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Abstract

Many Wireless Sensor Network (WSN) applications require sensor nodes to be de-

ployed over a remote area to collect data from the surrounding environment and

communicate it to far Base Stations or Access Points (BSs/APs). The limited power

and hardware capabilities of individual sensor nodes prevent direct transmission to

far away destinations. However, the inherent high density deployment of sensor

nodes can be exploited to increase the transmission range. Collaborative Beamform-

ing (CB) has been introduced in WSNs context as a power-efficient communication

scheme that increases the transmission range using a cluster of sensor nodes. How-

ever, CB inherits some challenges from the distributed nature of WSNs. Namely,

the randomness of sensor node locations and the need for distributed schemes. The

randomness of sensor node locations results in different beampatterns for different

network realizations.

In this thesis, we first study the average behavior of CB for a given spatial

distribution of sensor nodes. Gaussian Probability Density Function (pdf) is used

to model the spatial distribution of sensor nodes in a cluster of WSN. It is shown

that Gaussian pdf is more suitable in many WSN applications than, for example,

uniform pdf which is commonly used for flat ad-hoc networks. The average CB

beampattern and its characteristics are derived using the theory of random arrays.

The distribution function of the beampattern level in the sidelobe region and the

upper bound on the outage probability of sidelobes are found and compared with the

corresponding characteristics resulting from uniform distributed sensor nodes. For

any particular realization of sensor node locations, the mainlobe of the beampattern

matches precisely the mainlobe of the average beampattern. Therefore, the mainlobe

behavior can be considered to be deterministic. This suggests that the average

beampattern characteristics are suitable for describing the mainlobe of a sample



beampattern. However, the CB beampattern is still random in the sidelobe region

and severely depends on the particular sensor node locations.

In the case of WSN with multiple BSs/APs, high level sidelobes can cause unac-

ceptable interference to unintended BSs/APs. By controlling the power level in the

sidelobe region and limiting the interference to unintended BSs/APs, the network

capacity can be increased if Space Division Multiple Access (SDMA) is employed.

To apply traditional sidelobe control techniques in the context of WSNs, a cen-

tral processing node or a BS/AP has to collect the nodes location information and

Channel State Information (CSI) from all sensor nodes. Then it can design the

beamforming weights and communicate them back to the collaborative nodes for

the beamforming step. However, this is impractical for distributed sensor nodes es-

pecially for a densely populated WSN because the overhead needed to communicate

with each node individually grows unacceptably high. Therefore, we propose a node

selection scheme for CB sidelobe control which aims at minimizing the interference

at unintended BSs/APs. A selection algorithm with low implementation complex-

ity and low feedback is developed to search over different sensor node combinations.

If in random network coding, the inherent randomness of the channels is used, out

algorithm is based on both the use of the randomness of the channels and a low feed-

back that approves/rejects tested random node combinations. The performance of

the proposed algorithm is analyzed in terms of the average number of trials and the

achieved interference suppression. Simulation results match the analytical approx-

imations and show the effectiveness of node selection for controlling the sidelobes

and limiting the interference.

Finally, we study the energy consumption behavior in WSNs and aim at opti-

mizing it through the CB with power control. Since the transmission is the major

energy consuming task in sensor nodes, it is important to study the effect of CB with

power control on the energy consumption of WSNs. When CB distributes the en-

ergy consumption among the collaborative sensor nodes, it has to take into account

that the energy at each sensor node is not the same. Indeed, different sensor nodes

may perform different tasks and not equally frequently. Clearly the assignment of

different CB weight powers will result in changing the individual sensor nodes’ life-

times. Thus, we propose a distributed algorithm for CB with power control that is

based on the Residual Energy Information (REI) at each sensor node while achiev-

ing the required average SNR at the BS/AP. The resulting power control have low



computational complexity and maximizes the network lifetime. The effectiveness of

the proposed CB with power control algorithm is illustrated by simulations.
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Chapter 1

Introduction

1.1 Thesis Overview

Wireless Sensor Networks (WSNs) technology is a promising technology that at-

tracted considerable research attention in recent years [1]–[4]. The low-cost of sen-

sor nodes and flexible deployment of WSNs allow for new applications that were

expensive or not realistic in the past [5]. Moreover, unlike traditional sensors,

modern wireless sensor nodes have sensing, processing, and wireless transmitting

capabilities, and thus are able to perform more than just sensing function of the

surrounding environment [6]. Raw data can be pre-processed, compressed, or fused

at sensor nodes or central point before data is transmitted to the destination [7], [8]

and thus, the transmission energy consumption and system response time can be

reduced [9]. Sensor nodes’ cheap price and self-configuring ability allow for dense

deployment that can increase the accuracy of the collected data and increase the

fault tolerance [10], [11].

However, the distributed nature of WSNs along with the limited resources avail-

able at sensor nodes introduce new challenges to the communication system de-

sign [12]. Existing communication schemes are not specifically designed to meet the

WSN requirements or consider its constraints and can not be directly applied to

WSNs [13]. One major constraint in WSNs is the short transmission range of indi-

vidual sensor nodes resulting from its limited energy and hardware simplicity [12].

A recent solution to this problem is to apply Collaborative Beamforming (CB) in

the context of WSNs to achieve directional transmission and distribute power con-

sumption over a group of sensor nodes. Since each sensor node is equipped with

single omni-directional antenna, sensor nodes coordinate their transmissions and act

collaboratively as an antenna array. Given that sensor nodes are able to share data

1



and synchronize their carrier’s phase and frequency, the data can be transmitted

coherently.

Unlike traditional antenna arrays with predetermined geometry, the deployment

of sensor nodes in WSNs is ad-hoc and results in randomly located sensor nodes.

Thus, the beampatten of such random array of sensor nodes is random and changes

for each realization of sensor nodes’ locations. The CB beampatten behavior is stud-

ied and its performance for data transmission is proved to be reliable [14], [15]. The

focus of this thesis is on studying the behavior of the CB beampattern and determin-

ing its reliability for achieving direct link transmissions in WSNs. First, we study

the effects of spatial distribution of sensor nodes on the beampattern characteristics.

We compare the beampattern characteristics for two different spatial distributions

of sensor node locations, namely, the uniform and Gaussian spatial distributions.

The influence of spatial distribution parameters such as cluster area and number of

sensor nodes is analyzed which is useful for designing good deployment strategies.

It is shown that both the uniform and Gaussian sensor node deployments behave

qualitatively in a similar way in terms of the beamwidths and sidelobe levels of

average beampattern, while the Gaussian deployment gives wider mainlobe and has

lower chance of large sidelobes. We go one step further and propose a method to

control, up to a certain extend, the randomness of the CB beampattern at unin-

tended directions of the sidelobe region. The improvement of the CB performance

due to beampattern control is studied in terms of the data rate increase. The energy

consumption is considered afterwards and a CB weight design algorithm is proposed

to extend the WSN lifetime. Since sensor nodes are responsible for different tasks

such as sensing, data pre-processing, and communication, the energy consumption

is not the same at individual sensor nodes and the remaining energy at each sensor

node is different. The argument is that the transmission hardware at sensor nodes

is the most energy consuming part. Thus, good choice of CB weight amplitudes at

sensor nodes can extent overall WSN lifetime.

1.2 Wireless Sensor Networks

In this chapter, we introduce the WSNs and discuss the specific scenarios for im-

plementing WSNs. The requirements and constraints for data communication in

WSNs are reviewed. We give a brief background on the theory of random arrays

and presents its main results. Afterwards, the motivation and the contributions of
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our research are stated. Finally, we give the outline of the thesis.

1.2.1 Definition and Tasks of WSNs

In the recent years, WSNs technology is becoming a practical technology and a num-

ber of its potential applications is growing rapidly. Moreover, the cost of deploying

large-scale networks decreases rapidly due to the advances in different engineering

areas [16]–[19]. WSNs consist of a potentially large number of sensor nodes that are

deployed over an area of interest and connected to each other through wireless links.

Sensor nodes are capable of collecting data from the surrounding environment and

communicating the collected data to a central point for further processing or decision

making. Sensor node has at least four basic components: sensing unit, processor,

Radio Frequency (RF) transceiver, and energy source (battery). Different types of

sensors can be used in sensor nodes such as mechanical, thermal, biological, chemical,

optical, magnetic, visual, and infrared sensors [20]. Advances in different engineering

fields had directly affected the practicality of WSNs. Development of System-on-

Chip (SoC) and Micro-Electro-Mechanical-Systems (MEMSs) technologies provide

small-size, low-power, and low-complexity nodes with sensing, computation, and

communication capabilities at reasonable price [17]. Also, in the Digital Signal

Processing (DSP) area, many algorithms have been proposed to match distributed

applications, and the computations are optimized for low-complexity hardware [21]–

[24]. Collaborative signal processing algorithms that have been developed for WSNs

include time synchronization [25]–[27], localization [28], [29], target tracking [30],

[31], and distributed source coding [32], [33]. Moreover, RF circuits and wireless

standards, such as ZigBee [34], are introduced for low-power communications over

short distances as the demand for new applications grows [35].

1.2.2 Applications of WSNs

WSNs opened the door to many potential applications where different tasks can be

performed with the collected data, such as object tracking, classification, parameter

estimation, etc. [36]–[39]. While it is difficult to list all WSNs applications, some

applications are briefly overviewed here:

• Environmental Applications: WSNs are used to detect natural disasters

such as landslide [40], forest fires [41], [42], floods [43], or hurricanes [44]. Also,

it allows to monitor various parameters such as temperature, pressure, or air
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quality [45]. Additionally, WSNs can be used to collect data for scientific re-

search. For instance, in the SensorScope project [46], a WSN is deployed in a

harsh mountain environment to study the requirements of the environmental

monitoring. Other WSN projects are reported in [47] for measuring temper-

ature, light, and soil moisture for environmental monitoring in greenhouses,

and in [48] for measuring the soil moisture changes due to rainfall.

• Industrial Applications: WSNs are used for real-time data acquisition and

control in industrial applications [6], [49]–[52]. Wireless sensor nodes are re-

placing the traditional wired sensors due to its flexible configuration [53] and

are deployed to measure temperature, pressure, impedance, or other quanti-

ties [54]. Different tasks have to be performed in the industrial applications

such as surveillance [55], automation [56], and equipment faults detection [57].

• Military and Security Applications: Sensor nodes can be scattered in a

battlefield to gather information about enemy movements or detect the occur-

rence of events of interest such as nuclear, biological or chemical attacks. Ex-

amples for military and security applications includes intrusion detection [58],

video surveillance [59], [60], boarder monitoring [61], and fire rescue [62].

• Health Applications: Health care systems use sensor nodes to monitor vital

signs such as temperature, pulse rate, respiration rate, and blood pressure for

patients and seniors in real-time [63], [64]. The data can be recorded and used

for diagnostic and treatment purposes.

More applications are being proposed with the new advances achieved everyday in

the WSN research.

1.2.3 WSNs Design Factors and Challenges

WSNs are used in many applications with different requirements and there is no

single standard design [65]. Selecting design factors like topology, sensor hardware,

wireless technology, energy source, deployment method, and etc. depend signifi-

cantly on a particular application. Knowledge of different challenges related to the

sensor nodes hardware and deployment is important to develop techniques targeting

WSNs. WSN design factors include:

• Scalability: Some applications require very large area coverage and the WSN

could consist of hundreds, thousands, or even millions of sensor nodes. The
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sensor nodes density varies depending on the required amount and quality of

measurements, the phenomenon field to be monitored, and the deployment

strategy. In some situations, it is required to deploy more sensor nodes to im-

prove the network functionality in terms of improving the network connectivity

or even to replacing dead sensor nodes.

• Power Efficiency: Sensor nodes are required to operate with low power

to extend the battery lifetime, and hence the overall WSN lifetime [66]–[68].

The same requirement applies for sensor nodes powered by energy-harvesting

because of the limited energy generated from the surrounding environment.

Power-aware protocols and algorithms are the most important requirements

for WSNs.

• Sensor Node Hardware: The cost of individual sensor node determines the

total cost of the WSN. It is critical to reduce the sensor node price and make

the WSN financially feasible [17], [69]. Manufacturing cheap sensor nodes

require using low-complexity hardware. Moreover, the size of sensor nodes

hardware must be small to facilitate easier and flexible deployment. Depending

on the application, some extra components can be added to achieve certain

requirements for the application, such as a positioning and location-aware unit

or a mobilizer.

• Wireless Technology: Wireless standards commonly used in WSN are 802.15.4

and ZigBee [34], [70], [71]. Sensor nodes RF circuits enable short distance

wireless communication with low power consumption and can usually achieve

a data rate up to hundreds of Kbps [72].

• Topology: Once deployed, sensor nodes are unattended therefor, the WSN

should be self-organizing. Sensor nodes have cooperate while the topology of

the network changes dynamically due to failure of sensor nodes or deployment

of new sensor nodes. Sensor nodes can be stationary, which is the most com-

mon case, or mobile. In the latter case, sensor nodes are able to move and

re-position according to the physical phenomena they monitor [35]. On the

other side, WSNs can consist of few sensor nodes that are deployed at specific

locations with fixed topology.
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• Deployment: Sensor nodes are typically deployed very close the monitored

phenomenon. Deployment can be done in ad-hoc fashion or in terms of one by

one placement in a predetermined locations. Ad hoc deployment is used when

WSN has a large number of sensor nodes which are deployed in mass by, for

example, dropping them from a plane in the area to be monitored. When the

WSN has few sensor nodes in an easy to access place, one by one placement by

a human or a robot can be used. Dense deployment of sensor nodes improves

the data accuracy/reliablity and increase the WSN robustness against sensor

nodes failure.

• Distributed: WSNs are infrastructure-free networks with all processing and

communication tasks being distributed. Moreover, distributed processing and

communication is suitable for the limited resources and simple hardware typ-

ical for such sensor nodes.

• Data Collection: Sensor nodes communicate the collected data to a central

point or data fusion center that can be fixed or mobile depending on the

application scenario. Moreover, sensor nodes can process the collected data

before transmitting to the central data destination. The processing can be

performed locally at each sensor node or cooperatively among different sensor

nodes in WSN.

• Fault Tolerance: Protocols, schemes, and algorithms designed for WSNs

should be fault tolerant to sustain the functionality of the network [11]. Indeed,

sensor nodes can stop working because of physical damage or energy depletion.

However, the overall performance of WSN should not depend on the failure of

individual sensor nodes.

• Maintenance: In most of WSNs applications, sensor nodes are deployed

in difficult-to-access locations and they are left unattended after deployment.

WSN maintenance is performed by deploying new sensor nodes to replace dead

sensor nodes, sustain connectivity, or improve network coverage.

