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Abstract

Efficiency and security are major concerns with increagimggher importance in
modern wireless communications. These two concerns aeeiedly significant for
multi-user wireless communications where different uséie or compete for re-
sources. Among different users, there are possibiliti€®operation competition
and/ormalicious behaviar Due to the possibility of cooperation among the users,
the spectral and energy efficiency in multi-user wirelessmmuoinications could be
boosted. Due to the possibility of competition, the resewitocation in multi-user
wireless systems may reach certain equilibrium. Due to thssipility of mali-
cious behavior, the security and reliability of wirelessmeounications can be un-
dermined. In this thesis, a comprehensive analysis on uessof efficiency and
security in multi-user wireless communications is devetbfor three systems in
four scenarios. The first multi-user system of multipletinpultiple-output two-
way relaying has the feature @boperationincluding limited coordination sce-
nario and full coordination scenario. It is shown that higbaral efficiency can be
achieved with efficient energy consumption in this system tduthe cooperation
among the users. Moreover, full coordination yields betésults in both spec-
tral and energy efficiency than limited coordination at tbet®f higher overhead.
The second multi-user system of legitimate transceiverits) jammer features the
existence oimalicious behaviar To measure the jamming threat, the worst-case
jamming is studied for different cases according to the jamrsrknowledge of the
legitimate communication. The optimal/sub-optimal jamgistrategy in each case
is derived/analyzed. The third multi-user system of twerusterference channel
features theompetitiorof the users. The situation is modeled using noncooperative

games with continuous mixed strategies. The outcomes gjdhees are analyzed



through the establishment of the conditions for the extstesnd uniqueness of

mixed strategy Nash equilibrium.
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Chapter 1

Introduction

1.1 Motivation

Wireless communications have experienced an incredistydavelopment during
the past decades. Take the cellular communication systean agzample. While
the peak bit-rate supported by the third generation (3G)ilmdblecommunica-
tions technology was less than 1 megabits per second (Mietisyears ago, the
current fourth generation (4G) standard supports a dataugato 100 Mbits/s [1].
As wireless communication techniques and systems becomeitdus and change
people’s lives in a unprecedented way, the issues of effigiand security in wire-
less communications become more significant.

Efficiency turns out to be an increasingly more importaniésgue to the con-
trast between the ever-growing demand for wireless comeation resources and
the limited supply of such resources. The major resourcalfevireless communi-
cations is spectrum. As the most part of the spectrum forl@ssecommunications
has been allocated, the problem of spectrum shortage a&j@édB]. This problem
will be even more severe in the future, since it is expecteadl tine traffic volume
of wireless communications will increase to above ten timegs current scale
till 2016/2017 [4]. With the increase in the traffic volumedavery limited sup-
ply of spectrum, the most reliable solution to the problensméctrum shortage is
improving spectral efficiency. Different techniques haee proposed to improve
spectral efficiency including multiple-input multiple-put (MIMO), two-way re-
laying (TWR), etc. MIMO can significantly increase the ddteoughput of wire-



less communications without requiring extra spectrum badtth or transmission
power [5], [6]. The high throughput is achieved by transimgtmultiple streams
of data through different spatial channels introduced leyrttultipath propagation.
The improvement of spectral efficiency in TWR is achieved lbydng simultane-
ous data transmissions to different directions in the stemd relay-assisted data
exchange [7].

While spectrum is the common resource for all wireless comnations, the
transmitting sides of wireless communication systemsiargdd by their private
resources, e.g., transmission power. In recently yeaexggrefficiency in wire-
less communications has attracted significant attentiebJB Energy-efficiency is
important for two reasons. On a macro-scale, as the totaggm®nsumption for
wireless communications is growing at a high speed, impigpeinergy-efficiency
has both economical and environmental benefits. On a maaitasimproving
energy-efficiency is crucial for battery-powered wireléssninals or mobile de-
vices. Higher efficiency is most beneficial when it is impb&sr inconvenient to
change or recharge the battery of the device such as a veredesor or a smart-
phonel[11]. Energy efficiency of wireless communicationsleaimproved through
architecture design, resource management, the adoptidihv®, etc.

Apart from efficiency, security is also a major concern ineM@ss communi-
cations. Due to the rapid development of wireless commtinics, the security
issue rises while wireless communication systems of diffescales and devices
for different purposes become more common and popular. Miajeats to wire-
less communications include passive wiretapping and @gmming. While the
passive threat can be addressed by using well-designedtgecuhitectures, wire-
less communications are vulnerable to the active jammitaglai12]. Jamming
aims at degrading the quality of or disrupting the inforroatexchange in a com-
munication system by directing energy toward the targetivec in a destructive
manner[[13]. A jamming attack is particularly effective base it is easy to launch
using low-cost and small-sized devices while causing viyicant results/[14].
One example is that a jammer can drain the power of sensorsirebess sensor

network by disrupting their transmissions which resultshie continuous repeti-



tions of their signal transmission [15]. Another exampléhat the jammer can
cancel or significantly weaken a target signal at its inteneéeeiver if the jammer
knows that signal [16]. For estimating the jamming thread weireless communi-
cation system, the study of worst-case jamming can be ad¢pfg, [18].

In modern wireless communications, multi-user commurooatare of increas-
ing importance. Due to the growth of the comparatively nepliaptions in wire-
less communications such as wireless local area networlki-user wireless com-
munication systems are becoming very common and populaanfexample, the
cell phones and laptops of costumers in a cafeteria corohéatiés Wi-Fi consti-
tute a typical multi-user system. Basic models of multirussestems include relay
networks, interference channels, multiple access (MAnokés, broadcast (BC)
channels, etc. In multi-user wireless communications,ekistence of multiple
users in the same wireless environment in general lead®tshi#éring of the spec-
tral resource in the system. The wireless users can competeoodinate with
each other in sharing the resource. In turn, the performahaenulti-user system
depends on the behavior of each and every wireless use@ivin this unique fea-
ture, the investigation of efficiency and security in muisier systems is of interest.

Specifically, three questions come into sight:

1. Given that a TWR network is a spectral-efficient multitusestem, is it pos-

sible to achieve both spectral and energy efficiency in a T\&ork?

2. In a multi-user system with both legitimate wireless cammation(s) and
a malicious jammer, what is the worst-case jamming thretitefjammer is

able to optimize its jamming scheme?

3. When multiple users share and compete for the spect@lmesin a multi-
user system, is there a proper model to characterize theatitens of users

and the resulting outcome of competition?

In order to answer the above three questions, the relatyatlitre is reviewed

and discussed in detail in the following three subsectioespectively.



1.1.1 Efficiency in TWR

The performance of TWR depends on the transmit strategiéiseoparticipating
nodes, i.e., the source nodes and the relay. Optimizing&nesmit strategies such
as power allocation and beamforming is one of the main rekeaterests in TWR,
especially when MIMO is considered [19-+27]. The optimiaatof the transmit
strategies in a TWR system helps to maximize the spectraiesifty in terms of
sum-rate.

The transmit strategies of the relay and source nodes depetioe relaying
scheme. Similar to one-way relaying, the relaying schenT@¥iR can be amplify-
and-forward (AF), decode-and-forward (DF), etc. Spediffatiency for AF MIMO
TWR is investigated in [28—31]. Transmit strategies for ma@xing the weighted
sum-rate of a TWR system are studied.in/[29], where the op@aiation is found
through alternative optimization over the transmit sgas of the relay and source
nodes. In[[30], a low-complexity sub-optimal design of yedad source node trans-
mit strategies is derived for either sum-rate maximizatorpower consumption
minimization under quality-of-service requirements. Huthors of [31] solve the
robust joint source and relay optimization problem for a MOMWR system with
imperfect channel state information. The joint optimiaatof transmit strategies
for AF TWR is in general a nonconvex problem. Low-complexstyb-optimal
solution can be obtained through diagonalizing the MIMOruted based on the
singular value decomposition (SVD) or the generalized SYD thereby transfer-
ring the transmit strategy of the participating nodes to @oallocation problem.
Finding the optimal solution, however, usually requiresative algorithms with
high complexity.

DF TWR has the advantage over AF TWR that it does not suffen fitze prob-
lem of noise propagation. As a result, DF TWR may achieve g&bperformance
than AF TWR, especially at low signal-to-noise ratio (SN&)the cost of higher
requirement on the relay due to the decoding and re-encq8ijg Spectral effi-
ciency for DF TWR has been studiedlin [33+35]. The optimaéttivision between
the MA and BC phases and the optimal distribution of the relpgwer for achiev-

ing weighted sum-rate maximization are studied in [33]. &blkeievable rate region

4



and the optimal transmit strategies of both the source nadeshe relay are stud-
ied in [34], where the relay’s optimal transmit strategyasrid by two water-filling
based solutions coupled by the relay’s power limit. The arglof [35] specifically
investigate the optimal transmit strategy in the BC phasbkeMIMO DF TWR. It
is shown that there may exist different strategies that teatle same point in the
rate region.

Given the fact that DF TWR may achieve better performanca tia TWR
especially at low SNR and the fact that different transnatsgies of the partici-
pating nodes in DF TWR can lead to the same spectral effici@ndgrms of the
achieved sum-rate in the system), it is logical to ask howno & strategy that has
the best energy-efficiency among these strategies thatdehd maximum spectral
efficiency. There is no answer to this question in the litm@adespite the above
mentioned works regarding the spectral efficiency in TWR thiode on the energy
efficiency in TWR [30,,36, 37], which aim at minimizing the pemconsumption in
TWR subject to quality of service constraints. This thesaskwvill fill this research

gap.

1.1.2 Jamming threat in MIMO multi-user wireless communi-
cations

The jamming threat in wireless communications has beenestud many research
works [38+44]. One of research interests in jamming is t@stigate the feasi-
bility and effect of jamming from the perspective of the jasmijl2,18[ 39-41].

The research works adopting this perspective provide imsig understanding and
measuring the threat of worst-case jamming to the targdirege communica-

tions.

Different types of jamming are investigated in the literatuNoise jamming is a
common type of jamming in the case that the jammer has no aelihmformation
on the target signal [18]. Noise jamming impairs the legiiencommunication
through decreasing the SNR at the target receiver. Theteaffegoise jamming
depends on the power of the jamming signal.

It is also possible that the jammer has the knowledge of tlyetaignal, e.qg.,



in the case that the jammer can also perform eavesdropp2jg\Mth such infor-
mation, the jammer can use another type of jamming, i.e ctineelated jamming,
to damage the legitimate communication by canceling or @izl the target sig-
nal at the target receiver [43]. The jammer’s strategiexéorelated jamming are
studied in[16], [44].

It should be noted that with the development and applicaifdviIMO wireless
communications, a jammer equipped with multiple antennfivo@come common
and pose a larger threat to the legitimate communicatiortalits ability to opti-
mize its jamming strategy over the antennas. However, turiately, most of the
aforementioned works on jamming threat focus on the simglet single-output
(SISO) case. The results of jamming threat in the scenarb libth the legiti-
mate transceiver and the jammer have multiple antennagwited. The jammer’s
strategy for worst-case noise jamming is investigated fotvi MA and BC chan-
nels in [17,45-47]. 1t is shown in_[45] that without knowlexigf the target sig-
nal or its covariance, the jammer can only use basic stegeagjiallocating power
uniformly or maximizing the total power of the interferenagthe target receiver.
In [46], the transmit strategies of a legitimate transmi#ed a jammer on a Gaus-
sian MIMO channel are investigated under a game-theoretibeting with a gen-
eral utility function. It is assumed that the jammer and tgitimate transmitter
have the same level of channel state information (CSl),b@h uninformed, both
with statistical CSlI, or both with exact CSI. The optimalsanitted strategies of
the legitimate transmitter and the jammer are represergeslations to different
problems versus different types of CSI. The worst-case jengron MIMO multi-
ple access and broadcast channels with the covariance tdrthet signal and all
channel information available at the jammer is studied ifi ising game theory.
Some properties of the optimal jamming strategies are cteiaed yet the optimal
jamming solutions are not given. The necessary conditiooptimal jamming on
MIMO channels with arbitrary inputs when the covariancehsf target signal and
all channel information are available at the jammer is a&tin [47]. For the case
of Gaussian target signal, the solution of optimal jammagiven in closed-form.

However, it is derived without considering the jamming aeln As a result, the



system model is simplified by implicitly assuming that theai®ed jamming sig-
nal at the target receiver is exactly the same as the tralesh)gmming signal at
the jammer. The correlated jamming on MIMO Gaussian fadhlmnoel is studied
in [16]. However, the study in [16] considers only one lag#ite communication.
Therefore, the measure of the worst-case noise jammingtthreggeneral MIMO
wireless communications and the correlated jamming thneaulti-target wireless

communications remains an open problem, and will be ingastd in this thesis.

1.1.3 Game theoretic study of wireless multi-user systems

Game theory studies the interactions of decision makersomilict or in cooper-
ation, during their strategic decision making process,[{#]. While it has been
used to model problems in economics, political science,raady other areas, the
application of game theory in wireless communications htaaced tremendous
research interests during the past decade [S0-60].

The problem of sharing and competing for spectral resowanesng users in a
multi-user system with no central administration or conatiion can be modeled in
terms of noncooperative games [54,55/61, 62]. A mutuakmédion game in the
Gaussian interference channel is studied in [54], and thditons guaranteeing the
uniqueness of the Nash equilibrium (NE) are derived._In,[&%ower control game
for maximizing spectral efficiency is investigated and agoathm is designed for
achieving an efficient NE within multiple Nash equilibria EN). The common
interest in these works is to study the existence and unegseof NE.

Most game theoretic studies of multi-user wireless comigations, such as the
above mentioned works, focus on pure strategies. Howewee tare strong moti-
vations to investigate mixed strategies as an extensiored/strategies introduce
deliberate randomness into the decision of a player sutkh&alayer can use more
subtle strategies in the competition with other playercdnsequence, the utilities
obtained due to applying mixed strategies can be potenimfiroved for the users.
Introducing mixed strategies is also instrumental for gapy the stochastic regu-
larities of equilibria and players’ strategies in noncaapiee games [63].

There are just a few works on games with mixed strategiesanlitbrature



[62,64+-66]. In[66], a two-user channel selection game issmered. Each user
in the game assigns different probabilities to differentvpolevels that it uses to
communicate on each channel. A transmitter's channel ts@tegame is studied
in [62] and the mixed-strategy Nash equilibrium (MSNE) of tlame is found. All
the above works consider games in which the users’ strategeerepresented by
discrete probability mass functions.

Considering the fact that discrete probability mass fuumgiare only special
cases of continuous probability distributions, a more ga&irepresentation of mixed
strategies is to use continuous distributions. The resyllames are continuous
games. By introducing maximum flexibility in the users’ otwiof strategies, the
continuous game modeling of multi-user systems captuesehy essence of the
strategy making and interaction. However, the modeling oitiruser wireless sys-
tems using continuous games is an open area of research,ilabhd addressed in

this thesis for the two-user case.

1.2 Proposed research problems

Motivated by the aforementioned literature, this thesggppses four problem®,1-

P4, in multi-user wireless communications as stated in thieWohg paragraphs.

P1: Energy efficient sum-rate maximization in relay-orientetMi@ DF TWR.
The spectral efficiency of TWR is determined by the transirgitegies of the
participating nodes. The maximum spectral efficiency tlaat lse achieved
depends on the level of coordination among the sources ancethy. The
relay-oriented cooperation, in which the relay adjustevts strategy accord-
ing to the transmit strategies of the source nodes, has trentaje of low
overhead. Given the transmit strategies of the source nddsent transmit
strategies of the relay may lead to the same spectral efficierth different
relay power consumptions in DF TWR. Therefore, it is of iesdrto find
out the most energy-efficient transmit strategy of the réhay has minimum
power consumption among all the strategies that maximieepectral effi-

ciency. The resulting strategy maximizes the spectralieffay with the best



P2:

P3:

energy efficiency in the relay-oriented cooperation sdenar

Energy efficient sum-rate maximization in MIMO DF TWR withdaopera-
tion. While the relay-oriented cooperation has the advantagenblerhead,
it does not achieve the maximum spectral efficiency due tdattieof coop-
eration of the source nodes. At the cost of higher overheagtieh spectral
efficiency can be achieved if all the participating nodesifse nodes and
relay) can jointly optimize their transmit strategies. Mover, the energy ef-
ficiency can also be improved when all the nodes cooperatest Msearch
works on joint transmit strategy design in MIMO TWR focus arhigving
the maximum spectral efficiency. However, different transtmategies may
lead to the same spectral efficiency with different total ppeonsumption in
the system. The investigation on the optimal transmit sgnabf the source
nodes and the relay that maximizes the spectral efficiently minimum
power consumption has been lacking. Therefore, finding Howe energy

efficient optimal transmit strategy is of interest.

Jamming and correlated jamming in multi-user wireless camigcations.
The security threat of jamming to a wireless communicatigstesn can be
measured by studying the worst-case jamming to the legiém@ammunica-
tion. The damage that jamming can cause depends on the j&rknewl-
edge of the channels and the target signal. The less knowkadglable to
the jammer, the simpler the strategy that it can use. Whefathener has
the knowledge of the channels and the statistics of the ttaigaal, it can
optimize its strategy to effectively degrade the inforroatrate of the target
channel. Furthermore, if the jammer knows the exact tangeia it can
cancel or significantly weaken the target signal at the tampeiver by per-
forming correlated jamming under some conditions. The jamsistrategies
and the resulting effects to the legitimate communicatiothe above two
cases are important yet missing parts of the worst-case ijagnim wireless

communications.



P4: Mixed strategy and MSNE in resource allocation gam@éghile the appli-
cation of game theory in wireless communications is populke research
works considering mixed strategies are limited. As mixtegges introduce
deliberate randomness into the strategies of the playéssuitable for mod-
eling some scenarios in wireless communications. As an pbarthe re-
source allocation game with mixed strategy is consideradigthesis. Un-
like most games with mixed strategies considered in thealiiee of wireless
communications, the wireless users’ strategies are repred by continuous
probability distributions. The existence and uniquendsb@MSNE is then

investigated given the above model.

1.3 Thesis outline

Chaptef 2 presents the background of the thesis. ChapiBrprévide details for
solving the problem®1-P4 respectively. The brief outline is as follows.

» Chaptei 2 gives the background on the topics related tahbiss. The sig-
nal model, capacity, and power allocation of MIMO wirelessenunication
channels are reviewed. The idea of TWR is explained whileitneal model
under AF and DF are given. The effect of jamming on the tangetas at the
receiver depending on the jammer’s knowledge of the chararel the target
signal is presented. The concept of correlated jammingtiedaced. The

basics of game theory, NE and MSNE are illustrated using pksn

» Chaptef B addresses the problBtn A sufficient and necessary condition for
the optimal strategy of the relay in the scenario of relagfied cooperation
in TWR is derived. Based on the above condition, an algorithaesigned
for the relay to calculate its optimal strategy. The resoftthe power allo-
cations are discussed versus the power limits of the reldysaarce nodes.
It is shown that power could be wasted at the source nodes 8iey do not
cooperate with the relay. Simulation results demonstregestfectiveness of

the obtained optimal strategy as well as the effect of asytmynrethe system.
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» Chaptei 4 addresses the probl®®2 At the cost of higher overhead, the
performance of the TWR considered in Chapier 3 can be imgrbyentro-
ducing full cooperation among the source nodes and relathisnscenario,
properties of the optimal strategies of the relay and thecgonodes are de-
rived in different cases. The optimal solution is given icleaase, either in
closed-form or through algorithms with a very limited numbésteps. The
results are simulated and compared with the optimal styate@haptei B.

The effect of asymmetry in the system is also shown in sinuariat

» Chaptefb addresses the problEf) For noise jamming, the worst-case jam-
ming to the communication over a MIMO target channel is dsdiv It is
shown that the worst-case jamming can be given in closad-torder a cer-
tain condition. When the condition does not hold, an algaomiis provided
to calculate the worst-case jamming while a closed-fornr@dmation is
given. For correlated jamming, the problem of multi-targetrelated jam-

ming is considered in the SISO case and proved to be convex.

» Chaptel 6 addresses the probl®# Modeling the channel selection and
power allocation of two wireless users using games with thsteategy, the
results regarding the existence and uniqueness of MSNEeareed first for
a two-user two-channel game and then for a two-d&@&hannel game. In the
two-channel game, the MSNE which maximizes the utilitiedioth users is
obtained, while for theéV-channel game, an algorithm is provided to perform

channel selection for users in order to achieve MSNE.

» Chapte ¥ presents the conclusion of this thesis. Futw®areh directions

are also provided.
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Chapter 2

Background

This chapter reviews the essentials of relevant topicsHisr thesis. The signal
model and power allocation problem for MIMO systems is pnés@é. The basic
forms of multi-user MIMO, i.e., the MA and BC channels, aréefly reviewed.

The concept, model, and relaying strategy is summarizetMéR. The mathematic
model of jamming and noise jamming is provided with discoissi Finally, the
basics of game theory, Nash equilibrium (NE) and mixed atjiat are illustrated

using examples.

2.1 Power allocation in MIMO wireless communica-
tions

2.1.1 Basic MIMO channel: signal model and capacity

Consider the data transmission from a transmitter witlintennas to a receiver with
n, antennas. Assuming additive white Gaussian noise (AWGM)eateceiver, the

signal model for this basic MIMO channel can be expressed as

Yy H X n
h hii . A Pin, 1 ny
Y2 _ : - ZE;Q n 71:2 2.1)
b)  Uma el o |,

wherex, y, H, andn represent the transmitted signal, the received signal, the

MIMO channel, and the noise, respectively. The elentgntof the channeH
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represents the path gain from thk antenna of the transmitter to théh antenna
of the receiver, which is determined by different factorduwling the path loss and
fading effects. The elements sfandy represent the transmitted and received data
streams, respectively. The noise is assumed to have zem aneéacovariance?l
wherel stands for the identity matrix.

If H is constant (valid under slow fading) and known at the trattemand the

receiver, the corresponding capacity of this MIMO chanagjiven as/ [6/7]

1
I+ HQH" (2.2)
g

C = maxlo
Q. &

whereQ, is the covariance of the transmitted signal definedQas= E{xx"},
| - | stands for the determinart,)" stands for the Hermitian transpose, difl}
represents the mathematical expectation.

From the expression_(2.2), it can be seen #Qatneeds to be optimized to
maximize the information rate of the considered MIMO chdnibe optimization

overQ, is usually subject to the following trace constraint
T{Q.} <P (2.3)

in which Tr{-} stands for the trace anl represents the power limit of the trans-
mitter. The maximization ofl(212) ove), subject to[(Z.B) is the basic form of
power allocation problem over MIMO channel. The optimalsioin to this power

allocation problem is the waterfilling-based solution d#xsed in detail as follows.

2.1.2 Waterfilling based power allocation

The first step for optimizing the power allocation, is thegsilar value decom-
position (SVD) of the MIMO channel. Assume that the rankkbfis r, where

r < min (n,, n). The SVD ofH can be written as

Q

.

H-U 0 h Orxni=r) | ym (2.4)

W

O(nr—r)><7‘ ‘ O(nr—r)x(nt—r)
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where0 stands for all-zero matrix, ardd andV are unitary matrices, i.eJU" =1
andVVH = I, of sizesn, x n, andn, x n., respectively. The diagonal elements
w1, ...,w, are positive singular values @, or equivalentlyS2. These positive
singular values oH represent the effective parallel sub-channels of the MIMO
channel. The number of sub-channels determines the maxmuarber of different
data streams that can be transmitted and received over t®©Mhannel.

Given the above SVD, the capacity of the MIMO channel can heitien as

1
I+ —0Q,Q" (2.5)
g

C = maxlo
Ql &

whereQ, = V1Q,V is of sizen; x n;. The constraint[{2]3) now applies as
Tr{Q,} < P. SinceQ/ is Hermitian positive semi-definite, according to the
Hadamard’s determinant inequality, the opting| that maximizes[(2]5) should
be diagonal([68]. Denote thkth diagonal element of TQ.,} asq,. Then the
equation[(Z2.6) can be further rewritten as
C= {2}%} ; log (1 + %) . (2.6)

The trace constraint o, simplifies aszr: qr < P. From the above simplifica-
tion, it can be seen that the power alloé;&ion problem ovMHMO channel is in
essence the power allocation problem over the sub-channels

The solution to the problem can be derived using Lagrangiathads. The

optimal solution can be written as [69]

Jr
1_ o -
o — (A w}%) L, k=1,...,r 2.7)

where ) is a constant chosen such that the power limit is satisfied adpuality
(i.e., ET: g = P)and(-)™ = max{-,0}. The solution given by (217) is called the
wate?f:iﬁing-based power allocation, whilg/ X is called the water level. The term
“waterfilling” is used because the resulting power allomatbn sub-channdl fills
the gap between the water level ande, /w? (which reflects the quality of theth

sub-channel) if the water level is higher.
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2.1.3 MIMO MA and BC channels

The previous results on capacity and power allocation agaplige MIMO channel
with a single pair of transceiver. In this section, we arengdb review two multi-
user MIMO channels - the MIMO MA channel and the MIMO BC channe

First consider the MIMO multiple access (MA) channel. Assuthat there
IS one receiver withh, antennas and/ transmitters. Théth transmitter has;
antennas and transmits the sigrato the receiver. Denote the channel from the
ith transmitter to the receiver d%,. Then the received signal at the receiver is

expressed as
M

i=1

wheren is the AWGN at the receiver. Denolx;x!'} = Q,. The power of the
ith transmitter is limited such that {®;} < P,. The sum-capacity of this MIMO

multiple access channel is given as![70]

(2.9)

C = max log
{Qu,vi}

subject to the power limits of the transmitters. For degvihe optimal power

02 4

1 M
I+— Z H,Q;H}'
=1

allocation that achieves the sum-capacity, the proceduterative waterfilling can
be used. Define ;
1
Li 21+ — > H,QH! (2.10)
J#i,j=1
and denote the eigenvalue decomposition (EVDLpfsL; = U;A; Ul Itis

proved [70] that the optimal power allocation can be achdemteconvergence if the
transmitters iteratively update their power allocatioeading to the single-user
waterfilling procedure described in Section 21.1.2 but with thanneH replaced
by A, 2UMH,.

In a MIMO broadcast (BC) channel, one transmitter sendsriédion to M
receivers. The transmitted informatians a summation of the messages,(.. .,
x,s) intended for all the receivers. Each receiver needs t@eiits own message
from the received signal while the messages intended faratteivers become
interference. For the MIMO BC channel, the sum-capacity lmameached using

dirty paper coding. Details can be foundlin[[67] and are aeditiere.
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2.2 Two-way relaying

For the case that two source nodes need to exchange meseageslay, TWR im-
proves spectral efficiency by allowing transmissions orhlabtections to proceed

simultaneously.

2.2.1 Basicidea

Assume that there are two source nodes S1 and S2 that neechemee informa-
tion through a relay as shown in Fig. R.1. The source node 8@l® send its
message:; to S2 while S2 needs to send its messagéo S1. There is no direct

link between S1 and S2 and therefore all traffic goes throhgelay.

I

Sl

Figure 2.1: A basic relay system.

If the information exchange is achieved using one-way ratgyfour time slots
are required as illustrated in Fig._2.2. From this figure,aih de seen that there
is always one node idle in each of the four time slots. Thisiesdonsequence of
the half-duplex mode of the nodes, i.e., they cannot tranand receive message
simultaneously. As a result, there is one idle channel (betwone source node and
the relay) in any time slot, which leads to low spectral efinady.

However, using TWR, the spectral efficiency can be signitigancreased by
achieving the same information exchange in just two timéssldhe idea is that
the two source nodes S1 and S2 can transmit simultaneoushgaeive simultane-
ously as illustrated in Fig, 2.3][7]. As a result, no changétlle at any time despite

the fact that all node still work in the half-duplex mode.
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x1
@ B Y Relay
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X2
@ Relay <~ @
Ol (=)
< Relay

Figure 2.2: The procedure of information exchange in ong-#ehaying.

x1 X2

@ —> Relay <— @
x1+x2 x1+x2

@ <2 | —>

Figure 2.3: The procedure of information exchange in twg-vedaying.

It can be seen that the two time slots of information exchangé/NR corre-
spond to two phases. i.e., the MA phase in the first time sldtthe BC phase in

the second time slot.

2.2.2 Relaying strategy

The relaying strategy refers to the manner that the receivessage is processed
at the relay before it is forwarded to the intended destimgs). Consider the basic
case with single-antenna at all nodes as an example. Ddrthannels from the
source nodes S1 and S2 to the relayhasnd h., respectively. Assume channel
reciprocity holds, i.e., the channels from S1 to the relag fiom the relay to S1

are identical. The received signal at the relay is given as [7
Yo = hixy + hozo + 1y (2.11)
wheren, represents the AWGN at the receiver of the relay with vaearic
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The relay can choose from AF, DF, etc. relay strategies [32].
In the AF relaying strategy, the relay simply amplifigby a gainv (determined
by the relay’s power limi®,) and broadcastsy, to S1 and S2 in the BC phase. The

received signals at the source nodes S1 and S2 are given as

Y1 = ahlhlxl + Ozhlhgl‘g + ozhlnr —+ ny (212)

Ya = Cthzhgl'g -+ Cthzhl.%’l -+ Oéhgnr —+ No (213)

wheren, andn, are the noise at the receiver of S1 and S2 with variarfcand
o3, respectively. The first term in each of the above two expoesgepresents the
back-propagating self-interference for the correspampdwurce node. The second
term represents the intended signal. The third term reptes$iee propagated noise
from the relay. Since the source nodes know their own message S1 knows;
and S2 knows:,, the self-interference can be subtracted from the recesigetl if
S1 has the knowledge éf and S2 has the knowledgeof. For constant channels,
the sum-rate of the two source nodes is given as

1 2|y | 2P 1 2| hyha |2 P
Rszalog(l—l— o|huihal" Py >+—log(1+ ofhai PPy ) (2.14)

0% + a?|hy|202 2 02 + a?|hy|20?

whereP; = E{|z;]*},i =1, 2.

