constraint G � 0. The problem (A.2) is convex, and

it satisfies the Slater’s condition because, as it was mentioned, the positive definite

matrix G = Ir×r is a strictly feasible point for (A.2). Thus, the strong duality

between (A.2) and (A.3) holds.

Let ν∗1 , ν
∗
2 , and Z∗ be one possible optimal solution of the dual problem (A.3).

Since strong duality holds, we can state that ν∗1M+ν∗2tr{C̃A∗} = β. Considering the

fact that Ir×r is the optimal solution of the primal problem (A.2), the complementary

slackness condition implies that

tr{G∗Z∗} = tr{Z∗} = 0. (A.4)

Since Z∗ is a positive semi-definite matrix, the condition (A.4) implies that Z∗ = 0.

Then it follows from the first constraint of (A.3) that

YHR̂−1Y − ν∗1YHY − ν∗2YHC̃Y � 0. (A.5)

The fact that β− ν∗1M − ν∗2tr{C̃A∗} = 0 implies that tr{YHR̂−1Y− ν∗1YHY−
ν∗2Y

HC̃Y} = 0. As a result, it can be easily verified that the constraint (A.5) is

active, i.e., it is satisfied as equality for optimal ν∗1 and ν∗2 . Therefore, we can write

that

YHR̂−1Y = ν∗1Y
HY + ν∗2Y

HC̃Y. (A.6)
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Let G′ be another feasible point of (A.2) different from Ir×r. Then the following

conditions must hold

tr{YHYG′} = M (A.7)

tr{YHC̃YG′} = tr{C̃A∗} (A.8)

G′ � 0. (A.9)

Multiplying both sides of the equation (A.6) by G′, we obtain

YHR̂−1YG′ = ν∗1Y
HYG′ + ν∗2Y

HC̃YG′. (A.10)

Moreover, taking the trace of the right hand and left hand sides of (A.10), we have

tr{YHR̂−1YG′} = ν∗1tr{YHYG′}+ ν∗2tr{YHC̃YG′}

= ν∗1M + ν∗2tr{C̃A∗} = β. (A.11)

This implies that G′ is also a possible optimal solution of (A.2). Therefore, every

feasible point of (A.2) is also a possible optimal solution.

Finally, we show that there exists a feasible point of (A.2) whose rank is one.

As it has been proved above, such feasible point is also a possible optimal solution.

Let H , vvH , and we are interested in finding such v that

tr{YHYH} = vHYHYv = M (A.12)

tr{YHC̃YH} = vHYHC̃Yv = tr{C̃A∗}. (A.13)

Equivalently, the conditions (A.12) and (A.13) can be rewritten as

1

M
vHYHYv = 1 (A.14)

vH
YHC̃Y

tr{C̃A∗}
v = 1. (A.15)

Moreover, equating the left hand side of (A.14) to the left hand side of (A.15), we

obtain that

1

M
vHYHYv = vH

YHC̃Y

tr{C̃A∗}
v. (A.16)

Finding the difference between the left and right hand sides of (A.16), we also obtain

that

vH

(

1

M
YHY − YHC̃Y

tr{C̃A∗}

)

v = vHDv = 0. (A.17)
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Considering the fact that tr{YHY} = M and tr{YHC̃Y} = tr{C̃A∗}, we find that

tr
{
YHY/M − YHC̃Y/tr{C̃A∗}

}
= tr{D} = 0. Therefore, the vector v can be

chosen proportional to the sum of the eigenvectors of the matrix D and it can be

scaled so that vHYHC̃Yv = tr{C̃A∗} and, thus, (A.12) and (A.13) are satisfied.

So far we have found a rank-one solution for the auxiliary optimization problem

(A.2), that is, G = vvH . Since G = vvH is a possible optimal solution of the

auxiliary problem (A.2), then YGYH = (Yv)(Yv)H is a possible optimal solution

of the relaxed problem (5.19). Moreover, since the solution (Yv)(Yv)H is rank-one,

Yv is a possible optimal solution of the original optimization problem (5.14). This

completes the proof. �

160



Appendix B

Proof of Lemma 5.1

Let A∗ be one possible optimal solution of the problem (5.19) whose rank r is greater

than one. Using the rank-one decomposition of Hermitian matrices [145], the matrix

A∗ can be written as

A∗ =

r∑

j=1

zjz
H
j (B.1)

where

zHj zj =
1

r
tr{A∗} =

M

r
, j = 1, . . . , r (B.2)

zHj C̃zj =
1

r
tr{C̃A∗}, j = 1, . . . , r. (B.3)