It is essential to determine the appropriate assumptions, deployment scenario, and

design factors before designing protocols, algorithms, or schemes for WSNs.
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1.3 Scenario of Interest

In this thesis, we focus on the scenario where sensor nodes are deployed in an ad-

hoc fashion over large and remote area to collect information form the surrounding

neighborhood. Sensor nodes transmit the collected data to a far Base Stations or

Access Points (BSs/APs) which are located far away and out of the transmission

range of individual senor nodes. In some applications, the collected data are re-

dundant and sensor nodes refine them locally before transmitting the data to the

BSs/APs. In other applications, the sensor nodes remain inactive most of the time

and activate when certain event is detected. On either case, the traffic has low-rate

and burst nature. In such scenario, sensor nodes are usually deployed at the ground

level, thus, the channel path loss for individual node is high and the slow rate shad-

owing is the dominant factor in the channel variations. The aforementioned scenario

is found in applications like environmental and habitat monitoring [65], [73], [74].

Challenges for data communication in such scenario are quite different from the tra-

ditional wireless ad-hoc networks [18]. The main constraints are the sensor node’s

limited resources and the ad-hoc deployment. In order to keep the production cost

of the sensor node reasonable, sensor nodes used for this kind of applications are re-

quired to be small size with very simple hardware. Therefore, all proposed methods

should be distributed or at least semi-distributed and be charachterized by mini-

mum possible computational complexity. Each sensor node is equipped with one

omnidirectional antenna and transmission is performed in half-duplex mode. The

WSN is densely deployed to capture more data and improve the reliability of the

network. Communication schemes designed for WSNs should be scalable, because

the size of the network can vary from hundreds to millions of sensor nodes. The

network topology is dynamic because of possible failure of sensor nodes or due to

deployment of new sensor nodes. For achieving robust WSN operation, it is desired

that the WSN performance does not depend on individual sensor nodes. Energy in

sensor nodes can be supplied from batteries or energy harvesting devices [75]–[77].

In the case of battery-powered sensor nodes, the battery often cannot be replaced,

thus, the sensor node lifetime is limited by the battery lifetime and the available

battery technology results in bulky batteries. Energy harvesting is currently devel-

oped as alternative solution to power sensor nodes by equipping them with a device

capable to convert one form of surrounding energy into electric energy. Electric
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energy is typically obtained from:

• Solar energy: Photovoltaic cells are know in many other applications and

are well established. It is based on the photovoltaic effect where incoming

photons are converted into electricity.

• Motion and Vibration: This method is based on the electrostatic, piezo-

electric, or electromagnetic transduction to convert motion or vibration into

voltage.

• RF Energy: In this case, sensor node extract RF energy radiated from wire-

less networks like GSM, WLAN, or TV station.

• Temperature Differences: This method is based on the fact that a junction

of two different conductors at different temperatures generates a voltage.

However, with the current technology, the price of the harvesting device is high and

will increase the total cost of the sensor node. Moreover, the energy generated by

energy harvesting is low and still remains to be a limited resource. In both cases of

using battery or energy harvesting, the energy consumption of sensor nodes should

be minimized as much as possible to prolong the overall network lifetime.

1.4 Data Transmission in WSNs

Sensor nodes are deployed close to the phenomena monitored and the collected

data are sent to a central station. Long-distance Direct Transmission (DT) to the

BSs/APs is expensive in terms of energy consumption and the transmitted signal

decay dramatically because of deployment on the ground and short antenna heights.

Moreover, RF transceiver circuit is the main energy consuming part in the sensor

node, and long-distance transmission is not feasible with the available technology.

It is critical to design alternative communication schemes which would be still prac-

tical for WSNs. By practical, we specifically mean, energy-efficient, low-complex,

distributed, scalable. Low complexity and high energy-efficiency are the most criti-

cal constraints in designing communication protocols and physical layer techniques.

Data transmission in WSNs is addressed at the media access and network layers,

through multi-hop relay transmission, or at the physical layer, through directional

coherent transmission.
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1.4.1 Multi-hop Relay Transmission

The energy consumed in data transmission increases for long distance transmission.

On the same time, WSN is characterized by the high density deployment of sensor

nodes. Therefore, it is natural to use short distance transmissions between neigh-

boring sensor nodes to relay data from the source sensor node to the destination.

In multi-hop relay transmission, sensor nodes broadcast the data only to the sensor

nodes in its coverage area and data is routed through different relays from the source

to the destination. Multi-hop relay communication requires Media Access Control

(MAC) [78] and routing protocols [79], [80]. MAC protocols organize the transmis-

sions from different sensor nodes through the wireless channel. Routing protocols are

designed to find the shortest path between the source and the destination. Scalabil-

ity and dynamic topology of the WSN is considered in the routing protocols design.

Moreover, energy-aware algorithms are proposed to find the minimum energy route

from the source to the destination.

While multi-hop relay transmission successfully meets the constraints of the

WSNs, the data overhead associated with the MAC and routing protocols reduces

communication spectral efficiency and data throughput [3], [81], [82]. Moreover,

the system performance degrades with increasing the number of sensor nodes [83].

The omnidirectional transmissions cause unnecessary interference to other sensor

nodes and limit the available number of simultaneous transmissions. Additionally,

MAC and routing protocols for multi-hop relay communication can be impractical

for WSNs which consist of sensor nodes with simple hardware [81]. Indeed, in this

case, sensor nodes close to the data destination are part of most of the routes and,

hence, suffer from energy depletion earlier than other sensor nodes. Finally, multi-

hop relay communication principle can not be used if long distance hop is required

in the transmission path [84], [85], [86].

Hierarchical routing can be used to address some of the aforementioned is-

sues [80], [87]. In this case, the WSN is organized into clusters in a hierarchical

architecture where certain sensor nodes are assigned as cluster heads. Cluster heads

are responsible for coordination among the sensor nodes within the cluster, collecting

data, and communicating the data to the BS/AP. Cluster head assignment/rotation

algorithms are used to balance power consumptions in the sensor nodes. While this

method reduces the multi-hop into two-hop relay transmission, it still assumes long
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distance transmission from the cluster head to the BS/AP.

1.4.2 Coherent Transmission

Another method of data communication in WSNs is using coherent transmission

for increasing the transmission range and achieving directional gain. Moreover, di-

rectional transmission increases the throughput in the wireless networks because it

reduces the unwanted interference and allows for spatial reuse [88]. It is critical

to bring the advantages of directional transmission to the WSNs without adding

extra antennas to the sensor nodes. Sensor nodes are limited to one omnidirectional

antenna to reduce size, hardware complexity, and price. The inherent dense deploy-

ment of sensor nodes has been used to introduce CB for the uplink communication

to a BS/AP [14], [89]. Particularly, sensor nodes are organized into clusters and

sensor nodes from one cluster act collaboratively as distributed antenna array to

form a beam toward the direction(s) of the intended BS(s)/AP(s). Given that sen-

sor nodes are distributed and operate in half-duplex mode, CB is performed in two

stages. In the first stage, the data from source node(s) in a cluster is shared with all

other collaborative nodes, while in the second stage, this data is transmitted by all

sensor nodes simultaneously and coherently. In the latter stage, sensor nodes adjust

the initial phase of their carriers so that the individual signals from different sensor

nodes arrive in phase and constructively add at the intended BS/AP. In this way,

CB is able to increase the area coverage of WSNs and, therefore, can be also viewed

as an alternative scheme to the multi-hop relay communications.

Moreover, as compared to the multi-hop relay communications, CB brings the

following advantages.

(i) For CB, there is no dependency of communication quality on individual nodes

[90]. Thus, the communication link is more reliable than in the multi-hop

relay communication method .

(ii) CB distributes the power consumptions over large number of sensor nodes and

balances the lifetimes of individual nodes [90], [91]. Each node then transmits

with less power than in the case of DT and, therefore, CB prolongs the network

lifetime.

(iii) CB enables to create a direct single-hop uplink to the intended BS(s)/AP(s).

Thus, it reduces the communication delay and data overhead.
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Figure 1.1. CB of a cluster of sensor nodes.
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(iv) CB achieves higher connectivity than that of the omnidirectional transmission

with the same transmit power [92].

(v) CB improves the Signal-to-Noise Ratio (SNR) at the BS/AP and extends

the transmission range of a cluster of sensor nodes. Therefore, it enables to

increase the capacity and the area coverage of WSNs.

(vi) CB is scalable and deployment of more sensor nodes in the network does not

add complexity to the communication part.

(vii) CB concentrates the radiation power in a certain direction and reduces the

power lose in other directions. This helps to introduce security and interference

reduction features.

(viii) CB allows frequency reuse based on Space Division Multiple Access (SDMA)

[93].

From the network layer point of view, CB is similar to hierarchical routing, but with

replacing the omnidirectional transmissions of the cluster head by the directional

transmissions of the cluster sensor nodes. Cluster of sensor nodes is basically a

distributed random arrays which is similar to traditional centralized random array.

1.5 Random Arrays

The literature on random arrays started as early as the 1960’s (see [94]–[98]). An-

tenna arrays are motivated by the need of achieving sidelobe level suppression and

beamwidth reduction. Equally spaced antenna array has a periodic beampattern

with deterministic sidelobes. Grating lobes, which are sidelobes with level equal to

the mainlobe, occur when the element spacing is much greater than a half wave-

length. On the other hand, antenna elements in random arrays are distributed over a

linear [99], planer [100], or spherical [101], [102] aperture with unequal spacing. Ran-

dom antenna arrays produce beampattern with random sidelobes levels lower than

the mainlobe level [99]. Due to flexibility of spacing in random arrays, it provides

more controlled beamwidth and sidelobe levels over equally spaced arrays [103].

Different applications adopted the random antenna arrays for achieving specific

beampattern requirements. Random arrays are used, for example, in Distributed

Array Radar (DAR), where identical coherent transceiver units deployed on the
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ground or over an aircraft or ship [104], [105]. It offers better performance over

traditional radar systems in terms of the target localization accuracy. It also offers

minimum echoes and interference [106], [107]. Moreover, random arrays are used

in coherent MIMO radar [108], distributed space-based radar [109]–[111], multiple

beam satellite applications [112], and ultrawideband transmission [113], [114]. In

addition, ultrasound random arrays have been used to produce beampatter with

very low sidelobe levels for medical diagnostic, therapeutic, and surgical applications

[115], [116].

Different random arrays synthesis techniques are introduced to determine the ar-

ray element positions. Synthesis techniques aims at achieving narrower beamwidths,

sidelobe level suppression [117], null control [118], or minimizing the number of the

antenna elements [102], [119]–[121]. These techniques can be classified into [122]:

• Iterative procedures: Such as genetic algorithms [123]–[125], differential

evolution algorithms [126], simulated annealing [127], [128], particle swarm

optimization [129], and tabu search [99].

• Non-iterative methods: Based on mathematical approaches [102], [130]–

[132], linear programming [133], nonlinear minimax optimization [134].

• Statistical methods : Different methods are proposed to achieve beampat-

tern with certain characteristics sch as lower sidelobe [135] or the distribution

of the desired mainlobe beamwidth and sidelobe levels [94], [136]. Upper

bound on the sidelobe peak level of the random array is derived in [137],

1.6 Motivation

CB is introduced in the context of WSNs in [14]. The theory of random arrays [94]

is used to find the average characteristics and distribution of the beampattern of

randomly located sensor nodes. It is shown that if randomly located sensor nodes

collaborate to achieve coherent transmission, the radiated power can be directed at

a predetermined direction. While the work of [14] has established the performance

baseline for the CB in the WSNs, it also pointed out some open problems. One prob-

lem is the randomness of the CB sample beampattern and its dependency on the

sensor nodes’ locations. It is required to achieve more predictable CB beampattern

and move from analyzing the average beampattern to establishing a predetermined
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sample beampattern. Since the sample CB beampattern in WSNs depends on the

sensor node locations, we aim at inspecting the effect of the sensor node locations

spatial distribution on the CB beampattern. The results in [14] are based on the

assumption that sensor nodes in one cluster of WSN are uniformly distributed. It

is critical to establish that the CB beampatten has acceptable characteristics with

sensor nodes randomly located according to other spatial distributions. We analyze

the CB beampattern of Gaussian spatially distributed sensor nodes and explore

the changes in its characteristics compared to the case of uniformly spatially dis-

tributed sensor nodes. The practical implementation of CB transmission schemes

is affected by the sidelobes of the sample CB beampatterns. Sidelobe control re-

duces cross interference when multiple CB beampatterns coexist and improves the

overall performance of the WSN. Proposed algorithms for sidelobe control should

consider the distributed nature of WSNs and limited resources at individual sen-

sor nodes. Another important issue in applying CB to the WSNs is the energy

consumption corresponding to CB transmission. The original CB scheme assumes

equal transmitted power from each sensor node and, thus, CB inherently balance

energy consumption among the collaborative sensor nodes. However, different sen-

sor nodes perform different tasks according to the surrounding circumstances and,

thus, the energy at each sensor node is different. CB weight power assignment can

be designed to consider different remaining energies at the sensor nodes to extend

the WSN lifetime.

1.7 Contribution of Thesis

We propose Gaussian Probability Density Function (pdf) as a more realistic model

for spatial distribution of the sensor nodes’ locations in a cluster of WSN. Gaussian

pdf is more suitable in many WSN applications than, for example, uniform pdf

which is commonly used for flat ad-hoc networks. Indeed, in WSN applications

such as rural areas monitoring, the actual sensor node distribution depends on the

deployment method. To cover a wide area, large number of sensor nodes must

be deployed simultaneously in an ad-hoc manner which cannot guarantee uniform

distribution over the area. For example, if the deployment is done by dropping

a group of sensor nodes from an airplane, their spatial distribution is likely to be

Gaussian according to the central limit theory [138].

The average beampattern and its characteristics, the distribution of the beam-
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pattern level in the sidelobe region, and the distribution of the maximum sidelobe

peak are derived using the theory of random arrays. We show that both the uniform

and Gaussian sensor node deployments behave qualitatively in a similar way with

respect to the beamwidths and sidelobe levels, while the Gaussian deployment gives

wider mainlobe and has lower chance of large sidelobes. The results suggest that

CB is feasible for sensor nodes located randomly with any spatial distribution. The

CB average beampattern shows a deterministic behavior and the mainlobe of the

CB sample beampattern is independent of particular node locations.

The CB for a cluster of a finite number of collaborative nodes results in a sample

beampattern with sidelobes that depend on particular node locations. High level

sidelobes can cause unacceptable interference when they occur at directions of unin-

tended BSs/APs. Therefore, sidelobe control in CB has a potential to decrease the

interference at unintended BSs/APs and increase the network transmission rate by

enabling simultaneous multilink CB. Traditional sidelobe control techniques are pro-

posed for centralized antenna arrays and are not suitable for WSNs. We show that

scalable and low-complexity sidelobe control techniques suitable for CB in WSNs can

be developed based on node selection technique which makes use of the randomness

of sensor node locations. A node selection algorithm with low-rate feedback is devel-

oped to search over different node combinations. The performance of the proposed

algorithm is analyzed in terms of the average number of search trials required for

selecting the collaborative nodes, the resulting interference, and the corresponding

transmission rate improvements. It is shown that the interference can be signifi-

cantly reduced and the transmission rate can be significantly increased when node

selection is implemented with CB.