The AF relaying strategy features low complexity since #lay does not need
to decode the received messages. However, the noise attieareof the relay is
also amplified and forwarded to both source nodes. Therefioegperformance of
AF-relaying can be poor at low SNRs [32], [71].

If the relay uses the DF relaying strategy, it first decodesind x5, from y,
and then re-encodes them using either superposition augxelor (XOR) coding
[22]. The superposition based re-encoding is the one iifitestl in Fig[2.B. In this

method, the relay performs symbol-level superposition

2 = /BPaxr + /(1 = B)Prs (2.15)

on the two messages whepé’, and (1 — ) P, represent a division of the relay’s

power. Thenz, is forwarded to both source nodes. The received signalseat th
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source nodes S1 and S2 are expressed as

Yy = vV Bprhlxl =+ +/ (1 — 6)Prh1x2 + nq (216)
y2 = (1= B)Phoxs 4+ /BPhori + Ny (2.17)

where the first term in each expression represents setfenéece and the second
term represents the intended signal. With the channelnmdtion, each source node
subtracts the self-interference from the received sigita. sum-rate is bounded by
the MA phase sum-ratB™* and BC phase sum-raf® (5)+ Ry(1— ) and is given

as
1 .
R = amln{Rma,Rl(ﬂ) + Rg(l — 6)} (218)
where
Pi|hi|? + Pylho|?
R™ = 10g<1+ i + Bolfr ) (2.19)
O‘I‘

Ri(8) = min {10g<1 + %}?‘2) , 10g<1 + %) } (2.20)

r 2

Ry(1—B) = min {10g<1 + PZL};Z‘Q),log<1 LU= ﬁ)22pr|h1|2) } (2.21)

r 01

For the DF relaying strategy, the relay can also use the XGfgo In this
method, the relay decodes andz, into two bit streams and performs the XOR
operation on the two streams to obtain a new bit stream. Tthennew bit stream
is encoded into a symbal and forwarded to the source nodes. Each source node
decodes:, from its received signal and obtains the correspondingtteas. The
source node can restore the message intended to it by parfpthe XOR on this
bit stream and the bit stream of its own message. Details edound in [72], [73]
and are omitted here. Compared to superposition, XOR camingachieve better
performance in terms of sum-rate because the relay doeseedtto split power
for transmitting two symbols. However, XOR coding has tmaitation that it is
appropriate only when the rates from the two source nodelsetoelay are close
to each other. For both superposition and XOR coding, trereiperformance

degradation due to noise propagation, especially at lowsSNR
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2.2.3 Power allocation in TWR

Although the sum-rate expressiohs (2.14) dnd (2.18) angedefor TWR, it can
be seen from these expressions that the performance of ayaelaying (TWR)
depends on the power allocation of all participating no@specially for the DF
relaying strategy. It follows froni(2.14) that the relay ahd source nodes should
simply use their maximum power to maximize the sum-rate inTA¥R. However,

it is different for the DF relaying strategy. It can be seemnirthe sum-rate ex-
pression in[(2.118)=(2.21) that the sum-rate in DF TWR is lmahby both the MA
phase and the BC phase sum-rates. The differences for thedd®gy as compared
to the AF one include:

* the relay needs to find optimal division of its power,
* the relay may not need to use full power to maximize the sat@;r
* the source nodes may not need to use full power to maximesum-rate.

Therefore, the optimal power allocation to achieve maxinsum-rate for DF TWR
is not straightforward. The problem of finding the optimaiyeo allocation for DF
TWR is studied inl[74]. A similar problem is considered/in]wsth the assumption
that the source nodes have equal power budgets. Includimg$a as a considera-
tion, the optimal power allocation for DF TWR is studied/id]2Other studies on
SISO DF TWR include the optimal time division between the M &8C phases
and the optimal distribution of the relay’s power [33], ahé minimization of the
total transmit power consumption under the bit error ratest@ints|[76].

In the case of multiple antennas, the problem becomes marplaated. When
the nodes have multiple antennas, the power allocatiomédgt the general term
of transmit strategy including beamforming and precodifgnding the optimal
transmit strategies of the participating nodes is notgitorward in both AF and
DF TWR. This problem has become the focus of many researon®ffSum-rate
maximization for MIMO AF TWR, in which the relay and the soarnodes all
have multiple antennas, is investigatedlin![28],/[29], whal mean squared error

minimizing scheme for MIMO AF TWR is studied in [19]. The maihallenge in
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investigating AF TWR is the coupling between the transmétsgies of the source
nodes and the relay due to noise propagation. As a resultie$ poopagation, the
optimization over the transmit strategies of the sourceesahd the relay usually
leads to nonconvex problems. For example, the informataa of the communi-
cation in either direction is a nonconvex function of the ax@ance/beamforming
matrices of the source nodes and the relay [7].

DF TWR with multiple antennas has also been studied [23]], [85]. The
achievable rate region and the optimal transmit strategfie®th the source nodes
and the relay are studied in [34], where the relay’s optimsadgmit strategy is found
by two water-filling based solutions coupled by the relags/pr limit. The authors
of [35] specifically investigate the optimal transmit sé@gy in the BC phase of the
MIMO DF TWR. It is shown that there may exist different stigigss that lead to

the same point in the rate region.

2.3 Jamming and correlated jamming

There are different types of jamming such as noise jammirtg|ligent jamming,
etc. [13]. To avoid confusion, we use the term “jamming” irstthesis to refer to

noise jamming unless otherwise specified.

2.3.1 Noise jamming

With the presence of jamming, the target receiver sees agis® in the received
signal. As a result, the capacity of the target legitimatenctel is reduced. If the
target channel is SISO and the jammer has a single antermiaftihmation rate of

the target channel under jamming is written as

P ‘h‘Q
J x
R = log(l + PO AT Pz|hz|2) (2.22)

whereP, and P, are the transmission powers of the legitimate transmittdjam-

mer, respectively, whilé represents the channel between the legitimate transceiver
andh, represents the channel from the jammer to the target receivéhe above
SISO case, the jammer does not need to know any informatioatdbe channel

and has no advanced strategy. It simply increases its tias&m power (subject to
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its power limit) to further reduce the information rate oéttarget channel. There-
fore, the effect of jamming in the SISO case is power-doneitiat

The situation changes significantly when it comes to MIMOsutse that both
the legitimate transceiver and the jammer have multipleramds. Denote the
MIMO channel between the transceiver, i.e., the legitincéi@nnel, a3, and the
channel from the jammer to the legitimate receiveihs Further denote the le-
gitimate and jamming signals a&sandz, respectively. The information rate of the

target channel under jamming is given as
R’ =log I+ (HQH")(¢’ I+ H.Q.H)™'| (2.23)

whereQ, = E{xx"} andQ, = E{zz"}. In this situation, the effect of jamming on

the information rate of the legitimate channel depends eridhowing knowledge
* the knowledge oH .,
* the knowledge oH,
* the knowledge of),.

In the case that the jammer has none of the above knowledgeptimal strat-
egy for the jammer is to us®. = o2I where the constant? is determined by its
power limit [46].

If the jammer knowdH , it can use some basic strategies. It can avoid wasting
power by allocating transmission power only in the sub-cdedscorresponding to
the positive eigen-values &, H!. It can also maximize the power of the effective
noise, i.e. the noise power plus the jamming power, at theivecby maximizing
Tr{o?T + H.Q.H} [45]. Note that maximizing the jamming power at the target
receiver is not equivalent to minimizing the informatioteraf the target channel.

If the jammer also know# in addition toH_, it can further focus its jam-
ming power as if the legitimate channel is jisind the jamming is applied at the
transmitter side of legitimate channel.

The above-mentioned situations are simple since the giestavailable to the

jammer are limited. Without the knowledge of the target algr its covariance,
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the jammer has no better strategy but maximizing the jamipawger at the target
receiver. Then, itis logical to consider what would be theutef the jammer knows
Q.? In such a case, the jammer can optimize its transmit syrategninimize
the capacity of the target channel. It is the worst-case jengrior the legitimate
transceiver. The resulting information rate of the legétmtransceiver in this case
provides a lower bound of the rate under jamming. The aboyMees® is considered
in the first part of Chaptér 5 of this thesis.

It should be noted, however, that noise jamming is not thg @mhming threat.
The worst case of noise jamming described above is not thstyanming for the
target transceiver. If the jammer has the knowledge of tlggetasignal, the jammer

is capable of using a more powerful form of jamming, i.e.,¢berelated jamming.

2.3.2 Correlated jamming

A jammer aims at undermining the signal received at the taegeiver. When the
jammer knows the target signal, it can use correlated jamgmiiline basic idea of
correlated jamming is that, instead of transmitting ranchanse signal to lower the
SNR at the target receiver, the jammer transmits the mintsore of the target
signal which neutralizes the received signal at the rec¢ha].

Consider the SISO case first. The received signal at theirtemge receiver
without jamming is written as

y=hx+n. (2.24)

If the jammer knowg, it can transmit the signal
Z=—a—= (2.25)

wherea € (0, 1] is a constant determined by the jammer’s power liRit
In the presence of the above jamming signal, the receivethkaj the target

receiver becomes

Y = hx+h,z+n (2.26)
= (1—a)hx+n. (2.27)
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If the jammer has sufficient power, i.e.,

2
p> 1M

——PF, 2.28

whereP, = E{|z|?}, it can completely cancel the target signallin (2.27) byisgtt
a = 1. Otherwise, the jammer can weaken the received signal bpgetas large
as possible subject to its power limit.

For the MIMO case, a jammer can perform correlated jammitwafconditions
hold. The first is that the jammer should have at least the sammder of antennas
as the target receiver. The second is that the jamming ch&hnéas full rank.
Assuming that the jammer transmits the sigaathe received signal at the target
receiver is given as

y' =Hx+H,z+n. (2.29)

For correlated jamming, it should hold that
H.z = —aHx. (2.30)

Assuming thaH . has full rank, the solution for the correlated jamming sigizan
be found as
z = —oHY(H.HY) 'Hx. (2.31)

Similarly to the SISO case, the power limit of the jammer deiaes if it can
completely cancel the target signal.

Given the above basic model of correlated jamming, the proldf multi-target
correlated jamming will be studied in the second part of G&dB of this thesis.
With multiple legitimate transceivers, the jammer needsiit its power for jam-
ming the targets. The investigation will reveal how much dgmcould a single

jammer do in a multi-user wireless system through corrdlgeming.

2.4 Game theory, NE, and MSNE

In this section, the basics of game theory are introducedliastiated using exam-

ples.
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Table 2.1: Matrix representation of a strategic game

S§1=a| S1 =b
S9 =C (27 2) (37 ]-)
52 =d (37 1) (27 2)

2.4.1 A brief introduction to game theory

A game can be represented in different forms. A basic formepfasentation is
the strategic form. An\/-player game in strategic form has the following three
parts [50]

» asetof players/users = {1,2,..., M}
* aset of strategieS; = {s;} for player/uset, Vi € A.

* player/usei(Vi € A)’s utility w;(s1, ..., syr) as a function of strategies of all

players/users.

The above game can be briefly represented using a matrix, ichwhe relation
between the players’ utilities and their strategies isevidAn example, with\ =
{1,2}, & = {a, b} andS, = {c, d}, is given in Tabld 2]1, where the first and
second items in the brackets in Table 2.1 represent theydtli player 1 and player
2, respectively, given their strategies.

Games can be classified into different types from differesrspectives [77].
Depending on whether the players make their decisions aamebusly, games can
be divided to simultaneous games and sequential games.nBiegeon whether
the players’ strategies and utilities are discrete andefiigames can be divided to
discrete games and continuous games. Depending on whiéhplatyers’ utilities
always sum up to a constant, games can be divided to zero-aomaggand non-
zero-sum games. The most important classification of gahwgever, should be
cooperative games and non-cooperative games dependingp&thev the players
can coordinate their strategies for their own benefit. THWeng review will

focus on non-cooperative games as it is adopted in the thesis
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Table 2.2: A game that has one NE

S1 = 0 S1 = 1
sy =10 (07 0) (17 _1)
so=11(=1,1) ] (1,1)

2.4.2 Non-cooperative games and NE

In a non-cooperative game, there is no coordination andl#yes make decisions
independently. An important concept in non-cooperativagsis equilibrium. The
most well-known example of an equilibrium is the NE. An NEugls combination
of strategies, one for each player, that no player can bdnafit unilaterally devi-

ating from its current strategy. Mathematically, it can bitten as[49]
ui(s7,8%,) > wi(s), s*,), Vs. € S;, Vi, (2.32)

wheres? represents playeis strategy in the NEs* , represents the strategies of the
set of all players but playerin the NE, ands; represents any available strategy but
st for theith player. The inequality (2.82) shows that each playeratstyy in an
NE is thebest responst the strategies of other players.

Consider the following game as an example. Pet= {1,2}, S; = {0, 1},

Sy = {0,1}, uy = 1 — s9 + s152 anduy = s3 — s1 + s152. The utilities of the
two players in the game are shown in Tablel 2.2. It can be sedritth strategy
combinations; = 1, s, = 1 is the unique NE in this game. In such situation, there
IS no uncertainty in the outcome of the game.

However, not every game has an NE. The game shown in TaBleo24 bt
have any NE[[50]. It is also possible that multiple NEs existine game. Consider
the following example. Two pairs of transceivers indepertigechoose from one of
two wireless channels to perform communication. The trassion power of the
first and second transceiver pair deand P», respectively. The channel gain of
the two channels are both for the first transceiver pair and both for the second
transceiver pair. The interference channels (from thestratter of one transceiver
pair to the receiver of the other pair) have the same charaielcg The noise is

o2 at both receivers. Model the transceivers as players, theices of channel as
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Table 2.3: A channel selection game that has two NEs

s;=Cl| s=Cc2
s5=C 1| (R}, R,) | (Ry, Ry)
S9=C 2 (Rl, RQ) (R/17 RIQ)

strategies, and their information rates as utilities. £et= S, ={channel 1(briefly,

c 1), channel 2(briefly, c 2) The game is shown in Talle 2.3, where

Pilha?
Pilhy]?
R, = log <1 + i;' ) (2.34)
Py|ho|?
P. 2
Ry = log (1 + %) . (2.36)

SinceR]} < R, andR, < Ry, it can be seen that the above game has two Nash

equilibria (NEs), i.e.{s; =c 1,s,=C 2} and{s; =C 2, s,=C 1}.

2.4.3 Mixed strategy and MSNE

In all the games considered in Sections 2.4.1[and[2.4.2 |8yens useure strate-

giesonly. Pure strategies represent definite choice with nontaiogy for the play-

ers. For example, player 1 must choose either ¢ 1 or ¢ 2 withgtmdity 1 in the

game represented by Talple]2.3 if it uses pure strategy. Hawiéthe players are

able to assign probabilities to their pure strategies ag\wheh and thereby select

the pure strategies with randomness, they can extend thatiegy space to mixed

strategies.

A mixed strategyf a player is a probability distribution over its pure strat

gies inS;, denoted ap;(S;), with the probability assigned tg beingp;(s;). For

example, a mixed strategy for player 1 in the game repreddnjéable 2.8 is to
choose c 1 with the probability of 0.4 and ¢ 2 with the proligbdf 0.6. As there

are infinitely many distributions over a set of pure stragegthe number of mixed

strategies for each player is also infinite. In a game withelistrategies, the utility
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of playeri is given as

Upi(S)p-o(S-)) = D wilsivsa) [ [ palsw) (2.37)

(81 ..... S]M)ES keA

wherep_;(S_;) is the combination of the probability distributions of alapers but
playeri andsS is the Cartesian product &f,. ..,Sy;.
An MSNE is such combination of probability distributionsieofrom each user,
that
Us(p;(8i), p24(S—4)) > Ui(p(Si), p24(S-4)), Ypi(Si), Vi, (2.38)

—1 3

wherep;(S;) represents the distribution of playem the MSNE,p* ,(S_;) repre-
sents the combination of the distributions of all playersgiayer: in the MSNE,
andp,(S;) represents any distribution valid for tith player bup;(S;). Denote the
set of player’s pure strategies with positive possibilitiesif(S;) in the MSNE as
S;". Note that all the pure strategiesdii must lead to the same utility for player

given the distributions of other players, i.e.,
Ui(g(si),p2,(S-5)) = Ui(p} (i), p2:(S-i)), Vsi € S, Vi (2.39)

whereg(x) is the distribution oves; defined as

g(z) = {O TF S (2.40)

1 z=s,.

The reason is that, otherwise, playeran increase its utility by assigning O prob-
ability to the pure strategy i5;" that leads to the minimum utility for it while
increasing the probabilities of other pure strategies;in which contradicts the
definition of MSNE.

The admission of mixed strategy and MSNE marks the beginoifitige modern
game theory [78]. The significance of mixed strategy lieb@fact that MSNE may
exist with mixed strategies in a significant amount of ganas tio not have NE
with pure strategies. Consider the example in Tableé 2.1 kvhas no NE in pure
strategies. Assume that player 1 chooses- a ands; = b with probabilitiesp,

andp,, respectively, while player 2 chooses= ¢ ands, = d with probabilitiesp,.
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andp,, respectively. According to the table, the utilities of fflayers are obtained

as

Ur = pa(2pc+ 3pa) + po(3pc + 2pa) (2.41)

Uz = pe(2pa+ py) + pa(pa + 2ps). (2.42)
Using the property i (2.39), we have

2pc + 3pa = 3pe + 2p4 (2.43)

2pa + Do = Pa + 2D (2.44)

Considering thap. + ps = p. + p» = 1, the above equations have the solution
Pe = P = Pa = pp» = 0.5. Therefore, there exists a unique MSNE in this game
that has no NE in pure strategy. The utilities for the two playin the MSNE are
U, =25andU, = 1.5.

In the proposed research in Chagtér 6, the problem of resallacation in
multi-user wireless communications is investigated ugiagnes with mixed strate-
gies. The proposed game model is, however, much more caatgaichan the one
described above in the following two aspects. First, thatstyy of each player in
the game will be represented by a continuous variable. $kdba utilities of the
players are not simply given but defined by continuous fumgiof the player’s
strategies. With the above modeling, the proposed reseanch at studying the
existence and uniqueness of MSNEs for the resource alklocgéime in the consid-

ered scenario of two-user wireless communications.
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Chapter 3

Relay-Oriented MIMO DF TWR:
Maximizing Spectral Efficiency with
Minimum Power

In this chapter, the MIMO DF TWR is investigated in theday optimization sce-
nario, in which the relay optimizes its own power allocation to iagk sum-rate
maximization with minimum power consumption given the poa#ocation of the
source nodes. The objective of this chapter is to find thexagdtpower allocation

strategy of the relay in the relay optimization scenzﬂio.

3.1 System model

Consider a TWR with two source nodes and one relay, wheresawde: (i =

1,2) and the relay have; andn, antennas, respectively. In the MA phase, source
nodei transmits signaW;s; to the relay. HerdV; is the precoding matrix of source
node: ands; is the complex Gaussian information symbol vector of souname;.

The elements of;, Vi are independent and identically distributed with zero mean
and unit variance. The channels from source notethe relay and from the relay
to source node are denoted aBl;, andH,;, respectively. Receiver channel state
information is assumed to be known at both the relay and tbheceanodes, i.e.,
source nodé knowsH,; and the relay know$l,,, V:. It is also assumed that the

relay knowsH,;, Vi by using either channel reciprocity or channel feedbacke Th

1A version of this chapter has been published in IEEE Trargn@iProcess., 61: 3563-3577 (2013)
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received signal at the relay in the MA phase is
V= lewlsl + HQrWQSQ + n, (31)

wheren, is the noise at the relay with covariance matrf. The maximum trans-
mission power of source nodas limited to P/"**. Define the transmit covariance
matricesD; £ W, WH Vi, andD £ [D;, D,]. Then the sum-rate of the MA phase
is bounded byl [67]

R™(D) = log|I+(H,D,HY + Hy, D,HE ) (02) 7. (3.2)

In the BC phase, the relay decodgsands, from the received signal, re-encodes

messages using superposition coding and transmits thal sign
Xy = Tr2sl + TrlsZ (33)

whereT,; is then, x n, relay precoding matrix for relaying the signal from source
node;j to source nodeB The maximum transmission power of the relay is limited
to P™**. Note that in addition to the above superposition coding, Exclusive-
OR (XOR) based network coding is also used at the relay initbeture [71], 79,
80]. While XOR-based network coding may achieve a bettefopmance than
superposition coding, it relies on the symmetry of the tedifom the two source
nodes. The asymmetry in the traffic in the two directions eaullto a significant
degradation in the performance of XOR in TWR][79],/[80]. Ae theneral case of
TWR is considered here and there is no guarantee of trafficrstny, the approach
of symbol-level superposition is assumed at the relay asdbnsidered in_[7] and
[33]. Moreover, for the MIMO case that we are consideringge fuperposition
scheme can take advantage of the MIMO channels. In the sogiggn scheme,
the relay uses separate beamformers for the signals toweoddirections, which
guarantees that each transmitted signal is optimal (sutigjéte transmission power
constraints) given its MIMO channel. This cannot be acldeNehe relay uses
XOR-based network coding.

The received signal at source nadean be expressed as

y; = Hrin +n; (34)

2|t is assumed as default throughout this chapter that theindiees: and;j satisfyi # ;.
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wheren; is the noise at source nodevith covariance matrix?I. With the knowl-
edge ofH,; andT,;, source nodésubtracts the self-interferené, T, ;s; from the

received signal and the equivalent received signal at squrde; is
yi = Hyi'Tys; + n;. (3.5)

DefineB; £ T,;T!, Vi and letB = [B;, B,]. The sum-rate of the considered DF

TWR can be written as [7], [33], [71]

R™(B,D) = %min{Rma(D),R(B,D)} (3.6)
where
R(B,D) = min{R,1(B1), Rar(D3)} + min{ Rio(By), R1,(D1)} (3.7)
in which
R;.(D;) = log|T + (H;D;H) (02) 7| (3.8)
and
Ryi(B;) = log|L + (HyBH}) (07) . (3.9)

For brevity of presentation, we define the following suneratthe BC phase

R"(B) = Ru(By) + Ria(By). (3.10)
For the relay optimization scenario considered here, tlay nmaximizes the
sum-rate in[(3J6) using minimum transmission power givexn gbwer allocation
strategies of the source nom&sSince the relay needs to know,; and W, for
decodings; ands,, respectively, as well as for designig; andT,,, the source
nodes should send their respective precoding matricegteetay after they decide
their transmit strategies. Similarly, the relay shouldbaendT,; andT,, to both
source nodes.

Given the above system model, we next solve the relay opatiiz problem.

3The term ‘sum-rate’ by default mea®®™ (B, D) when we do not specify it to be the sum-rate of
the BC or MA phase.
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3.2 Relay optimization

In the relay optimization scenario, the relay and the sonozkes do not coordinate
in choosing their respective power allocation strategiastead, the relay aims at
maximizing R™ (B, D) in (3.6) with minimum power consumption after the source
nodes decide their strategies and inform the relay.

Denote the power allocation that the source nodes decidesdoasD? =
DY, DYA For maximizing the sum-rate gived®, the relay solves the following

optimization proble

max R™(B,D") (3.11a)
st.  Tr{B;+ By} < Pm, (3.11b)

The problem[(3.11) is convex. However, in order to find theropt B with min-
imum Tr{B; + By} among all possibl®’s that achieve the maximum of the ob-
jective function in[(3.11), extra constraints need to besodered. Two necessary

constraints are given below

R.;(B;) < R;:(DY), Vi (3.12a)
R(B,D") < R™(D"). (3.12b)

The considered relay optimization probleim (3.11) with &ddal necessary con-
straints [[3.12a) and (3.12b) becomes nonconvex. The alemassary constraints
are introduced here to show that the considered relay agption problem is non-
convex. For a sufficient and necessary condition for a poll@cation strategy to
be optimal in terms of maximizing sum-rate with minimum powensumption,
please see Theorem 3.2 later in this section.

The constraint[(3.12a) is necessary because, div¥endue to the expression

of R(B,D) in (3.1), the power consumption of the relay can be reduceitewh

4The source nodes may determine their power allocatioresfiest using different objectives. Note
that different source node power allocation strategied tealifferent solutions of the relay opti-
mization problem. However, the approach adopted in thiptehidor solving the relay optimization
problem is valid for arbitrary source node power allocation

5The positive semi-definite (PSD) constrailts > 0, Vi andB; > 0, Vi are assumed as default and
omitted for brevity in all formations of optimization pradhs in this chapter.
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the sum-rateR™ (B, D) in (3.8) can be kept unchanged by reducindBy} if
Rri(BZ’> > Rjr(D?). Note that[(3.12a) is not necessarily satisfied with equalit
at optimality. In fact, it can be shown using subsequentltesn Sectiol 3.2]2
that (3.12h) should be satisfied with inequality for at lems: at optimality. It
can also be shown thdi (3.12a) can be satisfied with inemsafior bothi's at
optimality even if the relay has an unlimited power budget 8¥ess that (3.1Ra) is
not sufficient for obtaining the optimal solution. Other strints are also needed
including [3.12b). The constraiff (3.12b) is also necgsbacause, giveiD?, if
(3.12D) is not satisfied, then the power consumption of theyrean be reduced
while the sum-raté?™ (B, D°) can be kept unchanged by decreasit{@, D°) so
that R(B,D°) = R™*(DO).

The constraints in[(3.12) make the considered problem mo@so The ob-
jective in this section is to find an efficient method of deryyithe optimal power
allocation of the relay in the considered scenario of refatynoization. It is straight-
forward to see that the power allocation of the relay shoel@dsed on waterfilling
for relaying the signal in either direction regardless ofviibe relay distributes its
power in the two directions. This is due to the fact that the@@se is interfer-
ence free since both source nodes are able to subtract élifeinterference. If the
objective were to maximiz&"¢(B) instead of?™" (B, DY), the optimal strategy of
the relay could be found via a simple search. Indeed, in tee,ove could find the
optimal power allocation of the relay and consequently {htnoal B by searching
for the optimal proportion that the relay distributes itsyeo in the two directions.
However, such approach is infeasible for the considereol@no. The reason is that
first of all it is unknown what is the total power that the relages in the optimal
solution. As power efficiency is also considered, the relay mot use full power in
its optimal strategy. Moreover, from the expressiok8f(B, D) in (3.6), it can be
seen that the maximum achievalii&’ (B, D°) also depends oR;, (DY), Ry, (DY),
and R™#(DY). Due to this dependence, the two constraint§in (3.12) acessary
for the considered problem of sum-rate maximization witmimum power con-
sumption. However, these two constraints are implicit i& sense that they are

constraints on the rates instead of on the power allocafidheorelay. Such con-
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straints offer no insight in finding the optimB. In order to transform the above
mentioned dependence Bf* (B, D°) on R, (DY), R, (DY), andR™*(D°) into an
explicit form, and to discover the insight behind the coaisits in [3.12), we next

propose the idea of relative water-levels and develop aoddiased on this idea.