Let us show that the terms zHj R̂−1zj , j = 1, . . . , r are equal to each other

for all j = 1, . . . , r. We prove it by contradiction assuming first that there exist

such zm and zn, m 6= n that zHmR̂−1zm < zHn R̂−1zn. Let the matrix A∗
0 be con-

structed as A∗
0 = A∗ − znz

H
n + zmzHm. It is easy to see that tr{A∗} = tr{A∗

0} and

tr{C̃A∗} = tr{C̃A∗
0}, which means that A∗

0 is also a feasible point of the prob-

lem (5.19). However, based on our assumption that zHmR̂−1zm < zHn R̂−1zn, it can

be concluded that tr{R̂−1A∗
0} < tr{R̂−1A∗}, which is obviously a contradiction.

Thus, all terms zHj R̂−1zj , j = 1, . . . , r must take the same value. Using this fact

together with the equations (B.2) and (B.3), we can conclude that rzjz
H
j for any

j = 1, . . . , r is a possible optimal solution of the relaxed problem (5.19) which has

rank one. Thus, the optimal solution of the original problem (5.14) is
√
rzj for any

j = 1, . . . , r. Since the vectors zj , j = 1, ..., r in (B.1) are linearly independent and

each of them represents a possible optimal solution of (5.14), we conclude that there

are many possible optimal solution of (5.14). However, it contradicts the assump-

tion that the optimal solution of (5.14) is unique (regardless possible phase rotation
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as explained earlier in the Subsection 5.3.2). Thus, the only optimal solution A∗ of

the relaxed problem (5.19) has to be rank-one. This completes the proof. �
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Appendix C

Proof of Lemma 6.1

Since the objective function as well as the constraints of the optimization problem

(6.2) are all quadratic functions of ∆, this problem is convex. It is easy to verify

that this problem satisfies the Slater’s constraint qualification and as a result the

KKT conditions are necessary and sufficient optimality conditions. Let us introduce

the Lagrangian as

L(Q,∆, µ) , wH
(
QHQ + QH∆ + ∆HQ + ∆H∆

)
w

+ µ(‖∆‖2 − η2) (C.1)

where µ is the non-negative Lagrangian multiplier. The KKT optimality conditions

are

∇∆L(Q,∆, µ) = 0 (C.2a)

‖∆‖2 ≤ η2 (C.2b)

µ(‖∆‖2 − η2) = 0 (C.2c)

µ ≥ 0 (C.2d)

where 0 is the vector of zeros. Using the matrix differentiation, the zero gradient

condition (C.2a) can be expressed as QwwH + ∆wwH + µ∆ = 0 or, equivalently,

as

∆ = −QwwH(wwH + µI)−1. (C.3)

Moreover, using the matrix inversion lemma [132], the expression (C.3) can be sim-

plified as

∆ = − QwwH

‖w‖2 + µ
. (C.4)

The Lagrangian multiplier µ can be determined based on the conditions (C.2b)–

(C.2d). For this goal, we find a simpler expression for the norm of the matrix
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QwwH as follows

‖QwwH‖2 = tr{QwwHwwHQH}

= tr{QwwHQH} ·wHw

= ‖Qw‖2‖w‖2 (C.5)

Using (C.5), it can be obtained that

δ(µ) , ‖∆‖ =
‖Qw‖‖w‖
‖w‖2 + µ

. (C.6)

where the new function δ(µ) is defined for notation simplicity. It is easy to verify that

δ(µ) is a strictly decreasing function with respect to µ ≥ 0. Consequently, for any

arbitrary µ ≥ 0, it is true that δ(µ) ≤ δ(0) = ‖Qw‖/‖w‖. Depending on whether

δ(0) is less than or equal to η or not, the following two cases are possible. If δ(0) ≤ η,
then µ and ∆ can be found as µ = 0 and ∆ = −QwwH/‖w‖2, which is obtained by

simply substituting µ = 0 in (C.4). In this case, the KKT conditions (C.2b)–(C.2d)

are obviously satisfied. In the other case, when δ(0) > η, the above obtained ∆

for µ = 0 does not satisfy the condition (C.2b) because ‖∆‖ = δ(0) > η. Since,

δ(µ) is a strictly decreasing function with respect to µ ≥ 0, for satisfying (C.2b),

the value of µ must be strictly larger than zero and as a result the condition (C.2c)

implies that ‖∆‖ = η. Note that if µ > 0 and ‖∆‖ obtained by substituting such

µ in (C.4) is equal to η, then the KKT conditions (C.2b)–(C.2d) are all satisfied.