We consider the effect of CB weights power assignment on the energy consump-

tion of WSNs. CB weight power assignment algorithm is proposed to balance the

energy consumption in sensor nodes and achieve the required average SNR at the

destination(s). The effect of the proposed CB weight design on the WSN lifetime is

illustrated by simulations.

1.8 Outline of Thesis

The rest of the thesis is organized as follows. Chapter 2 starts with presenting

the main results of the theory of random arrays. Then, the geometrical model for

a cluster of sensor nodes is introduced and the corresponding CB beampattern is
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defined. Different channel models used for CB are described. Afterwards, the current

research directions for CB are presented. Phase synchronization methods, coherent

and quasi-coherent CB, information sharing, null-steering for CB, opportunistic CB

are discussed briefly. The CB beampattern characteristics in presence of noise and

interference, local scattering, mobile nodes, and protocol defects is presented. In

Chapter 3, Gaussian pdf is used to model the spatial sensor node distribution in a

cluster of WSN. The average beampattern and its characteristics are derived. The

distribution of the beampattern level in the sidelobe region and the distribution of

the maximum sidelobe peak are also found. The beampattern characteristics derived

in the case of Gaussian pdf are compared to the corresponding characteristics in

the case of uniform spatial sensor node distribution. In Chapter 4, system and

signal models are introduced for the case of multi source multi BSs/APs WSN.

Sidelobe control technique for CB in WSNs based on node selection is presented.

The performance of the proposed technique is studied and simulation results are

reported. Chapter 5 shows the effect of CB weights with different powers on the

energy consumption of sensor nodes. First, a simple CB weight power assignment

method is proposed. Then, simulations are presented to show the effectiveness of

the CB weights power assignment on the WSN lifetime. Chapter 6 concludes the

thesis and proposes some possible future work.
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Chapter 2

Collaborative Beamforming for

Wireless Sensor Networks

Recently, CB for data communication in WSNs has received significant interest.

It is an effective technique to exploit the distributed low-power source nodes and

achieve long distance transmissions toward far away BS/AP. CB scheme is a good

match to the requirements and constraints of data communication with low-power

and distributed sensor nodes. It also scalable and can be applied to very large scale

WSNs effectively.

The effect of the number of sensor nodes on CB performance is totally different

than the case of multi-hop transmission. While, in the later case, increasing the num-

ber of sensor nodes introduces more problems to the design [139]–[141]. Increasing

the number of sensor nodes improves the CB performance, where the sample beam-

pattern approaches the average beampattern, and the energy consumption spreads

over more sensor nodes [14].

While beamforming is well studied technique in antenna arrays. Implementing

CB in WSNs has different challenges, as compared to the traditional centralized

beamforming, because it is applied in a distributed fashion. Recently, different

research groups have studied the challenges and practical problems in CB for WSNs

and proposed some potential solutions.

In this chapter, we briefly cover major research directions aimed at CB and

conclude some general results. First, the main results of the theory of random arrays

are introduced to give the mathematical fundamentals for the following analysis.

Then, we introduce a geometrical model of a cluster of the WSN and channel models

used in the analysis. Two important requirements need to be satisfied in order to

be able to implement CB, namely, phase synchronization and information sharing
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between sensor nodes in a cluster of WSN. Thus, the exciting methods for phase

synchronization and information sharing are discussed afterwards in which some

schemes are specifically designed to target CB in WSNs. Finally, the performance

of CB with realistic conditions such as the presence of noise and interference, local

scattering, mobile nodes, or protocol defects is analyzed.

2.1 Theory of Random Arrays

Randomly located sensor nodes over a sensing field can be modeled as a random

antenna array. Thus, the CB beampattern can also be analyzed based on the theory

of random arrays [94], [98], [101], [137].

Consider the linear antenna array configuration shown in Fig. 2.1, where N

isotropic antenna elements are randomly located along a line of length a. Assume

all lengths are normalized to the signal wavelength λ. Let us use the rectangular

coordinates and assume that the antenna array lies along the x-axis from −a/2 to

a/2. Let xr be the rectangular coordinates for the rth element normalized to a/2,

i.e., |x| ≤ 1. The normalized coordinates xr are modeled as Independent Identically

Distributed (iid) random variables with arbitrary spatial pdf f(x) defined for |x| ≤ 1.

Antenna arrays are characterized by the array factor which is the summation

of the transmitted signals from the antenna elements. Thus, the antenna element

locations and the transmission power of each antenna element determine the array

factor. If the antenna elements transmit sinusoidal signals with equal power, then

the complex amplitude of the signal received from the rth antenna element at angle

θ is exp{−2π
λ j sin(θ)xr} where all angles are measured from the normal to the array

axis. The complex weight of the rth array is set to exp{2πλ j sin(ϑ)xr} so that signals

from different array elements add coherently at the observation angle ϑ. Then the

complex array factor can be written as

F(u) =
1

N

N
∑

r=1

e
2π

λ
j sin(ϑ)xre−

2π

λ
j sin(θ)xr

=
1

N

N
∑

r=1

e
2π

λ
j[sin(ϑ)−sin(θ)]xr (2.1)

where 1/N is a normalization factor for total of N antenna elements. Let us define

u = sin(ϑ)− sin(θ) as the angle parameter, then the array factor can be equivalently
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Figure 2.1. Linear random antenna array.
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expressed as

F(u) =
1

N

N
∑

r=1

e
2π

λ
juxr . (2.2)

The beampattern is the spatial distribution of the radiated power and, assuming

no mutual coupling between the elements, can be found from the array factor as

P(u) = |F(u)|2 (2.3)

Because of the random placement of the array elements, the corresponding beam-

pattern is also random. Thus, the characteristics of beampattern have to be studied

in statistical terms. Theory of random antenna arrays describes the characteristics

of the average beampattern and the distribution of the sample beampattern [94],

[98]. The main results are summarized as follows [116]:

• The average beampattern is determined by the spatial distribution of the an-

tenna array elements.

• The average of the sidelobe level inversely proportional to the number of ele-

ments.

• The ratio of the mainlobe maximum to the average level of the sidelobes is

equal to the number of array elements.

• Away from the mainlobe, the probability of having certain sidelobe level is the

same over all the range.

The aforementioned results provide the average characteristics and distribution of

the CB beampattern for a randomly located sensor nodes. However, application of

theory of random antenna arrays to CB in the WSN context possess some funda-

mental problems in practical implementation because of the distributed nature of

the sensor nodes. Specifically, two important requirements should be guaranteed

before applying CB, which are

• Phase synchronization. Since sensor nodes are distributed over the sensing

field, there is no central oscillator to generate the carriers for all sensor nodes as

compared to the case of the centralized antenna arrays. Each sensor node has

its own oscillator, therefore, local carrier frequency and phase synchronization

are required among the distributed sensor nodes. Frequency synchronization is
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achievable if the BS/AP transmits a beacon mono-tone signal and each sensor

node’s oscillator locks its Phase Locked Loop (PLL) to the received signal.

However, phase synchronization is more challenging to achieve because of the

lack of unique reference for all oscillators.

• Information sharing. Data collected at different source sensor nodes should

be shared with all other collaborative sensor nodes before CB. To avoid col-

lisions between different source sensor nodes in the same cluster, information

sharing can be achieved over orthogonal channels or using random access pro-

tocols. Also, collision resolution protocols can be used to extract different

sources of information from the collided transmitted signals.

2.2 Phase Synchronization

Phase synchronization is the most critical requirement to implement CB in WSNs

[142], [143]. Individual carrier signals from different sensor nodes should be synchro-

nized in phase and frequency to achieve coherent transmission. While a centralized

antenna array can easily achieve this, the case of a cluster of sensor nodes in WSN

is different because of the distributed setting of the WSN. Each sensor node has

separate RF carrier supplied by its local oscillator, therefore, carrier frequency and

phase synchronization algorithms are required for WSNs. Frequency synchroniza-

tion can be implemented by broadcasting a beacon signal from the BS/AP to the

sensor nodes. Then, the internal oscillator’s PLL at each sensor node locks to the

received signal frequency.

The situation is different for phase synchronization, local carriers do not have

a common reference to set the same initial phase. Phase difference comes from

propagation delay and the phase due to channel variations which is different from

one sensor node to another. Synchronization algorithms targeting WSNs should

be distributed and scalable with increasing the number of sensor nodes. Moreover,

techniques for phase synchronization should have minimal information exchange

with the BS/AP. A variety of distributed and scalable phase synchronization schemes

are proposed for WSNs and can be classified into:

• Random search synchronization: Each sensor node changes its phase ran-

domly and keep/reject the phase changes according to the quality of the re-

ceived signal at the receiver.
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• Master-slave synchronization: Sensor nodes synchronize their carrier sig-

nals to a bacon signal from a master sensor node or BS/AP.

• Round-trip synchronization: Sensor nodes synchronize their carrier signals

based on the fact that the phase offset in the down link transmissions is the

same as the phase offset in the up link transmissions.

2.2.1 Random Search Synchronization

Random search algorithms for phase synchronization are suitable for WSNs, thanks

to the distributed nature of WSNs, where each sensor node changes its carrier initial

phase independently on the other sensor nodes. The scheme proposed in [144],

[145] randomly changes the phase according to the improvement of the received

SNR at the BS/AP. This method exploits the fact that different phase alignments

result in different received SNRs at the BS/AP. The algorithm starts with arbitrary

carrier initial phases at sensor nodes and at each iteration each sensor node make an

independent random phase change to its phase. Sensor nodes use CB transmission

to send a pilot signal to the BS/AP using the current carrier phases. The BS/AP

measures the received SNR and broadcasts one bit of feedback, 1 if the current initial

phases increased the received SNR compared to the previous value, and 0 otherwise.

The BS/AP keeps a record of the best achieved SNR so far. Sensor nodes keep the

current phase values that increase the SNR at the BS/AP, or restore the previous

values otherwise.

This method requires minimum data exchange from the BS/AP to sensor nodes

where only the SNR improvement state at the BS/AP with the new phase values is

broadcasted using single bit of feedback. It is not required that the BS/AP knows

the individual phases of sensor nodes as well as sensor nodes do not need to know

the exact value of the SNR at the BS/AP. Results from an experimental prototype

validate the applicability and efficiency of such a method and are presented in [144].

These experimental results show that CB is practically feasible and most of the

theoretical SNR gains can be achieved under practical conditions.

In [146], different factors of the algorithm are explored to improve the algorithm.

The effect of the number of sensor nodes participating in synchronization at each

iteration and the effect of distribution of the phase change on the performance of the

synchronization process are studied. Uniform and Gaussian pdfs are proposed and

compared for the distribution of the random changes in the carrier phases. Uniform
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distribution gives equally probable phase changes, while the Gaussian distribution

results in more probable smaller changes. The variance of the normal distribution

is used to control the range of the changes. It is shown that at the beginning of

the algorithm, all sensor nodes have random phases which are typically far away

from alignment. To achieve the synchronization faster, it is suggested that a larger

number of nodes should participate in the phase synchronization and phase change

values should be large at the beginning. With the progress in synchronization, the

carrier phases of different sensor nodes come closer to alignment and the phase

changes become smaller. Overall, the performances for the normal and uniform dis-

tributed phase changes are similar and an acceptable synchronization within several

milliseconds is guaranteed.

Improvement to the algorithm of [144] are proposed in [147] and [148]. The

original algorithm uses only the phase changes that lead to SNR improvement at

the BS/AP and discards any other phase changes. However, the phase changes that

lead to the reduction of received SNR can also be used to improve the following

phase changes. Thus, the modified algorithm uses the rejected phase changes to

improve the convergence speed by allowing both the accepted and rejected phase

changes to contribute to the convergence speed.

2.2.2 Master-Slave Synchronization

In master-slave synchronization schemes, one central point or sensor node in the

cluster serves as a master node [142]. This node broadcasts a beacon signal with

carrier, timing, and location information content to all slave nodes in the cluster.

The local oscillator’s PLL locks to beacon carrier sent by the master and achieve

frequency synchronization. Each slave node in the cluster estimates the distance to

the master node and compensate for the phase delay to achieve phase synchroniza-

tion. The accuracy of such synchronization depends on the received SNR and the

accuracy of the frequency and phase estimators [15].

Another master-slave scheme for phase synchronization in WSNs, which does

not require location information, is presented in [149]. According to this scheme,

the BS/AP continuously broadcasts a common beacon signal to all sensor nodes.

Each sensor node synthesizes the local carrier to this beacon signal and then trans-

mits a Direct Sequence Code Division Multiple Access (DS-CDMA) signal with a

unique code back to the BS/AP. The BS/AP separates the received signals, esti-
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mates the overall phase offset of each sensor node and then transmits phase/timing

synchronization messages to the sensor nodes via DS-CDMA. While this scheme

has low-complexity, it results in significant overhead especially for WSNs with large

number of sensor nodes.

2.2.3 Round-Trip Synchronization

Round-trip synchronization techniques utilize the fact that the phase delay between

the BS/AP and any arbitrary sensor node is the same for uplink and downlink

directions [143], [150]. Phase synchronization protocol based on round-trip principle

was first described in [151] for two nodes communicating to a BS/AP. Three beacon

signals at different frequencies and pair of PLLs at each node are used to achieve

synchronization. The BS/AP continuously broadcasts a master beacon signal so

that the two nodes master PLLs lock to it and generate secondary beacon signals

at different frequency. Nodes broadcast the secondary beacon signals to each other

and the secondary PLL in each node locks to it in order to generate a carrier signal

at third frequency. The carrier signals from both nodes are then synchronized with

each other and can be used for transmission to the BS/AP. While the protocol is

shown to be efficient in time-invariant and time-varying single-path channels, its

performance degrades in multipath channels because of the use of three different

frequencies.

Another round-trip scheme was proposed in [150] It employs a single frequency

beacon signals and Time-Division Duplexing (TDD). Due to the channel reciprocity,

single frequency beacons are used in a half-duplex time-slotted fashion to maintain

the performance in multipath conditions. Transmitted beacon from the BS/AP is

used to generate local version of the carrier at one sensor node and then copies of

this carrier are passed to different sensor nodes [150], [152]. The scheme can be

applied to more than two sensor nodes in multipath channel and mobility scenarios,

however, it generally requires significant coordination with the BS/AP.

2.3 Information Sharing

Information to be transmitted should be available at all sensor nodes before the CB

step for enabling simultaneous transmission of the same data symbol. Information

sharing can be done straightforward via broadcasting if the WSN has only one

source node. However, protocols or schemes are required if more than one source
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node exists in the WSN.