3.2.1 Relative water-levels

Denote the rank oH,; asr,; and the singular value decomposition (SVDHf; as
U,;Q,;VE. Assume that the first; diagonal elements @&2,; are non-zero, sorted in
descending order and denoted.ggl), . . ., wy; (), while the lasinin{n;, n, } —r;
diagonal elements are zeros. Defiye> {1,...,r;}, Vi anda; (k) = |w(k)|?/o2,
Vk € Z;,Vi. For a givenD = [Dy, Dy, defineu; (Dy), p2(D2), andum,.(D) such
that

];Elog(l + (ul(Dl)O‘Q(k) - 1) ) = Ri(Dy) (3.13a)
;Illog(l + (uz(DQ)al(k) -1) ) = Ry (Do) (3.13b)

1 A\ pma
DD log (1 + (uma(D)O‘i(k) —1) ) = R™(D) (3.13¢)

1 k€L;

where(-)* stands for the projection to the positive orthant. The pfgisneaning of
wi(D;) is that if waterfilling is performed on,;(k)’s, Vk € Z; using the water-level
1/u;(D;), then the information rate of the transmission from theyrétasource
node; using the resulting waterfilling-based power allocatiohiages precisely
R;:(D;). The physical meaning of,,..(D) is that if waterfilling is performed on
wri(k)'s, Yk € Z,,Vi using the water-level /u.,,(D), then the sum-rate of the
transmission from the relay to the two source nodes usingethéting waterfilling-
based power allocation achieves precisB¥*(D). Note thatl/u;(D;), Vi and
1/um (D) are not the actual water-levels for the MA or the BC phasesyTdre
just relative water-levels introduced to transform andpify the constraints in
(3.12). Denote the actual water-levels used by the relasefaying the signal from
source nodg to source nodeéas1/\;, Vi. With water-levell /\;, B; can be given
asB; = V,,P.;(\) VI where
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P.(\) = o ))+ Vi (3.14)
Ai o a(re

OTerT'”,’?
in which0,,, _,., stands for all-zero matrix of size,, — ;) x (n, — ;). The power
allocated orw,;(k) is pu(k) = (1/A — 1/ai(k))",Vk € Z,,¥i. The resulting
rate R,;(B;) is given by > logl+ (v (k) /N —1)*. Using i1 (Dy), p2(D3), and

keL;
ima(D), the constraints iri(3.1Pa) can be rewritten as

Ai > p;(DY), Vi (3.15a)
Zkze; log <1+ <Ai )+> < ;glog (1+ < 0" oy (k) —1)+).
(3.15h)

Given (4.28) and(4.2b), it is easy to see tlhai (3.12a) isvatpnt to [3.154a).
Moreover, the equivalence betweén (3]12b) and (3.15b) eaexplained as fol-
lows. GivenD? and [3.12b),R™ (B, D) in (3.11&) become&(B,D)/2. Given
[B122), or equivalently (3.15alk(B, D) in (3.7) withD = D° becomesk,; (B;)+
Ri»(B5). Then, substituting the left-hand side BF(3112b) with (B;) + Ri»(B>),
i.e., R*(B) in (3.10), and usind(4.2c), the constralnf (3115b) is otwdi

The procedure for the relay optimization can be summarindtie following
three steps:

1. Obtainu; (DY), u2(DY), and iy, (D) from DY,

2. Determine the optima;;

3. ObtainP,;(\;) andB; from \,.

The first and the third steps are straightforward given tHanidens (4.2a)-
(4.2¢) and[(3.14). Therefore, finding the optimal Vi in the second step is the
essential part to be dealt with later in this section.

From hereony; (D), us(Ds), and u,.(D) are denoted agy, po and pipa,
respectively, for brevity. The same markers/superscapt®; and/orD are used
on ; and/or .y, to represent the connection. For examplgD?) and iy, (D)
are briefly denoted as? and ji,.., respectively. The rat&,;(B;) obtained using

water-levell /\; is also denoted aB,;(\; ).
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3.2.2 Algorithm for relay optimization

Using the relative water-levels;, Vi and yi,,,, we can now develop the algorithm
for relay optimization. In order to do that, the followingrenas are presented.

Lemma 3.11/pima < max{1/pq,1/us}.

Proof: The proof for Lemma 3.1 is straightforward. Using (4.2&2¢), it
can be seen that™*(D) > ZRir(Di) if 1/pima > max{1/pu1,1/p2}. However,
given the definitions irE(E]Z)ZanﬂB.S), it can be seen thi&t(D) > 3° R (D;) is
impossible[[67]. Thereford,/ i, < max{1/uy,1/pus}. Z [ ]

Lemma 3.2Assume that there exigt\;, A;} and{\}, "} such that\} < \; <
Aj < N IE S Tr{PL(N)} = S Tr{Py(X)}, thenY. Ry(\) > 3 Ra();) as long
asl/\; > ixéllzr]l{l/a](k)} l l l

Proof: See Subsectidn'A.1 in Appendix. [ |

Essentially, Lemma 3.2 states that, for any gifen, .} such thatl/\, >
22112{1/@2(%)} assuming\; < \,, decreasingnin{\;, A, } and increasingnax{\,
Ao } while fixing the total power consumption leads to a smaller@@se sum-rate
than that achieved by usif{g\;, A, }.

Lemma 3.3 Assume that there exigt\;, \;} and {\}, \’} such that\; < A,
A, > AyandX) > \;, and

Ri(N) + Rej(N\) = Ru(N) + Riy(N) (3.16)

then as long aa; < ), it holds true that

Tr{P.(A)} + Tr{P;(A)} < Tr{P(X)} + Tr{P.;(X))}. (3.17)
Proof: See Subsectidn A.2 in Appendix. [ |

In other words, Lemma 3.3 states that, for any giygn X\, }, decreasingnin{\;,
Ao} and increasingnax{ A, A, } such that the BC phase sum-rate is unchanged, the
power consumption increases.

Theorem 3.1 The optimal solution of the considered relay optimizatwab-
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lem always satisfies the following properties

1 1 1 1
ing —, — ¢ =ming —, — > if A #A 3.18
1 1 ) 1 1 .
)\—1 = )\—2 = mln{luTm, F} if Al = AQ (318b)
wherel/\° is the water-level obtained by waterfilling™* onw,;(k), Vk € Z;, Vi.
Proof: See Subsectidn A.3 in Appendix. [ |

According to the proof of Theorem 3.1, it can be seen thatt A\, at opti-
mality and consequently the equation [in (3]18a) holds wtath bf the follow-
ing two conditions are satisfied: (i) the relay has sufficipatver, i.e.,1/\° >
min{1/u9,1/u3}, and (ii) there is asymmetry betwegh and 49, i.e., min{1/49,
/19 < 1/ub, < max{1/u? 1/uS}. If either of the above two conditions is not
satisfied \; = )\, at optimality and consequently the equatiorin (3118b) fold

Theorem 3.2 In the relay optimization scenario, the conditidns (3)1 & 15b),
(3.184), and(3.18b) are sufficient and necessary to deterthe optimal\;, A2}
with minimum power consumption among dlA;, \;}'s that maximize the sum-
rate R™ (B, D).

Proof: See Subsectidn A.4 in Appendix. [ |

It should be noted that the power constraint (3111b) is neags tight at opti-

mality due to the constraints if_(3.15d), (3.1.5b) (or edendy (3.124), [(3.12b)),
(3.184), and(3.18b). Each &f (3.154), (3115b), (3.18a),(8AL8H) may refrain the

relay from using its full power at optimality. The reason danfound from the
proofs of Theorems 1 and 2. Specifically, (3]15a) and (3.&&HKe sure that there
is no superfluous power spent for relaying the signal in e@eletion while [3.15b)
and [3.18b) guarantee that the power consumption of thg oelanot be further
reduced without reducing the sum-rate.

Based on the above results in Theorems 1 and 2, the algoriiinmmarized
in Table[3.1 is proposed to find the optimal relay power aliocafor the re-
lay optimization problem. In order to make sure that the sate-is maximized
while no power is wasted, the algorithm baIandés(Bl) and RrQ(Bg) via ad-
justing \; and \, according toR;,(D?), R,.(D9), and R™*(D°). The algorithm

uses relative water-levels, which are not explicitly rethto corresponding rates.
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Table 3.1: The algorithm for relay optimization.

1. Initial waterfilling: allocateP™** onw,;(k), Yk € Z,, Vi using waterfilling.
Denote the initial water level as/\°. Setl/\; = 1/\, = 1/A\°. The power
allocated onv,, (k) is p.; (k) = (1/\ — 1/a,(k)) ",k € T, ¥i.

2. Check if1/)\; < 1/ for bothi = 1,2. If yes, proceed to Step 6.
Otherwise, assume that\, > 1/u9, proceed to Step 3.

3. Set\; = uY. Check if1/)\y > 1/45. If not, proceed to Step 4. Otherwise,
proceed to Step 5.

4. CalculateP! = P™> — %" py(k). Allocate P’ onw,s(k)'s,Vk € Z, via

keI
waterfilling. Obtain the water level/),. If 1/X, > 1/4%, proceed to Step 5.
Otherwise, go to Step 6.
5. Set)\, = 1! and proceed to Step 6.
6. If 1/\; > 1/ul,, Vi, set\; = u¥  Vi. Check if1/\;, < 1/u%  Vi. If yes,
output);, Vi and break. Otherwise, check¥ R.;();) < R™*(D°). If yes,

output);, Vi and break. Otherwise, proceea to Step 7.
7. Assuming tha; < \;, find X; such thaf M [log\; = >° logay(k) —

R™(D°) + Rj;,(DY), wherep,;(k) = (1/X; — 1/a;(k)) ", Vk € Z;, Mt £
{k|p:;(k) > 0} and| M| is the cardinality of the seb . Set\; = \; and
output); and;.

By relating the relative water-levels to the correspondiaigs and power alloca-
tion, the algorithm can be explained more intuitively addak. Step 1 performs
initial power allocation and obtains the initial water leve. The water-levels
A\ = AU Vi maximize R*¢(B) among all possibl§\;, Ao} combinations subject
to the power limit of the relay. Step 2 checks whethen{R,;(B;), R;(D,)} is
upper-bounded byz;, (DY), Vi. If R.1(A)) > Ry (DY), the relay reduces its trans-
mission power allocated for relaying the signal from sourcde2 to source node

1 so thatR,;(\;) = Ry (DY) in Step 3. In the case thdt,()\,) is reduced in
Step 3, in terms of increasing, extra power becomes available for relaying the
signal from source nodé to source nod®. Therefore, ierz(Ag) < R, (DY),
the remaining power of the relay is allocated for relaying signal from source
nodel to source node at first in Step 4. Later in Step 4, it is checked whether
Ris(X2) > Ry, (DY) under the new power allocation. H,,()\;) > Ry.(DY), the

relay reduces its transmission power allocated for retaye signal from source
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nodel to source node so thatR.,(\;) = Ry(D?) in Step 5. Steps 6 checks
whetherR,; (A1) + Ri2(\2) < R™ (D) is satisfied. In the case that this constraint
is not satisfied, Step 6 or 7 revise the power allocation spRh&);) + Ria(\s) =
R™(DY) and the power consumption of the relay is minimized. We sttleat the
above procedure in the proposed algorithm, which termsateer Step 6 or 7, is
not iterative.

The following theorem regarding the proposed algorithnmisrder.

Theorem 3.3 The water-levels obtained using the algorithm for relayi-op
mization in Tablé 3]1 achieve the optimal relay power allmeefor the considered
relay optimization problem of sum-rate maximization witimimum relay power
consumption.

Proof: See Subsectidn A.5 in Appendix. [ |

Depending on the source node power allocation strategegharpower limit at
the relay, different results can be obtained at the outpilte@lgorithm in Table 3] 1.
Define the following power thresholdg,, = Zkzz 1/, =1/ (k) ", Pam 2

=

(2

>y (1/max{,u?,,u8}—1/ai(k))+,Pmd = ZkEZI (1/#?—1/ai(l€))+ and P, £

1 k€EZ; ]

> % (1/min{u?, 13} —1/a;(k)) " where the subscripts ‘sm’, ‘md’, and ‘g’ mean
sznf;ﬁ ‘medium’ and ‘large’, respectively. Recall fromeimma 3.1 that? , >
min{x?, uJ}. Denote the situation that’ > max{u?, uJ} as Case | and the
situation that.® . < max{u?, u3} as Case Il, we next analyze the optimal solution
in these two cases in detail.

For Case |, it can be seen that, < Ps,, < P4 < B,. According to the value
of P™* there are five subcases which are discussed one by one ialliheifg
text.

Subcase I-1:P™** is small such that’™** < P,,. In the Subcase I-1, the

algorithm proceeds through Steps 1-2-6 and

Ni=A0> 0 i (3.19a)
> Tr{Pu(\)} = P (3.19b)

at the output of the algorithm, while(3.15a) ahd (3]15b)satesfied with inequality.
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Note that some power of the source nodes is wasted in thimsab&ince the sum-
rate R (B, D) is bounded byR.;(\;) + R.2(\2) due to the small power limit of
the relay, the source nodes could use less power withoutirglR™ (B, D) if

there would be coordination in the system. Indeed, if thecnodes could be
coordinated to optimize their power allocation as well ytioaly need to use the
power of T{D{}+Tr{D!} whereD' £ [D!{ D] is the optimal solution to the

following problem

rrgn Tr{D;} + Tr{D,} (3.20a)
s.t. R™(D) > Ry (\°) + Ro(\°) (3.20b)
Ri:(Dy) > Rip(\°) (3.20c)
Roe(Dy) > Ry (\0). (3.20d)

It can be shown that TDY} + Tr{DJ} > Tr{D!} + Tr{D}} in this subcase.
Therefore, the power of TDY} + Tr{DJ} — Tr{D!} — Tr{D}} is wasted at the
source nodes because of the lack of coordination.

Subcase I-2: increag@™** such thatP,,, < P™** < Py,. Then the algorithm
proceeds through Steps 1-2-6.

Subcase I-3: increage™*> such thatP,,, < P™** < P,q. Then the algorithm
proceeds through Steps 1-2-3-4-6.

Subcase I-4: further increagé€"* such thatP,q < P"* < B,. Then the
algorithm proceeds through Steps 1-2-3-4-5-6.

Subcase I-5: further increagg”** such that?™** > B,. Then the algorithm
proceeds through Steps 1-2-3-5-6. In the above subcases Mg > P,., it
holds that

A=l > N0 (3.21a)

> Tr{Pu(n)} < P (3.21b)

at the output of the algorithm, while (3.15a) is satisfiedwitequality for each
such thatl /9 > 1/42 . and [3.15D) is satisfied with equality. For these subcases,

the sum-rate?™ (B, D) is bounded by?™#(D") and there is no waste of power at

the source nodes.
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For Case I, it holds thatin{u{, x5} < 2. < max{ul, uy} according to
Lemma 3.1. Assume that) > ;9 and find\, such thatR.,(\;) = R™*(D°) —
Ror(DY). Let A, = 8 and defineP,,, 2 3 3 (1/A; — 1/es(k)) . It can be seen
from Lemma 3.3 thaP’,, > Py.. Since;lg:ei max{u, u9}, it holds thatP’ , >
Pyn,. Therefore, for Case Il, the power thresholds satidfy < P!, < Pua < Bg.
The following subcases appearg3* increases.

Subcase 1I-1:P™** is small such thaP™>* < P,,. Then, the algorithm pro-

ceeds through Steps 1-2-6 and

A =AY > max{p?, pd}, Vi (3.22a)
> Te{Pu(n)} = P (3.22b)

at the output of the algorithm, while(3.15a) ahd (3115b)satésfied with inequality.
Subcase II-2: increase™* such thatP,,, < P™>* < P! . Then the algorithm

proceeds through Steps 1-2-3-4-6 and

A= py > N0 (3.23a)
> Tre{Pu(\)} = P (3.23b)

at the output of the algorithm, while_(3.15a) is satisfiedwatuality for; = 1 and
inequality fori = 2. Note that there is waste of power at the source nodes for the
above two subcases as long 8% < P! . because the sum-rafé¢™ (B, D) is
bounded byR,; (A1) + Riz(\s).

Subcase II-3: increase™ such thatP, , < P™>* < P,4. Then the algorithm
proceeds through Steps 1-2-3-4-6-7.

Subcase II-4: further increage™** such thatP,,q < P"* < B,. Then the
algorithm proceeds through Steps 1-2-3-4-5-6-7. SubdaSe further increase
Pm> such thatP™** > B,. Then the algorithm proceeds through Steps 1-2-3-5-6-

7. In the subcases whéti*>* > P’ it holds that
A=y > A0 (3.24a)
> Tr{Pu(\)} < P (3.24b)
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(b) Subcase -2, < Pmax < P! 0 < max{uf, u9}.

Figure 3.1: lllustration of.?, 19, 1 .., and\ for the scenario of relay optimization.

at the output of the algorithm, while (3.15a) is satisfiedwequality fori = 1 and
inequality for: = 2, and [3.15b) is satisfied with equality. The optimalis found
in Step 7 of the proposed algorithm. For these subcases, igro waste of power
at the source nodes.

Two of the above subcases, i.e., Subcases I-1 and II-2 |asedted in Fig_3]1.

From the above discussion, it can be seen that the algonitAakle 3.1 obtains
the optimal power allocation in at most seven steps withtevations.

Recall that the sum-rate of DF TWR is bounded by both the satm-of the
MA phase and the sum-rate of the BC phase. In the scenaridayf optimiza-
tion, the relay optimizes its power allocation which afetiie sum-rate of the BC
phase. Since the relay may or may not use all its availableepatoptimality (i.e.,
for the optimal power allocation), the sum-rate of the BCq#h&s not necessarily

maximized at optimality. Moreover, it is also possible ttieg sum-rate of the BC
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phase at optimality is not even the maximum sum-rate of thg@B&Se that can be
achieved using the power consumed by the relay at optim&iyspecify the term
efficientto describe such optimal power allocation of the relay thaximizes the
BC phase sum-rat&>¢(B) with the actually consumed power at the relay. Thus,
the relay’s power allocation is efficient if it generates thaximum sum-rate for
broadcasting the messages of the source nodes given it pongumption. For
example, when the relay uses all its available power at @itiynthe optimal power
allocation of the relay is efficient if it maximizes the suate of the BC phase, and
inefficient otherwise. When the relay uses the power P™* at optimality, the
optimal power allocation is efficient if the achieved surteraf the BC phase is
the maximum achievable sum-rate of the BC phase with poweswuoptionF;,
and inefficient otherwise. Then the following two conclusaan be drawn for the
scenario of relay optimization.

First, the optimal relay power allocation in the relay opaation scenario is
always efficient for Case | (i.ey?, > max{u? u5}). In such a case, it can be
seen from[(3.19a) anf (3.21a) thdt\; = 1/), at optimality regardless of whether
the relay uses all its available power. Therefore, the BGsglsum-rate?"¢(B)
is always maximized given the relay’s power consumption.weler, the opti-
mal relay power allocation is inefficient for Case Il (i.e5, < max{ul, u5})
as long asP™*> > . Moreover, the larger the difference betweenax{u?, 19}
and . in this case, the more inefficient the optimal relay poweoation be-
comes whenP™>* > F. Given the definitions[(4.2a)-(42c) and Lemma 3.1,
pl. < max{u, u9} in Case Il indicates that one source node uses more power,
has more antennas and/or better channel condition compatbdse of the other
source node. Indeed, if the power budget, number of antemamaschannel con-
ditions are the same for the two source nodes, as an extreamepd, it leads to
pl. > u? = Y. Therefore, it can be seen that the asymmetry between therpow
budget, number of antennas, and/or channel conditionsegnade the relay power
allocation efficiency in the scenario of relay optimization

Second, the considered relay optimization scenario maytriesthe waste of

power at the source nodes. However, the relay never wasggsoarer. This is due
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to the fact that the relay is aware of the source node powecatibn strategies and
optimizes its own power allocation based on them. As a resuafan use only part
of the available power if its power limiP™** is large. However, the relay power
allocation strategy is unknown to the source nodes whendbece nodes decide
their power allocation strategies. Therefore, the poksimf wasting power in
the relay optimization scenario can be viewed as the tréadeofow complexity.
Indeed, in the relay optimization scenario, there is no doation between the
relay and the source nodes. As a result, it is almost implessibachieve the
maximum sum-rate with minimum total power consumptionnreie to as network-
level optimality. In order to achieve the network-level iopdlity, the scenario of
network optimization, in which the relay and the source msogéntly maximize
the sum-rate of the TWR with minimum total power consumptisiconsidered in
Chaptef # of this thesis.

3.3 Numerical and simulation results

In this section, we provide simulation examples for someltepresented earlier
and demonstrate the proposed algorithm for relay optinazah Table[3.l. The
general setup is as follows. The elements of the chafdglandH;,, Vi are gen-
erated from complex Gaussian distribution with zero meahuanit variance unless
otherwise specified. The noise variane@sv: ands? are equal to each other and
denoted uniformly as?. While the source node power allocation strat&fycan
be arbitrary, we use for simulations th¥’ that maximizes the MA phase sum-rate
R™ (D). The ratesk™ (D), R;(D;), andR,;(B;) are briefly denoted a&8™, R;,,

andR,;, respectively, in the figures in this section.

3.3.1 A demonstration of Lemma 3.2

It is assumed that the number of antennas at the relay 8 while source node 1
hasn; = 6 antennas and source node 2 has= 5 antennas. Each curve in Fig. 3.2
shows the sum-ratéﬂ + Rrg versus the water-levél/\, for a given ratio ofP™**

overa?. In each curve, for each given' \, the relay consumes all the remaining
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Figure 3.2:R,, + R., versusl /), under differentP™ /2,

power to maximizel/\,. Therefore, the power consumption of the relay is fixed
and equals”™®*, For each curveg? is different. The curve at the bottom corre-
sponds to the rati@™** /o equal to4 dB. For each time, when the ratio &f**
overo? increases, a new curve fif; + R,, versusl /\;, which lies above the previ-
ous curve, is plotted. The curve at the top corresponds tather™** /o2 equal to

7 dB. It can be seen from Fig._3.2 that the sum-né;eJr Rrg iIs a nonconvex func-
tion of 1/;. However,f%ﬂ + Rrg is non-decreasing before reaching the maximum
and non-increasing after that. Note thdt\;, = 1/\, = 1/\° when the BC phase
sum-rate is maximized. As a result, it can be seen that istcrgaax{1/\;, 1/ A2}
and decreasingnin{1/\;, 1/X;} while fixing the total power consumption leads
to a smaller BC phase sum-rate for any gien\,,1/X\,}. Therefore, Figl_3]2

verifies the result presented in Lemma 3.2.

3.3.2 The relay optimization problem

Fig.[3.3& compares the BC phase rates at optimality of tlag mgtimization prob-
lem, which considers power consumption minimization, with BC phase rates
at optimality of the probleni (3.11), which does not minimike power consump-

tion, under different?™**. One channel realization is shown. The specific setup
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Figure 3.3: lllustration of relay optimization.

for this simulation is as follows. The number of antennasn,, andn, are set to
be 6,5, and 8, respectively. The power limits for the source nodes ardsée
ppax = pmax — 3 W, The noise variance is normalized so that= 1. The MA

phase rates for this channel realization are 20.7fer(D°), 11.2 for,, (DY), and
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11.0 forR,, (DY). In Fig.[3:3&,R, represents,;(B/) whereB!’s, Vi are the optimal
solution (obtained using CVX[81]) to the problem (3.11) aihdoes not minimize
the power consumption, ariel; representsz,;(B;) whereB,’s, Vi are the optimal
solution to the relay optimization problem considering powonsumption mini-
mization obtained using the algorithm in Table]3.1. It carsben from Figl_3.3a
that R/, = R,; whenP™ is small. The reason is that/, is small whenP™ is
below certain threshold. As a result, the constraints ibdBand[(3.18b) are always
satisfied and the solutions to the problém (8.11) and thg ogdéimization problem
are the same. AB™** increasesik™ (B, D) becomes larger and is finally bounded
by r™(DP), while the relay power consumption is not necessarily miném in
the solution of the problem (3.111) which does not consid@rgg@onsumption min-
imization. This can be seen from the first subplot of Eig. Bv@hich shows that the
power consumption in the solution derived using the prog@dgorithm, denoted
as P2, saturates wheR™ > 4.9 W, while the power consumption in the solution
to the problem[(3.11) which does not consider power consiamphinimization,
denoted ag’!, keeps increasing. As a result, as can be seen from the ssegbplibt
of Fig.[3.3b,3" R,; never exceed®™*(D’), while 3" R/, grows beyond?™#(D°)
whenRtW(B,iDO) is bounded byr™*(DY). Meanv:/hile, it can also be seen from
the second subplot of Fig._3I3b that the maximum sum-r&t&$B, D°) for the
two compared solutions are the same, both of which equg] #¢f, = 3 &.; when
SR, < R™(D°) and equal taR™*(D°) whenY_ R/, > Zl%ma(DO).ZThus, this
example demonstrates that the proposed algorithm in Tablachieves maximum

sum-rate in the scenario of relay optimization with minimpawer consumption.

3.3.3 Comparison with XOR-based relay scheme

We must first clarify that there is no XOR-based scheme forousonduct a fair

comparison with the proposed scheme. The reason is that i-b&3ed scheme
has been proposed to maximize the sum-rate of the TWR and aathe time min-
imize the power consumption of the relay as the proposedselimes. Therefore,
to perform this comparison, we need to use the XOR-basedrsztieat maximizes

the sum-rate of MIMO DF TWR without considering the power s@mption as
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Figure 3.4: Comparison with XOR based relay scheme.

in [82]. First, we compare the maximum sum-rates achievethbyXOR-based
scheme of [24] and the proposed scheme versus the chanmeinasgy. In this
simulation, we set the number of antennas suchsthat 4,n, = 3, andn, = 6.

Power limits areP[*> = Prax = 2 W, P™* = 3 W. Noise powelr? is set to
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1. The elements of the channdtk; and H,, are complex Gaussian distributed
with zero mean and variancesand1/v, respectively. Therefore, whenbecomes
larger, the channels become more asymmetric. For each ohlyghe sum-rates
obtained by the XOR-based scheme of [24] and the proposetirschre averaged
over 5000 channel realizations and are shown in[Fig] 3.4aotdd asky;,, and
Ry, respectively. From this figure, it can be seen that the X@Betl scheme is
better than the proposed scheme when the channel asymmatinery large. On
the other hand, the proposed scheme becomes superior whehahnel asymme-
try is large, i.e.,r > 1.9. Moreover, it can be seen that the XOR-based scheme
IS much more sensitive to channel asymmetry as its perfacendacreases much
faster than that of the proposed scheme when the asymmeteases.

We also compare the maximum sum-rates achieved by the X@&dkand the
proposed schemes versus bétfi** andv. In this simulation, the number of an-
tennas, noise power, and power limits of the source nodetharsame as in the
previous simulation. We vary’™* and v so thatP™* increases from 3 W to
6 W andv increases from 1 to 3. For each combination/f** andv, we ob-
tain the sum-rates of the XOR-based scheme and the proposeche (averaged
over 5000 channel realizations) and show their differenceig.[3.4b. From this
figure, it can be seen that, the difference of the two compacedmes is small in
terms of achieved sum-rate whéft** is large. Indeed, even for the very symmet-
ric case ¢ = 1), the advantage of the XOR-based scheme vanishes as the powe
limit P™* increases. Similarly, for the asymmetric case, the adganththe pro-
posed scheme also decreases WHef increases. Therefore, it shows that neither
of the proposed scheme and the XOR-based scheme is defisitpérior. The
XOR-based scheme achieves higher sum-rate than the pcbposeme when the
channel is symmetric. The proposed scheme, on the other, imbdtter for the
case of asymmetric channels. Nevertheless, when the relagrgimit increases,

the difference of the two schemes vanishes.
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3.3.4 The effect of asymmetry in source node power limits and
number of antennas

The specific setup for this example is as follows. The nois@mae is normalized
so thate? = 1. The number of antennas at the relay, iig,,is set to bes. The
power limit of the relay, i.e.P™** is set to be 3 W. The total number of antennas at
both source nodes is fixed such that+ n, = 6. The total available power at both
source nodes is also fixed such tit> + P> = 5 W. Given the above total
number of antennas and total available power at the sourdesnthe relay opti-
mization problem is solved for differemt;, n,, P, and P;*** for 1000 channel
realizations. The resulting average sum-rate and avei@gergconsumption of the
relay, and the percentage of efficient power allocation &traadity are plotted in
Figs.[3.5a[ 3.8b, arld 3)5c, respectively, versus the diffex between the number
of antennas and the difference between the power limitseasalirce nodes. From
Fig.[3.54, it can be seen that the sum-rate at optimality efréay optimization
is the largest when there is no asymmetry in the number ohaateat the source
nodes and no asymmetry or only small asymmetry in the powgtsliof the source
nodes. As the asymmetry becomes larger in either numbertehaas or power
limits, the sum-rate at optimality of the relay optimizatidecreases. Therefore,
it can be seen from this figure that the asymmetry in the abepedis leads to
smaller sum-rate at optimality of the considered relayroation problem. Re-
lating Figs[3.5b and 3.5c¢ to Fig._3l5a, two more observataan be made. First,
the relay does not necessarily use all the available powesuim-rate maximiza-
tion in the relay optimization scenario. Second, the asytrymie the number of
antennas and power limits leads to low power allocationiefiiy. It can be seen
from Fig.[3.5b that when one a?"** — P} andn; — ny is positive while the
other is negative, the relay uses a part of its available pdd@vever, the achieved
sum-rate is smaller compared to the sum-rate in the case wWfigh— P">* = 0
andn; — ny = 0 (see Fig[:3.5a). In this situation, since the average powef c
sumption and the average sum-rate are both low, the pegeenteaefficient power
allocation is larger than O but less than the percentage ieh — Py = 0 and

ny — ny = 0, as can be seen from Flg._.3.5c. Whef** — P*** andn; — n, are
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both positive or both negative, the relay uses more powar tihe power used in
the case whe®™ — P** = ( andn; — ny = 0 while the achieved sum-rate
is smaller than that in the latter case. In this situation¢eithe average power
consumption is high while the average sum-rate is low, thegmgage of efficient
power allocation is very low, if not zero, as can be seen fragn[E5¢. The above
facts become more obvious when the asymmetry becomes.|ditgerefore, it can
be seen from Figs$. 3.bb ahd 3.5c that the asymmetry on thergimits and the
number of antennas can lead to low power allocation effigienc

3.4 Conclusion

In this chapter, we have solved the problem of sum-rate maaton with mini-
mum power consumption for MIMO DF TWR in the scenario of redgyimization.
For finding the optimal solution, we have found a sufficierd arcessary optimal-
ity condition for power allocation. Based on this conditiove have proposed an
algorithm to find the optimal solution. The proposed aldworitallows the relay
to obtain its optimal power allocation in several steps. \&feehshown that, as a
trade-off for low complexity, there can be waste of powerhat $ource nodes in
the relay optimization scenario because of the lack of doatin. We have also
shown that the asymmetry in the number of antennas and powies &t the source
nodes can result in the sum-rate performance degradatetharpower allocation
inefficiency in MIMO DF TWR.
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Figure 3.5: Effect of asymmetry: the average sum-rate,a@eerelay power con-
sumption, and percentage of efficient power allocation airggity of relay op-
timization versus the difference between number of anteramal the difference
between power limits at the source nodes in 1000 channétatiahs.
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Chapter 4

Maximizing Spectral Efficiency with
Minimum Power in MIMO DF TWR
with Full Cooperation

The solution of the relay optimization scenario derived ha@ter B gives the op-
timal power allocation of the relay in a MIMO DF TWR system hretcase when
there is no coordination between the relay and the sourcesaddowever, if the
participating nodes have sufficient computational cagglaind can jointly opti-
mize their power allocation strategies, a better perfowaahan that in the relay
optimization scenario can be achieved. This chapter sutie problem of sum-
rate maximization with minimum power consumption for MIMG-OWR in the
network optimization scenario which the relay and the source nodes jointly op-
timize their power allocations. The objective of this clepgs to find the jointly
optimal power allocation of the relay and the source nodakewdducing the com-

plexity of finding the optimal solutio

4.1 System model

The system model used in this chapter is the same as desanilS=ttion 3.1l of
ChaptefB. Therefore, expressions3[1)-(B.10) still k. The detailed model
is omitted here. However, it is important to recall that witle actual water-levels

used by the relay for relaying the signal from source npesource nodédenoted

A version of this chapter has been published in IEEE Trangin@iProcess., 61: 3578-3591
(2013)
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asl/\;, Vi, it holds that

Ra(By) =) log (1 + (%al(lﬂ) - 1) +) (4.1a)

kel
R 1 +
Ri2(By) = Z log (1 + <—a2(k) — 1) ) (4.1b)
A2
kels
whereZ; = {1,...,r,}. Therefore, the rat&,;(B;) obtained using water-level

1/, is alternatively denoted a3,;()\;).
It is also necessary to recall that, same as in Chapter 3elhive water levels
1/11(Dy), 1/ pe(Dy), andl/ . (D) are defined as

S+ (g -1) ) =m0 2
,; log (1 + (mé)z)cn(k) — 1) +) = Ry (Dy) (4.2b)
33 os 1+ (o - ) )-mmn e

With the same system model, the considered scenario inlthger is different.