Thus, we need to find the value of µ such that the corresponding ‖∆‖ is equal to

η. By equating δ(µ) to η, it can be resulted that µ0 = ‖w‖/η · (‖Qw‖ − η‖w‖).
Considering the above two cases together, the optimal ∆ can be expressed as

∆ =

{

−η QwwH

‖Qw‖‖w‖ , ‖Qw‖ ≥ η‖w‖
−QwwH

‖w‖2 , otherwise.
(C.7)

Finally, substituting (C.7) in the objective function of the problem (6.2), the worst-

case signal power for a fixed beamforming vector w can be found as shown in (6.3).

�
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Appendix D

Proof of Lemma 6.2

First, we verify whether the optimal solution of the optimization problem (6.5), or

equivalently, the following problem

min
w

wH(R̂ + γI)w

subject to ‖Qw‖ − η‖w‖ ≥ 1 . (D.1)

is achievable or not.

Let w0 denote any arbitrary feasible point of the problem (D.1). It is easy to

see that if wHw ≥ wH
0 (R̂ + γI)w0/λmin{R̂ + γI} then wH(R̂ + γI)w is greater

than or equal to wH
0 (R̂ + γI)w0. The latter implies that if the optimal solution is

achievable, it lies inside the sphere of wHw ≤ wH
0 (R̂+γI)w0/λmin{R̂+γI}. Based

on this fact, the optimization problem (D.1) can be recast as

min
w

wH(R̂ + γI)w

subject to ‖Qw‖ − η‖w‖ ≥ 1,

wHw ≤ wH
0 (R̂ + γI)w0/λmin{R̂ + γI}. (D.2)

Feasible set of the new added constraint of the problem (D.2) is bounded and closed.

In what follows, we show that feasible set of the constraint ‖Qw‖ − η‖w‖ ≥ 1 is

also closed. To show it, it suffices to consider the complement of this constraint as

follows
√

wHRsw − η
√

wHw < 1 (D.3)

and prove that it is an open set. Let w1 denote an arbitrary point which satisfies

(D.3) and let us consider a sphere whose center is w1 and with radius of ǫ. The

points inside this sphere form a set which is denoted as A , {w | ‖w −w1‖ ≤ ǫ}.
We aim at showing that for any w1, if ǫ is chosen sufficiently small then the set
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A lies inside the set defined by the constraint
√

wHRsw − η
√

wHw < 1. To this

end, let us first find the minimum of the quadratic term wHw over the set A. By

choosing ǫ in such a way that ǫ < ‖w1‖, the minimum of this quadratic term over A
can be easily shown to be wH

1 w1(1− ǫ/‖w1‖)2. Next, we also find an upper-bound

for the maximum value of the quadratic term wHRsw over the set A. For this

goal, let Rs = UΛUH denote the eigenvalue decomposition of the matrix Rs where

U is a unitary matrix and the diagonal matrix Λ = diag{λ1, · · · , λM} contains

the non-negative eigenvalues of Rs. Using the eigenvalue decomposition, the term

(w1 + w)HRs(w1 + w) can be expressed as

(w1 + w)HRs(w1 + w) =

M∑

i=1

λi|uHi (w1 + w)|2. (D.4)

Based on the triangular and Cauchy-Schwartz inequalities, it can be concluded that

|uHi (w1 + w)| ≤ |uHi w1|+ ǫ‖ui‖2 = |uHi w1|+ ǫ. Using the latter fact and also the

equation (D.4), it is resulted that

(w1 + w)HRs(w1 + w) =

M∑

i=1

λi|uHi (w1 + w)|2

≤
M∑

i=1

λi(|uHi w1|+ ǫ)2

≤wH
1 Rsw1

(
1+2ǫ

∑M
i=1λi|uHi w1|
wH

1 Rsw1

)
+ wH

1 Rsw1 · ǫ2
∑M

i=1 λi

wH
1 Rsw1

≤wH
1 Rsw1(1 + ǫamax)

2 (D.5)

where amax is defined as

amax , max





√
∑M

i=1 λi

wH
1 Rsw1

,

∑M
i=1 λi|uHi w1|
wH

1 Rsw1



 . (D.6)

Considering the so-obtained upper-bound and lower-bound, it can be concluded that

√

wHRsw − η
√

wHw ≤

(1+ǫamax)
√

wH
1 Rsw1−(1−ǫ/‖w1‖)η

√

wH
1 w1. (D.7)

By choosing ǫ so that

ǫ <
1− (

√

wH
1 Rsw1 − η

√

wH
1 w1)

√

wH
1 Rsw1amax + η

√

wH
1 w0/‖w1‖

(D.8)
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the right hand side of the inequality (D.7) becomes less than one and therefore the

sphere with center of w1 and radius given by (D.8) lies inside the set specified by the

constraint
√

wHRsw − η
√

wHw < 1. Therefore, the feasible set of the constraint

‖Qw‖ − η‖w‖ ≥ 1 is closed. Since the feasible sets of both of the constraints are

closed and one of them is bounded, the feasible set of the problem (D.2), which is

the intersection of these two sets, is also closed and bounded. The latter implies

that the feasible set of the problem (D.2) is compact. Therefore, also based on the

fact that the objective function of (D.2) is continues, the optimal solution of (D.2),

or equivalently (6.5), is achievable.