2.3.1 Orthogonal Channels

The simplest way for information sharing in WSNs with multiple source nodes is

transmitting their data over orthogonal channels. Orthogonality can be achieved

using different multiple access schemes to avoid collision during simultaneous trans-

missions. Multiple access techniques are Time-Division Multiple Access (TDMA),

Frequency-Division Multiple Access (FDMA)/Orthogonal Frequency-Division Mul-

tiple Access (OFDMA), and Code Division Multiple Access (CDMA). However,

using orthogonal channels for simultaneous transmissions is not efficient for WSNs

with increased number of source nodes. Alternative methods is required to reduce

resources consumed for information sharing.

2.3.2 Random Access

Source nodes can use random access protocols to organize transmissions over one

channel. The simplest random access protocol to implement is the slotted ALOHA

[153]–[155]. Transmissions are organized in time-slots and when data are to be

transmitted, source node transmits at the beginning of the next time-slot. If there

is no transmissions from the other sensor nodes at the same time-slot, data will be

successfully received at the other sensor nodes. If another source node is simulta-

neously transmitting, collision occurs and the data will be corrupted. Source nodes

involved in the collision re-transmit the data again after random number of time-

slots delay. However, ALOHA does not utilize the channel during collisions and the

collided signals at the receiving sensor nodes are discarded.

2.3.3 Collision Resolution

Transmission over orthogonal channels or using random access protocols are collision

avoidance techniques resulting in loss of resources as compared to collision resolution.

Collision resolution protocols are introduced for random access networks to utilize

the received signal during collision and separate collided data symbols at the expense

of more complex processing. We present here two of collision resolution protocols

proposed for general wireless networks.

Network-Assisted Diversity Multiple Access (NDMA) is a collision resolution

protocol introduced for time-slotted transmissions [156]. In case of collision at given
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time-slot, the received collided signal is saved at each receiving node and the trans-

mitting nodes retransmit the same signals during the following time-slots. The total

number of the original transmission and the re-transmissions is equal to the number

of transmitting nodes. The receiving nodes use the saved collided and retransmitted

signals to recover each individual collided data based on a Multiple-Input Multiple-

Output (MIMO) model. The scheme requires only one time-slot for each collided

signal.

Another collision resolution protocol is the ALLow Improved Access in the Net-

work via Cooperation and Energy Savings (ALLIANCES) protocol [157]. In case

of collision, a designated set of nodes re-transmit the collided signal, which they re-

ceived, to the destination, each relaying node transmits in a different time-slot. The

destination process the originally received collided signal and the signals received

from the relaying nodes and recover the original signal. A multichannel extension

of ALLIANCES is proposed to exploit the multipath diversity [158]. Since the pre-

vious collision resolution protocols are generally introduced for wireless networks,

the required processing for these protocols is not optimized to match the WSNs

limitations.

2.3.4 Cross-Layer Information Sharing

Besides random access and collision resolution schemes that are designed for general

wireless networks, some schemes are designed to target certain wireless networks and

exploit their characteristics. One example of such schemes is the Medium Access

Control - PHYsical (MAC-PHY) scheme proposed in [159] to achieve information

sharing for CB in WSNs. In this scheme, source nodes broadcast their information

simultaneously, and thus, information sharing takes only one time-slot in a ran-

dom access fashion. Collaborative nodes receive combinations of all simultaneous

transmitted symbols from multiple source nodes. For each collaborative node, the

CB weight is the multiplication of two term, an initial phase corresponding to the

propagation delay to the BS/AP and the conjugate of the channel gain between the

collaborative node and the source node.

The initial phase in the CB weight allows the transmitted signals from collab-

orative nodes to add coherently at the intended BSs/APs. It is assumed that the

channel coefficients between collaborative nodes are independent. This assumption

is needed to be able to cancel out the cross-interference between different source
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nodes. CB transmissions target one BS/AP at each time-slot, or multiple beams

can be formed simultaneously if multiple BSs/APs at distinct directions exist. The

resulting average beampattern is similar to the conventional CB, but it is charac-

terized by increased sidelobe power levels. Therefore, the scheme of [159] reduces

the information sharing time at the cost of lower Signal-to-Interference-plus-Noise

Ratio (SINR). Moreover, this scheme does not work well if the channel coefficients

are not zero-mean.

Optimal CB weights are designed in [160] and compared with traditional CB

with TDMA or any orthogonal channel multiple access based information sharing.

CB weights are designed to maximize the received SNR in the case of the traditional

CB or SINR in the case of the cross-layer CB. Optimal CB weights for the cross-layer

CB requires global Channel State Information (CSI), thus resulting at high overhead

and complex processing. Moreover, cross-layer CB achieves higher sidelobe levels

than traditional CB due to the multiuser interference. Traditional CB is simpler to

implement since it requires only the knowledge of sensor node locations. Moreover,

it is more robust to channel/phase errors.

2.4 CB with Deviations from Ideal Model

Many ideal assumptions are used to analyze the CB fundamental results, however,

any practical analysis or implementation should consider different real factors. Some

deviations from the ideal assumptions are presented here. The effects of such mis-

matches to the ideal assumptions on CB are analyzed as well.

2.4.1 Imperfect Phase Synchronization

Phase synchronization algorithms should be robust under practical conditions and

the channel effects should be considered. The channel variations change the phase

responses of the channel gains and the overall phase offset changes. Moreover,

imperfect phase synchronization among sensor nodes can result from phase errors,

oscillator drift, or localization errors. Received signals at the BS/AP lose coherence

over time and the phase synchronization should be repeated periodically or whenever

the BS/AP detects loss in the SNR.

The accuracy of phase synchronization algorithms is limited by the half-duplex

transmission of the sensor nodes. Analyzing the performance of CB with imper-

fect phase synchronization shows a tradeoff between synchronization overhead and
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achieved gains [15]. Large fraction of the CB gains can be achieved even with phase

errors with moderately large variance [161]. The effect of the channel on the estima-

tion of the channel phase by the sensor nodes is analyzed in [162]. The distribution

of the phase estimation error and the probability of signal corruption at the BS/AP

due to imperfect phase estimation is found as well.

2.4.2 Noise and Interference

An adaptive filter is proposed [163] to achieve phase synchronization for CB in the

presence of noise and interference in WSNs. The CB gain approaches the ideal value

and the noise power at the BS/AP decreases with increasing the number of sensor

nodes. The interference effect is determined by the ratio between the number of

sensor nodes and the number of interference sources. While the designed filter is

computationally efficient, it is not practical because the position of sensor nodes are

assumed to be known in advance.

2.4.3 Local Scattering

Multipath-free conditions are assumed in the original analysis of the CB beampat-

tern where the transmitted signal suffers no reflection or scattering. However, mul-

tipath propagation is more realistic model and scattering affects the beampattern

even with perfect synchronization. The CB beampattern is studied in the case of

multipath propagation where the signal suffers angular spreading due to local scat-

tering [164]. The received signal is modeled as a superposition of a large number of

scattered paths with angles of incidence which are uniformly distributed around the

destination nominal direction. The CB average beampattern and the corresponding

maximum gain and beamwidth are derived as functions of the number of nodes, the

cluster size, and the scattering parameters. Analysis shows that CB gives acceptable

performance in multipath channels.

2.4.4 Mobile Sensor Nodes

Wireless communication between sensor nodes allows for implementing WSN with

mobile sensor nodes if the sensor mobility does not break the network connectivity.

In the case of mobile sensor nodes, CB weight design should consider the motion

of the sensor nodes and compensate for it [165]. The relationship between array

factor and random sensor nodes’ motion is developed. The average beampattern
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characteristics are derived in [166] where the mobility of sensor nodes is modeled

as 2 Dimensional (2D) Brownian motion. Beampattern with both small mainlobe

width as well as large 3dB sidelobe region is derived and a low complexity algorithm

is designed to arrange distribution of sensor nodes to produce such beampattern.

2.4.5 Protocols Defects

The performance of CB is not independent on the performance of the other protocols

in the network. Defects in the network protocols can cause pointing errors, main-

lobe gain loss, or increase of the average sidelobe level [167]–[169]. A frame work

for studying the effect of errors in different protocols is proposed in [170]. Effects

of errors in localization protocol, synchronization protocol, and data dissemination

protocol on the performance of CB are studied. Comparing the effect of synchro-

nization and location errors, it is found that the impact of location errors is much

more significant.

As shown in this section, CB can provide most of the theoretical gains under

non-ideal conditions.

2.5 Other CB Research Trends

2.5.1 Opportunistic CB

In the conventional CB scheme, each sensor node sets its local carrier initial phase

to cancel out the phase offset due to the channel phase and propagation delay.

However, since the CB is robust against moderate phase offsets, beamforming gain

can be achieved even with imperfect phase synchronization. Quasi-coherent CB is

introduced based on this fact. It is motivated by the need to use less coordination

between sensor nodes while achieving acceptable loss in the received signal power

[171], [172]. It provides a compromise between the CB gain and the amount of the

overhead in the CB scheme.

Opportunistic CB is another way of achieving quasi-coherent transmission with-

out any phase synchronization. Sensor nodes transmit to the BS/AP using unsyn-

chronized carriers with random initial phases. The BS/AP measures the received

signal from each sensor node and finds the overall effect of the channel phase and

the propagation delay. The destination selects a subset of sensor nodes with close

total phase and broadcasts a selection vector. The received signal from the selected
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sensor nodes combine in a quasi-coherent manner at the destination. The advan-

tage of this method is that there are no calculations need to be performed at sensor

nodes where the amplitude and phase for each sensor node is used to compute the

selection vector at the BS/AP. The channel estimation and selection computations

are done at the destination, only the selection vector is required to be transmitted

to the sensor nodes. The selection vector has one bit corresponding to each sensor

node in the cluster to turn on or off the sensor nodes to participate in the CB.

Opportunistic CB scheme is similar to the conventional one in the sense that

the gain at the BS/AP increases with the number of collaborative nodes. However,

even if the calculation of the the selection vector is performed at the BS/AP, the use

of full search for finding optimum sensor nodes is impractical for WSNs with large

number of sensor nodes. Low-complexity sub-optimal node selection algorithms

can be used to maximize the power gain, namely, sector-based, iterative greedy,

and iterative pruning. For iterative greedy and iterative pruning, in each iteration,

one sensor node is added or removed to/from the selected subset according to the

gain changes until no acceptable beamforming gain change can be achieved through

further iterations.

2.5.2 Beampattern Control

Achieving CB beampattern with desirable characteristics is an important factor

in improving the transmission performance with CB. High directivity and lower

interference levels are both desired characteristics for the CB beampattern.

One way to increase the directivity of the conventional CB beampattern is to use

only the sensor nodes placed in a ring instead of using all the nodes in the disk of the

same radius [173]. A larger and narrower ring results in average beampattern with

smaller mainlobe width. However, the outer radius of the ring has to be kept small

to save transmission energy between nodes. One advantage of using smaller number

of sensor nodes distributed over a ring instead of a disk is the ability to increase

the overall energy saving and network connectivity. However, the use of nodes in a

ring with a small width limits the number of candidate nodes available for CB. The

resulting average beampattern under this choice of sensor node locations has larger

sidelobe peak levels than the conventional CB. To reduce the sidelobe peak levels,

multiple concentric rings can be used [173].

To reduce interference caused by the CB beampattern, nulls in the beampattern
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can be placed in the directions of unintended BSs/APs. A distributed null-steering

scheme for WSNs is introduced in [174]. The average beampattern is approximately

equal to that of the conventional CB in the directions far enough from the direction

of unintended BS/AP. Also, the proposed scheme is used to minimize the maximum

sidelobe of the average beampattern. However, this scheme results in decreased

received power at the targeted direction. To keep the decrease in the received power

at the intended BS/AP very small, the unintended BS/AP should be far away from

the intended BSs/APs and the cluster area should be large enough. However, only

the average beampattern behavior is studied in [174], while the sample beampattern

behavior is of real interest.

2.5.3 Power Control for CB

Sensor nodes perform different tasks in the WSN and each sensor node can have

different energy budget. Considering this, CB weights with different transmit powers

are likely to be more efficient for extending the sensor nodes lifetime. Optimal CB

weight powers have been found in [91] under different metrics with the assumption

of infinite number of sensor nodes. Achieved SINR with optimal CB weights power

control is studied through simulations for finite number of sensor nodes.

When multiple clusters are simultaneously transmitting using CB, each cluster

can optimize the average transmit power, and thus, optimize its throughput-to-

average transmit power ratio. A game-theoretic model for power control of CB

transmission in WSN clusters is proposed in [175]. Better results are achieved

through cooperation but at the expense of significantly large data overhead for

centralized control.

2.5.4 Performance Analysis of CB Random Search Algorithms

Random search algorithms are used in WSNs for CB phase synchronization to in-

crease coherence between transmitted signals at the BS/AP. The distributed nature,

scalability, and low-complexity of such algorithms make them tempting techniques

for implementing in WSNs context. Convergence time of random search algorithms

is very important performance measure and mathematical analysis is required to

guarantee convergence in acceptable time. Performance analysis framework is in-

troduced in [176] for general random search algorithms targeting distributed CB

schemes. Conclusions obtained from the analysis help to modify random search al-

31



gorithms and reduce their convergence time. The framework is applied to the phase

synchronization scheme developed in [144] and the convergence of this scheme is

proved. Furthermore, it is shown that the convergence time scales linearly with the

number of sensor nodes. An asymptotic bounds on the convergence time for the

random search phase synchronization are provided in [146].

Another model is introduced in [177] to study the performance limits of the

CB random search algorithms. To simplify analysis, sensor nodes are assumed to

transmit carriers with binary phases instead of continuous valued phases and the

channels between sensor nodes and the BS/AP are assumed to be binary as well.

Upper and lower bounds on the convergence time are derived using combinatorial

techniques. Numerical approximations to the convergence time are derived and

improvement on the the running time is achieved with modifications of the basic

algorithm.

2.5.5 Receive CB

While CB is introduced originally for long-distance energy-efficient transmission in

WSNs, alternatively, a cluster of sensor nodes can use CB to receive a signal from

the BS/AP [178], [179]. In antenna arrays, transmit and receive beampatterns are

identical for the same antenna array because of the reciprocity principle [180]. Due

to directivity of the beampattern, receive CB introduces gain to the signal received

from direction of the mainlobe and suppresses the other interfering signals from other

directions. Receive CB weights are designed to maximize the signals SINR at the

receiver. However, SINR-optimal weights depend on the global CSI and location

information. This information is, however, not feasible in WSNs. Based on the

large number of sensor nodes, an approximation to the SINR-optimal weights that

depends only on the local information at each sensor node, is proposed. CB average

beampattern expression is obtained to validate the corresponding achieved gain.

The ability to suppress the interferences from unintended BS/AP is also shown.