In Chaptef B with the relay optimization scenario, gi¥8h andW, as the transmit
strategies of the source nodes, the relay optimize its ommstnit strategyB. In

this chapter with network optimization scenario, the seurades and relay jointly
optimize W, W5, andB such that the maximal spectrum efficiency is achieved
with minimum total power consumption in the system.

For the network optimization scenario considered hererdlay and the source
nodes jointly maximize the sum-rate in_(8.6) with minimuntatotransmission
power in the netvvor. Similar to the relay optimization scenario, the relay needs
to know W; and W, while both source nodes need to kn@y, andT,,. In the
network optimization scenario, it is preferable that the R\ able to operate in
a centralized mode in which the relay can serve as a centda tiat carries out

the computations. If the system works in a decentralizedenibanay lead to high

2The term ‘sum-rate’ by default mea®™ (B, D) when we do not specify it to be the sum-rate of
the BC or MA phase.
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overhead because of the information exchange during tragiite optimization pro-
cess.

We next solve the network optimization problem.

4.2 Network optimization

In the network optimization scenario, the relay and the s@unodes jointly opti-
mize their power allocation to achieve sum-rate maximarawith minimum total
power consumption in the system for the MIMO DF TWR. Compérethe opti-
mal solution of the relay optimization problem in Chaptett® optimal solution
of the network optimization problem achieves larger sute-end/or less power
consumption at the cost of higher computational complexity

The sum-rate maximization part can be formulated as theviallg optimiza-

tion proble
tw
?13,2113)% R™(B,D) (4.3a)
st. Tr{D;} < P"* Vi (4.3b)

Tt{B; + By} < P™>, (4.3c)

where P/"** and P** are the power limits for source nodend the relay, respec-
tively. The above problem is a convex problem which can beitem into the

standard form by introducing variableg, ¢, as follows

max t (4.4a)
{t,t1,t2,B,D}

s.t. ¢ S Rma(D), t S tl + t2 (44b)

t < érj(Bj)a t < Rzr(DZ),V’L (44C)

Tr{D,} < P™> Vi, Tr{B, + By} < P™~. (4.4d)

If transmission power minimization is also taken into agupuhe following

3The positive semi-definite (PSD) constrailts > 0, Vi andB; > 0, Vi are assumed as default and
omitted for brevity in all formations of optimization pradhs in this chapter.
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constraints become necessary

R.(B;) < R;(D;), Vi (4.5a)
R™(D) = R(B,D). (4.5b)

The reason why the above constraints are necessary if tisgiem power min-
imization also needs to be taken into account is as follows/eristhe fact that
R™(D) < Ry,(D;) + Ro.(Dy) whenever T{D;} + Tr{D,} > 0, it can be seen
that the power consumption of the relay can be reduced byciegdr{ B;} with-
out decreasing the sum-rai&" (B, D) in @.8) if k,;(B;) > R;,(D;). Therefore,
the constraint[(4.5a) is necessary. Subjec{io [4.5&)(B,D) in (3.6) can be
written as mif R™*(D), R.,(B,) + R.2(B,)}/2. Using the fact thai™*(D) <
R (B1) + Ria(Bs) whenR,, (B;) = Ro(Dy) andR,»(Bs) = Ry, (Dy), it can be
shown that the power consumption of at least one source ravdeecreduced with-
out decreasing?™ (B, D) if R™*(D) > R(B, D) while the power consumption
of the relay can be reduced without decreaditity B, D) if R™*(D) < R(B, D).
Thus, the constraint (4.bb) is also necessary.

Considering the constraints (415a) and (4.5b), the probiginding the optimal
power allocation becomes nonconvex. Relating (4.2a)gjdavih (4.1a)4{(4.1b), the
above two constraintg (45a) aid (4.5b) can be rewritten as

+ +
5ot (1 () -1) ) =SSt (1 (et 1) ). (ab)
i kEZ; v i keZ; ma

It should be noted that the constrairits (4.5a) and (4.5b@gaivalently [(4.6a)
and [4.6b), are not sufficient in general. Due to the intdesimplexity of the con-
sidered problem, it is too complicated to formulate a gdnarHicient and neces-
sary condition for optimality of the original problem of strate maximization with
minimum power consumption. Instead, we will show sufficientl necessary opti-
mality conditions for the equivalent problems in the sulesas which the original
problem can be transferred into equivalent convex probleffes other subcases,

we will develop important properties based on the abovesszrg conditions (415)
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or equivalently[(4.6) which can significantly reduce the pomational complexity
of searching for the optimal solution.

The following lemma that applies for all subcases is intitufor subsequent
analysis.

Lemma 4.1GivenD; andD, with P/*** > Tr{D;} > 0 andP;"** > Tr{D,} >
0,if 1/p; > 1/pima > 1/p4, then the following two results hold true: 1) ftma(D) <
1/u; whereD = [D;, D,] with D; = 0 andD; = D;, 2) there exists € [0,1)
such that withD; = ¢D; andﬁj =D,, we havel /;(D;) > 1/ ima(D) = 1/
whereD = [D,,D,).

Proof: See Subsectidn B.1 in Appendix. [ |

Lemma 4.1 relates the source nodes transmit strddegyth the relative water-
levels1/puy, 1/ s, and1/um,. It sShows a range that the relative water-levél,,,,
can achieve by fixin@®; and changind; given thatl /;i; > 1/t > 1/11;.

Lemma 4.2 The optimal solution of the network optimization probleastthe

following property

)\j = W; > HUma if A < )‘j or p; > Hma- (47)
Proof: See Subsectidn B.2 in Appendix. [ |

Lemma 4.2 develops a property of the optimal solution thibvies from the
constraints[(4.6a) and (4)6b). This property is neededuiré analysis.

In the scenario of network optimization, the three nodesatifimding the op-
timal matricesD andB that minimize T{D,} + Tr{Dy} + Tr{B; + B,} among
all D andB that achieve the maximum of the objective function[inl(4 Gpnsid-
ering the fact that the optim@& andD depend on each other, solving this problem
generally involves alternative optimizationBfandD. It is, however, of interest to
avoid such alternative process when it is possible due tugts complexity. Next
we use an initial power aIIocatiBmo classify the problem of finding the optimBl
andD for network optimization into two cases, each with seveusicaises.

Consider the following initial power allocation of the soamodes and the re-

lay, which decides the maximum achievable sum-rates of tAeald BC phases,

4 Note that the initial power allocation is not the solutiorthe considered problem and it is only
used for enabling classification.
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respectively. The initial power allocation of the sourcel@®is the solution to the
following problem

max R™ (D) (4.8a)
st. Tr{D;} < Pm v (4.8b)

which is a power allocation problem on multiple-access ae#nstudied in[[70],
while the initial power allocation of the relay is to alloed@®™** on «;(k)'s, Vk €
Z;,Vi based on the waterfilling procedure. Denote the optimalteniwf (4.8) as
DY = [D?, DY] and the water level corresponding to the relay’s initial powal-
location asl/\°. The case whe®™*(D%) > R,;(\°) 4+ Rip(\?), i.e., when the
maximum achievable sum-rate of the MA phase is lager thanwaldo that of the
BC phase, is denoted as Case | and the case WHe(D°) < R,1(\°) + Rip(\°),
i.e., when the maximum achievable sum-rate of the MA phasesssthan that of
the BC phase, is denoted as Case Il. We next study the prodienaximizing
R™ (B, D) with minimum power consumption and find the optimal poweocd-

tion for Cases | and Il, respectively, in the following suttsens.

4.2.1 Finding the optimal solution in Case |, i.e.,R™*(D%) >
Rﬂ()\o) + Rrg()\o)

SinceR™(D°) > R,1(\°) + Rip(\°), it can be inferred that/\y < 1/4°,,. In this

case, the sum-rate™ (B, D) in (3.8) is upper-bounded by the sum-rdtg (\°) +

Rr2()\°). The following two subcases should be considered sepgratel

Subcase I-1: The following convex optimization problemaadible

Irgn Tr{D;} + Tr{D,} (4.9a)
st.  R™(D) > Ry (\) + Riu(\) (4.9b)
Ri:(Dy) > Rip(\°) (4.9¢)
Ro(D2) > Ra(\°) (4.9d)
Tr(D;) < P Vi. (4.9¢)

In this subcase, the maximum sum-r&t@ (B, D) can achieve?,;(\%) + Rip(\°).

In order to achieve this maximum sum-rate, it is necessaayth = \, = \°.
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Therefore, the relay should use up all available po®®t* at optimality, and the
optimalB;, Vi are equal t&v ,P,;(A\°)VE i whereP,;()\;) is given in Section 4]1.
As a result, the original problem simplifies to finding theiotl D, andD, such
that R™ (B, D) achievesR,; (\°) + R,»(A\°) with minimum power consumption.
Using equations (316) and _(8.7), it can be shown that a seifficand necessary
condition forD to be optimal in this subcase is tHatis the optimal solution to the
convex optimization probleni (4.9). Denoting the optimdusion to the problem
(4.9) asD* = Dy, D3], the total power consumption in this subcaseé’js** +
Tr{D}} + Tr{D3}.

It can be seen that the optimal solutionBfandD in the above specific sub-
case, i.e., Subcase I-1, as described above satisfies tempeonstraint (4.6a), or
equivalently[(4.5a), for the original problem since the stoaints [(4.9¢) and (4.9d)
are considered in the problein_(4.9). It can also be showntligaabove optimal
solution in Subcase I- 1 also satisfies the general cons{al), or equivalently
(4.50), for the original problem as stated in the followihgdrem.

Theorem 4.1 The optimal solution in Subcase I-1 satisfigs, = A\°, and
thereby satisfie$ (4.6b) given that = X\, = \° at optimality.

Proof: See Subsectidn B.3 in Appendix.

Considering the constraints (419b)-(4.9¢), it can be seanthe problem (4]19)

is feasible if and only if the following problem

max R;,(D;) (4.10a)
st.  Ru(D;) > R;(\°) (4.10b)
R™(D) > Ry (A\°) + Riu(\0) (4.10c)
Tr(D,) < Prax (4.10d)
Tr(D,) < Pyax (4.10e)

is feasible and its optimal solution, denotedis satisfies?;,(D?) > Rii(\0), VjH
However, it is possible thak;,(D?) < R.:(\°) for somei andj. Itis also possible
that the problen1(4.10) is not even feasible. In both of thevaliwo situations the

SNote that if R;:(D%) > Ry;(\°) fori = 1,5 = 2 in (@I0) then it also holds thak;,(D¥) >
Ry (\%) fori = 2, j = 1 and vice versa.
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problem[4.9) is infeasible. This leads to the second s#hcB€ase I.

Subcase I-2: The problern (4.9) is infeasible.

Unlike Subcase I-1, the maximum sum-rdt&’ (B, D) in this subcase cannot
achievef%rl()\o) + Rrg(/\o). As mentioned above, there are two possible situations
when the probleni (419) is infeasible: R}r(Dj) < R.;(A\%),Vj and (i) the problem
(4.10) is infeasible for specific valued 6fandj. Using Lemma 3.1 in Chaptét 3
and the fact thaR™*(D%) > R,;(\°) + R,,(\°) for Case |, it can be shown that if
the problem[(4.10) is infeasible for specific valueg ahdy, then it is feasible (but
R;:(D3) < R.;(\°)) when the values of and;j are switched. Therefore, the prob-
lem (4.9) is infeasible if and only if there exists at leasé mpecific value of in
{1,2} such that probleni{4.10) is feasible st (D%) < R,;(\°). Denote this spe-
cific value ofj asl and denote the correspondinas!. It infers, based on the defini-
tions [4.28){(4.2c), that/;;, < 1/\° whenevel /i, > 1/A°and1/u; > 1/X°. As
a result, whenever/ ., > 1/X°, or equivalently,R™*(D) > R,1(\°) + R.s(\?),
the sum-rateR™ (B, D) is bounded byR,;(\;) + R.2()\2) according to equation
(B.8), which is less thaR,; (\°)+ R.5(\°) whenl/u; < 1/A° (according to the con-
straint [4.6h) and Lemma 3.2 in Chaptér 3). Moreover, whene,, < 1/A°,
or equivalentlyR™*(D) < R,1(\°) + R.2(\°), the sum-raté?*™ (B, D) is bounded
by R™*(D) according to equatiofi(3.6), which is also less than(\°) + R.5(\°).
Therefore, the maximum sum-ra” (B, D) in this subcase always cannot achieve
R (M%) + Ria(N\O).

With the above denotation défand!, the following theorem characterizes the
optimal solution in this subcase.

Theorem 4.2 Denote the optimaD; in Subcase I-2 aB}, Vi and the optimal
Ai as\!,Vi. The optimal strategies for the source nodes and the retesfysthe

following properties:
Lomin{1/pi} < 1/pg, < 1/A%

2. The relay uses full powdr™**;
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3. D* maximizesmin{1/x,;} among allD’s that satisfy

R™(D) > R™(D") (4.11a)
Tr(D;) < P Vi (4.11b)

4. 1/up < 1/uz.

Proof: Please see SubsectionB.4 in Appendix.

While the original problem cannot be simplified into an ealent form in this
subcase, the properties in Theorem 4.2 help to significaetlyce the complexity
of searching for the optimal solution by narrowing down teed qualifying power
allocations. Denot®)] as theD, that maximizesk;, (D;) subject to the constraints
> pma @and T{D,;} < P and denoteu} as the corresponding. According
to Theorem 4.2, iR ;(A) + Ry()]) < R™*(DF), where

A=y (4.12a)
Tr{P;(AD)} + Tr{P,(\))} = Pm™= (4.12b)

andD is the optimal solution of the following problem

max R™(D) (4.13a)
s.t. er(DZ) Z er(D}) (413b)
Tr(D;) < P Vi (4.13c)

then the maximum achievable sum-rate in Subcase 12,6\[) + R.(\) (ac-
cording to Lemma 3.2 in Chaptér 3), the optiniaj, Vi in this subcase is given
by B; = V,P(\)VH

ri?

and the optimabD is the solution to the following power

minimization problem

rrgn Tr{D;} + Tr{D,y} (4.14a)
st. R™D) > Ry(A) (4.14b)
R, (Dp) > Ru(N) (4.14c)
Ri(Dy) > Ry(M) (4.14d)
Tr(DZ-) < P Y. (4.14e)
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If R;(\)+Ry()\) > R™(D'), denote the objectiv&™ (B, D) as R°. Ac-
cording to Theorem 4.2, the optimal solution can be found laximizing R°* so
that it can be achieved by bofti**(D) and}_ R.i(\;) subject to the following two
constraints: 1) /A\; = 1/, which is obtainéd according to Lemma 4.2, Properties
1 and 4 of Theorem 4.2; 2)/ )\, is obtained by waterfilling the remaining power on
oy(k),Vk € I, (Property 2 of Theorem 4.2), wheté/i;, = 1/;,(D) is the optimal
value of the objective function in the following optimizati problem (Property 3

of Theorem 4.2)

1
max — (4.15a)
D H
st. R™(D) > R (4.15b)
Tr(D;) < P Vi. (4.15c¢)

HereD denotes the optimal solution ¢f{4]115) for the giviet!. Since maximizing
1/ is equivalent to maximizind,, (D, ), the objective function of the above prob-
lem can be substituted by, (D;) and1/i; can be obtained from the optimal value
of R, (D;) in the above problem using{4]2a) &r (4.2b). As mentionedheathie-
ginning of Subcase -2, the optim&™ (B, D) is less thard R.i(\Y). Therefore,
starting from the point by setting°" = > R.i(\%), we can ZadjusRObJ as follows,

to achieve the optimak™ (B, D). We first solve the following problem givefi°b

max Ry, (Dy) (4.16a)
st. R™(D)> R (4.16b)
Tr(D;) < P, Vi (4.16¢)

to get the optimaD for the givenR°> and obtain the resulting/ji;, = 1/u/(D).
Then, we set /\; = 1/, and allocate all the remaining power af(k)'s, Vk € Z,.

If the resulting}_ R.i(\:) is less thankeM | it infers thatR°" should be decreased
in (4.16) and thze above process should be repeated. On thehathd, if the result-
ing > R.i(\;) is larger thanke", then R°" should be increased ia (4]16) and the

abO\;e process should be repeated. The optimal solutionmlfavhen the resulting
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S R,(\;) is equal toR°". With an appropriate step size of increasing/decreasing
R°PI| R°PJ in the above procedure converges to the optiftfd( B, D).
After obtaining the optimak°, 1/, and )\;, the source nodes solve the prob-

lem of power minimization, which is

min  Tr{D.} + Tr{D,} (4.17a)
st. R™(D)> R (4.17b)
Ry (Dyp) > Ru(\) (4.17c)
Ri(Dy) > Ry(\) (4.17d)
Tr(D;) < P, Vi. (4.17€)

However, it can be shown that &, (D;) is not the maximum thaR,,(D;) can
achieve subject to the constrainf (4.15c) (without the traigt (4.15b)), therB
andD remain the same after solving the above problem.

Using Property 2 of Theorem 4.2, it can be seen from (4.14)4dd) that the
minimization of total power consumption becomes the migation of the source
node power consumption in Subcase I-2 since the relay alwegds to consume
all its available power for achieving optimality.

The complete procedure of finding the optimal solution inédds summarized
in the algorithm in Table 411. The algorithm finds the optis@lution either in one
shot (Steps 1 and 2) or through a bisection search for thenapfe°®’ (Steps 3 to
5). DenotingA = k™ — Rmin the worst case number of iterations in the bisection
search idog(A/e). Within each iteration, a convex problem, i.e., probléni®,
is solved followed by a simple waterfilling procedure whicdsHinear complexity
for the giveni°". Therefore, the complexity of the proposed algorithm is.low

Subcases I-1 and I-2 cover all possible situations for CakatlR™*(D°) >
R (M) + Ria(N\).

4.2.2 Finding the optimal solution in Case I, i.e.,R™(D%) <
Ria(\%) + Ria(AY)

SinceR™* (DY) < Ry (A%) + R,5(\?), it can be seen using{4]14), (4.1b), dnd (4.2c)
that1/X\, > 1/4° .. The following four subcases are possible.

64



Table 4.1: Algorithm for finding the optimal solution for Gak

1. Check if the probleni (419) is feasible. If yes, find the oyatiD from
the problem[{419). The optima is given byB; = VP (\°)VE vi.
Otherwise, specifyl and [ so that the problem(4.10) is feasible but
Ri:(D}) < R,7(\°) and proceed to Step 2.

2. ObtainD} and ). Calculate\!, Vi using [4.12). Check i} R.(\]) <

k™ (D1). If yes, the optimaB is given byB; = V,,P.,(\)VH ;. Find
the optimalD from (4.14). Otherwise, proceed to Step 3.
3. SetR™ = " R,(\°) and R™" = 0. Initialize R°® = R™> and

proceed to Step Z1

4. Solve the problen_(4.16) and obtdinand1/j,. Setl/\; = 1/f;. Al-
locate all the remaining power an(k)’s, Vk € Z; using waterfilling and
obtain1/)\,. Check if| 3" R.;()\;) — R™(D)| < ¢, wheree is the posi-

tive tolerance. If yes, proceed to Step 6 with® and )\;, Vi. Otherwise,
proceed to Step 5.
5. If R™(D)—" Rys(\;) > €, SetR™ = R If 3" R..(\;) — R™*(D) >

€, SetR™IM = RoPI, Let R°P = (R™ax 4+ Rmin) /2 and go back to Step 4.
6. Solve the power minimization problem (4.17). Outfdtand B, =
V..P.i(\)VE V.

re)

Subcase 11-11/4° . < min{1/x9,1/u19}. In this subcase, the maximum sum-
rate R (B, D) is bounded by?™*(D°). The optimalD is D, and consequently
both source nodes use all their available power at optiyndtican be seen that a
sufficient and necessary condition Brto be optimal in this subcase is thatis

the optimal solution to the following convex optimizatioroplem

l’IlBil'l Tr{B1 + BQ} (4183)
st. Ru(By)+ Ra(B,) > R™ (D). (4.18b)

The solution of[[4.18) can be given in closed-forms= V,,P.;(1:°,)VE Vi,
Subcase II-2: there existand! such thatl /p) < 1/p0, < 1/p? < 1/X°8 In
this subcase, the maximum achievaBif& (B, D) is alsoR™#(D°). Therefore, the

8For the consistency of denotation, the constrained indices 1,2} andi € {1,2}\{I} are also
used here in Case II. However, it should be noted that theyar@etermined by the same constraint
asin Case |.
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optimal D is D° and both source nodes use all their available power at ofityma
It can be shown that a sufficient and necessary conditioBféo be optimal in

this subcase is thd is the optimal solution to the following convex optimizatio

problem
l’l’lBil’l Tr{B1 + BQ} (419&)
st.  Ru(Bip)+ R(B,) > R™(DP) (4.19b)
Ry(By) = Ri(DY). (4.19c)

The solution of [[4.19) can also be expressed in closed-fofime optimalB; is
given byB; = V ;P () V] and the optimaB, is given byB; = V,,P;(\) V],
where), satisfiesi,;(\;) = R™*(D°) — R, (DY).

Subcase II-3: there existand! such thatl /. < 1/p%, < 1/A\° < 1/ and

there exists\; such that

Rqy(\) = R™(D°) — Ry (DY) (4.20a)
Tr{P(\)} < PP — Tr{P(1})}- (4.20b)

The optimal solutions oB andD in this subcase are the same as those given in
Subcase 11-2.

In the above three subcases, the maximum achievabl@B, D) is R™*(D°).
Therefore, the original problem of maximizing™ (B, D) with minimum total
power consumption in the network simplifies to the problemt tihe relay uses
minimum power consumption to achieve the BC phase sumR@(Bl)JrRrQ(BQ)
that is equal taR™*(D").

Subcase II-4: there existand! such thatl /. < 1/p%, < 1/A\° < 1/ and
there is no\; that satisfies the conditions in_(4120). In this subcasenrthgimum
R(B, D) cannot achievé?™*(D°) althoughR™*(D°) < Ry (A\?) + Ria(\0).

Theorem 4.3 Denote the optimaD; asD, Vi and the optimal; as\, Vi. In

Subcase 11-4, the optimal strategies for the source nodegrenrelay satisfy the

following properties:
Lomin{1/pi} < 1/pg, < 1/ pipa;
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2. Properties 2-4 in Theorem 4.2 also apply for Subcase 11-4.

Proof: See Subsectidn B.5 in Appendix.

According to Theorem 4.3, the original problem of maxim@#™ (B, D) with
minimum total power consumption becomes the problem offigdine maximum
achievableR™ (B, D) with the relay using all its available power and the source
nodes using minimum power. From Theorem 4.3, it can be sedrthh optimal
solutions in the Subcases I-2 and II-4 share very similap@res. There is also
an intuitive way to understand the similarity. Although 8$abes I-2 and 11-4 are
classified to opposite cases according to the initial powecation, it is the same
for both of them that?(B, D) cannot achieve?™*(D%). As a result, the relay
needs to use as much power as possible and the source nodet raerrease
R™(D) from R™*(D°) until the maximumR(B, D) can achieve?™*(D). This
similarity leads to the common properties of the above twacases. Moreover,
due to this similarity between Theorems 2 and 3, Steps 2 totBeo&lgorithm in
Table[4.1 can be used to derive the optimal solution in Swbtas if the part of
R™> = 5 R(X\°) in Step 3 is substituted big™>* = Rma(DO),

Concliuding Cases | and Il, the complete procedure of degithie optimal so-
lution to the problem of sum-rate maximization with minimaotal transmission

power for the scenario of network optimization is summatizeTabld 4.2.

4.2.3 Discussion: efficiency and the effect of asymmetry

In the previous two subsections, we have found the solutidtise network opti-
mization problem for different subcases. Given these gwigf the subcases can
now be compared and related to each other for more insights.

The solutions found in all subcases agtimalin the sense that they achieve
the maximum achievable sum-rate with the minimum possitial tpower con-
sumption. However, the optimal solutions in different sades may not be equally
good from another viewpoint which is power efficiency at teky and the source
nodes. Specifically, although the power allocation of thes® nodes and the relay
jointly maximize the sum-rate of the TWR over the MA and BC gé¢mat optimal-

ity, the power allocation of these nodes may not be optimtdeir individual phase
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Table 4.2: Summary of the overall algorithm for network ap#ation.

1. Initial power allocation. The source nodes solve the MA sum-rate
maximization problem[{4]8) and obtai’, R, (D?),Vi, and R™2(D°).
The relay obtaina? and R.;(\°), Vi.

2. Determining the cases Check if R"#(D%) > " R,;(\). If yes, pro-

ceed to Step 3. Otherwise, proceed to Step 4.

3. Case L Determine the subcase based§nu3, 1., and\’. For Subcase
I-1, the relay’s optimal strategy B; = V;P.;(\°)V while the source
nodes solve problem (4.9) for transmission power minindratFor Sub-
case |-2, use Steps 2 to 6 of the algorithm in Tablé 4.1 forviheyithe

optimal strategies for both the source nodes and the relay.

4. Case Il. Determine the subcase baseddh 19, 1% ., and \°. For

Subcases II-1, II-2, and 1I-3, the optimal strategy for seuris DY and

the relay minimizes its transmission power via solving thabtems [(4.1B)
or (A.19). For Subcase lI-4, substituR™> = 3" R,;(\°) in Step 3 of

Table[4.1 byr™> = R™2(D%) and use Steps 2 to 6 of the algorithm in
Table[4.1 for finding the optimal strategies for both the seurodes and
the relay.

of transmission, which is MA phase for the source nodes angiSe for the re-
lay. In fact, the power allocations in the two phases havetogromise with each
other in order to achieve optimality over two phases. It idsoause of the rate
balancing constraintg (4J5a) amd (4.5b). It infers thateh®& a cost of coordinating
the relay and source nodes to achieve optimality over twagharhis cost can be
very different depending on the specific subcase. In ordshtov the difference
in this cost, we use the metrafficiencydefined next. A given power allocation
of the relay (source nodes) is considerectigientif it maximizes the BC (MA)
phase sum-rate with the actual power consumption of thissp@aNocation. For
example, if the power allocation of the relay consumes thegpof P, < P™** at
optimality and achieves sum-rafe*® in the BC phase, then this power allocation
is efficient if R is the maximum achievable sum-rate in the BC phase with power
consumptionP,. It is inefficient otherwise. It can be shown that the charnzg t
the optimal power allocation is efficient for both the relandahe source nodes is

small (such case happens in Subcase II-1 and possibly Saska¥. Therefore, a
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joint power allocation of the relay and source nodes is @®rsd to be inefficient
if it is inefficient for both the relay and the source nodeg] &ris considered to
be efficient otherwise. The following conclusions can benaréor the scenario of
network optimization.