Let (wopt, αopt) denote the optimal solution of the problem (6.5). Let us define

the following auxiliary optimization problem based on the problem (6.5)

min
w

wH(R̂ + γI)w

subject to wHQHQw = αopt

wHw ≤
(
√
αopt − 1)2

η2
. (D.9)

It can be seen that if w is a feasible point of the problem (D.9), then the pair

(w, αopt) is also a feasible point of the problem (6.5) which implies that the optimal

value of the problem (D.9) is greater than or equal to that of (6.5). However,

since wopt is a feasible point of the problem (D.9) and the value of the objective

function at this feasible point is equal to the optimal value of the problem (6.5),

i.e., it is equivalent to wH
opt(R̂ + γI)wopt, it can be concluded that both of the

optimization problems (6.5) and (D.9) have the same optimal value. Let us define

another auxiliary optimization problem based on the problem (D.9) as

g , min
w

wH(R̂ + γI)w

subject to wHQHQw = αopt (D.10)

which is obtained from (D.9) by dropping the last constraint of the problem (D.9).

The feasible set of the optimization problem (D.9) is a subset of the feasible set of

the optimization problem (D.10). As a result, the optimal value g of the problem

(D.10) is smaller than or equal to the optimal value of the problem (D.9), and thus

also, the optimal value of the problem (6.5). Using the minimax Theorem [124],

it is easy to verify that g = αopt/λmax

{

(R̂ + γI)−1QHQ
}

. Since g is smaller

than or equal to the optimal value of the problem (6.5), it is upper-bounded by
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wH
0 (R̂ + γI)w0, where w0 is an arbitrary feasible point of (6.5). The latter implies

that αopt ≤ λmax

{

(R̂ + γI)−1QHQ
}

wH
0 (R̂ + γI)w0. �
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Appendix E

Proof of Lemma 6.3

First, we prove that l(α,αc) (6.21) is a convex function with respect to α. For

this goal, let Wα1
and Wα2

denote the optimal solutions of the optimization prob-

lems of l(α1, αc) and l(α2, αc), respectively, i.e., l(α1, αc) = tr
{

(R̂ + γI)Wα1

}

and

l(α2, αc) = tr
{

(R̂ + γI)Wα2

}

, where α1 and α2 are any two arbitrary points in the

interval [θ1, θ2]. It is trivial to verify that θWα1
+ (1− θ)Wα2

is a feasible point of

the corresponding optimization problem of l(θα1 + (1− θ)α2, αc) (see the definition

(6.21)). Therefore,

l(θα1 +(1−θ)α2, αc)

≤ tr
{
(R̂+γI)(θWα1

+(1−θ)Wα2
)
}

= θtr
{
(R̂ + γI)Wα1

}

+(1− θ)tr
{
(R̂ + γI)Wα2

}

= θl(α1, αc) + (1− θ)l(α2, αc) (E.1)

which proves that l(α,αc) is a convex function with respect to α.

In order to show that l(α,αc) is greater than or equal to k(α), it suffices to

show that the feasible set of the optimization problem of l(α,αc) is a subset of the

feasible set of the optimization problem of k(α). Let W1 denote a feasible point of

the optimization problem of l(α,αc), it is easy to verify that W1 is also a feasible

point of the optimization problem of k(α) if the inequality
√
α ≤ √αc + α−αc

2
√
αc

holds.