Using receive CB for reception overcomes the broadcasting nature of the BS/AP

and a cluster of sensor nodes are able to ignore multiple BSs/APs simultaneous

transmissions and receive only signals from the BS/AP of interest. Implementing

receive and transmit CB in WSNs allows clusters of sensor nodes to work collab-

oratively as relays to receive/transmit signals from/to different BSs/APs or other

clusters.
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Chapter 3

Effect of Sensor Nodes Spatial

Distribution on the

Beampattern

3.1 Introduction

Theory of random arrays has established the performance baseline of CB in the

WSNs [94], [97]. It shows that, using phase synchronization, randomly located

sensor nodes result in beampatterns that are able to focus the radiated power at

predetermined direction. However, building a transmission scheme based on CB

additionally depends on beampattern characteristics such as the beamwidth and

sidelobe levels. The beamwidth defines the usable range of beampattern where

the transmitted power does not go below an acceptable level. The sidelobe levels

determine the anticipated interference at unintended BSs/APs located away from

the targeted directions. Moreover, the beampattern and its characteristics have to

be found for practical WSN setting. Unlike calibrated antenna arrays, ad hoc de-

ployment of sensor nodes does not give much freedom on choosing the sensor node

locations or even its spatial distribution probability. The beampattern is deferent

for each deployment of sensor nodes and, thus, it is analyzed statistically and its

characteristics are averaged over all realizations of sensor node locations. Further-

more, it is important to find the effect of the sensor node spatial distribution on the

CB beampattern and justify that it has acceptable characteristics with any spatial

distributions.

The beampattern characteristics of CB have been recently derived in [14] assum-

ing that sensor nodes in one cluster of WSN are uniformly distributed. However,

the actual sensor node distribution depends on the deployment method. Indeed, to
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cover a wide area, large numbers of sensor nodes must be deployed simultaneously in

an ad hoc way which cannot guarantee uniform distribution over the area [181]. An

example of such scenario is rural areas monitoring when the deployment is done by

dropping a group of sensor nodes from an airplane Fig. 3.1. The spatial distribution

of sensor nodes in this case is argued to be Gaussian [138], [182], [183]. Indeed, the

sensor nodes actual locations are affected by different factors such as wind, the re-

leasing mechanism, speed, height, etc. The displacement from the targeted location

due to each of these multiple factors can be modeled as a random variable and the

effective displacement is the sum of these random variables. Therefore, according to

the central limit theorem, the actual location will follow Gaussian distribution [184].

In this chapter, Gaussian pdf is used to model the spatial sensor node distri-

bution in a cluster of WSN. The average beampattern and its characteristics are

derived under this assumption. The distribution of the beampattern level in the

sidelobe region and the distribution of the maximum sidelobe peak are also found.

The beampattern characteristics derived here in the case of Gaussian pdf are com-

pared to the corresponding characteristics in the case of uniform spatial sensor node

distribution of [14]. We explore the changes in the beampattern characteristics due

to the spatial distribution of sensor nodes.

3.2 System Model and Beampattern

The mathematical framework of the theory of random arrays is used to analyze the

performance of CB in the context of WSNs. A cluster of sensor nodes is modeled as

a 2D antenna array and the corresponding CB beampattern is derived. The initial

phase of each sensor node carrier is set so that signals add coherently at the targeted

direction.

3.2.1 Geometric Model

We consider a cluster of sensor nodes in which one sensor node represents a data

source and other sensor nodes serve as collaborative nodes to transmit data to a

remote BS/AP. Each sensor nodes is aware of its location and is able to communicate

to other sensor nodes in the cluster using links with low power consumption for

information sharing and synchronization. It is also assumed that each sensor node

transmits the same power and the synchronization error and frequency drift effects

are negligible. Fig. 3.2 shows the geometric model of a cluster which consists of
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Figure 3.1. Deployment of sensor nodes by dropping from an airplane.
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Figure 3.2. Geometric model.
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N sensor nodes. For the spherical coordinates (ρ, φ, θ), the angle θ denotes the

elevation direction, φ represents the azimuth direction, and ρ is the distance from

the origin to a given point. Assume that the destination BS/AP is located at

(̺, ϕ, ϑ) and sensor nodes are co-located in (x, y) plane. The rectangular sensor node

coordinates are (xr, yr), r = 1, . . . , N , and they are chosen randomly according to

Gaussian distribution with zero mean and variance σ20. The corresponding spherical

coordinates are

ρr =
√

x2r + y2r

φr = tan−1(
yr
xr

)

θr =
π

2
r = 1, . . . , N, (3.1)

where ρr and φr have Rayleigh and uniform distributions, respectively, i.e.,

fρr(ρ) =
ρ

σ20
exp

− ρ2

2σ2
0 0 ≤ ρ <∞

fφr
(φ) =

1

2π
− π ≤ φ < π. (3.2)

3.2.2 Channel Model

Different channel models are used in communication literature to account for various

propagation scenarios and attenuation conditions of the transmitted signals [185],

[186]. In this chapter, wireless communication channel conditions between the sensor

nodes and the BS/AP are assumed to be ideal. In such channel model, transmitted

signal is assumed to propagate in single-path line-of-sight (LOS) track according to

free-space propagation model. The environment between the transmitter and the

receiver does not have any obstacles so that reflection, scattering, or shadowing of

the signal are neglected. Distances between different sensor nodes in the WSN are

assumed to be large enough to neglect the mutual coupling effects between antenna

elements. While the ideal channel model is not realistic, it is used in the analysis to

find the fundamental results of the communication systems before generalizing the

analysis to more realistic channel models. In CB analysis, the ideal channel model

is used to explore the basic relationship between the spatial distribution of sensor

nodes and the corresponding beampattern [14], [187].
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3.2.3 Beampattern

Based on the aforementioned geometric and channel models, the beampattern cor-

responding to a cluster of sensor nodes can be derived as follows. Let us denote the

Euclidean distance between the rth sensor node and a point (̺, φ, θ) in a sphere of

radius ρ = ̺ as δr(φ, θ), then

δr(φ, θ) ,
√

̺2 + ρ2r − 2ρr̺ sin(θ) cos(φ− φr). (3.3)

Introducing the vectors ρ = [ρ1, ρ2, . . . , ρN ] ∈ [0,∞)N and φ = [φ1, φ2, . . . , φN ]

∈ [−π, π)N , the array factor for a cluster of randomly located sensor nodes can be

defined as

F(φ, θ|ρ,φ) = 1

N

N
∑

k=1

ejψrej
2π

λ
δr(φ,θ) (3.4)

where λ is the wavelength and ψr is initial phase of the rth sensor node’s carrier. The

factor 1/N is used to insure that max {F(φ, θ|ρ,φ)}=1. Synchronizing the carriers

of the sensor nodes with initial phase ψr = −2π
λ δr(ϕ, ϑ) to target the BS/AP at

(̺, ϕ, ϑ), we can write the array factor as

F(φ, θ|ρ,φ) = 1

N

N
∑

k=1

ej
2π

λ
[δr(φ,θ)−δr(ϕ,ϑ)]. (3.5)

Moreover, using the following approximation

δr(φ, θ) ≈ ̺− ρr sin(θ) cos(φ− φr) (3.6)

which is valid for the far-field region with ̺≫ ρr, we obtain that

F(φ, θ|ρ,φ) ≈ 1

N

N
∑

k=1

exp

{

j
2π

λ
ρr[sin(ϑ) cos(ϕ− φr)− sin(θ) cos(φ− φr)]

}

. (3.7)

Note that (3.7) is symmetric with respect to the azimuth direction φ. Therefore,

without any loss of generality, we can set ϕ = 0. For notation simplicity, we also

assume that the destination BS/AP is located in the (x, y)-plane, i.e., ϑ = 0, and

we are interested in the beampattern at this plane only. Then, (3.7) simplifies to

F(φ|ρ,φ) = 1

N

N
∑

k=1

e−j4πρ̃r sin(
φ

2
) sin(φ̃r) (3.8)

where ρ̃r =
ρr
λ and φ̃r = (φr − φ

2 ). Equivalently, we can write that

F(φ|z) = 1

N

N
∑

r=1

e−jαzr (3.9)
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where α = α(φ) = 4π sin(φ2 ) is the azimuth direction parameter, z = [z1, z2,

. . . , zN ] ∈ (−∞,∞)N , and zr , ρ̃r sin(φ̃r) represents the sensor node location pa-

rameter. Note that zr is Gaussian distributed random variable with zero mean and

variance σ2 = σ20/λ
2, i.e.,

fz(z) =
1√
2πσ

e−
z2

2σ2 , −∞ < z <∞. (3.10)

For each realization of z, the far-field beampattern can be found as

P(φ|z) = |F(φ|z)|2

=
1

N
+

1

N2

N
∑

r=1

e−jαzr
N
∑

l=1,l 6=r

ejαzl . (3.11)

From (3.11), we conclude that with ideal channel conditions and perfect synchro-

nization, the CB beampattern is completely defined by sensor node locations. The

beampattern at any arbitrary direction φ 6= ϕ is the summation of the out-of-phase

signals and, thus, it is random. However, the beampattern value at the BS/AP

direction ϕ = 0 is deterministic and equals unity for any sensor node locations.

3.3 Average Beampattern and Its Characteristics

The sample beampattern of (3.11) does not give an insight about the effect of the

spatial distribution of sensor nodes on the CB beampattern. To investigate the

effects of the spatial distribution on the CB beampattern, the average of the beam-

pattern is taken over all realizations of sensor node locations given by this spatial

distribution. Then, the average CB beampattern characteristics are compared with

characteristics corresponding to uniform spatial distribution of [14].

3.3.1 Average Beampattern

The average beampattern is defined as

Pav(φ) = E {P(φ|z)} (3.12)

where E {·} denotes the statistical expectation and the average is found over all

realizations of z. In the case of Gaussian sensor node distribution, the average

beampattern can be derived by substituting (3.10) and (3.11) in (3.12). Then we
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have

Pav(φ) = E {P(φ|z)}

=

∫ ∞

−∞

∫ ∞

−∞

|F(φ|z)|2 fz(zr) fz(zl) dzr dzl

=

∫ ∞

−∞

∫ ∞

−∞







1

N
+

1

N2

N
∑

r=1

e−jαzrfz(zr)

N
∑

l=1,l 6=r

ejαzlfz(zl)







dzr dzl

=
1

N
+

1

N2

[

N
∑

r=1

{
∫ ∞

−∞

e−jαzr
1√
2πσ

e−
z2r
2σ2 dzr

}

×
N
∑

l=1,l 6=r

{
∫ ∞

−∞

e−jαzl
1√
2πσ

e−
z2
l

2σ2 dzl

}



 (3.13)

The integrals between the figure brackets in (3.13) can be simplified as
∫ ∞

−∞

e−jαz
1√
2πσ

e−
z2

2σ2 dz = e
−α2σ2

2

{

1√
2πσ

∫ ∞

−∞

e−
(z+jασ2)2

2σ2 dz

}

= e
−α2σ2

2

{

1√
2πσ

∫ ∞

−∞

e−
u2

2σ2 du

}

= e
−α2σ2

2 . (3.14)

where the change of the variable u = z+ jασ2 is used while establishing the second

equality. Substituting (3.14) in (3.13)

Pav(φ) =
1

N
+

1

N2







N
∑

r=1

e
−α2σ2

2

N
∑

l=1,l 6=r

e
−α2σ2

2







=
1

N
+

1

N2
N(N − 1)

∣

∣

∣
e

−α2σ2

2

∣

∣

∣

2
(3.15)

Consequently, the average beampattern can be expressed as

Pav(φ) =
1

N
+

(

1− 1

N

)

∣

∣

∣e−
α2σ2

2

∣

∣

∣

2
. (3.16)

The term 1/N in (3.16) represents the value of the average beampattern in the

sidelobe region. It can be seen that the average beampattern has no nulls and no

sidelobes. The mainlobe of the average beampattern is represented by the second

term in (3.16), and it decays exponentially with a rate proportional to the variance

σ2. Note that the average beampattern (3.16) is somewhat similar to the one derived

for the case of uniformly distributed sensor nodes [14]

Pav(φ) =
1

N
+

(

1− 1

N

)

2

∣

∣

∣

∣

J1(α)

α

∣

∣

∣

∣

2

(3.17)
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where J1(α) is the first order Bessel function of the first kind and α = α(φ) =

4πR̃ sin(φ2 ) in this case. However, in the latter case, the Bessel function of the

first kind results also in nulls and sidelobes. The presence of sidelobes in the av-

erage beampattern increases the chance of sidelobes with high peaks in a sample

beampattern for a specific realization of sensor node locations.

The average beampatterns for both cases of Gaussian and uniform spatial dis-

tributions are shown in Fig. 3.3, where σ2 = 1 and N ∈ {16, 1024}. Hereafter, when
comparing the cases of uniform and Gaussian spatial sensor node distributions, we

use σ = R̃/3 in the case of Gaussian spatial distribution, where the normalized ra-

dius of the cluster R̃ = R/λ is defined for uniform distribution [14]. This assumption

suggests that in the case of Gaussian distribution, 99.73% of all sensor nodes are

located in the disk of radius R̃ and, thus, the sensor nodes’ coverage areas in both

cases are the same.

3.3.2 3dB Beamwidth

The 3dB beamwidth is defined as shown in Fig. 3.4 as the angle φ3dB at which

the power of the average beampattern drops 3dB below the maximum value at

φ = ϕ = 0, i.e.,

Pav(φ3dB) =
1

2
. (3.18)

In the case of Gaussian distributed sensor nodes, the 3dB beamwidth of the

average beampattern (3.16) can be derived by substituting (3.16) in (3.18) as follows

1

N
+

(

1− 1

N

) ∣

∣

∣

∣

e
−α2

3dBσ2

2

∣

∣

∣

∣

2

=
1

2
(3.19)

where α3dB is the azimuth direction parameter corresponding to φ3dB. Simplifying

(3.19), we can write that

e
−α2

3dB
σ2

2 =

√

(

1

2
− 1

N

)(

N

N − 1

)

=

√

1

2

N − 2

N − 1
≈
√

1

2
(3.20)

where the last approximation is valid for N ≫ 1. Thus, the value of α3dB can be

expressed as

α3dB =

√

√

√

√
−2 ln(

√

1
2)

σ2
=

√

ln(2)

σ2
. (3.21)
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Figure 3.4. Definitions of average beampattern characteristics.
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Substituting the value of α3dB = 4π sin(φ3dB

2 ), we can write that

sin

(

φ3dB
2

)

=

√

ln(2)

4πσ
. (3.22)

Finally, the 3dB beamwidth of the average beampattern is given as

φ3dB = 2 sin−1

(

0.0663

σ

)

≈ 0.1326

σ
. (3.23)

where the last approximation come from the fact that sin−1 (a) ≈ a for small angles.

For the sake of comparison with the case of uniformly distributed sensor nodes,

we express (3.23) in terms of R̃ = 3σ. Then, the expression (3.23) can be rewritten

as

φ3dB ≈
0.4

R̃
. (3.24)

Similar to the case of uniform distribution [14], the 3dB beamwidth in the case

of Gaussian spatial sensor node distribution decreases when the cluster radius in-

creases. However, the 3dB beamwidth in the case of Gaussian distributed sensor

nodes is larger than in the case of uniform distributed sensor nodes for the same

cluster area. The only factor that affect the 3dB beamwidth is the radius R̃. Note

that it can often be adjusted at the deployment stage to the desired value.