First, it can be shown that the optimal power allocationfieieit in Subcase I-1
and generally inefficient in Subcase I-2. Specifically, tpéroal power allocation
of the relay is always efficient in Subcase I-1 while the oplipower allocation
of the source nodes can be either efficient or inefficient. dnt@ast, the optimal
power allocation of the relay is always inefficient in Sulc& while the optimal
power allocation of the source nodes is also inefficient imegal. For Case II, the
optimal power allocation is efficient in Subcases IlI-1, Jla&d 11-3 and generally
inefficient in Subcase 11-4. Specifically, the optimal pova#ocation of the source
nodes is efficient in Subcases IlI-1, 1I-2, and II-3 and gelherzefficient in Subcase
lI-4 while the optimal power allocation of the relay is eféait in Subcase 1l-1 and
inefficient in Subcases II-2, 11-3, and 11-4.

Second, the optimal power allocation in Subcase I-1 acBiByEA?)+ R,2(\).

In this subcase, the relay uses its full power and achiev@snéximum achiev-
able BC phase sum-rate. The source nodes minimize their rpoovesumption
while achieving the maximum sum-rate and in general theyataise up all their
available power at optimality. Unlike Subcase I-1, bothrseunodes may use up
their available power in Subcase I-2 while the achieved sat®-s smaller than
er()\o) + Rrg()\o). Similarly, the optimal power allocation in Subcases IH12,
and 11-3 achievesi™*(D") with the source nodes using their full power while the
relay does not necessarily use up its available power. Itrastnthe optimal power
allocation in Subcase II-4 consumes all the available pai¢he relay while the
achieved sum-rate is smaller th&#(D"). Therefore, it can be seen that for Sub-
case I-1 and Subcases II-1, 1I-2, and 1I-3, in which the optippwer allocation
is efficient, either the maximum possible sum-rate of the M¥age or that of the
BC phase can be achieved at optimality. Moreover, the sauwrdes and the relay
generally do not both use up their available power. In Sudg&® and II-4, in

which the optimal power allocation is inefficient, the acieié sum-rate is however
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smaller than either the maximum possible sum-rate of the Masp or that of the
BC phase, while it is possible that all nodes use up theilaivia power.

Third, it can be shown for Case | that the difference betweer{1/.?} and
min{1/u?} increases in general as the subcase changes from S:chmsﬁlllhcase
I-ZZ. Similar result can be observed in Case Il. As the subcharges from Subcase
-1, via Subcases II-2 and II-3, to Subcase II-4, the défere betweemax {1/}
andmin{1/u?} increases. z

Laist, from the definitions ofi?, Vi, it can be seen that large difference between
max{1/u{} andmin{1/u?} can be, and most likely is, a result of asymmetry in
thze power limits, Znumber of antennas, and/or channels atwbesource nodes.
It will also be shown in detail later in the simulations thatk asymmetry can
increase the occurrence of the two inefficient subcasesSubcases I-2 and 11-4.
In contrary, if the two source nodes have the same availavep same number of
antennas, and same channel matrices, theh = 1/u3 > 1/4% .. As aresult, only
Subcases I-1 and II-1 are possible, in which the optimal paiecation is efficient.
Combining this fact with the observations in the above thpaegraphs, it can be
seen that the asymmetry in the power limits, number of amtgnand/or channels
at the two source nodes can lead to a degradation in the pdaeateon efficiency
for the considered scenario of network optimization. Ascedficy reveals the cost
of coordination between the relay and source nodes reqtoradhieve optimality
over the two phases in the network optimization scenaricart be seen that such

cost is low with source node symmetry and high otherwise.

4.3 Numerical and simulation results

In this section, we provide simulation examples for someltepresented earlier
and demonstrate the proposed algorithm for network opétium in Tablé 4.11. The
general setup is as follows. The elements of the chadglandH;,, Vi are gen-
erated from complex Gaussian distribution with zero meahumt variance. The
noise powers?, Vi ando? are set to 1. The rate8™*(D), R;(B;), andR,;(D;)

are briefly denoted aB™*, R;,, andR,;, respectively, in all figures.
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Figure 4.1: lllustration of the algorithm in Takile 4.1 fort®ase I-2.

4.3.1 The process of finding the optimal solution for network
optimization, Subcase I-2, using the proposed algorithm
in Tabled.1

The specific setup for this example is as follows. The numbantennas:, n.,
andn, are set to bé&, 4, ands8, respectively. Power limits for the source nodes are

P = 2 P = 2.5. The relay’s power limit is set t&>"** = 3. Since the
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optimality of the solution derived using the algorithm haeb proved analytically
by the insights from Theorem 4.2, we focus on demonstratiegterative process
and the convergence of the algorithm. Fig. #.1a shows itet@aouskR™ (B, D),
R™(D), and R(B, D) versus the number of iterations. From the figure, it can be
seen that the above three rates converge very fas{. FigsAdlis the instantaneous
Rn(Di), Rri(/\i),w and the power consumption of the source nodes 1 and 2, de-
noted asP; and P, respectively. Two observations can be drawn from [Eig.l4.1b
First, Ri2(X2) < Ry (D) and Ry (A1) = Ry, (D,) at optimality since the sum-rate
is bounded byr™*(D) < Ry, (D;) + Ry (D-). Second, both source nodes use all
available power at optimality. The latter observation fiesithe conclusion that for
Case | the optimal power allocation in Subcase I-2 is ingffitfor using relatively

more power and achieving relatively less sum-rate comgaoithat in Subcase I-1.

4.3.2 Comparison with relay optimization in Chapter[3

The specific setup for this example is as follows. The numbantennas at the re-
lay, i.e.,n,, is setto b&. The power limit of the relay, i.e ™%, is set to be 3. The
total number of antennas at both source nodes is fixed sa that, = 5. The total
available power at both source nodes is also fixed soRftat + P;"** = 2. Given
the above total number of antennas and total available patie source nodes,
both the relay optimization and the network optimizationlpems are solved for
different combinations ofi;, ny, P/"**, and P;*** each with 100 channel realiza-
tions. The percentage of the increase in the average swnaundtthe percentage of
the decrease in the average power consumption at optinadlttye network opti-
mization problem compared to those at optimality of they@pgtimization prob-
lem are plotted in Figs. 4.2a ahd 4.2b, respectively. Theseeptages are shown
versus the difference between the number of antennas artiftience between
the power limits at the source nodes. From these two figuresini be seen that
although the optimal solution of the network optimizationlglem on average con-
sumes much less power than that of the relay optimizatiobleno, it still achieves
larger sum-rate. Moreover, it can also be seen that the wmepments, in either

sum-rate or power consumption of the optimal solution ofrieevork optimiza-
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Figure 4.2: Improvements as compared to relay optimization

tion problem as compared to that of the relay optimizatiaybfgm, become more
obvious when there is more asymmetry in the system. Thisdause the source
nodes and the relay can jointly optimize their power allmeet and therefore cope
to some extent with the negative effect of the asymmetry éensiystem in the net-
work optimization scenario. In contrast, the relay optiatian scenario does not

has such capability to combat the negative effect of asymymet
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Figure 4.3: Number of channel realizations that Subcagearid I1-4 appear de-
pending on the asymmetry ig™** and Py»**.

4.3.3 The effect of asymmetry in the scenario of network opti
mization

First, we solve the network optimization problem for difat P"** and P;** given
that P** is fixed. The number of antennas of the relay is set to 8 andutrdber of
antennas of each source node is set to 4. For each combiohtigr* and Py,
we use 200 channel realizations and solve the resulting 28@onk optimization
problems. The number of channel realizations that Subddsasd 11-4 appear are
plotted in Fig[4.B. In this figure, the points in the upperface correspond to the
counts of Subcase I-2 while the points in the lower surfaceespond to the counts
of Subcase II-4. From Fig._4.3, it can be seen that in genkeatbunt of either
Subcase I-2 or Subcase 1I-4 is the smallest wRgn* = P;***. Moreover, for any
given P*** or Py***, the largest count of either Subcase I-2 or Subcase Il-4lynost
appears when the difference betwe®i* and P;"** is the IargesH.The above two
observations are accurate for most of the times in [Eig. 4i8¢ctwshows that the

asymmetry ofP™** leads to the rise of the occurrence of Subcases I-2 and II-4.

"Note, however, that subcases are also determined by theamwhhntennas at the relay and the
source nodes, the power limii™#*, the channel realizations, and other factors instead of oyl
Pimax7 VZ
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(a) Sum of the counts of Subcases I-2 and I1-4 veBig* and P;"**,
ny = 4,ng = 6.
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(b) Sum of the counts of Subcases I-2 and II-4 veB{i$* and P3"**,
ny = nNg = 6.

Figure 4.4: lllustration of the effect of asymmetry in themer of antennas at the
source nodes.

Next we demonstrate the effect of asymmetry in the numbent&raas at the
source nodes. The number of antennas at the relay is stild8 g is still 4.
However, the number of antennas at the sources nodes 1 ardi&saset to 4 and
6, respectively, and then set to both 6. The network optitiwmgroblem is solved
for different P** and P;*** and the sum of the counts of Subcases I-2 and II-4 in
200 channel realizations is plotted in Fig.14.4 for each comtion of P*** and
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Py*x. From Fig.[4.4k, it can be seen that the sum of the counts ofz8el |-

2 and I1-4 substantially increases when= 4 andn, = 6 as compared to the sum

of the counts in Fig._ 413 on most of the points. However, asvshio Fig.[4.4b,
whenn; = ny, = 6, the sum of the counts of Subcases I-2 and II-4 drops to the
same level as the sum of the counts in Fig] 4.3. Thereforaarithe seen that
asymmetry in the number of antennas at the source nodesttekdger chance of
Subcases I-2 and 11-4.

Lastly, we show the effect of asymmetry in channels. Instdagknerating the
real and imaginary parts of each elemenklf, Vi from Gaussian distributions with
zero mean and unit variance, we use here Gaussian disbibuiih zero mean and
variancey; to generate the real and imaginary parts of each elemdt,ofi. For
each combination af; andvsy, we use 200 channel realizations and solve the result-
ing 200 network optimization problems. The number of anéesreat the relay is set
to 6 and the number of antennas at each source node is sethie poWver limits are
P = 5andP™* = 3, Vi. The sum of the counts of Subcases I-2 and 1-4 is plot-
ted in Fig[4.b versus; andv,. In Fig.[4.5&, channel reciprocity is not assumed and
the real and imaginary parts of each elemefigf Vi are generated from Gaussian
distribution with zero mean and unit variance. In Fig. 4.&fannel reciprocity is
assumed i.eH,; = H], Vi where(-)T represents transpose. It can be seen from
both Figs[4.5a arld4.bb that the sum of the counts of Subt&sasd II-4 tends to
increase when the difference betwegrandv, becomes larger. Therefore, Hig.!4.5
clearly shows that the asymmetry in the channels also ledldsger chance of the

inefficient Subcases I-2 and I1-4.

4.4 Conclusions

In this chapter, we have solved the problem of sum-rate miaaimon using min-
imum total transmission power for MIMO DF TWR in the scenanionetwork
optimization. For finding the optimal solution, we study trginal problem in
two cases each of which has several subcases. It has been staivior all except

two subcases, the originally nonconvex problem can be giegbinto correspond-
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Sum of Counts

(a) Sum of the counts of Subcases I-2 and 11-4 vetgumnduvs (without
assuming channel reciprocity).

Sum of Counts

(b) Sum of the counts of Subcases I-2 and II-4 vergusndwv, (assum-
ing channel reciprocity).

Figure 4.5: lllustration of the effect of asymmetry in chahstatistics.

ing convex optimization problems. For the remaining twocades, we have found
the properties that the optimal solution must satisfy angeh@oposed the algo-
rithm to find the optimal solution based on these properti®s. have shown that
the optimal power allocation in these two subcases are anitiin the sense that it
always consumes all the available power of the relay (andesiomes all the avail-
able power of the source nodes as well) yet cannot achievadxénum sum-rate
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of either the MA or BC phase. We have also shown that the asymnrethe

power limits, number of antennas, and channels leads toreehrobability of the
above-mentioned two inefficient subcases. Together wittp@h( 3, we have pro-
vided a complete and detailed study of the problem of suereatximization using

minimum power consumption for MIMO DF TWR.
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Chapter 5

Jamming in Multi-User Wireless
Communications

In this chapter, the worst-case noise jamming in MIMO wissleommunications
and the worst-case multi-target correlated jamming arestigated. For character-
izing the worst-case jamming threat, it is assumed thataimerjer has the channel
information of all channels. Two scenarios are considelrethe first scenario, the
jammer knows the covariance of the target signal and opésiis jamming sig-
nal to perform worst-case noise jamming. In the second sterhe jammer has
the knowledge of multiple legitimate signals and performdtriarget correlated

jamming.

5.1 Optimal non-correlated jamming

In this section, the problem of finding the non-correlatedrjanﬁ strategy to min-
imize the rate of a legitimate communication will be invgated. Since the jammer
aims at causing maximum damage to the legitimate commumoingdahe worst-case
jamming is achieved when the jammer’s strategy is optimiZdakrefore, the term
“optimal jamming” will be used as an alternative for the témorst-case jamming”

throughout the chapter.

1The term “non-correlated jamming” is used as an alterndtivéhe term “noise jamming” in this
chapter.
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5.1.1 System model

A legitimate transmitter withn; antennas sends a sigrsato a receiver withn,
antennas. The elements ©are independent and identically distributed Gaussian
with zero mean and covarian€®,. A jammer withn, antennas attempts to jam
the legitimate communication by transmitting a jammingnsig: to the receiver.
Denote the legitimate channel from the legitimate tran@ntb the receiver aH,

(of sizen, x n;) and the jamming channel from the jammer to the receivad as
(of sizen, x n,). In the presence of the jamming signal, the received sightie

legitimate receiver is expressed as
y=Hs+H,z+n (5.1)

wheren is the noise at the legitimate receiver with zero mean andriances>1.
Note that given the Gaussian channel and Gaussian targetl stge worst-case
form of jamming signal is also Gaussian [83]. Denote the danae ofz asQ,.
Then the information rate of the legitimate communicatiopiesence of the jam-
ming is

R’ =log I+ H,QH'(H,QH} + o°T)~"|. (5.2)
The jammer aims at decreasing the above rate as much aslpaggén its power
limit P,. Assuming that the jammer has the knowledgdhf H,, and Q, but
does not know the exast the jammer can use the available knowledge to find the
optimal Q, such that the raté (3.2) is minimized. This problem is stuidtiedetails

in the following section.

5.1.2 Optimal jamming in closed-form under PSD condition

Given the system model, the oatimal non-correlated jamrsiregegy can be found

by solving the following proble

néin R’ (5.3a)
s.t. Tr{Q,} < P, (5.3b)

2The PSD constrair®,, > 0 is assumed as default and omitted for brevity throughostcthapter.
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With only one pair of transceiver, the above problem is adjasnming problem
on a MIMO channel.

Denote the SVD oH, asH, = U,Q, V. The matricedU,, 2,, andV, are
of sizesn, x n., n, x n,, andn, x n,, respectively. Defin® = U'H,QH"U,.
Note thatB has the same rank &.Q,H!'. Using the definition oB and the SVD

of H,, the objective function if(512) can be rewritten as
R’ = log]I + B(Q,Q, Q! + 1)} (5.4)

where
Q. 2 VIQ,V,. (5.5)

In order to solve the problerh (5.3), we start from introdgdine following two
lemmas.
Lemma 5.1Given a constant Hermitian matrix with A > 0, the optimization

problem over positive definite matriX

min log|T+ AX ™| (5.6a)
st.  Tr{X} <1 (5.6b)
X>0 (5.6¢)

has the following closed-form solution

Ay A2 A
X = U, TA+TAU§;‘—5 (5.7)

whereU, and A, are the eigenvector and eigenvalue matrices, respectoiely
tained from the EVDA = U, A, UY, and) is chosen so that the power constraint
(5.6h) is satisfied with equality.

Proof: See Section Cl1 in AppendiX C.

Denote the rank oH, asr, and assume without loss of generality that the first
r, elements on the main diagonalQf are non-zero. Whether or nBtis positive
definite, i.e., has the rank af,, has an impact on the optimal form €, in (5.4).

Therefore, the following lemma regardimyis in order.
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Lemma 5.2If we denoteB using blocks such that

" Bi1 By
B = 5.8
=1y l By Bo } (5-8)
and define
B 2 By, — Byy(0?T+ Byy) !By, (5.9)

thenB is positive definite ifB is positive definite.
Proof: See Section Cl2 in AppendiX C.
Let us define a new eigen chaniig) as

~ r, QF o0
L z z
S A 510

whereQ is anr, x r, diagonal matrix made of the positive diagonal elements of

Q,. Also define a new jamming covariance matx as

Nr—7Tz

Q.= " {%Z 8 ] (5.11)

whereQ/, is the part of the matrix to be determined. With the abSyeandQ,, the

rate in [5.4) can be equivalently rewritten as

R = log‘I +B(9,Q,08 + o°1)71. (5.12)

Therefore, we consideﬁzz and QZ as the equivalent channel matrix and the equiv-
alent jamming covariance matrix £, andQ,, respectively.

The equivalent channé®, has the sizei, x n,, which is larger than the size
of 2, if n, > n, and smaller than the size €, if n, < n,. Correspondingly, the
allocation of jamming power iH (5.11) represented®@y is limited to at mostr,
dimensions corresponding to thenon-zero eigenvalues 6. It can be seen that
allocating jamming power anywhere else has no effect ondbeived signal and
only leads to jamming power waste. Therefore, the optimtaksire ofQ, has to

be in the form

A~ ow [Q, 0 T Q’ Zoz
Q. = {0 }— {0 B } (5.13)



Using (5.5) and(5.13) it can be seen that the optimal fori@.pfs

Q, =V, [% OH?J s (5.14)
Given the above definitions and lemmas, we next solve thelgmokb.3) by
finding the optimalQ’, in (5.14). First, we consider a specific case HaQ H" is
positive definite. Then, we will extend the solution to thegel case thad, Q. H'!
is PSD but not necessarily positive definite.
Theorem 5.1 WhenH,Q,H! is positive definite, the problemi(5.3) has the

following closed-form optimal solution

1 1 1 .
Q = UM/XAA + AU - Q) 1(513 +o) Q" (5.15)

under the condition that the abo@ is PSD, whereB is given by (5.9)U4 and
A are obtained from the EVIA = Uz A; UY with

A2 "B, (5.16)

and )\ is chosen such that the jammer’s power constraint [5.3batisfied with
equality.

Proof: Please see Section C.3 in Apperdix C.

As mentioned in the introduction in Chapter 1, a special cdgbe problem
(5.3) that assumes the jamming chanHelis the identity matrix is investigated
in [47]. ConsequentlylU,, 2,, and V¥ are all equal td. Therefore, A and 2,
simplify to B andI, respectively. Moreover, the above simplificationinl [4&adls
to the result that, = n,, which further simplifies the case so tHat= B and
Q. = Q.. In such case, the solution in(5]15) simplifies to

1 1 1
Q, = Ug( TAB + AL — SAB - 1)Ul (5.17)

whereUg and Ag are obtained from the EVIB = UgAgUL. An equivalent

scalar form of the above solution is given(in [47] for the abeimplified case of the

problem. By forcing the negative elements (if any)\bf\B//\ + A2B/4—%AB—O'QI
to be zero and adjustingto satisfy the power constraint, the solution giveriin (.17

can always be made PSD.
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The solution ofQ’, given by [5.15) is not necessarily PSD for the case con-
sidered in Theorem 5.1. It can be indefinite when the jamnExser limit P,
is sufficiently small. It can be seen thgt\ decreases when the jammer’s power
limit becomes smaller. As a resul, has a larger chance to be indefinite and
thereby invalid as a solution of a covariance matrix. Forvegipower limitF,,
whether or noQQ/ in (5.15) is PSD depends on the chanFg| or essentially, the
elements of2. It can be shown that, for a small, and a giverf2,; such that
Q. given by [5.15) is indefinite, there always exi§t$ with the same trace &3;"
(i.e., T{Q} = Tr{Q,}) but different elements, such th&y, is PSD if ;" in
(5.158) is substituted b@j. Therefore, the power limit of the jammer as well as the
gains of the eigen-channels determine whether orQjois PSD. The above fact,
which reveals the effect of the jamming power limit and th@faing channel on
the jammer’s strategy, has not been observed before asrtimifg channel has
been neglected.

Unlike the case of [47] in which the solution can always be eX@8D by forcing
the negative elements to be zero and adjusting\tteesatisfy the power constraint,
such method does not work for the case considered here. ©bhépr of finding
the solution wherQ/ in (5.15) is indefinite will be studied in Section 5.11.3.

Now consider the general case thRiQ,H! is PSD but not necessarily positive
definite. SinceH,Q,H, or equivalentlyB, is PSD but not necessarily positive
definite in this caseB in (5.9) and consequentli in (5.18) can be rank deficient.
In this situation, assume that the rankAfis ; and denote the diagonal matrix

made of the 5 positive eigenvalues A asAg. Denote the EVD ofA as

At 0 Ul
A ] [ o ] (5.18)
0 o0 || UL

TR Ta—Tx

A=UzA;U; =[ Uz, Ug, |

The following theorem regarding the solution in this gehease is in order.
Theorem 5.2 WhenH,Q,H!! is PSD but not necessarily positive definite, the
problem [[5.8) has the following closed-form optimal sajuti

1 1 1 —1~4—H
Q, = Uz, /[y A AL UL, — 5UaAfUR, - o)) (5.19)
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under the condition that the abo@ is PSD, where\ is chosen such that the
jammer’s power constrairf (5.8b) is satisfied with equality

Proof: See Section Cl4 in AppendiX C.

It can be seen that ik has full rank, then{5.19) is equivalent {0 (3.15). Simi-
larly, Q. given by [5.19) can be indefinite depending on the jammenggpdimit
P, and the jamming channél. To tackle this problem, we next find solutions of
the problem[(513) whe@/ given in (5.15) or[(5.19) is indefinite.

5.1.3 Optimal numeric solution and closed-form approximaion

As mentioned earlier, the closed-form expression@ogiven by [5.15) and (5.19)
whenH,Q,H! is positive definite and PSD, respectively, may not be valem
the power constrainP, is small. In such case, the optimal solution may not be
found in closed-form. To solve this problem, we propose tvii@iebnt approaches
in this section. The first one is to find the optimal solutiomauically. The second
one is to find a sub-optimal solution in closed-form. The tywpr@aches provide
a choice between accuracy and complexity. We start fromrit@sg an algorithm
for finding the optimal solution of (513) numerically.

Substituting [(5.110) and (5.111) int6 (5]12) and using thenisdns (5.9) and
(5.16), it can be showithat the original problem of minimizing (3.4) is equivalent

to the minimization of
R = log‘I +AQ + o2 o (5.20)

Although the minimization of((5.20) subject to a power coaistt is a convex
problem, it is not a disciplined convex problem[[84]. Theref the optimal solution
cannot be obtained using classic convex optimization nusthim order to find the

optimal solution, we first rewrite the problem into the folimg equivalent form

mér} a —1og|Q., + Dy| (5.21a)
st. a>log|Q. +Dy+A (5.21b)
T{Q,} <P, (5.21c)

3The details can be found in the proof of Theorem 5.1, from4Cta (C.I8), Section Cl3 in Ap-
pendiXC.
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Table 5.1: Steps for finding the optimal solution of the pesbI(5.21).

1. Select a starting)’! subjectto TfQ'I} < P,.

2. Solve the probleni (5.22) give(Q’l. Denote the corresponding optimal
solution ofQ, asQ’.

3.SetQ! = Q.

4. Repeat the Steps 2 and 3 until the solution converges.

in which Dy £ 0202 'Q". In the above problem, the objective function is
convex while the first constraint is not. In order to solvepghablem [(5.211), we first

consider the following problem in a similar form

min o —log|Q; + Dy| (5.22a)
st o> log|Q+ Do+ A+ Tr{(Q]+D,

+A)7'Q} -~ Tr{(Q}+Do+A) Q) (5.22b)

T™H{Q,} < P, (5.22¢)

HereQ'! stands for a give), subject to[(5.21c). The optimal solution of the prob-
lem (5.21) can be found from solving the probldm (5.22) tieedy. Specifically,
the corresponding algorithm is summarized in Tablé 5.1.

Lemma 5.3 The Q’; in the procedure described in Tablel5.1 converges to the
optimal solution of the probleni (5.21).

Proof: See Sectioh Cl5 in AppendiX C.

After obtaining the optimal)> using the algorithm in Table5.1, the optimal
Q. can be obtained using(5]14).

Using the algorithm for finding the optim#&), can be computationally com-
plex as compared to obtaining a closed-form solution. Teeewe next give an
approximation of the optimal solution in closed-form whae ., given by [5.15)
(whenH,Q,H!" is positive definite) o {5.19) (wheH,Q,H!" is PSD) is indefinite.

WhenH,Q,H! is positive definite, a suboptimal closed-form solutionhe t

considered problem when tii in (5.15) is indefinite can be given as
, 1 Uo,om 1=
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in which ¢ and are the optimal solution to the problem

min € (5.24a)

€,

/1 1 I e
T L VALY CRRY | D, b =P 24
r i AT AR 735 +(e—=1)Dg p = P, (5.24¢)

0<e<l1 (5.24d)
A > 0. (5.24e)

It is worth mentioning that the constrainks (5.24b)-(5)2g@ecify a non-empty
feasible set. It can be found that the suboptimal solufiocB3)bis equal to the ex-
pression in[(5.15) pluéD, (using the definitions(5.16) arfd, = o202 ' ™).
The logic behind the suboptimal solutign (5.23) is that #maaining part of the ex-
pression[(5.15) without Dy is always PSD. Therefore, there exists a non-negative
factore < 1 such that the summation is PSD+D, is scaled byl — ¢ and added
back to the remaining part df (5]15). In order to remain aselas possible to the
form of (5.15) in the above modification, the minimurthat results in a PSY/, is
used.

The above suboptimal solution given by (3.23) is proposeagt@n the follow-
ing reasons. First and most important, it can be shown@jajiven by the above
suboptimal solution is the same as egiven by [5.15) when the latter one is PSD
(and consequently = 0). Therefore, the use df (5.23) is sufficient for calculating
the jamming strategy in all cases becalse (5.23) gives tiimalpsolution when it
exists in closed-form and gives the suboptimal solutiorntise. Second, when it
is not optimal, the suboptimal solution given lyy (8.23) idant very close to the
optimal one found numerically (as will be shown in simulag® Third, compared
to the numerical solution, the suboptimal solution giver(®y23) can be obtained
with negligible complexity since the parametérand can be obtained by a sim-
ple bisectional search. Last, the above suboptimal saligialways PSD as can be
seen from the constraint (5.24b).

The closed-form suboptimal solution for the general casenilii, Q,H! is

PSD but not necessarily positive definite can be obtainedasis In this case, the
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Table 5.2: Summarizing the procedure for finding the sotutiothe problem (5]3).
1. Check whether or ndfl,Q,H" is positive definite. If yes, obtaif)’
using [5.15). Otherwise, obta®, using [5.19).

2. Check whether or not the above obtair@dis PSD. If yes, substitute
the obtained’, into (5.14) to find the optimal,. Otherwise, select from
two options: a) optimal numerical solution; b) sub-optincldsed-form
solution. For a), proceed to step 3. For b), proceed to step 4.

3. Use the algorithm in Table 5.1 to obtain the optimal nuo@solution.
Exit.

4. Obtainé and\ from solving the probleni(5.24) (f.Q,H!" is positive
definite) or problem[(5.26) (it1,Q,H is PSD but not positive definite).
Then obtain the suboptimal closed-form solution acconginging (5.14)
with (5.23) (if H,Q,H! is positive definite) or(5.25) (iH,Q.H! is PSD
but not positive definite). Exit.

suboptimal solution in closed-form is expressed as

1
I __ - +
Q = Uzy[zAf+7A

> =

1
Ul - U AALUS +(E—1)Dg (5.25)

*
A Al
in which € and )\ are the optimal solution to the problem

min € (5.26a)

€,

/1 1 1
st. Uj, XA£+ZA£2UI}M— §UA1A1§UI§1+(6 —1)Dy =0 (5.26b)
Lo Ly 1o

0<e<l1 (5.26d)
A > 0. (5.26e)
With the proposed closed-form optimal and sub-optimaltsmhs and the algo-

rithm for finding the optimal numerical solution, the contpl@rocedure of calcu-

lating the non-correlated jamming strate@y is summarized in Table 5.2.