This inequality can be rearranged as

(
√
α−√αc)

2 ≥ 0 (E.2)

and it is valid for any arbitrary α. Therefore, W1 is also a feasible point of the

optimization problem of k(α) which implies that l(α,αc) ≥ k(α).
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In order to show that the right and left derivatives are equal, we use the result

of [146, Theorem 10] which gives expressions for the directional derivatives of a

parametric SDP. Specifically, in [146, Theorem 10] the directional derivatives for

the following optimal value function

ψ(u) , {min
y
f(y,u) | G(y,u) � 0n×n} (E.3)

are derived, where f(y,u) and G(y,u) are a scaler and an n×n matrix, respectively,

y ∈ R
m is the optimization variables and u ∈ R

k is the optimization parameters. Let

uc be an arbitrary fixed point. If the optimization problem of ψ(uc) poses certain

properties, then according to [146, Theorem 10] it is directionally differentiable

at uc. These properties are (i) the functions f(y,u) and G(y,u) are continuously

differentiable, (ii) the optimization problem of ψ(uc) is convex, (iii) the set of optimal

solutions of the optimization problem of ψ(uc) denoted as M is nonempty and

bounded, (iv) the Slater condition for the optimization problem of ψ(uc) holds true,

and (v) the inf-compatness condition is satisfied. Here inf-compatness condition

refers to the condition of the existence of α > ψ(uc) and a compact set S ⊂ R
m

such that {y|f(y,u) ≤ α,G(y,u) � 0} ⊂ S for all u in a neighborhood of uc.

If for all u the optimization problem of ψ(u) is convex and the set of optimal

solutions of ψ(u) is non-empty and bounded, then the inf-compactness conditions

holds automatically.

The directional derivative of ψ(u) at uc in a direction d ∈ R
k is given by

ψ′(uc,d) = min
y∈M

max
Ω∈Z

dT∇uL(y,Ω,uc), (E.4)

where Z is the set of optimal solutions of the dual problem of the optimization

problem of ψ(uc) and L(y,Ω,u) denotes the Lagrangian defined as

L(y,Ω,u) , f(y,u) + tr {ΩG(y,u)} (E.5)

where Ω denotes the Lagrangian multiplier matrix.

Let us look again to the definitions of the optimal value functions k(α) and

l(α,αc) (6.17) and (6.21), respectively, and define the following block diagonal ma-

trix

G1(W, α) ,







−W 0 0 0
0 η2tr{W}−(

√
α−1)2 0 0

0 0 tr{QHQW} − α 0
0 0 0 α− tr{QHQW}
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as well as another block diagonal matrix denoted as G2(W, α) which has exactly

same structure as the matrix G1(W, α) with difference that the element η2tr{W}−
(
√
α− 1)2 in G1(W, α) is replaced by η2 · tr{W} + (

√
αc − 1) + α

(
1/
√
αc − 1

)
in

G2(W, α). Then the optimal value functions k(α) and l(α,αc) can be equivalently

recast as

k(α) =

{

min
W

tr
{

(R̂ + γI)W
}

|G1(W, α) � 0

}

, θ1 ≤ α ≤ θ2
(E.6)

and

l(α,αc) =

{

min
W

tr
{

(R̂ + γI)W
}

|G2(W, α) � 0

}

, θ1 ≤ α ≤ θ2.

(E.7)

It is trivial to verify that the optimization problems of k(αc) and l(αc, αc) can be

expressed as

min
W

tr{(R̂ + γI)W}

subject to tr{QHQW} = αc

tr{W}≤ (
√
αc−1)2

η2

W � 0. (E.8)

The problem (E.8) is convex and its solution set is non-empty and bounded. Indeed,

let W1 and W2 denote two optimal solutions of the problem above. The Euclidean

distance between W1 and W2 can be expressed as

‖W1 −W2‖ =
√

tr{W2
1}+ tr{W2

2} − 2tr{W1W2}

≤
√

2
(
√
αc−1)4

η4
(E.9)

where the last line is due to the fact that the matrix product W1W2 is positive

semi-definite and, therefore, tr{W1W2} ≥ 0, and also the fact that for any arbitrary

positive semi-definite matrix tr{A2} ≤ tr{A}2. From the equation above, it can seen

that the distance between any two arbitrary optimal solutions of (E.8) is finite and,

therefore, the solution set is bounded. It is easy to verify that the optimization

problem (E.8) satisfies the strong duality. It can be shown that the inf-compactness

condition is satisfied by verifying that the optimization problems of k(α) and l(α,αc)
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are convex and their corresponding solution sets are bounded for any α. Therefore,

both of the optimal value functions k(α) and l(α,αc) are directionally differentiable

at αc.

Using the result of [146, Theorem 10], the directional derivatives of k(α) and

l(α,αc) at direction d can be respectively computed as

k′(α, d) = min
W∈M

max
Ω∈Z

d

(

tr
{
Ω · d

dα
G1(W, α)

∣
∣
α=αc

}
)

(E.10)

and

l′(α,αc, d) = min
W∈M

max
Ω∈Z

d

(

tr
{
Ω · d

dα
G2(W, α)

∣
∣
α=αc

}
)

(E.11)

where M and Z denote the optimal solution sets of the optimization problem of

(E.8) and its dual problem, respectively. Using the definitions of G1(W, α) and

G2(W, α), it can be seen that the terms dG1(W, α)/dα and dG1(W, α)/dα are

equal at α = αc and, therefore, the directional derivatives are equivalent. The latter

implies that the left and right derivatives of k(α) and l(α,αc) are equal at α = αc.