3.3.3 3dB Sidelobe Region

The 3dB sidelobe region, shown in Fig. 3.4, is the range between the angle φSL at

which the mainlobe of the average beampattern reduces to 3dB above 1/N and π,

i.e.,

Sidelobe Region = {φ | φSL ≤ |φ| ≤ π} . (3.25)

In the case of Gaussian distributed sensor nodes, φSidelobe can be derived by substi-

tuting (3.16) in

Pav (φSL) =
2

N
(3.26)

Then we obtain that

1

N
+

(

1− 1

N

) ∣

∣

∣

∣

e
−α2

SL
σ2

2

∣

∣

∣

∣

2

=
2

N
. (3.27)

where αSL is the azimuth direction parameter corresponding to φSL and can be

substituted by 4π sin(φSL

2 ) and, thus, (3.27) becomes

4π sin

(

φSL
2

)

=

√

ln(N − 1)

σ
. (3.28)
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After some straightforward manipulations, φSL can be founded as

φSL = 2 sin−1

(

√

ln (N − 1)

4πσ

)

. (3.29)

It can be seen that the sidelobe region depends on the cluster area and the

number of sensor nodes N . However, the effect of N is small due to the logarithm

and square root operations. Hence, increasing the number of sensor nodes in the

case of Gaussian spatial sensor node distribution is not as critical for the sidelobe

region as it is in the case of uniform spatial sensor node distribution [14]. Comparing

it to the case of uniform distribution, we see that Gaussian distribution produces

average beampattern with larger sidelobe region, i.e., the mean of the beampattern

is close to 1/N over a larger area and, therefore, the sidelobes with high peaks are

less probable.

Fig. 3.5 shows the 3dB beamwidth φ3dB and 3dB sidelobe region starting angle

φSL versus normalized radius R̃ = 3σ for both uniform and Gaussian spatial distri-

butions. The angle φSL is calculated for N = 16 and N = 1024. For cluster radius

R̃ > 10, we find that φ3dB and φSL are less than 20o for all considered cases. Large

cluster radius R̃ results in sparsely distributed nodes and the effect of the spacial

distribution becomes less obvious.

3.3.4 Average Directivity

The directivity, in the context of WSNs, is changing from one realization of sen-

sor node locations to another. Given a realization of sensor node locations z, the

directivity can be expressed as [14]

D(z) =

∫ π
−π P(0)dφ

∫ π
−π P(φ/z)dφ

=
2π

∫ π
−π P(φ/z)dφ

(3.30)

where P(0) = P(0|z) = 1. Then, the average directivity is defined as

Dav = E {D(z)} . (3.31)

The following lower bound on the average directivity is typically considered

D∗
av =

2π
∫ π
−π Pav(φ)dφ

. (3.32)
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We can find the lower bound on the average directivity in the case of Gaussian

distributed sensor nodes as follows.

Substituting (3.16) in (3.32), we can write that

D̃av =
2 π

∫ π
−π

1
N + (1− 1

N )
∣

∣

∣
e

−α(φ)2σ2

2

∣

∣

∣

2
dφ

=
2 π N

2 π + (N − 1)
∫ π
−π

∣

∣

∣
e

−α(φ)2σ2

2

∣

∣

∣

2
dφ
. (3.33)

The integral in (3.33) can be found as

∫ π

−π

∣

∣

∣
e

−α(φ)2σ2

2

∣

∣

∣

2

dφ =

∫ π

−π
e−(4 π sin(φ/2))2σ2

dφ. (3.34)

Introducing a new notation c = (4πσ)2 and by using the change of variable inte-

gration method for u = sin(φ/2) and du/dφ = 1/2 cos(φ/2), we can rewrite (3.34)

as

∫ 1

−1
e−cu

2 2

cos(φ2 )
du =

∫ 1

−1
e−cu

2 2
√

1− sin(φ2 )
2
du

=

∫ 1

−1
e−cu

2 2√
1− u2

du. (3.35)

Changing the variable again as x = u2, dx/du = 2u, the integral (3.35) becomes

2

∫ 1

0
e−cx

2√
1− x

1

2
√
x
dx = 2

∫ 1

0
e−cx(1− x)− 1

2x−
1

2dx

= 2 π 1F1(
1

2
; 1;−(4 πσ)2). (3.36)

where

∫ 1

0
e−cx(1− x)b−a−1xa−1dx =

Γ(b− a) Γ(a)
Γ(b)

1F1(a; b; c). (3.37)

Finally, substituting (3.36) in (3.33), we obtain

D∗
av =

N

1 + (N − 1) 1F1(
1
2 ; 1;−(4πσ)

2)
(3.38)

where 1F1(
1
2 ; 1;−(4πσ)

2) is the hypergeometric function of the first kind. Note that

in the case of uniform spatial distribution, the average directivity is represented in

terms of the generalized hypergeometric function 2F3(
1
2 ,

3
2 ; 1, 2, 3;−(4πR̃)2) instead

of 1F1(
1
2 ; 1;−(4πσ)

2).
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As compared to the case of uniform spatial distribution [14],

D∗
av =

N

1 + (N − 1) 2F3(
1
2 ,

3
2 ; 1, 2, 3;−(4πR̃)

2
)

(3.39)

the hypergeometric function of the first kind in (3.39) has larger value than the gen-

eralized hypergeometric function 2F3(
1
2 ,

3
2 ; 1, 2, 3;−(4πR̃)2). Therefore, the average

directivity is lower in the case of Gaussian sensor node distribution as compared to

the case of uniform distribution for the same cluster area.

Fig. 3.6 shows the normalized average directivity Dav/N and its normalized lower

bound D∗
av/N for both uniform and Gaussian spatial distributions. It can be seen

that the directivity approaches N asymptotically with increasing the normalized

radius R̃ = 3σ in both aforementioned cases. Therefore, for a given number of

sensor nodes, we can increase the directivity by spreading the sensor nodes over a

larger area.

3.4 Random Behavior of the Beampattern

In this section, we first model the array factor as a complex random variable and find

the corresponding mean and variance. In order to guarantee that the interference

to the neighboring clusters is limited, the Complementary Cumulative Distribution

Function (CCDF) of the beampattern level in the sidelobe region should be small

enough for any specific realization of sensor node locations. The CCDF of the

beampattern level and the distribution of the maximum sidelobe peak which both

characterize the random behavior of a sample beampattern, are derived for the case

of Gaussian sensor node distribution. The derived expressions are compared with

the corresponding ones in the case of uniform distributed sensor nodes.

3.4.1 Array Factor Approximation

The distribution function can be derived by approximating the array factor level

at a given angle φ using an uncorrelated complex Gaussian random variable with a

real part X and an imaginary part Y [137], [188], that is,

F(φ|z) = 1

N

N
∑

r=1

e−jαzr =
1√
N

(X − jY). (3.40)
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where

X = R
{

1√
N

N
∑

r=1

e−jαzr

}

=
1√
N

N
∑

r=1

cos (αzr) (3.41)

Y = I
{

1√
N

N
∑

r=1

e−jαzr

}

=
1√
N

N
∑

r=1

sin (αzr) (3.42)

and R{·} and I {·} represent the real and the imaginary parts of a complex number,

respectively.

The joint pdf of X and Y can be written as

fX,Y(x, y) =
1

2πσXσY
exp

(

−|x−mX|2
2σ2X

− y2

2σ2Y

)

(3.43)

where the means mX, mY and variances σ2X, σ
2
Y in the case of Gaussian distributed

sensor nodes are given as [188]

mX =
√
NΩ(α) =

√
Ne−

α2σ2

2 (3.44)

σ2X =
1

2
(1 + Ω(2α)) − 1

N
Ω(α)2 =

1

2

(

1 + e−2α2σ2
)

− e−α2σ2

(3.45)

mY = 0 (3.46)

σ2Y =
1

2
(1− Ω(2α)) =

1

2

(

1− e−2α2σ2
)

(3.47)

where Ω(α) is the characteristic function of the Gaussian distributed random vari-

able z that is given by

Ω(α) = e−
α2σ2

2 . (3.48)

Note that the corresponding values of the means mX, mY and variances σ2X, σ
2
Y in

the case of uniform distributed sensor nodes are given as [14]

mX = 2
√
N

J1(α)

α
(3.49)

σ2X =
1

2

(

1 +
J1(2α)

α

)

−
(

2
J1(α)

α

)2

(3.50)

mY = 0 (3.51)

σ2Y =
1

2

(

1− J1(2α)

α

)

(3.52)

Figs. 3.7 and 3.8 show, respectively, the means and the variances of array factor

for both uniform and Gaussian spatial distributions. It can be seen that for fixed N

the array factor in the case of Gaussian spatial distribution has large mean at the
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region near to the target direction (φ = 0), and it approaches zero with increasing φ.

Thus, sidelobes of equal level occur with equal probability over whole sidelobe region.

In the case of uniform distribution, the mean is oscillating in the sidelobe region and,

thus, the probability of high level sidelobes in the beampattern is larger at the angles

which correspond to the mean peaks. The variance for both distributions is equal

to zero at φ = 0 and increases with the directions far from the targeted direction.

Therefore, the mainlobe of the sample beampattern matches precisely the mainlobe

of the average beampattern, and its behavior can be considered as deterministic.

This suggests that the 3dB beamwidth and directivity do not deviated much from the

average values, and thus, the average beampattern is suitable for characterizing the

mainlobe of a sample beampattern. Moreover, the variance in the case of Gaussian

distribution has lower value than the corresponding value in the case of uniform

distribution [14], and thus, the mainlobe is more stable in the Gaussian case.

3.4.2 Distribution of the Beampattern Level in the Sidelobe Region

Synchronizing the carriers of sensor nodes guarantees a deterministic power level at

the targeted direction and the mainlobe can be determined for any spatial distribu-

tion. However, the ad hoc locations of sensor nodes result in random beampattern

in the sidelobe region. Therefore, it is important to predict the interference to

neighboring clusters for any sample beampattern. Because of the high value of

the variance in the sidelobe region for both Gaussian and uniform pdfs, the shape

of a sample beampattern in the sidelobe region can completely deviate from the

shape of the average beampattern. Hence, the average beampattern does not reflect

the behavior of a sample beampattern in the sidelobe region, and its characteristics

should be expressed in a statistical form. The CCDF of the beampattern level in

the sidelobe region is given as

Pr {P(φ|z) > P0} = Pr
{

|F(φ|z)|2 > P0

}

= Pr

{

∣

∣

∣

∣

1√
N

(X− jY)
∣

∣

∣

∣

2

> P0

}

= Pr
{

X2 + Y2 > N P0

}

. (3.53)

Therefore, the distribution of the beampattern level is the same as the distribution

of the summation X2 + Y2. From (3.47), we observe that the variances σ2X and σ2Y
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approach 0.5 in the sidelobe region, and thus, the value of the summation X2 + Y2

has non-central chi-square distribution with 2 degrees of freedom [186], i.e.,

fX2+Y2(u) =
1

2σ2
e−

u+s2

2σ2 I0

( s

σ2
√
u
)

, u ≥ 0 (3.54)

where s2 = m2
X +m2

Y and In(·) is the nth-order modified Bessel function of the first

kind. In the case of non-central chi-square distribution with even number of degrees

of freedom, the CCDF can be expressed in terms of the generalized Marcum-Q

function QM (·) as

QM (a, b) =

∫ ∞

b
u
(u

a

)M−1
e−

u2+a2

2 IM−1 (au) du. (3.55)

Using the latter expression, the CCDF (3.53) can be simplified as

Pr {P(φ) > P0} = QM

(

s

σ
,

√
u

σ

)

= QM

(

mX

σX
,

√
NP0

σY

)

= QM

(√
2mX,

√

2NP0

)

. (3.56)

Moreover, the CCDF of the beampattern level can also be expressed as

Pr {P(φ|z) > P0} = Pr
{
√

X2 + Y2 >
√

N P0

}

. (3.57)

Therefore, the beampattern distribution is the same as the distribution of the ran-

dom variable
√
X2 + Y2. Using the fact that the variances approach equal values,

and the mean mX approaches zero, we can conclude that the beampattern level has

Rayleigh distribution, i.e.,

f(u) =
u

σ2
e−

u2

2σ2 , u ≥ 0 (3.58)

Consequently, the CCDF can be expressed as

Pr {P(φ) > P0} = e−NP0 . (3.59)

This approximation is very accurate in the case of Gaussian distribution for

the whole sidelobe region where the array factor has zero mean and the variances

are equal to 0.5 as shown in Figs. 3.7 and 3.8. However, in the case of uniform

distribution, the mean values and the variances have the same oscillatory nature

as the Bessel function J1(α) and, thus, the approximation is valid only for the

beampattern nulls and large values of φ.
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The CCDFs (3.56) for both uniform and Gaussian sensor node distributions and

the Rayleigh approximation to CCDFs (3.59) are shown in Fig. 3.9 for N=16, 256,

and 1024. It can be seen from the figure that the chance of a high beampattern

level in the sidelobe region reduces with increasing the number of sensor nodes N ,

while this chance is almost independent on the cluster area. The CCDFs for both

distributions are the same for low values of N . However, the CCDF in the case of

Gaussian distribution is lower than the CCDF in the case of uniform distribution if

N is large. The Rayleigh approximation is valid in the case of uniform distribution

only if N is small, while it is accurate in the case of Gaussian distribution for any

value of N .

Fig. 3.10 shows the CCDF as a function of N for given values of power level

P0. This figure can be used to estimate the number of sensor nodes N required for

achieving a certain beampattern level with high probability. It can be seen that for

high beampattern levels, both Gaussian and uniform spatial distributions give the

same results. However, for low beampattern levels, Gaussian spatial distribution

requires less sensor nodes then uniform distribution.

3.4.3 Distribution of the Maximum Sidelobe Peak

The probability that the sidelobe with a maximum peak exceeds a given power level

P0 is referred hereafter as the outage probability Prout [14], i.e.,

Prout , Pr

{

max
φ∈Sidelobe Region

P(φ) > P0

}

(3.60)

The outage probability can be used to estimate the maximum possible interfer-

ence to other clusters in the neighborhood or to estimate the probability of a given

interference level to these clusters.