5.2 Multi-target correlated jamming

If the jammer has the information of the legitimate signa ¢ansidered in [16]
and [85]), it can perform another form of jamming, i.e., eated jamming. Instead

of causing interference to the legitimate receiver, theectibje of the jammer in
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correlated jamming is to weaken or even completely candgheuegitimate signal
depending on its power limit. Therefore, correlated jangroan be very efficient
for a jammer. Unlike the cases in |16] and [85], in which théhaws investigate
correlated jamming without considering the jamming cham@seif the jamming

is applied directly at the target receiver, here the jamndhgnnel is taken into
account in the investigation of jamming strategy. Moreoptlee jammer needs to
perform correlated jamming with more than one target. TigisiBcantly increases

the complexity of the problem.

5.2.1 System model and problem formulation

To be consistent with Sectidn 5.1 that considers MIMO, thiofang describes a
general system model for multi-target correlated jammmg/hich each node has
multiple antennas. There are legitimate transceiver pairs and one jammer. The
transmitter and receiver in théh (: = 1,...,m) transceiver pair have,; andn,;
antennas, respectively. The channel betweentth&ansceiver pair is denoted as
H; and the transmitted signal over chanik&l is x;. It is assumed that the ele-
ments ofx; are independent and identically distributed Gaussian netlo mean
and unit variance, i.eE{x;} = 0 andE{x;x'} = I,Vi. The signals from differ-
ent transmitters are uncorrelated, iI@{,xZ-x?} = 0,Vj # i,Vi. The jammer has
n, antennas and the channel from the jammer to the receiveeiittthransceiver
pair is denoted a$l,;. The maximum jamming power of the jammer is limited
by P,. The jammer has the knowledge Hi; andH,; andx;, Vi and therefore is
able to perform correlated-jamming. It is assumed that éig&imate communi-
cations of all the transceiver pairs are interference-feeg., with frequency/time
division multiplexing) or the interference is negligibls(compared to the effect of
jamming).

To completely cancel out the signal from tité transmitter using correlated

jamming, the jammer should transmit a sigrat; such that
There exists &; that satisfied (5.27) only if the following two condition®asatis-
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fied. First, the jammer must have at least the same numben@efes as that of
the target receiver, i.en, > n,,. SecondH,; must have full rank, i.e., the rank of
H,; should ben,;. Under the above two conditions; can be given in the following
form

Due to the power limit of the jammer, it may not have sufficipatver to transmit
— Y v; to cancel all target signals. Therefore, the overall jansrségnal targeting

at all the legitimate signals in correlated jamming can heegally expressed as
X, =Y &vi+n, (5.29)

where the weight; € [—1,0] is determined by the power that the jammer uses
targeting at theth signal, andh, is the non-correlated noise jamming part of the
jamming signal with zero mean and covariam¢@. The non-correlated part, is
uncorrelated with the legitimate signads V.

The received signal at théh receiver can be written as

yi=Hx; + H,;x, + n;
= (1+&)Hix;+Hy, Z §v; +Hyn, +n; (5.30)
j#i
wheren; is the noise at théth receiver with zero mean and covarian¢é.
DefineQ) = E{v;vi'} andG; = H;H!. Then the information rate at receiver

1 in the presence of correlated jamming is given as

-1
RS = log|T + (1 + &)2G, <Hm~(Z§?Q} + a§1> HY ¢ 031) Vi, (5.31)

JF#i

Due to the power limit of the jammer, the following constitaimust be satisfied

> &T{Q} + n,0l < P, (5.32)

The jammer aims at minimizing the weighted sum-raiev; RS by optimiz-
ing &;, Vi ando? subject to the power constraint in_(5132), whergs are positive

weights satisfyingd > w; = 1. If the jammer’s power is sufficiently large, i.e.,
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P, > Z Tr{Q}}, it can completely cancel out the target signals at the spomed-
ing reéeivers by setting = —1,Vi ando? = 0. As a result, the rat&¢ in (5.31)
becomes zero for eachwhich suggests that no information is received at any re-
ceiver. This is the ideal case for the jammer. However, a rmhkedy situation is
that P, is not large enough to cancel all target signals, ii.< ZTr{QiV}. In
this situation, the jammer needs to jam the receivers wiﬂ’ereintzpriorities and
optimize the weights;, Vi ands? in order to minimizeZ w; RS. The focus of our
investigation in multi-target correlated jamming is onlf'nrgjthe jamming strategy
in the power-limited case, i.el, <> Tr{Q}}.

In the power-limited case, the ioroblem of finding the optimadrelated jam-

ming strategy can be formulated as the following optim@aproblem

min w; RY 5.33a
st Y &THQ} + .0, <P, (5.33b)
—min{l,/v;} <& <0,Vi. (5.33¢)

wherev; £ PB,/Tr{Q} with \/3; represents the maximum absolute value of
when the jammer uses all power for correlated jamming targéte above problem
IS nonconvex in general.

Given the above general system model, we investigate theegivoblem in the
case that all nodes have only a single antenna and therdfohaanels are scalars,
as considered in [16]. It should be noted that the differesfeaur work from [16]

is that we consider multiple targets.

5.2.2 Multi-target correlated jamming: The SISO case

In the case that all nodes have only one anterp,, H;, H,;, n,, andn; simplify

to x;, x,, hi, hyi, 02, ando?, respectively. Accordinglyy;, QY, andG; simplify to
vi = hythias, g = b hal?, g = |l (5.34)

respectively. Then the objective function in(5.83a) cameveritten as

> il = szlog(lmm (|hm| (> €+ 0%) + 2)).(5.35)

JFi
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With the above simplification, the following theorem is irder.

Theorem 5.3 Under the condition that the jammer uses full jamming power
l.e.,>" &g +o; = P, the summation) w; R’ becomes a convex function §f i
in the interval that; € [—min{1, \/%},ZO],W, wherey; = P,/q} in the SISO case.

Proof: See Sectioh Cl6 in AppendiX C.

Since the power-limited case, i.€?, < )_ ¢/, is considered, it can be seen
that using full jamming power is a necesséry condition of dpémal jamming
strategy. With the objective function proved to be convexlemthe full-power
jamming condition, the solution can be found using an atborisimilar to the
one in Tablé 5]1 used for numerically finding the solutionha bptimal jamming
problem in Sectioh 5.11.3. Specifically, the problem can kst fewritten into the

following equivalent disciplined for|

min w; | i —log(vi — & + pi ) 5.36a
{oi} {&} Z ( g(’y : P ) ( )
s.t. a; > log(vi — & + pi + (14 &)%), Vi (5.36b)

d &q <P, (5.36¢)

—min{1, 7} <& <0,Vi (5.36d)

wherep; 2 02/g;. The objective function of the problefn (5136) is convex @hiie
first constraint is not. In order to solve the problém (5.3, further rewrite the

above problem into the following form

min w; | a; — log(~y; — i2+ Z) 5.37a
min Z ( g(i — & + i) (5.37a)
o(g. _ ¢t
st.  a; > log (% + oo+ 26 + 1) (S 512 Vi (5.37h)
Yi+pi+2§ +1
Y &g <P, (5.37¢)
—min{1, 7} <& <0,Vi (5.37d)

where¢;" stands for a gives; subject to[(5.36¢) an@(5.36d). Starting from an initial
value of¢;!, Vi, we solve the probleni {5.B7) and updgie Vi using the resulting

optimal solution of[(5.37). The above process is repeatditl convergence. The

4Details can be found in the proof of Theorem 5.3, Sedfion SppendiX T, and are omitted here.

92



7.5 T T T T
7t — . —  Using the Q, in the Theorem 5.1 B
. ——+— Using the numerical solution of Q,
6.5\ i
\ —— Using the suboptimal Q,
6 R 1
\
\
55 Q i
& A
N
5 - B N -
N h
45} > J
4t RN §
3.5F = g
3 Il
0 0.5 1 15 2 2.5

Figure 5.1: Comparison d®’ versusP, with Q/ given by [5.15), the algorithm in
Table[5.1, and(5.23), respectively.

proof of convergence to the optimal solution is similar te groof for Lemma 5.3

and is omitted here.

5.3 Numerical and simulation results

In this section, we provide simulation examples for someltepresented earlier

for both non-correlated and correlated jamming.

5.3.1 The optimal and suboptimal solution for non-correlaed
jamming

In this simulation, we compare the rates of the legitimate@mnication under
jamming when the jammer’s strate@ is given by (i) the expression in.(5]15), (ii)
the optimal solution obtained numerically using the altjoni in Tablé 5.11, and (iii)
the approximation i (5.23), respectively.

The specific setup of this simulation is as follows. The numdfeantennas
at the legitimate transmitter and receiver are set to be 43anelspectively, while
the number of antennas at the jammelis The power limit for the legitimate

transmitter is3 and the power allocation at the legitimate transmitter iseldaon
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Figure 5.2: The percentage of times when&jegiven by [5.15) is PSD versu3,

waterfilling. The noise variancg’ is set to be 1. The elements of the target signal
and the channelH, andH, are generated from complex Gaussian distribution with
zero mean and unit variance. As a red|(Q,H! is always positive definite. We
use 800 channel realizations and calculate the avekdgersus the power limit of
the jammerP,.

Fig.[5.1 shows the averade’ with Q/ obtained using the three aforementioned
methods. Three observations can be made from this figurst, Hiere is a gap
between the average’ with Q’ given by [5.15) and the averad® with the op-
timal Q, found numerically wherP, is small. The gap exists becaugg given
by (5.15) is not always PSD and when it is not PSD, it no longezgthe optimal
solution of the problem. Second, the gap between the avdtagédth Q/ obtained
numerically and the average’ given by the suboptimal’ in (5.23) is very small.

It verifies that the proposed suboptimal solution is in faatyclose to the optimal
solution of the considered problem. Third, the three cupfes/eragel?’ converge
when P, increases.

Fig.[5.2 shows the percentage ti¥tgiven by [5.15) is PSD in all 800 channel
realizations. It verifies the aforementioned fact tk¥t given by [5.15) can be

indefinite when the jammer’s power limit, is small. Even whe®, is larger (above
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Figure 5.3: The rate&$ and RS versus coefficients, andé,.

2), there remains 20% chance tha€)! given by [5.15b) is indefinite. It verifies the
other fact that whethe®/ given by [5.15) is PSD also depends on the jamming
channel.

Using the observations from the two figures, it can be sedrthirasuboptimal
solution given by((5.23) is a very good approximation of tpémal jamming strat-
egy since it is very close to the optimal one whghgiven by [5.15) is indefinite
while it becomes optimal whe®@!, given by [5.15) is PSD.

5.3.2 The SISO correlated jamming

First, we demonstrate the rates and sum-rate of two legiérnammunications
under correlated jamming from one jammer when the jamminggpds not neces-
sarily fully used. The specific setup of this simulation isf@fows. The number
of antennas at the jammer and all legitimate transceivets iBhe legitimate sig-
nalsz; andzx,, the legitimate channels; andh,, and the jamming channels;
andh,; are generated from complex Gaussian distribution with gezan and unit
variance. The noise covarianegis set to be 0.1 for both The power limit for the
jammer is0.5. The non-correlated jamming pat} is set to be 0. Fid. 513 shows
the rates of?¢ and RS, respectively, calculated using (5131) versus the caedla

jamming coefficientg; and&,. Note that the rates are shown in the ellipse repre-
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Figure 5.4: The sum-ratg{ + RS versus coefficient§; andés.

sented by[(5.32) for better effect of displaying while orthg tpart with¢; < 0, Vi
corresponds to correlated jamming. It can be seen from theefithat the rate of
legitimate communications decreases steeply with the matgof the correspond-
ing coefficients, which infers that correlated jamming ifeetive. Fig[5.4 shows
the sum-rate of the two legitimate communications versasctirrelated jamming
coefficients. From the figure, it can be seen that the weigtuettrate is a noncon-
vex function of¢; andés.

Then we demonstrate the sum-rate of the legitimate comratiaies under the
condition that the jammer spends all of its jamming powekerElare two legitimate
communications and one jammer. The legitimate signalsndz,, the legitimate
channelsi; andh,, and the jamming channels, andh,, are generated from com-
plex Gaussian distribution with zero mean and unit variaite power limit for the
jammerP, is 0.5. However, unlike the case in Fig. 5.4, in which the non-datesl
jamming part, is set to be 0, the, in this simulation is calculated according to the
values ofz, andz, so that full jamming power is used at any point. Fig] 5.5 shows
the resulting weighted sum-rate versus the correlated jagooefficients; and
&5. The diamond in the figure corresponds to the optimal satutoind using the
method in Sectioh 5.2.2. The convexity of the sum-rate irfithee versug; and
&, verifies Theorem 5.3.
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Figure 5.5: lllustration of the convexity for SISO case unthe full-power jam-
ming condition and the optimal solution found by the progbsesthod.

5.4 Conclusions

In this chapter, we have found the optimal noise jamming ametated jam-
ming for the worst-jamming multi-user systems. For the mopli noise jamming
in MIMO communications, we have found the optimal jammingtggy in closed-
form under PSD conditions. A numerical solution and a sutimgd solution in
closed-form have also been obtained for the case when thecB&iXions are not
satisfied and the optimal solution may not be found in cldeeat. For the multi-
target correlated jamming, we have proved that the problefinding the optimal
jamming strategy in the SISO case is convex if the jammer ydwaeses its full
power. Simulation results demonstrate the effectivenésiseoproposed solutions

for both non-correlated and correlated jamming.
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Chapter 6

Mixed Strategy Nash Equilibria in
Two-User Resource Allocation
Games

The objective of this chapter is to investigate mixed sgi@® and mixed-strategy
Nash equilibrium (MSNQ)
the users’ strategies are represented by continuous phiopalistributions with

in non-cooperative resource allocation games in which

discrete distributions as special cases. The necessargudiindent conditions for
the existence and uniqueness of MSNE are derived for botkchaonel andV-
channel games. In the two-channel game, the MSNE which maggthe utilities
for both users is obtained, while for té-channel game, an aﬁorithm is provided

to perform channel selection for users in order to achievéld

6.1 A two-user two-channel system model

Consider first a system of two users, i.e., two transmiteeiver pairs, sharing two
channels. The total transmission power for uses limited by P while each

user is assumed to be able to communicate on either one oobdik channels.
The users interfere with each other when they transmit orsdéinge channel. The
channel state information is known at both transmitter auiver sides for both

users and both users use Gaussian codebooks. Each uses heptayer which

1 MSNE includes pure strategy Nash equilibrium as a specsa.ca
2A version of this chapter has been published in Proc. IEEErBymp. Info. Theory,, 2011, pp.
2632-2636
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seeks to maximize its own utility defined as its sum informatiate on the two
channels.

It is important to identify the condition under which the mooperative ap-
proach that we use in this chapter is appropriate. In gereecaloperative approach
tends to be more efficient, in terms of providing a larger raggon, than the nonco-
operative one if interference is the major impairment toda transmission of the
users. However, the cooperative approach becomes ineffasenterference power
decreases given that the noise power is fixed. Thus, the npecative approach
is preferable if noise is larger than interference. Moregtfe noncooperative ap-
proach does not require any cooperation between the usdrdhars, causes no
information overhead. Therefore, the study in this chafiteuses on the case of
large noise power. Then the utility of usetan be approximated by

bt by (1 —t;)

U; tz,t = )
ts) = s T o - 1)

Vi (6.1)

where the approximatiolog(1 + =) = log(e) - x is used and the constant multiplier
log(e) is neglectedt; € [0, 1] denotes the portion aP™® that user: allocates on
channel 147} is the noise power on channiglb}; = P"®|h|* andbf; = P Ay,
andhj; andn}; are the channel gain of thigh channel from the transmitter of user
1 to the receiver of userand from the transmitter of uséto the receiver of user,
respectively.

A mixed strategy of user is represented by the probability distributionf
Denote the mixed strategy of useas f;(t;), which is assumed to be continuous in
general, but a discrete distribution is considered as aapsse. A combination of
strategieq f1(t1), f2(t2)} is called astrategy profile An MSNE is a strategy profile
{f1(t1), f5(t2) } that satisfies [89]

B, {wi (i )] puer=sr .15 () =17 ) 3
= max K, ; {u;(t;, ;)
t

i\lg

Flt) 85 )=17 (t) 1 Vi (6.2)

3Similar cases are considered in[86] and [87], while reakBsignal-to-interference-plus-noise ra-
tios are directly chosen as users’ utilities[in|[88] inste&the information rates. Note also that we
neglect the condition £ j for brevity and assume it as default when applies.
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It can be proved thaltf;(t1), f5(t2)} satisfies[(6.2) iff the conditions

Etj {Uz(tz, t])} =Gy, Vtz € 81*7 (63)
By {ui(ti, t;)} > By {ui(t;, t;)}, Vit € SF, Vi, ¢ Sf (6.4)

are satisfied for all given thatf;(t;) = f;(t;), whereS; = {t; |t; € [0,1], 7 (t;) #

0} is defined as theupportof f(t;) andc; is a constant. The following is a brief
illustration of the necessity. If_(6.3) is not satisfied oguevalently, if there ex-
istt},1? € S} such thatE, {u;(t7,t;)} > E, {u;(t},t;)}, thenu;(t;, t;) can be
increased by transferring the probability density assigae ¢} to 2. If (6.4)

is not satisfied or, equivalently, if there exist € S andt! ¢ S such that
B {wi(t}, t;)} > Ey {ui(t},t;)}, thenu,(t;,t;) can be increased by transferring
the probability density assigned shto ¢}. The illustration for the sufficiency is

straightforward and neglected here due to the space limit.

6.2 MSNE in a two-user two-channel game

The following theorem provides a result on the existenceuamgueness of MSNE
in the considered game.
Theorem 6.1: The considered two-user game has either a unique or infynitel
many MSNESs. The necessary and sufficient condition for tte ia
af by; of + b}i

2 2 = 12 = 2
o3 + b5 — by op;

Vi (6.5)

According to Theorem 6.1, there could be infinitely many MSNik the con-
sidered two-user game, which can lead to different utditee the users. Therefore,
it is also of interest to investigate the most efficient MSNE.

Theorem 6.2 In the case when there exist infinitely many MSNEs in the con-
sidered game, the one MSNE among all which maximizes tlitgegtibr both users
is

fity) = &o(ty) + (1 —&)d(t; — 1), Vi (6.6)
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whered(-) is the Dirac delta function and

bLZQi - 2b111 1
o5 oy +bji i
5] - b2 bl bl b2 ) v.] (6'7)
of  of+by | of o34

6.3 Extension to a two-userV-channel game

The two-userN-channel case is more general yet complicated. InNhehannel

case, the utility of userextends as

N-1 N-1
btk bN(1_ t’?)
ilti b)) =) e S Vi (6.8)
o Ok Tt o+ (130 )
wheret; = [t},...,t} "' andt € [0,1] is the portion ofPM® that user allocates

on channek subject ttof;f tk € [0, 1]. Conditions[(6.B)E(6]4) extend accordingly

as

E¢,{ui(ts, t;)}=ci, Vt; € SF, (6.9)
o, {ui(ti, t;)}>Ee, {ui(t;, )}, Vt; € S}, Vt; ¢ S} (6.10)

with the mixed strategy of usénow represented by the joint distributiontf vk €
{1,...,N — 1} and denoted ag(t;).

The existence and uniqgueness of MSNE in thehannel game can be derived
based on the outputs of the algorithm in Tdble 6.1.

Theorem 6.3 The following properties hold for the proposed algorithnmlae
ble I.

i) The algorithm converges to the same result regardlesseobtdering of users
or channels.

i) Denotel’; = {k € A,k ¢ A}, thenL(I';) < 1,Vi at the output of the
algorithm.

iif) MSNE is unique in the game iff(A;—;) = 1 or L(A,—3) = 1. Otherwise,
infinitely many MSNESs exiSt.

“There is a trivial exception. I8; = {k1}, A; = {k1, k2} andz/]l(kg) = z/f(kl) whereky, ks €
{1,..., N}, infinitely many MSNEs exist. However, in this case all otNeESNEs generate smaller
utilities for useri (and the same utility for usep than the MSNE which is achievable and unique
in the case wher\; = {k1}, A; = {k2}. Therefore, we consider the former case as equivalent to
the latter one.
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Table 6.1: Algorithm for channel selection in two-usérchannel game
1. Lety} = [b;/o7,..., b} /oy ] andv? = [bj;/(0F + bj,), ..., b /(0% +
b)) for each usef. LetA;_y = A, = {1,..., N}. Initialized = 1.
2. Forusen = 1, letk = A;_;(d), whereA,;_;(d) is thedth element of
the setA,_;, and check if the inequalitie (k) > vi(1),Vi € A=y # k
are all satisfied. If not, letf = 0, v2(k) = b5, /02, removeA;_(d) from
A, and setd = d — 1. Check ifd < L(A;=;) whereL(-) denotes the
cardinality of a set. If yes, set= d + 1 and repeat the above procedure in
Step 2. If no, setl = 1 and proceed to Step 3.
3. For user = 2, letk = A;_»(d) and check if the inequalities; (k) >
va(l),Vl € A=y # k are all satisfied. If not, let} = 0, v?(k) = b, /o2,
removeA,;_.(d) from A,_, and setd = d — 1. Check ifd < L(A;—), If
yes, setl = d + 1 and repeat the above procedure in Step 3. If no, and no
element was deleted frody,_, in this step, proceed to Step 4; otherwise
setd = 1 and return to the beginning of Step 2.
4. OutputA,—; andA,—s.

6.4 Numerical and simulation results

Our simulation example illustrates the iterative procelssh@annel selection de-
scribed in TablE®]1. Her& = 8, P = 1,Vi, ando?, Vk are uniformly generated
from the intervall, 2]. The real and imaginary parts bf, and/;Vi, Vi are gener-
ated from zero-mean normal distributions with variancesid @25, respectively.
The results are shown in Fig. 6.1, where the diamonds andesjaee generated at
coordinategRe(ht,), Im(h¥,), (|ha1|*)?), Vk and(Re(h%,), Im(hE,), (|hi2|*)?), VE,
respectively. The diamond and square corresponding toatine ks are connected
by dash-dot lines for alt. A diamond/square closer to the corners implies a channel
with higher channel gain for the corresponding user, whdeaaond/square closer
to the top implies a channel with higher gain of interferefioen the transmitter of
the other user to the receiver of the corresponding user.

At the end of Step 2/Step 3, the diamonds/squares corresmptudthe channel
indexes in the updated /A, are circled in FigL6l]1. If the algorithm iterates, the
diamonds/squares corresponding to the channel indexiee maost updated;/A,
are circled by circles with a larger radius at the end of etarhtion of Step 2/Step 3.

The diamonds/squares with the maximum number of circlegspond to the chan-
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nel indexes iM\; andA, at the output of the algorithm. The upper plot of Fig.6.1
shows the case ak; = 1, A, = 1, in which a unique MSNE exists according to
Theorem 6.3. It can be seen that the first run of Step 2 seleatschannels for
user1 while the second run further selects one out of the four. Dt plot of
Fig.[6.1 shows the case &f, = 2, A, = 3, in which two of the eight channels are
shared and infinitely many MSNEs exist according to Theore3n Bote that the
users interfere with each other only on the channels caoretipg to the dash-dot
line with the maximum number of circles at both ends in théspl&rom the figure,

it can be seen that the channels selected by the users abigewvehannel gains and

low interference.

6.5 Conclusion

Noncooperative resource allocation games are studied xedvstrategies. It is
shown that applying mixed strategies can potentially l@a®lENE which is more
efficient than NE in pure strategies. For two-channel gathessufficient and nec-
essary condition for the uniqueness of MSNE is derived. Bmabecomes signif-
icantly more complicated in the case@fchannels. A channel selection algorithm
which simplifies the game is proposed. Based on the outputseddigorithm, the
sufficient and necessary condition for the uniqueness of EIBNhis game is also
derived. Our simulation results demonstrate how the preg@dgorithm selects

channels in thév-channel game.
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¢ (Re(h,)Im(h,)lh,, )

= (Re(hy,).Im(h,,).lh /%)

Re(h,,)Re(h,,)
Im(h,,)/im(h,,.) -2

(a) At the output of the algorithmy; =1, As, =1

@ ¢ (Re(hy,lim(h,)lh,, )
s B (Re(hy,).Im(h,,).h,,)

Im(h, )/im(h, )

Re(h, )J/Re(h, )

(b) At the output of the algorithmh; = 2, Ay =3

Figure 6.1: lllustration of the cannel selection algoritimtwo examples

104



Chapter 7

Conclusion and Future Work

The problems of spectral and power efficiency, worst-caseneg threat, and re-
source allocation in multi-user wireless communicatiomssaudied in this thesis.

The following main results are derived.

» Chaptef B obtains the optimal solution to the problem of im&ing spectral
efficiency, in terms of sum-rate, with minimum relay powensomption in
MIMO DF TWR when there is limited coordination in the systdiis shown
that the relay optimization scenario may not be energyiefftido the source
nodes as they can possibly waste part of their transmissnep The asym-
metry is shown to have negative effect on the spectrum anepefficiency
of the DF TWR.

» Chaptei 4 obtains the optimal solution to the problem of imé&ing spec-
tral efficiency with minimum total power consumption in MIMDF TWR
with full coordination. The optimal solution is found in ged-form or using
proposed algorithms. It is shown that the cooperation antbegarticipat-
ing nodes can dramatically improve energy-efficiency ingygem while at
the same time achieving the same or better spectrum efficighe negative

effect of asymmetry is also demonstrated.

» Chaptefb obtains the optimal form of noise jamming for tloest-case jam-
ming in multi-user wireless communications. The optimabeqamming is
shown to be in closed-form under certain conditions. A sptiraal noise

jamming is proposed in closed form and shown to be a good appation

105



of the optimal jamming solution when the latter cannot foumdosed-form.
The problem of worst-case multi-target correlated jammsngroved to be
convex in the SISO case under the condition that the jammes is full

power.

» Chaptel 6 obtains the conditions on the existence and an&gs of the MSNE
in a continuous resource allocation game with mixed-ggrase For the two-
user two-channel case, the most efficient MSNE is found. $hiswn that
mixed-strategy Nash equilibria (MSNES) are more efficidrant the Nash
equilibria (NES) in pure strategies in the considered galRue.the two-user

multiple channel case, an algorithm is proposed for achgethe MSNE.

There are some open problems related to the topics of thsssthvehich will be

considered in future work.

» With respect to spectral and energy efficiency, the studguoh-rate max-
imization with minimum power consumption in TWR can be exked by
considering the optimal time division between the MA and Btages. In
Chaptei B andl4, it is assumed that each of the MA and BC phakes &
half of the entire time of message exchange. However, it i:poessarily
the optimal division of time between the two phases. Thetspleefficiency
can be further improved if the length of the MA and BC phasesatimally
divided. It is also possible to extend the study of sum-ragximization
with minimum power consumption to multiuser TWR with mulégpairs of
source nodes and one or multiple relays. Relay selectiosdarce nodes
can be taken into account. The relays can help multiple passurce nodes

exchange information by adopting time/frequency divisiomtiple access.

» With respect to the worst-case jamming threat, the studypbmal noise jam-
ming strategy can be extended to the case of multiple legiBroommunica-
tions. Optimal solution or sub-optimal in closed-form abbk obtained. For
the optimal correlated jamming, it could be extended to thieegal MIMO

case with the objective to find an efficient suboptimal jangrstrategy. It
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could also be extended by adopting game theory to study teeaictions

between the legitimate transceivers and the jammer(s).