�
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Appendix F

Proof of Theorem 6.1

Using the expressions for the covariance matrices of the desired and interference

sources defined in the conditions of the Theorem 6.1 and based on the assumption

that the actual received signal covariance matrix is known, the optimization problem

(6.5) can be expressed as

min
w,α

wH

(

U1VsU
H
1 + U2

( N∑

i=1

Vi

)

UH
2 + σ2

nI

)

w

subject to wHU1VsU
H
1 w = α

wHw ≤ (
√
α− 1)2

η2
, α ≥ 1 (F.1)

where σ2
n is the noise power in each antenna element and γ = 0 since R is precisely

known. By replacing the term wHU1VsU
H
1 w with α in the objective function

of the problem (F.1) due to the first constraint and then changing the variable

w̄ = ηw/(
√
α− 1), the optimization problem (F.1) can be equivalently expressed as

min
w̄,α

α+
(
√
α− 1)2

η2
· w̄H

(

U2

( N∑

i=1

Vi

)

UH
2 + σ2

nI

)

w̄

subject to w̄HU1VsU
H
1 w̄ = η2 α

(
√
α− 1)2

w̄Hw̄ ≤ 1. (F.2)

Since U1 and U2 span orthogonal subspaces, the vector w̄ can be expressed as

w̄ = U1v1 + U2v2 + Ev3, where E is the complement subspace to the subspaces

spanned by U1 and U2. Then, the optimization problem (F.2) can be further
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expressed as

min
v1,v2,v3,α

α+
(
√
α−1)2

η2
·
(

vH2

( N∑

i=1

Vi

)

v2+σ2
n(

3∑

i=1

vHi vi)

)

subject to vH1 Vsv1 = η2 α

(
√
α− 1)2

3∑

i=1

vHi vi ≤ 1. (F.3)

From (F.3), it can be immediately concluded that the optimal v2 and v3 are both

zero. Indeed, if w̄opt = U1v1,opt+U2v2,opt+Ev3,opt and αopt is the optimal solution,

then w̄∗ = U1v1,opt is also a feasible point of the problem (F.3) whose corresponding

objective value is less than or equal to that of w̄opt which contradicts the optimality

of w̄opt, and thus, v2,opt and v3,opt are both zero. Based on this fact the problem

(F.3) can be simplified as

min
v1,α

α+
(
√
α− 1)2

η2
·
(

σ2
nv

H
1 v1

)

subject to vH1 Vsv1 = η2 α

(
√
α− 1)2

vH1 v1 ≤ 1. (F.4)

For a fixed value of α, the problem (F.4) is feasible if the minimum value of

the quadratic term vH1 v1 subject to the constraint vH1 Vsv1 = η2α/(
√
α − 1)2 is

less than or equal to one. Such minimum is equal to η2α/
(
(
√
α − 1)2λmax{Vs}

)
,

and it is achieved by v1 = η
√
α/(
√
α− 1)P{Vs}. Then, the problem (F.4) can be

equivalently recast as

min
α

α(1 + σ2
n)

subject to
(
√
α− 1)2

α
≥ η2

λmax{Vs}
. (F.5)

Since the function (
√
α− 1)2/α is strictly increasing and the smallest value of α

for which the problem (F.5) is feasible is equal to 1/
(

1− η/
√

λmax{Vs}
)2

, the

optimization problem (F.1) can be finally expressed as

min
α

α(1 + σ2
n)

subject to α ≥ 1
(

1− η√
λmax{Vs}

)2 . (F.6)
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Therefore, the optimal value function k(α) equals to α(1+σ2
n) under the conditions

of the Theorem 6.1, which is a linear function. Moreover, the optimization problem

(F.6) has the trivial solution of αopt = 1/
(

1− η/
√

λmax{Vs}
)2

whose corresponding

optimal beamforming vector is as

wopt = U1η
√
α/(
√
α− 1)P{Vs}. (F.7)

This completes the proof. �
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Appendix G

Proof of Lemma 7.1

Let Xopt, τopt, and βopt denote the optimal solution of the optimization problem

(7.44). We define another auxiliary optimization problem based on the problem

(7.44) by fixing the variable β to βopt as

max
X,τ

ln(tr{A1X}) + ln(τ)− ln(βopt)

subject to tr{B1X} = 1, tr{A2X} = τ

tr{B2X} = βopt, X � 0. (G.1)