To find the outage probability, the array factor in the sidelobe region F(u|z) is

modeled as a random process, where u = sin(φ/2), φ ∈ Sidelobe Region. In this

case, the real and imaginary parts of F(u|z), denoted as X(u) and Y(u), are found

to be wide sense stationary normal random processes with zero-mean and variances

σ2X = σ2Y = 1/2 [137]. An upper bound on the outage probability Prout can be

derived by finding the distribution of the local maxima of the square root [14]

R(u) ,
√

X2(u) + Y2(u) =
√
N |F(φ|z)| =

√

NP(φ|z). (3.61)

The probability of a local maxima of R exceeding level a in the sidelobe region
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is equivalent to the probability of R crossing the level a in upward direction, for

a > E {R(u)} [137]. There are at least as many local maxima above a as there

are upward crossings of a. Therefore, the average number of local maxima above

a approaches the average number of upward crossings of a. Let U(a) denote the

number of upward crossings by R of a given level a per unit length in the sidelobe

region. Then the average number E{U(a)} is given by [189]

E {U(a)}
du

=

∫ ∞

0
R′fR,R′

(

a,R′
)

dR′ (3.62)

where R′ is the derivative of R and fR,R′ (R,R′) is the joint pdf of R and R′ given

by [137]

fR,R′

(

R,R′
)

=
R

√

2πσ2X′σ2X

exp

(

− R2

2σ2
X

− R′2

2σ2
X′

)

(3.63)

where σ2X′ = σ2Y′ are the variances of the derivatives of X and Y with respect to u.

In order to calculate the variance σ2X′ , consider the autocorrelation function of X at

u1 and u2 given by

RXX (u1, u2) = E {X (u1)X (u2)}

= E {cos (4πu1z) cos (4πu2z)}

=
1

2
E {cos (4π (u1 + u2) z)}+

1

2
E {cos (4π (u1 − u2) z)}

≈ 1

2
E {cos (4π (u1 − u2) z)} (3.64)

where the first term approaches zero in the sidelobe region [14]. Let v = u1 − u2.
Then we can write that

RXX (v) ≈ 1

2
E {cos (4πvz)} . (3.65)

Differentiating (3.65) with respect to v twice, we obtain

R′′
XX(v) =

1

2
E
{

− cos(4πvz)(4πz)2
}

= −8π2E
{

− cos(4πvz)(4πz)2
}

(3.66)

Setting v = 0, the variance σ2X′ or σ2Y′ can be expressed as [190]

σ2X′ = σ2Y′ = −R′′
XX(0) = 8π2E

{

z2
}

= 8π2σ2 (3.67)

where E
{

z2
}

= σ2. Substituting σ2X = 0.5 and σ2X′ = 8π2σ2 in (3.63), we find

fR,R′

(

a,R′
)

=
a

2π
√
πσ2

exp

(

−a2 − R′2

16π2σ2

)

(3.68)
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Moreover, substituting (3.68) in (3.62), the mean number of upward crossings of

a given level a per unit interval du can be expressed as

E {U(a)}
du

=
a

2
√
ππσ

e−a
2

∫ ∞

0
R′e−

R′
2

16π2σ2 dR′

= 4
√
πσae−a

2

. (3.69)

The outage probability for the maximum sidelobe peak is the probability that

at least one peak exceeds the level a, i.e.,

Prout = Pr {U(a) ≥ 1}

=

∞
∑

k=1

Pr {U(a) ≥ k}

≤
∞
∑

k=1

kPr {U(a) ≥ k}

= E {U(a)} . (3.70)

Thus, we can conclude that the outage probability is upper bounded by E {U(a)}.
Integrating (3.69) over the whole sidelobe region, we obtain that

Prout ≤ E {U(a)}

= 2

∫ π

φSidelobe

4
√
πσae−a

2

du

= 8
√
π

(

1− sin

(

φSidelobe
2

))

σae−a
2

. (3.71)

Moreover, for low values of φSidelobe, the upper bound (3.71) can be simplified as

Prout ≤ 8
√
πσ
√

NP0e
−NP0 , NP0 >

1

2
(3.72)

where a =
√
NP0 and E {R(u)} = 1/

√
2 in the sidelobe region. The expression

(3.72) shows the relationship between the probability of maximum sidelobe level P0,

the cluster size N , and the cluster area. It can be seen that increasing the cluster

area results in higher outage probability, while increasing the cluster size N reduces

this probability. Therefore, we can conclude that if the interference is our main

concern, it is better to use small size clusters with large number of sensor nodes at

each cluster.

Fig. 3.11 shows the upper bounds on the sidelobe maximum with a given outage

probability for both uniform and Gaussian spatial distributions. It can be seen that

for the same number of sensor nodes N and outage probability Prout, the
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level of interference to neighboring clusters is lower in the case of Gaussian spatial

distribution and the value of the maximum peak in the sidelobe region increases

with increasing the normalized radius R̃ = 3σ.

3.5 Conclusions

Gaussian pdf has been proposed as a realistic model for sensor node spatial distribu-

tion within a cluster of WSN. The characteristics of the average beampattern have

been studied and compared with corresponding characteristics in the case of uniform

sensor node spatial distribution. It has been shown that for Gaussian spatial dis-

tribution, the beampattern has wider mainlobe and lower chance of large sidelobes

as compared to the case of uniform spatial distribution. The outage probability

achieves lower value in the case of Gaussian distribution than similar characteristics

in the case of uniform distribution. Consequently, it results in smaller interference

to the neighboring clusters. Although higher directivity can be achieved if sensor

nodes are uniformly distributed. The directivity can be increased simply by spread-

ing the sensor nodes over larger area, and therefore, it can be controlled only at the

network deployment stage. The overall conclusion is that the CB provides better

performance in terms of the characteristics, which can not be controlled at the net-

work deployment stage, if sensor nodes are deployed according to Gaussian pdf as

compared to the case of uniform pdf.
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Chapter 4

Sidelobe Control in

Collaborative Beamforming via

Node Selection and Multi-Link

Collaborative Beamforming

4.1 Introduction

Another significant concern in CB design is the uncontrolled sidelobes of the sample

beampattern due to the random sensor node locations. Although it has been shown

in the previous chapter that, for both uniform and Gaussian spatial distribution,

the CB sample beampattern has almost-deterministic mainlobe which is similar to

the average mainlobe. The sidelobes of the CB sample beampattern depend on the

sensor node locations and, thus, are random [14], [89], [191]. In addition, the afore-

mentioned cross-layer information sharing scheme of [159] results in higher sidelobes

even for the average CB beampattern. High sidelobe levels can lead to unacceptable

interference levels at the directions of unintended BSs/APs. Therefore, the sidelobe

control problem arises for CB in the context of WSNs. Indeed, lower interference at

unintended BSs/APs achieved by the sidelobe control has the potential to increase

the WSN transmission rate by enabling multi-link CB.

The problem of high sidelobe levels of the average CB beampattern has been

discussed in [174]. It has been suggested in [174] to use only sensor nodes placed in

multiple concentric rings instead of using all nodes in the coverage area to achieve

higher directivity. However, a narrower ring with larger radius results in the average

beampattern with narrower mainlobe and leads to larger sidelobe peak levels in some

directions. Moreover, only the average beampattern behavior is considered in [174],
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while it is the sample beampattern behavior that is of practical concern for the

sidelobe control in WSNs.

Due to the inherent distributed nature of WSNs, the sidelobe control has to be

achieved with minimum data overhead and knowledge of the channel information.

Unfortunately, traditional sidelobe control techniques developed in classical array

processing [192], [193] cannot be applied in the context of WSNs due to their unac-

ceptably high complexity and the requirement of centralized processing. Indeed, to

apply the centralized beamforming weight design in the WSNs, a node or BS/AP

has to collect the location and channel information from all sensor nodes and, thus,

significantly increase the corresponding overhead in the network. Note that for the

same reasons, the recently developed network beamforming techniques [194], [195]

are restricted to the applications in the relay networks only.

In this chapter, we formulate and study the sidelobe control problem in the CB

sample beampattern using node selection. It enables us to introduce the interference

reduction capabilities for WSNs, which in turns, enables multi-link CB versus the

single-link CB of [14] and [89]. The enabling concept for achieving sidelobe control

by node selection is the randomness of the node locations in WSNs. Indeed, different

combinations of sensor nodes result in beampatterns with different sidelobes. Note

also that a similar technique based on random selection is used in other signal pro-

cessing problems such as, for example, multiple choice sequences for OFDM [196].

Typical WSNs consist of hundreds or thousands of sensor nodes. It guarantees that

a large range of sidelobe levels can be achieved by simply selecting different combi-

nations of sensor nodes. Selecting different combinations of nodes is equivalent to

assigning different beamforming weights, which are determined by node locations

and corresponding channel gains. Therefore, the beamforming design boils down to

selection of an acceptable combination of such weights. Thus, we develop a ran-

dom node selection algorithm with low-rate feedback. As compared to the optimal

beamforming weights design, our algorithm does not depend on channel gain mea-

surements/estimates and does not suffer from the finite precision problem related to

the need of communicating the channel gain to a central point. Thus, it suits well

the WSN applications since it avoids complex computations and additional commu-

nications accompanied by central beamforming weight design. Note that a central

point is still required for performing the scheduling functions to arrange the order

of node selection for communication with the BSs/APs. Such scheduling functions
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are, however, much simpler than the central beamforming weights design.

The performance of the proposed algorithm is analyzed in terms of i) the average

number of trials required to select collaborative nodes, ii) the distribution of the

resulting interference, and iii) the corresponding average SINR and transmission

rate.

4.2 System and Signal Model

4.2.1 System Model

We consider a WSN with sensor nodes randomly placed over a plane as shown in

Fig. 4.1. Multiple BSs/APs, denoted as D = {d0, d1, . . . , dD}, are located out-

side and far apart from the coverage area of each individual node at directions

ϕ0, ϕ1, . . . , ϕD, respectively. Due to limited power of individual sensor nodes, direct

transmission to the BSs/APs is impossible and sensor nodes have to employ CB for

uplink transmission.

Uplink transmission is a burst traffic for which the nodes are idle most of the

time and have sudden transmissions. Thus, a time-slotted transmission scheme,

where nodes are allowed to transmit at the beginning of each time slot, can be, for

example, adopted.

The downlink transmissions from different BSs/APs are only control data broad-

casted over separate error-free control channels. In practice, the BSs/APs typically

can be connected to each other with almost no delay communication links and can

simply use one control channel. The BSs/APs can use high power transmission and,

therefore, the downlink is less challenging and can be organized as direct transmis-

sion.

The distance between nodes in one cluster of WSN is small so that the power

consumed for communication among sensor nodes can be neglected. Each sensor

node is equipped with a single antenna used for both transmission and reception.

To identify different nodes in a cluster, each node has a unique identification (ID)

sequence that is included in each transmission.

At each time slot, a set S = {s0, s1, . . . , sS} of source nodes is active. However,

only K + 1 source–destination pairs are allowed to communicate. This can be

organized at the higher media access layer through scheduling or random access

protocol. For example, BSs/APs can simply perform the scheduling function. Here
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K + 1 = min{card(S), card(D)} where card(·) denotes the cardinality of a set, and

the kth source–destination pair is denoted as sk–dk. For source node sk, the coverage

area is, ideally, a circle with a radius which depends on the power allocated for the

node-to-node communication.

Let Mk be a set of nodes in the coverage area of the node sk. Then the rth

collaborative node, denoted as cr, r ∈ Mk, has polar coordinates (ρr, φr) relative, for

example, to the source node sk. The Euclidean distance between the collaborative

node cr and a point (̺, φ) in the same plane is given as

δr(φ) ,
√

̺2 + ρ2r − 2ρr̺ cos(φ− φr)

≈ ̺− ρr cos(φ− φr) (4.1)

where ̺≫ ρr in the far-field region.

The array factor for the set of sensor nodesMk in a plane can be defined as

F
k(φ) ,

∑

r∈Mk

√

Pre
jψk

r e−jψr(φ) (4.2)

where Pr is the transmit power of the rth sensor node, ψkr is the initial phase of the

rth sensor node’s carrier when CB transmits to dk, and ψr(φ) is the phase delay

due to propagation at the point (̺, φ) given as

ψr(φ) = (2π/λ)δr(φ) (4.3)

with λ being the wavelength of the carrier.

Then the far-field beampattern corresponding to the set of sensor nodesMk can

be found from (4.2) as

P
k(φ) ,

∣

∣

∣
F
k(φ)

∣

∣

∣

2
=

∣

∣

∣

∣

∣

∑

r∈Mk

√

Pre
jψk

r e−jψr(φ)

∣

∣

∣

∣

∣

2

(4.4)

where | · |2 denotes the magnitude of a complex number. The mainlobe of the beam-

pattern is formed toward the direction of dk while collaborative node cr, r ∈ Mk is

synchronized with the initial phase ψkr = −(2π/λ)ρr cos(ϕk − φr) using the knowl-

edge of the node location. Alternatively synchronization can be performed without

any knowledge of the node locations [144]– [150]. Note that the synchronization

step has to be done at the network deployment stage to enable CB irrespective to

whether it is the single-link CB of [14] and [89] or the multi-link CB of this chapter.

Synchronization with multiple BSs/APs is a straightforward process with overhead

increasing only linearly with the number of the BSs/APs.

66



4.2.2 Channel Model

In this chapter, we use a channel model which is more realistic than the one used

in Chapter 3. Two types of fading effects attenuate the signal during propagation

through wireless channels, namely, small-scale and large-scale fading. Small-scale

fading, alternatively called Rayleigh fading, occurs when signal propagates in large

number of multiple reflective paths and there is no LOS signal component. The

envelope of the received signal at the distention is distributed according to a Rayleigh

pdf. The channel gains are modeled as circularly symmetric complex Gaussian

random variables with zero mean and arbitrary variance. Rayleigh fading is a widely

accepted model that captures the effect of the signal reflections during propagation

in the urban environments [187].

On the other hand, large-scale fading is the attenuation in the signal power due

to propagation over long distances and is affected by hills, forests, buildings, etc. in

the signal path. Large-scale fading has two components, the first is the path loss due

to propagation distance which decays according to the nth-power law. The second

is the attenuation variation about mean and it follows the log-normal distribution

which represents the flactuation/shadowing effect in the channel coefficients.

In the following analysis, we consider the channel characteristics near ground

in outdoor WSN applications of interest, i.e., the scenarios in which CB is needed.

Sensor nodes are deployed randomly on the ground and the antenna heights are

very low, so that the transmitted signals are obstructed mainly by the ground [197].

In such case, the small-scale fading can be neglected and the large-scale fading is

considered to be the dominant factor for the channel attenuation. Then, the channel

coefficient between collaborative nodes inMk and BSs/APs can be modeled as a log-

normal distributed random variable. Moreover, sensor nodes and any surrounding

objects are static which suggests that the channel attenuation varies very slowly

with time [197], [198]. Therefore, the channel variations over time can be neglected

and the channel can be considered to be time-invariant.