» With respect to the multi-user resource allocation gatmestudy of the exis-
tence and uniqueness of MSNE could be extended by considisermulti-
user multi-channel game with mixed strategy. It is also téri@st to consider
the case that the utilities of the users are of uncertairty,the utilities of the

users are subject to small fluctuations.
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Appendix A
Proofs for Chapter

A.1 Proof of Lemma 3.2

Lemma 3.2 is proved in two steps, i.e., Steps A and B. In Stepé\prove that

> er(/\;) can be increased by modifying the current power allocatiotwem spe-
l
cific subchannels. In Step B, we show thatR,;()\;) may be further increased.
l

Step A: 3" Ry()\) can be increased. Given the fact thatTr{P()\,)} =
;Tr{Prl(Ag)l}, it can be shown that/X, > min{1/a,(k)} as long asi/A, >
mlgn{l/aj(k)}. As a result, there exist; andk, such thatl /X, > 1/a,(k;) and
1/X; > 1/a;j(ks). Definef (pri(k1)) = logl + ai;(k1)pei(k1)+logl + a;(ks)prj(k2)
wherep,;(k;) = p — pu(ki1) andp is a positive constant. It can be seen that
f(pwi(ky)) is strictly concave inp,(ki) € [0,p],Vp > 0. Setp = (1/A; —
1/aj(k2))+ + 1/X; — 1/a;(k1). The optimal allocation of the poweron «; (k)
and a;(k,) that maximizesf (p; (k1)) is pui(ki) = (1/AP(p) — 1/a;(k1))" and
prj(ks) = (1/XP%(p) — 1/a;(k)) " wherex*P*(p) is a function ofp and1/A\°Pt(p)
is the optimal water level. It can be shown that\°**(p) < 1/\.. There ex-
ist two cases, i.e.]/\°P'(p) < 1/\; and1/X°P*(p) > 1/X;. In the case when
1/APt(p) < 1/, itfollows that(1/XP(p) —1/a;(k1)) " < (1/A—1/ai(k1))* <

1/X; — 1/a;(k1). The power allocation ok, andk, using\; and )\ is

pri(k1) = </\% - ai(lkl)>+ (A.1a)
prj(k2) = <A% - ﬁy (A.1b)
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Since f(p.i(k1)) is strictly concave as mentioned above, it can be seen teat th

power allocation

pri(k1) = (/\% — ai(lkl))+ (A.2a)
otk = (3~ o)
N
" %i N C*i(lkl) N ()\% N C“i(lkl)) (A.2b)

which reduce9,;(k;) and increases,;(k»), both by1/X, — 1/a;(k;) — (1/X; —
1/ai(k1))+, yields higherf (p.;(k1)) than the power allocation if_(A.1).
Therefore, the sum-rafe. >" logl + a;(k)p. (k) achieved using{Al2) and
I k

(k) = ()\% — m) ke T\ {k} (A.3a)
pes(k) = (A% _ W) Wk €T\ {ks} (A.3b)

is larger thany_ R,;()\)). This is the first step of increasing sum-rate. Moreover, it
l

can be seen that there existssuch that

)\% < ;\i] < )\% (A.4a)
) 1 1 \* 1 1 \*
TP} = (A_Z - Oéi(kl)) " <)\_z‘ - @i(k1)>

+Tr{P;(N)} =D Tr{Pu(X)} (A.4b)

l

and the power allocation

1 1 \"
pi(k1) = ()\— - Oz(/{:)) (A.5a)

1 1 \"

1 1\
prj(k) = (5\— — a(kj)) ,Vk € Ij (A5C)

which spreads the power/\, — 1/a; (ki) — (1/A\ — 1/ai(k1)) " over a;(k)’s,
Vk € I;, achieves even higher sum-rate than that achieved by thergdlecation

specified by[(A.R) and_(A]3). This is the second step of irgir@athe sum-rate.
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For the second case in whidh\; < 1/X°?*(p) < 1/, the following pro-
cess is adopted. Similar to the two steps of increasing therste in the first
case, the sum-rat®’ > logl + o, (k)pyu(k) increases after each of the following
two adjustments oé p(k)WGI’ allocation. First, redycgk,) from 1/\, — 1/c;(ky)
to (1/A°P'(p) — 1/ozz~(k1))+. Then, spread the reduced powegn, — 1/« (k1) —
(1/3P%(p) — 1/ay(ky1))" overa;(k)'s ,k € Z; by finding and using /\; which

satisfies

+ +
/ 1 1 1 1

Tr{P(A)} — (r - ai(ku)) - (Aop%p) - a;<k1))
+Tr{Prj(X;)} - ;Tr{Prl(Ag)}. (A.6)

After the adjustments, it is straightforward to see that tibtal power allocated
on k; andk; is reduced fromp = (1/\; — 1/ozj(kg))Jr + 1/N —1/ai(ky) top =
(1/X;— 1/ (k)" 4 (1/A (p) —1/a; (k1)) " In consequence, there exists a new
optimal water levell /\°P*(p) based on which the optimal allocation of the power
Py i€, p(kr) = (/AP (p) — 1/as(kr)) " andpyj(ks) = 1/XP(p) — 1/a;(ks),
maximizesf (p.;(k1)) whenp in f(p,; (k1)) is substituted by. Sincep < p, it can

be seen that/\°?*(p) < 1/A°*"(p). Updatep and1/\°?*(p) so thatp = p and
1/XP*(p) = 1/A°P"(p). Then the above process of reducingk; ) to (1/A(p) —
1/az~(k1))+, finding the new1/5\; and the newl /\°P*(p) can be repeated until (a)
1/A°Pt(p) < 1/); or until (b) 1/X°P*(p) < 1/a;(ky). The former matches the
condition for the first case discussed in the previous pamygand therefore can
be dealt with in the same way as in the first case, which lea@&.%). The latter
implies thatl /\; < 1/A°""(p) < 1/a;(k1), in which case the power allocation can
also be equivalently written as (A.5). Note that during thiecess the sum-rate
Y>> logl + oy (k)pu(k) increases. Therefore, summarizing the above two cases
olf 1k/>\°Pt(p) < 1/X; and1/X°f(p) > 1/);, itis proved that the sum-rate can be
increased by reducing,;(k;) from 1/\; — 1/a,(k;) to (1/\; — 1/ay(k1)) " and
using the power allocation if_(A.5).

Step B:> er()\g) may be further increased. Keep the above selektadh-
l

changed. As long as there exigtssuch thap,(k) = (1/\; — 1/a,(k;))" and
pi(k) > 0, this k can be selected ds and the procedure of reducing; (k)
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from 1/, — 1/a; (k1) to (1/X\ — 1/, (k1)) " and spreading the reduced power over
aj(k)'s, Vk € I; as specified in(Al5) can be performed. This process can be re-
peated untip,;(k) = (1/\ — 1/ai(k)) ", V& € {q € Z|(1/N, — 1/a;(q)) " > 0}
andp,(k) = 0,Vk € {q¢ € L|(1/N, — 1/ozz~(q))+ = 0}. Note that the sum-
rate > > "logl + oy (k)pu (k) increases in the above process for every qualifying
k. Tlhekresulting power allocation am,(k)’s, Vk € Z; is equivalent tap,;(k) =
(1/Ni—=1/eu(k)) ", Yk € T, since(1/ N\ —1/a; (k) " = 0if (1/X,—1/au(k))" = 0.
From the procedure described in the previous paragraphesesulting power al-
location ona;(k)'s, Vk € Z; is p,j(k) = (1/5\j - 1/aj(k))+,Vk. According to the
power constrainp_ Tr{P,(\,)} = > Tr{P,()))} and the fact that the total power
consumption is filxed at all time, it lcan be seen that;, = 1/);.

Summarizing the above two steps, Lemma 3.2 is proved.

A.2 Proof of Lemma 3.3

Given that\] < A;, we have\; < A} < A; < A.. According to Lemma 3.2, there

exists\; < \, such that

TH{PL(A)} + Tr{Py;(X)}

= Tr{Pui(\)} + Tr{P;(X))} (A.7)
and
Rii(N) + Rej(Ny) > Ru(N) + Ry (X)), (A.8)
Therefore, given that
Rei(X) + Ruj(N)) = Rui( X)) + Ryy(N)) (A.9)

it is necessary thaX; > \;. As a result, it leads to

TH{P(N)} + Tr{Py;(A))}
< Tr{Pu(X)} + Tr{P;(N))}. (A.10)

Lemma 3.3 is thereby proved.
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A.3 Proof of Theorem 3.1

First we prove that the optimal water-levels must satis&y ¢bndition [(3.18a). It
can be seen that the maximuRi” (B, D) is achieved with minimum power con-
sumption using\; = Ay = max{\° % } whenmin{1/u9,1/u3} > 1/pima. at the
optimality. Therefore, it is necessary thain{1/u%, 1/u5} < 1/u2,, given that
A1 # Ay at optimality. Let us consider the case whem{1/)\;, 1/ .} = 1/\; <
1/), at optimality. According to the constraint(3.15a), we hevat1/)\; < 1/u9
at optimality. Similarly, it can be seen thaf\, < 1/u9 at optimality. Since
1/A1 < 1/, it leads to the result that/\; < 1/ud < 1/u9 at optimality. As-
suming thatmin{1/u9,1/u3} # 1/\; at optimality when)\; # Xy, it infers that
/A < 1/p < 1/Xy. However, it can be seen that the power allocation using
/A < 1/u§ < 1/X, does not provide the maximum achievahle’ (B, D) ac-
cording to Lemma 3.2. Consequently, the resulting powercation is not optimal.
It contradicts the assumption thatin{1/4% 1/u5} # 1/\; at optimality. Thus,
the above assumption is invalid and it is necessaryithaf1/.9,1/u9} = 1/, at
optimality when\; # \,. Similarly, it can be proved thathin{1/u{,1/u3} = 1/,
at optimality when\; # X, for the case whemin{1/\;,1/X} = 1/ < 1/A;.
Therefore, it always holds true thatin{1/\;, 1/} = min{1/pu% 1/uS} if X\, #
Aa.

Next we prove that the optimal water-levels must satisfyditoon (3.18b). It
is straightforward to see thay\;, = 1/)\, < 1/A°. Moreover, according to the
constraints[(3.1%a) and_(3.15b), it is not difficult to seatth/A; = 1/ <
min{1/p%,1/u9,1/p2,} when1/X\; = 1/), at optimality. Indeed, ifl/\; =
1/Xg > 1/p2,,, then[[3:15b) cannot be satisfied1 ff\; = 1/X\y > min{1/u,1/u3},
then [3.15k) cannot be satisfied. Combining the above tws,fae havel /\; =
/Ay < min{1/p9,1/p9,1/u0 ., 1/A°} when1/A\; = 1/, at optimality. For the
case thatnin{1/u9,1/u3} > 1/u°., the above constraint can be writtenigs, =
/Xy < min{1/p2 . 1/X°}. For this case, it is straightforward to see that the
achieved sum-rate is not maximized jfA\; = 1/\y < min{1/u°_ 1/\°}. There-

fore, the optimal water-levels must satisfy the conditi@8b) whenmin{1/4?,
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1/p9} > 1/u2, given thatl/\; = 1/),. For the case whemin{1/u9,1/u9} <
1/42,., it can be seen that/\° < min{1/u9,1/u5} given thatl/\; = 1/\, at
optimality. Otherwise, it can be shown that either of thédwing two results must
occur. If1/A\% > min{1/u{,1/p3} and1/A; = 1/ < min{1/p2, 1/u3}, then
the sum-rate can be increased.1 f\° > min{1/u9,1/u5} and1/X; = 1/Xy >
min{1/u9,1/u3}, then the constraint(3.15a) cannot be satisfied. Therejoren
that1/)\° < min{1/u9,1/u3} for the case whemin{1/u%, 1/} < 1/u2, and
1/A; = 1/\; at optimality, we havel /\° < min{1/49,1/u3} < 1/4°,. Con-
sequently, the constraint/\; = 1/, < min{1/p® 1/u3,1/u°,.,1/\°} can be
rewritten asl/\; = 1/X; < 1/A° = min{1/u%,,1/\°}. It is straightforward to
see for this case thay\; = 1/\; < 1/\" does not maximize the sum-rate. There-
fore, it can also be concluded that\; = 1/X; = 1/A° = min{1/42.,1/\°} when
min{1/u{,1/u3} < 1/u2,.. Combining the above two casesofn{1/u9,1/u3} >
1/p8, andmin{1/u9,1/u3} < 1/48 ,, it can be seen that the optimal water-levels
always satisfy the condition (3.118b) given that\; = 1/X,.

The above two parts complete the proof of Theorem 3.1.

A.4 Proof of Theorem 3.2

The necessity of the constrainis (3.15a) dnd (3.15b) iggbtfarward. It can be
seen that the power consumption can be reduced without iregtite sum-rate
R™(B, D) when these constraints are not satisfied. The necessitg abtistraints
(3.184) and[(3.18b) is proved in Theorem 3.1 in Sediion A Ber&fore, we next
prove the sufficiency of the constraints (3.15a), (311501 &a), and(3.18b).

We use proof by contradiction. Assume that the above cdnsteae not suffi-
cient to determine the optimé@h;, Ao} with minimum power consumption among
all {\1, \;}'s that maximize the sum-rat&8™ (B, D). Then there exist$\l, A}
satisfying [[3.15) and(3.184d)-(3.18b) that maximizes thm-sate and does not
minimize the power consumption. Consequently, at leastaing/ Al and 1/}
can be reduced without reducifg” (B, D). We consider the following two cases.

The first case is when! # A while the second case is wheth = A. In the

124



first case {\, A} satisfies[[3:18a) and it is straightforward to see that rieguc
min{1/Al,1/Al} is not optimal according to Lemma 3.3. Reducimgx{1/\},
1/M\}, on the other hand, necessarily leads to the decreag&"¢B, D) given
that [3.I5b) is satisfied. Therefore, reducing eithet off and1/\} results in the
decrease of the sum-rate, which contradicts the previssisgstion. In the sec-
ond case{\!, \l} satisfies[(3.18b). According to Theorem 3.2, it is necestwly
1/M = 1/A) = min{1/42,,,1/A°}. From Lemma 3.2, it can be seen that it is not
optimal to reduce only one df/\l and1/A}. Reducing both of /Al and1/Al, on
the other hand, necessarily leads to the decreag&"dB, D) given that[(3.15b) is
satisfied. Therefore, it is impossible that there ex{sts AL} with A\l = Al, sat-
isfying (3.15) and[(3.18b), that maximizes the sum-ratelevtiie resulting power
consumption can be reduced. Combining the above two cdses) be seen that
the power consumption cannot be reduced given tha{iﬁleA;} maximizes the
sum-rate subject to the relay power limit and satisfies {j3attl [3.18R)H3.18b).
This contradicts the assumption that the above constreensa sufficient to deter-
mine the optimal A;, A\, } with minimum power consumption among &l\;, \»}’s

that maximizeR"™ (B, D). This completes the proof for Theorem 3.2.

A.5 Proof of Theorem 3.3

The optimality of the paif{\;, Ao} obtained using the algorithm in Talle B.1 is
proved in three steps: (A) Steps 2-5 of the algorithm in T&QIEfind{\;, \»} that
maximizesiz®(B, D°) with minimum power consumption subject to the constraint
in (3.11) and the constrairt (3.15a). (B) The p@li, \,} obtained from Steps 2-

5 of the algorithm in Tabl€ 31 needs to be modified to maxintime objective
function in [3.11) with minimum power consumption. Step 6o algorithm in
Table[3.1 deals with two cases in whi¢h;, A} obtained from the previous steps
can be simply modified to obtain the optimal péix;, \,}. (C) Step 7 of the al-
gorithm in Tablé 3.11 deals with the remaining case which issr@@mplicated and
finds the corresponding optimal pdik;, A2} in this case. It is not difficult to see

that the constraint in.(3.11) is always satisfied in any sfepeoproposed algorithm.
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It can also be seen that Steps 1, 2, and 6 ensure that3.1&t)sted if\; = \,
at the output of the algorithm while Steps 3 to 5 ensure thdB@ is satisfied if
A1 # A at the output. Therefore, in the following we only consider tonstraints
(3.154) and((3.15b), which are equivalent to the conssam{3.12).

(A) Steps 2-5 find the paif\;, A2} that maximizesk(B, D) with minimum
power consumption subject to the constrdint (3.15a). Naethe maximuni(B,

DY) with minimum power consumption is achievedEyl(Al) + Rrg(Az) for some
specific{ A, Ao} if (B.154) is satisfied. Therefore, it is equivalent to firglitme
{\1, Ao} that maximizesi,; (\) + R.2()\2) subject to[[3.18a). The initial power
allocation in Step 1 of the algorithm in Tabdle B.1 usihg\; = 1/Xy = 1/)\°
maximizesf%ﬂ()\l) +Rr2(>\2). Regarding the constraini (3.15a), the following cases
are possible.

(A-1) X; > p, Vi. Inthis case, the constraifif (3.15a) is satisfied gx{d \°} is
the desired A\, A2 }.

(A-2) \; < puf and); > g, In this case, the constraifif (3.15a) is not satisfied
for 7. The relay power consumption can be reduced without déag@X B, D°)
by increasing\; until \; = ,u?. Then,R(B, D) can be increased by decreasixg
until the relay power limit is reached or unti} = 9.

(A-3) \; < p,¥i. Inthis case, it is straightforward to see that the gair, A, }
that maximizesk(B, D°) with minimum power consumption subject to the con-
straint [3.15k) satisfiel = 1), Vi.

The above three cases are determined in Step 2. Case A-1tiwdkan Step 2
of the algorithm in Tablé_3]1. Case A-2 is dealt with in Ste@nd 4. Case A-3 is
dealt with in Steps 3 and 5.

(B) Steps 6 and 7 of the algorithm in Taljle]3.1 find the optinat pA;, Ao}
that maximizes the objective function n_(3111) with minimpower consumption.
Since R™*(D°%) < R;,(DY) + Ry (DY), it can be seen thak;, Vi should either
increase or remain the same in order to satisfy the const@ib5bh) given that
the constraintl(3.1%a) is satisfied. Therefore, the optimealer allocation can be
derived by increasing\; and/or\,, if necessary, based on the power allocation

derived from Steps 1-5. Regarding the constraint (3.1%k8) following cases are
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possible.
(B-1) \; > ub  Vior (AZ- > 100 Ay < pl, and Ry (M) + Rip(N) <

Rma(DO)) . In this case, the constraint (3.15b) is satisfied and theentif A, A2 }
is optimal.

(B-2) \; < p°,, Vi and Ry (M) + Ria(Xe) > R™ (D). In this case, it is not
difficult to see that it is optimal to simply sét = 1.0, Vi.

(B-3) \; > p0,, N < i, and R,y (\) + Ria(Ng) > R™(DO).

Subcases B-1 and B-2 are simple and dealt with in Step 6 of Igoidam
in Table[3.1. It can be shown that in these two cases the eomist{3.15R) and
(3.15Db) are both necessary and sulfficient for finding thenmgdtpower allocation
in terms of maximizing the sum-rate with minimum power cangtion. Subcase
B-3 is dealt with in Step 7. The optimal strategy in Subcasg, Bs in Step 7
of the algorithm in Tablé_3]1, is to increage while keeping); unchanged until
er()q) + er()\g) = R™2(DY). In order to prove that this strategy is optimal, the
following three points are necessary and sufficient.

1. Itis optimal to increasenin{\; }.

2.0 = pdif N > pd, and)jj < ul ..

3. At optimality, the increasedl;, denoted a8}, satisfies\; < X} < ...

The first point states that it is optimal to increaseas long as\; < \;. The
second point infers that it is not optimal to decreaseThe third point infers that
N is always larger than; and therefore it is not optimal to increasgat any time.
The first point follows from Lemma 3.3. For the second poissiane thad; > 1.

It follows that P is used up, i.e.P™ = "5 (1/A — 1/ay(k)) . Otherwise,
the equality in the constrairit (3.15a) is not laclﬁieved famd the objective function
in (8.11) can be increased by decreasingwhich contradicts Steps 1-5 of the
algorithm in Tablé 3]1. Given that > 0 and P> = >~ %~ (1/\ — 1/eu(k))",

it can be proved that/\; > 1/);. Otherwise, the powér gllocation can be proved
not optimal based on Lemma 3.2 because the objective funati¢3.11) is not
maximized subject to the constrainf (3.115a), which cont¢tadSteps 1-5 of the

algorithm in Table_3]J1. However, the conclusion thd@h; > 1/); contradicts
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Subcase B-3 in which; > p.,\; < pp,,. Thus, the assumption that > 45
is invalid. Since); > M? at the output of Steps 1-5 of the algorithm in Tablg 3.1,
we have); = pf. For the third point, assume tha > ),,. Then it follows that
Ri(M) + Ria(A2) < R™(D°) , which is not optimal. Therefore), < 19, at
optimality of Subcase B-3.

(C) Finally, we prove that’; found in Step 7 of the algorithm in Talle 8.1 for
Subcase B-3 is optimal. The optimglfor Case B-3 is the solution to the following

optimization problem

) 1
min —

(A.11a)

L~

X
st. Ru(\)+ Ry(\;) = R™(DO). (A.11b)

Using the definition thap,;(k) = (1/A; — 1/a(k))" and M;; = {k|p.(k) > 0},
the constraint in[(A.11) is equal to

Z log

keM

— R™(DY). (A.12)

As previously proved); = 1. in Case B-3, which means that,; (\;) = R;:(DY).

Thus, the above equation can be written as
3 log O‘J — R™ (D) — R;,(DY). (A.13)
keM
Therefore, the optimal satisfies
M[log\; = Z logaj (k) — R™*(D°) + R;:(DY) (A.14)
keM

and the optimality of the water leval found in Step 7 of the algorithm in Takile 8.1
is proved.

The proof of Theorem 3.3 is thereby complete.
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Appendix B
Proofs for Chapter 4

B.1 Proofof Lemma4.l

Proof for claim 1: GiverD as defined in the lemma, it follows thﬂma(f)) =
R;,(D;). From the definitiong{4.2a)-(Z12c), it can be seen fiat(D) > R;.(D;)
— R;x(D;) if 1/pma(D) > 1/p;. Therefore, itis necessary thigtui,, (D) < 1/u;.
Proof for claim 2: First, note thaR™*(D) is a continuous and strictly in-
creasing function ot in [0, 1]. Second, based on the definitidn (4.2c), it follows
that Rma(ﬁ) IS a strictly increasing function oI/,uma(ﬁ) when 1/Mma(]5) >
min ({) 1/o4(k), Vi, Vk}, or equivalently,R™*(D) > 0. Since T{D;} > 0 and
Tr{D,} > 0, we haveR™*(D) > 0 for any¢ € [0,1]. Thus, given the fact that
1/ ptma(D) < 1/p1; whent =0 and thatl / jimma (D) = 1/ pima(D) > 1/; whent = 1,
it can be seen that there exists [0,1) such thatl /. (D) = 1/p; whent = t.
Using Lemma 3.1 in Chaptéf 3, i.€./ tima < max ({) 1/p1, 1/p2}, it can be seen

that1/s;(D;) > 1/puma(D) = 1/p; whent = 7.

B.2 Proof of Lemma4.2

First we prove\; = p; > fuma if A; < A;. Using Lemma 3.2 in Chapter 3, it can be
seen thad;, Vi satisfyA; = A if min ({) 1/p;} > 1/uma at optimality. Therefore,
we havemin ({) 1/u;} < 1/pma given that\; # X,. Using the same lemma and
the constrainti(4.6a), it can be further concluded that; < 1/, at optimality
given that\; < \;. Otherwise, the constraint (4]6b) cannot be satisfied. éfbes,
1/p; > 1/pm, according to Lemma 3.1 in Chapier 3. Due to the constraiGgj4.
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we must have /\; < 1/p; at optimality. Moreover, from Lemma 3.2 in Chapiér 3
and the assumption that < );, it can be seen thdt/\; < 1/, is not optimal.

Therefore,1/)\; = 1/u,; if A; < ;. Following the same approach, we can prove

/\j = li > Hma if Hi > Hma-

B.3 Proof of Theorem 4.1

Recall the definitions ofiy, o, and u,, in (4.2a)-{4.2k). Considering the con-
straints[(4.9b)E(4.9d) in the problen (4.9), it can be séam at optimality we must
haveur, < A% pr < A% andu; < A\°. Otherwise, the above mentioned constraints
cannot be satisfied. We will prove Theorem 4.1 by contraaiicti

Assume thap*,, # \° at optimality, thenu . < \° according to the above
paragraph. Using Lemma 3.1 in Chapiér 3, l@um. < max ({)1/u1,1/ps},
and given thagt < \° and % < MO, there are only two possible situations as
follows: a)max ({) 1/p3,1/ps} > 1/pk, > min ({) 1/p3,1/p5} > 1/X° and b)
max ({) 1/pf, 1/ps} > min ({) 1/p3,1/pu3} > 1/t > 1/A°. Assume without
loss of generality thatnax ({) 1/u%, 1/} = 1/pt andmin ({) 1/ut, 1/pus} =
1/ps. If it is Situation a), then we have/ut > 1/u%, > 1/u5 > 1/A\°. Use
Lemma 4.1 wittD; = tDy andﬁj = D3. As proved in Lemma 4.1, there exists
0, 1) such thaju, (tD}) > 1/pma([tD}, D3]) = 1/u3. Sincel /s > 1/)°, we have
1 (tD?) > 1/ pima (DY, D)) = 1/p% > 1/A°, which indicates thab = [tD*, D3]
also satisfies (4.9b)-(4.9e) while{TD7} +Tr{D3} < Tr{D7}+Tr{D3}. It contra-
dicts the fact thaD* = [D7, D%| is the optimal solution to the problein (4.9). There-
fore, Situation a) is impossible. If it is Situation b), thexxist two following possi-
ble sub-situations: Sub-situation b-1) there exists{1, 2} such thatl / ji,a (D) =
1/X° and 1/4;(D;) > 1/pma(D) whereD = [Dy, D,] with D, = ¢,D* and
]3- = Dj for somet; € [0, 1) and Sub-situation b-2) there does not exist [0, 1)
such thatl /i, (D) = 1/A° and1/p;(D;) > 1/pma(D) whereD = [D;, D,] with
ﬁ = t;,D} andD» = Dy for eitheri = 1 ori = 2. In Sub-situation b-1), it can be
seen thaD satisfies[(4.9b)-(4.9e) while Tt; D;} +Tr{D}} < Tr{D7} + Tr{D3}.

It contradicts the fact thdD* = [D7, D3] is the optimal solution to the problem
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(4.9). Therefore, Sub-situation b-1) is impossible. I&itSub-situation b-2), it in-
dicates that with; € [0, 1), for eitheri = 1 ori = 2, such thatl /u,,,(D) = 1/A°,
we havel /;;(D;) = 1/p;(t:D?) < 1/pma(D) = 1/X°. As a result, there exists
ti € (t;,1) such thatl /u,;(¢D?) = 1/X° and1/pm.(D’) > 1/\° whereD’ =
[D}, D] with D} = ¢;D} andD’; = D}. Note thatl/um.(D’) > 1/)\° because if
1/p:(D}) = 1/ and1/ iy, (D’) = 1/\° then we have Sub-situation b-1) instead
of Sub-situation b-2). Recalling thay;;(D}) > 1/pma(D*) > 1/pma(D’), we
havel/;;(D}) > 1/pma(D’) > 1/pu:(D}) = 1/Xe. It indicates that by changing
D7 at optimality toD} = /D7, and thus, using less power tha{ D7} + Tr{D3}
while satisfying [(4.9b)E(4.9€e), Sub-situation b-2) chesigo Situation a). As it is
proved that Situation a) is impossible at optimality, s@iSub-situation b-2).
Therefore, it is proved that the assumptjap, # \° must lead to either of two
situations both of which are impossible at optimality. Thiiss impossible that

wh. # A%, As aresult, we must haye;, = \°. This completes the proof.

B.4 Proof of Theorem 4.2

Proof of Property 1: First we show thayu* < 1/A° Since the maximum
R;(Dy), as the objective function of the problef(4.10), cannoteeh’z ;(\°) in
Subcase I-2, it can be seen thdf,;, < 1/\° wheneverl /i, > 1/\° and1/p; >
1/X°% As aresult, anyD that leads td /.. > 1/A\Y is not optimal. The reason is
that in such a case the optimal relay power allocation regquif\; = 1/, < 1/)\°
according to Lemma 4.2 and such relay power allocation lead<BC phase sum-
rate ) Ry;(\i) which is less thar,,(\°) + R.(\°) according to Lemma 3.2 in
Chap:ter[B. Sincd /jima > 1/A° implies that R™*(D) > R, (\°) + Ria(\°),

it can be seen that the constraini (4.5b) is not satisfied la@etfore such strate-
gies cannot be optimal. Next we show thaitn {1/} < 1/u% .. Assuming that
1/pk, < min{l/ul}, it leads tol/uf, < 11/)\0 given that the probleni(4.9) is
infeasible. ZI\/Ioreover, it also leads to the result that= 1, Vi. However, it is
not difficult to see thal?™*(D), 3 R,;()\;) and eventually?™ (B, D) can be in-

creased in this case through apr;ropriately increasing,., which is feasible since
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1/pl, > 1/X° > 1/u* ., and also increasing at least onelgh; and1/);, which

is also feasible since/\: = 1/u%, < 1/X° given thatl/puf, < min{1/x;}

and1/u*, < 1/A% It contradicts the assumption thBt and B* are tfl1e optimal
solution. Thereforel /. > min{1/u’}.

Proof of Property 2: Givenz the fact thatu:,, < 1/)° the problem boils down
to finding the maximum /..., such that the corresponding rdt&*(D) can also be
achieved by the BC phase sum-@jel%ri(ki) subject to the first constraint in_(4.3)
and the constraint thathin{1/\;} - min{1/u;} as stated in Lemma 4.2. Since
the maximumz Rm-(ki)lcannot achie\;eRma(D) subject to the above-mentioned
constraints as ZIong as um. > 1/X°% the problem is equivalent to finding the, Vi
to maximizey_ R.;();) such that the resultin R,;()\;) is achievable byz™*(D)
subject to thé constraint thatin{1/\;} is acr:ievable bynin{1/u;} (in addition
to the power constraints). Colnsider the problem of max;ngjﬂma(D) subject to
the constraint thahin{1/x;} > C whereC'is a constant. Note that the maximum
of this problem is ; non-increasing function @fas long as the problem is feasi-
ble andC' < 1/um.. Recall from Property 1 thatin{1/u;} < 1/pf, < 1/X.
Assume that the relay does not use full power Zat optimalitgntthe maximum
achievablez Rm-()\i) and the maximum achievablé"*(D) can be both increased
subject to all the above constraints by appropriately éestngmin{1/4;} (and
thereby increasing the maximum achieval&*(D)) while Iettinzg the relay de-
creasemin{l/)\} accordingly and at the same time use all the remaining pawer t
mcreasemax{l//\ } (and thereby increasing the maximum achlev@é%m( i)

It contradicts the assumption, which infers that the relaystuse fuII power at
optimality.