For every feasible point of the problem (G.1), denoted as (X, τ), it is easy to verify

that (X, τ, βopt) is also a feasible point of the problem (7.44). Based on this fact,

it can be concluded that the optimal value of the problem (G.1) is less than or

equal to the optimal value of the problem (7.44). However, since (Xopt, τopt) is

a feasible point of the problem (G.1) and the value of the objective function at

this feasible point is equal to the optimal value of the problem (7.44), that is,

ln(tr{A1Xopt})+ ln(τopt)− ln(βopt), we find that both optimization problems (G.1)

and (7.44) have the same optimal value. To find an upper-bound for βopt, we make

the feasible set of the problem (G.1) independent of βopt which can be done by

dropping the constraint tr{B2X} = βopt in the problem (G.1). Then the following

problem is obtained:

max
X,τ,β

ln(tr{A1X}) + ln(τ)− ln(βopt)

subject to tr{B1X} = 1, tr{A2X} = τ, X � 0. (G.2)

Noticing that the feasible set of the optimization problem (G.1) is a subset of the

feasible set of the problem (G.2), it is straightforward to conclude that the optimal

value of the problem (G.2) is equal to or greater than the optimal value of the
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problem (G.1) and, thus, also the optimal value of the problem (7.44). On the

other hand, p⋆ is the value of the objective function of the problem (7.44) which

corresponds to an arbitrary feasible point and as a result is less than or equal to

the optimal value of the problem (7.44). Since the optimal value of the problem

(G.2) is greater than or equal to the optimal value of the problem (7.44) and the

optimal value of the problem (7.44) is greater than or equal to p⋆, the optimal value

of the problem (G.2), denoted as q⋆ − ln(βopt), is greater than or equal to p⋆, and

therefore, βopt ≤ e(q
⋆−p⋆) which completes the proof. �
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Appendix H

Proof of Lemma 7.2

We define first the feasible set of the optimization problems (7.58) and (7.59) as

S , {g | gHB1g = 1, gHA2g = α, gHB2g = β}.

Two different cases are possible. If for every g ∈ S, ln(gHA1g) ≤ ln(α) − ln(β),

then it can be easily verified that

p1 = max
g∈S

ln(gHA1g). (H.1)

Furthermore, since for g ∈ S, ln(gHA1g) ≤ ln(α) − ln(β), it is also true that

maxg∈S ln( gHA1g ) ≤ ln(α) − ln(β) and therefore

p2 = max
g∈S

ln(gHA1g). (H.2)

Hence, trivially p1 = p2.

In the other case, let D denote the set of all vectors g ∈ S such that ln(gHA1g) >

ln(α)− ln(β) and let D̃ denote its complement. Considering the inner minimization

problem of the problem (7.58), it can be simply concluded that p1 is the maximum

of the following function over g ∈ S

k(g) ,

{
ln(α)− ln(β), g ∈ D
ln(gHA1g), g ∈ D̃. (H.3)

Since for g ∈ D̃, k(g) = ln(gHA1g) ≤ ln(α) − ln(β), it is resulted that p1 =

ln(α)− ln(β).

Moreover, since for g ∈ D, ln(gHA1g) > ln(α) − ln(β), it is also true that

maxg∈S ln(gHA1g) > ln(α) − ln(β). Therefore p2 = ln(α) − ln(β) that completes

the proof. �
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Appendix I

Rank deficient received signal
covariance matrix

The matrix RR (7.4) is rank deficient only if the noise is spatially correlated. Let

the rank of RR be denoted as N , N < MR. Since the matrix Q , RT
R ⊗ IMR

, its

rank is equal to the rank of the matrix RR multiplied by the rank of the matrix

IMR
, i.e., rank{Q} = MRN . Then if RR is rank deficient, Q is also rank deficient.