Proof of Property 3: Define the index = argmin{1/y;}. Recall from the
proof of Property 1 that/u*, < 1/\°. As a resuItZ,Rma(D*) is not the maxi-
mum R™*(D) that can be achieved, which implies that there exi3tsuch that
R™(D®) > R™(D*) and R;-,(D5.) > R;-,(D; ) — ¢ whered is a positive
number. DefinéZ = H,,D,H! + H, D,H. It can be seen thak™*(D) is a
concave function of. If D* is not the optimal solution to the problem of max-
imizing miin{l/ul-} subject to the constraints i _(4]111), there exidStssuch that
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R™(D%) > R™*(D*) andR;-,(D}.) > R;-.(D;_). Then, for any0 < o < 1,
there is aD° such thaD§ = oD}' 4 (1 — «)D3, VI. Moreover, for anyy such that
Ri—r(D:—) B Ri—r(Di—)
R~ (D} ) — R-,(D%.)

<a<l (B.1)

it can be shown thak,;-,(DS) > R;-,(D: ) using the fact thaf?;(D;) is con-
cave with respect t®,,Vi. DenotingZ¢ = H; D{H} + H,, DJHY andZ* =
H,,DsH! +H, DsH!, it can be shown thdDs, Vi lead toZ¢ = aZ + (1 — a)Z*
and thereforeR™*(D°) > aR™* (D) + (1 —«a) R™*(D®) > R™*(D*). Hence, ifD*
does not maximizer;-.(D;-) subject to the constraints in(4111), thén .(D;-)
and R™*(D) can be simultaneously increased. The fact that(D,-) can be in-
creased means thatin{1/y,;} can be increased, which implies that the BC phase
sum-rateZ Rri(Ai) c;an be increased according to Lemma 3.2 in Chapter 3 sub-
ject to the constraint thahin{1/\;} = min{1/y;} as implied by Lemma 4.2.
Given this result, the fact ';ha’fma(D) canzbe simultaneously increased suggests
that R™(B, D) can be increased. This contradicts the fact tatis the opti-
mal solution that maximize&™ (B, D) with D* subject to the related constraints.
Therefore D* must maximizenin{1/x;} subject to[(4.111).

Proof of Property 4: It canZ be seen that the maximum achievighl, subject
to the constraints

R™(D)>R™,  Tr(D;) < P™> Vi (B.2)

is a non-increasing function gt°™. If 1/p7 < 1/uf, according to property 1 of
this theorem and the fact thatp,,, < max{1/u;}, itindicatesthat /u; > 1/u ..
Sincel/pl, > 1/u? and the maximum ;chievab1¢m is a non-increasing function
of R°, there existd such thatl /u; > 1/, and1/ji; = 1/fima > 1/4%,,. Using
1/pima < max{1/p;} from Lemma 3.1 in Chaptéi 3, it infers thati; > 1/, =
1/ fim, at thi; point. Since the maximufy,(D;) cannot achievéir;(ko) in the prob-
lem (4.10), it can be seen thatji; = 1/fim. < 1/A°. In such a case, the optimal
strategy of the relay is to use'\; = 1/jim. < 1/A° Vi, which does not consume
the full power of the relay. Therefore, according to properof this theorem, when
1/fi, = 1/ fima, the R™ (B, D) that can be achieved, specifically**(D), is not the

maximum that?"™ (B, D) can achieve. Moreover, sind¢éi.,, > 1/u% ., it can be
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seen thaiz™*(D*) < R™*(D). As aresultR"™ (B* D*) = R™*(D*) < R™*(D).
Using the above-proved fact th&t**(D) is not the maximum thak™ (B, D) can
achieve, this result obtained under the assumpitjori < 1/, contradicts the as-
sumption thaB* andD* are optimal. Therefore, the assumption thaty < 1/u;

must be invalid.

B.5 Proof of Theorem 4.3

The proof follows the same route as the proof of Theorem 4.2.

Proof of Property 1: As there exists ng which satisfies the constraints in
(4.20), it can be seen that R.i()\;) cannot achieve?™ (D) subject to the con-
straint\; = p?, which is nzecessary as stated in Lemma 4.2. Therefore, #as n
essary that /p, < 1/p2,.. Given thatl/uf, < 1/u2,, it can be shown that the
resulting R™ (B, D) is not maximized ifl /u%, < min{1/u;}. Therefore, it is
necessary that/;: . > min{1/u!}. Z

Proof of properties 2i3 from Section B.4 can be applied hitez we substitute
all \° therein tou® . Proof of property 4 of Theorem 4.2 can be directly applied

here.
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Appendix C
Proofs for Chapter

C.1 Proofof Lemmab.1

It is proved that the functiotbg|T + AX~!| is convex inX given thatA is PSD
[83]. Moreover, strong convexity holds £ > 0. Therefore, the optimal solution
can be characterized using the Karush-Kuhn-Tucker (KKTgawons [90].

The Lagrangian of (5.6a) can be written as

L(X, A, Z) = log|A + X| — log |X| + A(TH{X} — 1) - Tr{XZ}  (C.1)

in which A andZ are the Lagrange multipliers associated with (5.6b) an@dj5.

respectively. The KKT optimality conditions for the probig5.6) are then given

as
Tr{X} <1, X =0, A>0, (C.2)
Z =0, A\Tr{X -1} =0, Tr{XZ} =0, (C.3)
(X+A) T-XT+AI-Z"=0. (C.4)

It is not difficult to see thaX > 0 and T{ X} = 1 at optimality. Given thaX > 0
andZ > 0 at optimality, the condition RriXZ} = 0 indicates thaZ = 0. Then
(C.4) becomes

(X+A)T=X"T-)I (C.5)

which further indicates that
X+A=X"1T-A)" (C.6)
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Using the matrix inversion lemma[91], the right-hand sil@®6) is equivalent to
X + X(I—AX)'AX. (C.7)
Then [C.6) can be written as
A=X\'T-X)'X. (C.8)

Denoting the EVD ofX asX = UxAxUY, the expressior (C.8) can be rewritten
as

UYAUx = Ax(A'T— Ax) 'Ax. (C.9)
Defining A; = U AUy, and using the fact thai!! AUx and A share the same
eigen values, it can be found th&t contains the eigenvalues Af. SinceU! AUy
gives the matrix of eigenvalues &f, it must hold thalUy = U,. Therefore, using

Ux = U,, we obtain that
Ax = Ax(A'T— Ax) 'Ax (C.10)
which gives (recall thaA > 0 andX > 0 at optimality)
AxA'Ax = AT — Ax. (C.11)
Finally, the following equation
A: + ApAx = N 1A, (C.12)

holds, which leads td (5.7).

C.2 Proofof Lemmabs.2

If B is positive definite, the following matrix

Tz MNz—Tz

B=B+ " lo 0 ] (C.13)

ne—r, | 0 0%l
and its inversé3~! are also positive definite. Given thBtis positive definite, it
can be seen that the two blocks on the diagonaBadre both positive definite.
Then, using block matrix inversion [92], it follows that tfiest block of B~ is
(B11 — Bia(0?I + Byy) " 'By;) 7!, which is the inverse of3. Given thatB—! is
positive definite, the first block d8~, i.e., the inverse B must also be positive

definite. ThereforeB is also positive definite. This proves Lemma 5.2.
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C.3 Proof of Theorem 5.1

Using the definitiond (519)_(5.10), arid (5.13), the objexfunction in [5.4) can be
rewritten as

R = 1og}1 +B(6,Q,00 + 021)—1‘

=log|I+ Q'BQ(Q, + 02Q, Q1)

+ o1t +H 577! / +-1y+-—H -
ogrs [ 0] [Bu Buf[r" o Q, 0], o[e; e o
0 I Boy Bl 0 1 0 0 0 1

= log|I + jSlBHQZ;H Q; "B {(Q; +o2r ' o }
B21Q:7H By, 0 %I
1+ 'BuQf "I Lo By,
- Z ] T4 C.14
- [ BuQ "I I+4Bs (C.14)

where in the last step 2 Q, + 02Q; ' ™.
Since the matrixH, Q,H! is positive definite B, and consequentli3;; and

B,,, are all positive-definite. The raf®’ in (C.14) can be simplified as
R =R+ R’ (C.15)

where

1
R® =log|I + FB22 (C.16)

is the part of rate that is not affected by jamming which is-zero ifr, < n, and

R =log[l+ 9 "By NI - L0 B+ 5By 1By I
’ 7 (C.17)
is the part of the rate that is affected by jamming. Thereftre minimization of
R’ in (5.32) is equivalent to minimizing’. Using the definition oB in (5.9), R’
can be rewritten as

R =logll+Q 'BQ Q. + o2 ' (C.18)

Using Lemma 5.2, it can be seen tHatis positive definite wherB is positive

definite. Then, Lemma 5.1 can be used to find s@hthat minimizes[(C.18)
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subject to the trace constraint{ly,} < P,. Using [5.7), the definitiom 2
Q;7'BQ,; ", and the EVDA = U;A;UY, the Q, that minimizes[(C18), or
equivalently[(C.1I7), subject to JQ.} < P, can be found as

1 1 11 _
Q. = U;U/XAA + ZAQAUg —QF 1(513 +on)Qf ! (C.19)

under the condition that the abo®@® is PSD. Here\ is chosen such that 7Q.} =
P,.

C.4 Proof of Theorem 5.2

The proof of Theorem 5.2 follows the same route as the prodihaiorem 5.1 in
Sectior C.4 till the expressioh (C]18). Then, using (5.118),R’ in (C.I8) can be

rewritten as

R = 1og’I+A(Q;+a2QZ+*19j*H)*1

— ]
08 0 0

At 0 Ul , -
OA O:|(|:Uﬁ1:|QZ[UA1 UAz])
A2

—1
I+ { Ak 0} {UEQ'ZUM UI§1QIZIUA2]
A

AL 07U T .,
I+ [ Ug, UAM[ A HUﬁl}Qé’l
A2

= log|I+

0 O U,,Q/Uz, UL, Q)Ug,

AL 0 F;' Fy,
F,, F,!

(C.20)

whereQ” £ Q. + o2 '+ " in the second step. The result on block matrix

inversion is used in the last step [92], in which

F, 2T (C.21)
with F} andF? given by
F% - U§1QIZ,UAz(U§2QIZ,UA2)_1U§2Q/ZIUA1 (C.23)
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and

Fi, £ —(U5,Q/U;,) UL, Q/U4,Fy ! (C.24)
Fy £ —(U},Q/U;,) 'UL QU Fi! (C.25)
F2 = ngle/UAQ - ngle/UAl (Unglz/UAl)ilUnglz/UA2 (C26)
Recalling the optimization problerh (5.6), it can be seemfithe last step of
(C.20) thatR’ is not minimized if the trace dF, can be increased under the jam-
mer’s power constraint. Therefore, a necessary condibominimizing [C.20) is
that the trace oF, is maximized given the trace constraint@f.
Considering the fact that TUS Q;Ujz, } < Tr{Q/} and thaff'} is PSD, max-

imizing Tr{F; } requires tha@)” must have the following form
Q) = Ug,D,UY, (C.27)

in which Dy is arz x rz PSD matrix to be determined. The matiix, should
satisfy the constraint D} < P, + o2Tr{Q, ' "},

Using [C.27),F? is 0 andF, in (C.21) is equal td_!. Consequently[{C.20)
can be rewritten as

R’ =log

+1-1
I+ALD;

. (C.28)

Therefore, the matriQ” in (C.21) corresponds to spreading the power (including
jamming power and noise power) on the eigen-channels gonekng to the pos-
itive eigenvalues ofA. Indeed, ‘spilling’ power on the null space &f cannot be
optimal.

Using the result from Lemma 5.1, the optinia| is given as

1 1 .9 1
— + + +
D, _\/XAAJ“ZAA _QAA’ (C.29)
Accordingly, the optimal)’ is given as

1 1 1 T
Q,=Us\ [y A5+ AL UK, — 5UadLUR, - o° ') (C.30)

if the aboveQ' is positive semi-definite (PSD), whekare chosen such that{lQ’, } =
P,.
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C.5 Proofof Lemmabs.3

The four-step procedure in Talile 5.1 uses the sequenteigric convex approxi-
mation method [93]. The convergence of this method to ogtiyna proved in [93]
assuming that the convex relaxations (in our case, thehagiu side of(5.22b)) are
“convex upper estimate functions” of the righthand sidehaf original nonconvex
constraints (in our case, the righthand sidd_of (5.21b)grétore, it is sufficient to

prove that

log Q;+D0+A) < log

Q[ +Dy+ A +Tr{(Q]+ Do+ A) Q)
Tr{(Q}+Dot+A) Q) (C31)

for all Q. and Q'] which are positive definite and satisfy (5.21c), and that the
righthand-side ofl{(C.31) is convex and continuously déferable with respect to
Q. givenQ’!. Itis not difficult to see that the latter condition is sagsfi Thus, we
only need to prove the first point. Using Taylor expansionait be shown that the
righthand-side of (C.31) is the tangent of the functfd®’) = log}Q’z + Dy + A‘
atQ, = Q! [94]. Recalling the fact that the functio Q) = log| Q. + D + A’

is strictly concave whe®, > 0, it can be seen thdt (C31) is satisfied for all valid

Q, andQ’].
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C.6 Proof of Theorem 5.3

First, the following train of equalities holds true and lsdd the simplified expres-

sion for>" w; RS in (5.35)

ZwiRiC:Zwilog(l—l—(l‘i‘gi) (9Z1|hzz\2(z J4 o) e Z)_l)

Z, - j#i 1
:;wilog<1 (1+6)? (\ h thal (P = &47) + g o )_>
:;wilog(1+(1+€z) (%(P &) + 9 z)_l)
:;wilog(l%—(l‘Ffz)Q(% & gj)l)
:Zwilog<1+(1+€i)2(% & +Pi)_1) (€32)

wherep;, £ 02/g;. The second row i (C.32) uses the fact that the jammer uses

full power, i.e.,§§ZqZ-V + 02 = P,. It can be seen thay; is the ratio of the
maximum jamminé power and the power that is required to cetept cancel
the signal from theth transmitter. Therefore, the range &fto be considered is

& € [-min{1, /7%:}, 0]. We prove the theorem by showing that the Hessian matrix
of }° w; RS is PSD with respect tg; in the above interval for all.

Denotevy; £ v; — €2 + pi + (1 + &) anduyy = 45 — €2 + p;. ThenZ w; RS =
Z w; (logv — loguis). The first-order and seconder-order derlvatlvegyfu R

Wlth respect tcf; are given «’ﬂs

- ! 2w; 2w
! = CE—— C.33
9&; Vi1 Vjo ( )
2 pC
a§i2 B Uz'zl Vs2 Ui22
2w;
= 2w2 ( Vi1 Vig + 251 i1~ 2"%‘22)- (C.34)
Vi1Vi2

A constant multiplierl / In 2 is neglected.
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Defineg; = v; + p;. Thenv, = ¢; — £2 and [C.34) can be rewritten as

= %((@—8)@%—2(@ £2)) + 267 ﬂ) (C.35)
i1 Y42

Denotel; £ (¢;—&2) (vh —2(¢;—&7)) +282v. Using the fact thaty; = ¢;+2¢,+1,

l; can be expressed as
L = (¢i— 512)(@2 + 4@2 +14+40:& + 20 + 48 — 2(9; — & )) + 251 il
= (¢ — &) (68 +4& +4:& + &7 + 1) + 2807 (C.36)

Moreover, using the fact thaf, = (vi2 + (1 + &;)?)?, the last item in the above

equation can be expanded as

gz il = gz UZZ + 4{ (1 + 5@) Vig + 25 (]- + 5@) (C37)

Substituting[(C.37) back into the expressipfC.36) and using the fact thap, =

¢; — &2, we obtain

l;

@»—3)0%3+4&+4@&+¢€+1+2$0m—f%%¢£ﬂ1+&f>%42ﬂ1+&f
&7) (28] +86) + 1087 +4&4 20,8 +4¢i&i+ 97 +1) +267 (14&)*

= ( (L4 &) — 287 — 4& + 20,67 + 4i& + &7 — 1) + 262 (1+&)"

21+ E)* 26— )(E+ 1P+ (6 1)2) L2146

ﬂ(@-—@)((( pe e O >+(¢’“”2>+2£E<1+@>4 (c:38)

2 4
Substituting[{C.38) back int6 (C.B5), we have
32ZwiRiC o L
Zagzz = fng( (¢i— £<)<((1+£Z-)2+¢22 1> +(¢Z41) >+2§§(1+&)4)-

(C.39)

Since¢; = 7; + p;, it can be seen that the above second order derivative iyalwa

non-negative if-min (,/7;,1) < & < 0. Itis also not difficult to see that
=0 Vj#4,Vi. (C.40)
afiafj
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Therefore, the Hessian matrix f w; kY with respect tc;’s is diagonal and PSD.

This completes the proof for Theorem 5.3.
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Appendix D
Proofs for Chapter

D.1 Proof of Theorem 6.1

First we prove the necessity 6f (6.5). The expectation di)(@ith respect ta; can

be found as
b2
E. th,t == “ t; dt
(it 1)) !U%+b?i<1_tj)f(j> j
+ tz’/’fj(tj)f(tj)dtj (D.1)
S;
where
bl b2
. t — A2 o 1 . D.2
ills) (o%+b;itj a§+b§i<l—tj>) -2

In order to satisfy[(6]3) in this game, it is necessary that

/t . k(L) fi(t;) dt; = 0. (D.3)

A

Sincex;(t;) is a decreasing function of on [0, 1] with

() <0 L R0 (D.4)
%< 2012 %> : P
b3 o tby b o2

there is no strategyj;(¢,) that satisfied (DI3) if(615) is not satisfied. It can be shown
that there exists only one MSNE which is actually a pure sgpatNash equilibrium
(NE) if (6.5) is not satisfied.

Now we prove the sufficiency of (68.5). [f(6.5) is satisfied tmeri, then there
exists a point) € (0,1) such thats;(t}) = 0 ands;(t;) > 0,Vt; < t9; r;(t;) <
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0,vt; > t3. It can be proved that for any giver) > 0 ande; > 0 such that

S; = [t9 — €, t9 + €3] C [0, 1], there exists at least one distributigyit;) defined

onS; which satisfies

[ Rt dty =0, (D5)

JES;
In this case,[(DJ1) can be rewritten as

o {u(t t)} = /02+b2 ey ) 06)

which satisfies[(6]3) for user Moreover, condition[(6]4) is inherently satisfied if
user;j usesf;(t;) becausé, {u;(t;, t;)} does not depend of)(¢;) on [0,1]. Since
there are infinitely many dlfferena‘j and ej, which satlsfyej > 0, e? > (0 and

1Y — e, t9 + 2] C [0, 1], there must be infinitely many distributioris(t;) which
satisfy [0.5). Denote the set of all sug(¢;) asAy,. Since it is the same case for
userj, it can be concluded thak;, and A/, both have infinitely many elements
if (6.5) is satisfied. Moreover, any strategy profllé (¢1), f(t2)} that satisfies
fi(t1) € Ay, and fy(ty) € Ay, constitutes an MSNE. Therefore, the game has

infinitely many MSNE upon the satisfaction 6f (6.5).

D.2 Proof of Theorem 6.2

Assume that the most efficient MSNE{ig, (¢,), f2(t,)} and the support of;(t;) is

S;. From Theorem 6.1, it can be seen tfidt;) is the distribution which maximizes

ft cs, k;(t;) f(t;) dt; among all distributions subject to (I.3), where
b2

T o3+ b?;(ll — 1)

is a strictly convex and increasing function on [0,1]. Denwl(t;) = «;(t;) +

k;(t;), then

Ry (t5) (D.7)

1
bii

Rills) = o2 + bt
ji

andr;(t;) is a strictly convex and decreasing function on [0,1]. THEr8) can be

(D.8)

rewritten as

/t_es i(t) f3(t;) dt; —/ Ri(t5) £ (t;) dt. (D.9)

t;€S;
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Therefore, among all distributions the distributifyt,) maximizesfsj R;(t;) f(t;)de;
andfsj r;(t;) f(t;) dt; simultaneously subject to the condition

/t_es (L) fi(t;) dt; —/ k() f5(t5) dt;. (D.10)

t;€S;
First, we prove thatS; C {0,1},Vi. Assume that there exist'§ such that0 <
t; < 1,t; € S; and f;(t;) defined onS; maximizes s ;(t;)f(t;) dt; among all
possiblef;(t;) and satisfieg (D.10). Since both(t,;) andx;(¢;) are strictly convex,

we can write that

| st < [ b
t;€S; t; ESj/{tj}

(= )5 E)R50) + € f5 ()i (1) (0.11)
| b, </~ () ) dt
t;€S8; ;€85 /{t;}

(1= ) J(E)R5(0) + € F5(E) )y (1). (0.12)

The above inequalities imply that both the left-hand side #e right-hand side
of (D.10) can be increased by settigfgt;) = 0 and transferring the probability
densitieq1 — ) it )andt fJ( )tot; = 0andt; = 1, respectively. Let € [0, 1]
and denote the increases on the left-hand sidés of (D.11((ald) via transferring
the probability densitiegl — ¢) f;(t i) andtf]( )tot; = 0 andt; = 1 asd;(t) and
5;(t), respectively. 1;( j) o;(t ), then [D.10) is still satisfied after the above
transferring of probability densities. Note ttigtt;) is strictly increasing and, (¢,)
is strictly decreasing of, 1]. Therefore, ifo;(t i) > &, (¢, ;), then there exist > 0
andi; € [t; — ¢,1;) such that; € (0,t;) andd;(i;) = &;(i;) > 0. Similarly, if
0;(t;) < &;(t)), then there exist’ > 0 andi; € (t,,t; + ¢] such that; € (¢}, 1)
andd;(;) = 6;(f;) > 0. In any of the above three casds, (D.10) can be satisfied
and at the same time both sides [of (D.10) can be increaseds, F}it;) defined
on anyS- that includest’. € (0,1) cannot be the distribution which maximizes
Js, 7i(t;) f(t;) dt; subject to[(D.1D). Therefore; C {0,1}. Itis the same fo;.
Second, assume th@t(t;) = &6(t;) + (1 — &)d(t; — 1) where0 < ¢; < 1.
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Then

. b2 b2
Ri(t) fi(t) dt; = &——0— 4 (1 —&)-2 (D.13)
[ )i =t - 6)
. bl bl
Ri(t) fi(t)dt; =65 + (1 —§&)———. (D.14)
/t;ESj J(J) J( ]) J jO’% ( j)J%—I—b}i

Using the condition(D.10); can be derived as ifi (8.7).

D.3 Proof of Theorem 6.3

DenoteQy = {1,..., N} as the set of all channels and defible= {k € Q|3 €
On # k:vl(k) <v2(D)}. If @) #£ @, the first iteration of Step 2 of the algorithm
deletesd! from A,_, and increases: (k) to b%, /o2, Vk € @Y. In the first iteration
of Step 3, in consequence, the set of channels not satidfyérigequalities; (k) >
v2(1),Vl € Ai—y # k for user 2 can be potentially extendeditp= I+ i, where
®1 denotes the extra set of channels which do not satisfy theedbequalities due
to the deletion ofp{ from A,_; in Step 2. The deletion ob} from A,_, in Step 3
could break the inequalities of (k) > v#(1),Vl € A;—; # k on certain channels
in A;—; (which has been updated in Step 2) and the process potgmgakats as
Step 2 and Step 3 iterate. Dendté, ¢ > 1 as the set of channels which do not
satisfy the aforementioned inequalities for usetue to the deletion 0@3*1 (if
q # 1) or ®9 (if ¢ = 1) from A; in the preceding step. Note thaf = O if CTDEH =
@. According to the definition o) and ®{, it follows that®? = ®! + 2, and
iteratively®? = &7 ' + &9 g =2,4,... ¢™> fori=landg=1,3,...,¢"> +1
fori = 2. Hereq™™ = min (r|r € {0,2,4,..., N}, 3! = 0).

Proof of i) At any iteration of the algorithm, if: € @7, thendp # k € Qy
such thatv2(p) > v2(k). Otherwise there existssuch that! (k) < v2(I) and

v2(1) < v2(k). In consequence, it leads t§(k) > v!(k) which is impossible.

Thus, deleting any: e o7 will not changeiréag vZ(k). Therefore, the result of
checking the inequalities (k) > v2(1),VIl € A; # k for any other channel, i.e. for
k + k, will not be affected. In conclusion, the ordering of chasnis irrelevant to

the result of the algorithm.

Now consider the ordering of users. When the algorithmsteotn user 1, the
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sequences of deletions ab@, &1 +®? &3+ ... ®7 '+ for user 1 and
DY+ L D2+ @3 ... L + &2t for user 2 through all iterations of Step 2
and Step 3, respectively. Hedd ~ + &1 ! = 4™ ! = ¢ according to the
definitions of ®/ and¢™**. In this case, the outputs of the algorithm ag , =
Qv —U,@%,q = 2,4,...,¢™ andA}_, = Qy — U, P4 ¢ = 1,3,...,¢™> + 1.

If the ordering of users is changed or, equivalently, if thgoathm starts from
user 2, the sequences of deletions changet@. + &2, 3 + &4, ... 7 '+

, 7" for user 2 andb? 4+ B!, 2 + 3 ... B + &7 for user 1,
respectively. Hereb? " *!' = @ since®! = @, while 1" = O because
I = 4™ 4 4 = 0. Note that®?, Vi andd?, Vi, Vg keep unchanged

regardless of the ordering of users according to their defivé. The outputs of

= ,max

o5

the algorithm in this case ad? , = Qy — U, P4, ¢ = 2,4,...,¢™> andAZ, =
QN—UqQ)(f, q= 1’ 37 . qmax+1. US|ng the faCtS th@gmaXJrl — @ andi)({max+l _

@, it can be shown that!_, = A2 | = Qy — U= 0% — @9 and AL, =
A2, = Qy — USSP 195 — @Y if g™ > 2 andAL, = A2 | = Qy — &Y and
Al_, = A2, = Qy if g™ = 0. Therefore, the ordering of users is irrelevant.
Proof of ii) According to the algorithm and the definitionof, t? =0,Vk e T,.
In the algorithm ¥ = 0 occurs together with setting’ (k) = bf; /o7 at all times.
Thus,v?(k) = v}(k),Vk € T;. Meanwhile, the inequalities! (k) > v2(1),VI €
A; # k must be satisfied¥k € A, for useri at the output of the algorithm. If
L(T;) > 2, then there exist [ (I # [) such that the inequalities' (1) > v2(I) =
vt (1) andw} (1) > v2(I) = v}(I) are satisfied at the same time, which is impossible.
ThusL(T';) < 1.
Proof of iii) It can be shown that the channel indexes removed g 1 and
A; = 2in Steps 2 and 3 correspond to the channels which must nogofaisuser
1 and useer, respectively, in any MSNE. It can also be shown that one MSNE
which both users end up allocatidg*** on one channel in the outpX; exits, if
L(A;=1) = 1or L(A,—3) = 1. Given the above two facts, it follows that a unique
MSNE exists if L(A;—;) = 1 or L(A;—2) = 1. It proves the sufficiency of the
uniqueness condition of MSNE and the necessity of the ciomdior the existence

of infinitely many MSNE at the same time. Now assume fi{a;) > 1, Vi. Denote
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Li = L(A), T, = Ay(L;) andA; = {A(1),..., A(Li—1)}. ThenE, {us(ti, t;)}

at the output of the algorithm, denoted/ag {u; }, can be written as

R T
Et]{ui}{ b A (t,)d
N\ e sofe

. 3 I ~
J keA7

by
{E t’?L’“fj(tj)dtj+/ z fi(t;)dt;
) 2 Ti( k<IN J
SEEN Sj 7rikbilC kg-tj)

(D.15)

where( = 1 — Zkerj tf is the total power that userallocates on the channels

represented by the indexesAn and

oo b b (D.16)
o +U5tE oZ +blH((— > thy’
kEAi

In order to satisfy[(619), it is required in this game ttj’gjtzke& thk fi(t5) = 0.
The minimumofy_, & t¥:* asafunction off, vk € A, ismin (tfﬂf,Vk € Ai|t§:1>.
DenoteY = {k|k € A, N A;}, thenY is nonempty given that.(A;) > 1

as assumed, and(I';) < 1 as proved in the proof of statement ii). It can be
shown thatmin ({) #§¢*, Vk € Ajle_y} < 0if ¢§ = 1,k € T sincet*|s_; < 0
andtf > 0,Vk € A;. Moreover, ifT; = A;(L;) € Y, which can always be
satisfied since the elements Af can be ordered in any manner with no effect
on anything else, then it holds thBtn: v, th* > 0,k € A, It follows
that the sets\; = {t;|t = 0,Vk ¢ Aj,ZkeAj th = 1l,and) 5 th" < 0}
andA? = {t;|t} = 0.Vk ¢& A;, 350, 1 = 1;and2k€& th* > 0} are both
nonempty. Then similar to the proof for Theorem 6.1, it cast@vn that there ex-
ist infinitely many f;(t;), each of which satisfief; >, 5, 4" ;(t;) = 0. More-
over, similar to the proof for Theorem 6.1, condition (6.10)nherently satisfied
upon the satisfaction of (6.9).
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