For convenience, we restate the sum-rate maximization problem (7.28) as

gopt = arg max
g|gHQg≤PT,R

s(g) (I.1)

where

s(g) ,
1

2
log2

((

1 +
gHK2,1g · PT,2
gHJ1g + PN,1

)

·
(

1 +
gHK1,2g · PT,1
gHJ2g + PN,2

))

. (I.2)

If Q is rank deficient, then for every g ∈ Null{Q} where Null{Q} is the null space

of Q, the total transmit power from the relay is zero, i.e., gHQg = 0. Moreover, the

corresponding sum-rate s(g) for any vector g ∈ Null{Q} is equal to zero. To show

this, let us consider g0 = vec{G0} ∈ Null{Q} that straightforwardly implies that

gH0 Qg0 = tr
{
G0RRG0

H
}

= 0. (I.3)

Note that the first equality in (I.3) follows from (7.3). Substituting (7.4) in (I.3),

we obtain

tr

{(

G0h
(f)
1

)(

G0h
(f)
1

)H
· PT,1 +

(

G0h
(f)
2

)(

G0h
(f)
2

)H
· PT,2

+
(

G0R
1/2
N,R

)(

G0R
1/2
N,R

)H
}

= 0. (I.4)
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Since the following matrices
(

G0h
(f)
1

)(

G0h
(f)
1

)H
,
(

G0h
(f)
2

)(

G0h
(f)
2

)H
, and

(

G0R
1/2
N,R

)(

G0R
1/2
N,R

)H
in (I.4) are all positive semi-definite and the powers PT,1

and PT,2 are strictly positive, (I.4) is satisfied only if G0h
(f)
1 = 0, G0h

(f)
2 = 0, and

G0R
1/2
N,R = 0. Therefore, the following equations are in order

gH0 K2,1g0 =

∣
∣
∣
∣

(

h
(b)
1

)T
G0h

(f)
2

∣
∣
∣
∣

2

= 0 (I.5)

gH0 K1,2g0 =

∣
∣
∣
∣

(

h
(b)
2

)T
G0h

(f)
1

∣
∣
∣
∣

2

= 0 (I.6)

gH0 Jig0 =
(

h
(b)
i

)T
G0RN,RGH

0

(

h
(b)
i

)∗
= 0, i = 1, 2. (I.7)

Substituting (I.5)–(I.7) in (I.2), we conclude that the sum-rate is indeed zero for

any g0 ∈ Null{Q}. Furthermore, in a similar way, it can be shown that, for any g =

g0 +g1 such that g0 ∈ Null{Q}, s(g) = s(g1), and (g0 +g1)
HQ(g0 +g1) = gH1 Qg1,

which means that g0 does not have any contribution in the transmit power as well

as the sum-rate.

Using the above observations, it is easy to see that if RR is rank deficient, the

only thing required to do is reformulating the rate function (I.2) in the following

manner. Denote the eigenvalue decomposition of the matrix Q as Q = UΛUH

where UM2
R
×M2

R
and ΛM2

R
×M2

R
are unitary and diagonal matrices of eigenvectors and

eigenvalues, respectively. The ith eigenvector and the ith eigenvalue of Q denoted

as ui and λi, respectively, constitutes the column i of U and ith diagonal element of

Λ. It is assumed without loss of generality that the eigenvalues λi , i = 1, · · · ,M2
R

are ordered in the descending order, i.e., λi ≥ λi+1, i = 1, · · · ,M2
R − 1. Since in the

case of rank deficient RR, the rank of Q is equal to MRN , the last MR(MR − N)

eigenvalues of Q are zero. By splitting U to the M2
R × (MRN) matrix U1 and

the M2
R ×

(
MR(MR − N)

)
matrix U2 as U = [U1 U2], the matrix Q can be

decomposed as Q = U1Λ1U
H
1 + U2Λ2U

H
2 where the (MRN) × (MRN) diagonal

matrix Λ1 contains the MRN dominant eigenvalues, while the other
(
MR(MR −

N)
)
×
(
MR(MR−N)

)
diagonal matrix Λ2 contains theMR(MR−N) zero eigenvalues.

Since U is unitary, any arbitrary vector g can be expressed as g = U1α + U2β

where αMRN and βMR(MR−N) are the coefficient vectors. It is easy to verify that

the component U2β lies inside Null{Q} and as a result s(U1α1 +U2α2) = s(U1α1)

and (U1α1 + U2α2)
HQ(U1α1 +U2α2) = (U1α1)

HQ(U1α1). Therefore, β can be

any arbitrary vector and we only need to find the optimal α. Substituting U1α in
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(I.2), the sum-rate can be expressed only as a function of α as follows

s(U1α) =
1

2
log2

((

1 +
αH(UH

1 K2,1U1)α · PT,2
αH(UH

1 J1U1)α + PN,1

)

· (I.8)

(

1 +
αH(UH

1 K1,2U1)α · PT,1
αH(UH

1 J2U1)α + PN,2

))

. (I.9)

Then the optimization problem (I.1) is equivalent to the maximization of (I.9) under

the constraint

αHΛ1α ≤ PT,R. (I.10)

Since the matrix Λ1 is full rank, the corresponding optimization problem can be

solved by the methods that we develop in the Chapter 7.
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