The channel coefficient for rth collaborative node which serves kth source–

destination pair can be modeled as

hrk = arkbrk, (4.5)

where ark is assumed to be a lognormal distributed random variable which represents

the flactuation/shadowing effect in the channel coefficient, i.e., ark ∼ exp{N (0, σ2)}
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with σ2 being the variance of the corresponding zero-mean Gaussian distribution,

where the lognormal pdf is given as

fa(a) =
1

aσ
√
2π

exp−
(ln(a))2

2σ2 0 ≤ a <∞. (4.6)

The other factor brk is the attenuation/path loss effect in the channel due to

propagation distance. Thus, it depends on the distance between cr and dk and the

path loss exponent. Assuming that all nodes inMk are close to each other, the pass

losses from the nodes inMk to the BS/AP dk are equal to each other, i.e., brk = bk,

r ∈ Mk [157]. Moreover, since all BSs/APs are located far apart from the cluster of

collaborative nodes, the network can be viewed as homogeneous and the attenuation

effects of different paths can be assumed approximately equal to each other, i.e., bk =

b [160]. Note that even if the attenuation effects for different BSs/APs are different,

they can be compensated by adjusting the gains of the corresponding receivers or

the power/number of the corresponding collaborative nodes participating in CB.

Therefore, the channel model simplifies to

hrk = ark. (4.7)

4.2.3 CB and Corresponding Signal Model

Consider a two–step transmission which consists of the information sharing and the

actual CB steps. Information sharing aims at broadcasting the data from one source

node to all other nodes in its coverage area. Specifically, in this step, the source node

sk broadcasts the data symbol zk to all nodes in its coverage area Mk, where the

data symbol zk belongs to a codebook of zero mean, unit power, and independent

symbols, i.e., E {zk} = 0,
∣

∣z 2k
∣

∣ = 1, and E {zkzn} = 0 for n 6= k.

In the case of multiple source nodes, data sharing can be achieved over orthogonal

channels in frequency, time, or code to avoid collisions. Note that the use of time

orthogonal channels requires scheduling which can be achieved by an appropriate

MAC protocol or using the BSs/APs as a central scheduler. Alternatively, the

existing collision resolution schemes can be used [157], [199].

We assume that the power used for broadcasting the data by the source node is

high enough so that each collaborative node cr can successfully decode the received

symbol from the source node sk.
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During the CB step, each collaborative node cr, r ∈ Mk targeting dk transmits

the signal

tr = zk
√

Pr e
jψk

r , r ∈ Mk. (4.8)

Then the received signal at angle φ from all collaborative setsMk, ∀k ∈ {0, 1, . . . ,K}
can be written as

g(φ) =
∑

k

zk
∑

r∈Mk

√

Pr ark e
jψk

r e−jψr(φ) + w (4.9)

where w ∼ CN (0, σ2w) is the additive white Gaussian noise (AWGN) at the direction

φ. The received noise power σ2w at BSs/APs can be measured in the absence of data

transmission and, therefore, is assumed to be known at each BS/AP.

The received signal at the BS/AP dk∗ can be written as

gk∗ , g(ϕk∗)

= zk∗

∑

r∈Mk∗

√

Prark∗ +
∑

k 6=k∗

zk
∑

r∈Mk

√

Prark∗e−j(ψ
k∗

r −ψk
r ) + w

= zk∗

∑

r∈Mk∗

√

Prark∗ +
∑

k 6=k∗

zk
∑

r∈Mk

√

Prark∗

(

x(k
∗,k)

r − jy(k∗,k)
r

)

+ w (4.10)

where

x(k
∗,k)

r = R
{

e−j(ψ
k∗

r −ψk
r )
}

(4.11)

and

y(k
∗,k)

r = I
{

e−j(ψ
k∗

r −ψk
r )
}

. (4.12)

As shown in [89], the array factor has a random behavior on the sidelobe region1

and therefore, x
(k∗,k)
r and y

(k∗,k)
r are independent random variables.

It can be further shown that u ∈
{

x
(k∗,k)
r , y

(k∗,k)
r

}

has the mean mu = m
x
(k∗,k)
r

=

m
y
(k∗,k)
r

= E {u} = 0 and variance σ2u = σ2
x
(k∗,k)
r

= σ2
y
(k∗,k)
r

= E
{

u2
}

= 0.5. Let the

angles ψkr and ψk
∗

r be uniform distributed in the interval [−π, π], i.e., ψ ∼ U [−π, π].
Since the mod-2π sum of two uniform random variables on [0,2π] is again uniform

on [0,2π], it can be found that the difference ∆ = ψkr −ψk
∗

r has uniform distribution

on [0,2π]. Using the equality u = R
{

ej∆
}

= cos (∆), the distribution of u ∈
{

x
(k∗,k)
r , y

(k∗,k)
r

}

can be found as

f(u) =
1

π
√
1− u2

. (4.13)

1It is worth noting that in typical WSNs, there is no need to put BSs/APs close to each other
and BSs/APs are well separated. Therefore, when forming a beampattern with a mainlobe towards
certain BS/AP, other unintended BSs/APs will be in the sidelobe region of that beampattern.
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The mean can be then easily found as mu = 0 and the variance as σ2u = 0.5. Similar

result can be also derived for u , I
{

ej∆
}

= sin (∆) in the same way.

Moreover, the first term in (4.10) is the signal received at the BS/AP dk∗ from

the desired set of collaborative nodes Mk∗

and the second term represents the

interference caused by other sets of nodesMk,∀k 6= k∗ withMk ∩Mn = ∅, k 6= n.

4.3 Sidelobe Control via Node Selection

As mentioned before, the randomness of the node locations provides additional de-

grees of freedom for controlling the beampattern sidelobes. Thus, to achieve desired

sidelobes, it is required to select a subset of collaborative nodes from the candidate

nodes in the coverage area of each source node. Node selection is performed at

the network deployment stage and is repeated only when the network configuration

changes. Note that the selection process can not be done during data transmission

and, if needed, any BS/AP can stop the transmission for all collaborative nodes at

any time to perform node selection and then continue the transmission after.

Let N k be a set of collaborative nodes to be selected fromMk, i.e., N k ⊂Mk,

to beamform data symbols to dk. We aim at assigning a set of collaborative nodes

N k ⊂ Mk to each source–destination pair sk–dk. Note that according to [14] and

[89], the mainlobe of the beampattern is stable for different subsets ofMk as long

as the coverage area does not change and each cluster of the WSN consists of a

sufficiently large number of sensor nodes.

In order to achieve a beampattern with low level sidelobes toward the unin-

tended BSs/APs, we develop a low-complexity node selection algorithm which guar-

antees that the sidelobe levels at the unintended BSs/APs are below a certain pre-

scribed value(s). Such algorithm should utilize only the knowledge of the receive

interference-to-noise ratio (INR), denoted as η, at the unintended destinations and

requires only low-rate (essentiality, one-bit) feedback from the unintended BSs/APs

at each trial.

To select such a collaborative set, the nodes can be tested one by one or a group

of nodes by a group of nodes. The latter is preferable since it can significantly reduce

the data overhead in the system. Indeed, while testing one node or a group of nodes,

we need to check if the corresponding CB sample beampattern sidelobe level reduces

in the unintended direction(s) and then send one ‘approve/reject’ bit per one node

in the first case, or per a group of nodes in the second case. Therefore, if every
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group of nodes consists of a larger number of sensor nodes, less ‘approve/reject’ bits

have to be sent in total. Note that the node selection is performed for one source–

destination pair at a time and a schedule that arranges the source nodes order in the

node selection process is maintained by the BSs/APs or a MAC protocol. Moreover,

only nodes that are not assigned to any other source–destination pairs are available

as candidate nodes for selection.

Consider the source node sk∗, let the number of nodes in its coverage area is M ,

the number of collaborative nodes needed to be selected is N ≤M , and the size of

one group of nodes to be tested in each trial is L ≤ N . Using the selection principle

highlighted above, the selection process can be organized in the following two steps.

Step 1: Selection. Source node sk∗ initiates the node selection by broadcasting the

select message to the nodes in its coverage area, namely the set Mk∗

, and

randomly selects a subset Lk∗

of L candidate nodes fromMk∗

.

Nodes can be assigned to the set Lk∗

by using any of the following two methods.

The first one is a centralized method in which the source node sk∗ maintains

a table of IDs of all candidate nodes in its coverage area and broadcasts the

IDs of the nodes randomly assigned to the set Lk∗

. The disadvantage of this

method is that each source node has to keep records of all other nodes in

its coverage area. Moreover, this method requires extensive data exchange

between the source and candidate nodes and, therefore, it is suitable only for

small WSNs.

Alternatively, in the second method, node assignment task is distributed among

the source and collaborative nodes. In particular, if collaborative nodes receive

the select message, each node starts a random delay using an internal timer.

After the random delay, the candidate node responds by the offer message

which contains the ID of this node. Then the source node responds by the

approval message which requires only 1 bit of feedback.

If a collision occurs and two collaborative nodes transmit the offer message

at the same time, the source node responds by the approval message with a

different bit value and the timers in both nodes start over new random delays.

The process repeats and the source node sk∗ keeps sending the select message

until L candidate nodes are assigned and the set Lk∗

is constructed. Assign-

ment of Lk∗

can be performed in one time-slot by setting the limits of random
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timer appropriately, so that the candidate set Lk∗

is ready for transmission at

the beginning of the next time slot.

Step 2: Test. Once the candidate subset Lk∗

is assigned, it transmits a test message

containing the intended BS/AP ID at the beginning of the next time-slot to

the intended destination dk∗ using CB. While the intended destination dk∗

receives a predetermined signal power level, the interference power levels at

the unintended destination(s) dk,∀k 6= k∗ are random because of the random

sidelobes of the CB beampattern.

At this step, all unintended BSs/APs with different IDs measure the receive

INR η. If η is higher than a predetermined threshold value ηthr, the reject

message is sent back to the candidate set Lk∗

. If multiple BSs/APs send reject

messages, only the first reject message is sufficient to reject the candidate set.

Another possibility is that BSs/APs coordinate transmissions and only one

reject message is transmitted for multiple BSs/APs. In this case, the nodes

in the candidate set Lk∗

are all returned to the set of nodesMk∗

and can be

used in future trials.

If no reject message is received from any of the unintended BSs/APs after a

predetermined waiting time, then the candidate set Lk∗

is approved and each

node from Lk∗

stores the IDs of the source node sk∗ and the destination dk∗ .

Then the collaborative nodes assigned to serve the source–destination pair sk∗–

dk∗ do not participate in future trials. In this way, we can avoid an overlap

between sets of nodes serving different BSs/APs. Note that the waiting time

has to be set long enough so that the BSs/APs can measure the INR over

longer time to assure that the INR variations are in an acceptable range.

In order to select N collaborative nodes, the Selection and Test steps are repeated

until N/L candidate sets Lk∗

l , l = 1, 2, . . . , N/L, are approved. It is assumed for

simplicity that N/L is an integer number. If N/L is not integer, it is still easy to

adjust the size of the candidate set Lk∗

in the last trial of the algorithm only. Then

the so obtained set of approved collaborative nodes is N k∗

=
⋃

l Lk
∗

l . Once N k∗

is

constructed, the source node sk∗ broadcasts the end message. The timing diagram

of the node selection process is shown in Fig. 4.2 and the pseudocode of the node

selection algorithm is also given in Table 1.
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Node selection algorithm

Initial values:
N and L are predetermined at the Source Node sk∗.
ηthr is predetermined at the unintended Destinations dk, k = {0, 1, . . . ,D}.

1: At sk∗: (Counter l← 1).

2: If (Counter l < N
L ),

3: Then: { sk∗ broadcasts the select message.

4: A candidate set Lk∗l is constructed.
5: Using CB, the nodes in Lk∗l transmit the test message.}
6: Otherwise: {Go to 12.}
7: At any dk,∀k 6= k∗: If ( The receive INR η > ηthr),

8: Then { dk sends the reject message to Lk∗l .}
9: Else { No reject message is received.
10: Lk∗l is approved and the corresponding nodes store the IDs of sk∗ and dk∗ .
11: At sk∗: (Counter l ← Counter l + 1). Go to 2.}
12: sk∗ broadcasts the end message.

Table 4.1. Table 1: Node selection algorithm for CB sidelobe control.

Selection

sk∗ transmits the select message toMk∗ Assign Lk∗ Lk∗ transmits the test message to dk∗ waiting time

Test

Figure 4.2. Timing diagram for node selection process.
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Although the proposed node selection strategy does not guarantee the optimal

result of centralized beamforming strategies (which require global knowledge of the

channel information and, therefore, a very significant data overhead in the network),

it has practically important advantages for WSNs since it can be run in sensor nodes

with simple hardware, it is scalable and uses minimum control feedback from the

unintended BSs/APs. Finally, note that once the collaborative nodes are assigned

for each source node, the links between different source-destination pairs have min-

imum interference to each other and are independent. Then the actual data com-

munication is a directional (unicast) transmission to a specific BSs/APs which can

be straightforwardly implemented based on scheduling or any appropriate random

access protocol.

4.4 Performance Analysis

In this section, we analyze the proposed node selection algorithm in terms of i) the

average number of trials required for selecting a set of collaborative nodes, ii) the

CCDF of the received INR η, and iii) the achievable average SINR and correspond-

ing transmission rate. The first characteristic allows to estimate the average run

time of the algorithm, while the second characteristic is needed to estimate the

achievable interference levels versus the corresponding interference threshold val-

ues. The achievable average SINR and transmission rate aim at emphasizing the

improvements that the multi-link CB with node selection provides as compared to

the multi-link CB without node selection and single-link CB of [14] and [89].

For simplicity, but without lose of generality, we assume in our further analysis

that each node in the network utilizes the same amount of power for each CB

transmission, i.e., Pr = P, ∀r in (4.10).2

4.4.1 Average Number of Trials

It is worth reminding that the node selection for the set N k∗

which serves the link

sk∗–dk∗ is performed for one source–destination pair at a time. We assume that

the total transmit power budget for each tested candidate set of nodes is kept the

same in each trial of CB transmission for any number of collaborative nodes. In

particular, the power per one sensor node in Lk∗

l during the selection process has to

2The general case follows straightforwardly from our analysis by substituting corresponding Pr’s
∀r.
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be set as

P =
σ2wγ

L
(4.14)

where γ is the power budget for single CB transmission normalized to σ2w. Then the

SNR at the intended BS/AP is

SNR = 10 log10(Lγ) [dB] (4.15)

where the factor L is the corresponding array gain. The power consumed for running

the node selection algorithm is proportional to the average number of trials in the

algorithm. Therefore, it is preferable to construct a set of collaborative nodes with

less number of trials.

In order to derive the average number of trials for the node selection algorithm,

we, first, need to find the probability that a candidate set of nodes Lk∗

l is approved

as part of the set of collaborative nodes N k∗

. This probability is the same as the

probability that the set Lk∗

l generates an acceptable interference at the unintended

BSs/APs. Since we assumed that only one set of collaborative nodes N k∗

is con-

structed at a time, there is no interference present from other candidate sets. Using

(4.10), the interference power received at the unintended BS/AP dk from the tested

candidate set of nodes Lk∗

l which targets the intended BS/AP dk∗ can be written as

I
(

ϕk

∣

∣

∣
Lk∗

l

)

=

√

σ2wγ

L
zk∗

∑

r∈Lk∗

l

ark

(

x(k
∗,k)

r − jy(k∗,k)
r

)

= zk∗

(

X
(k∗,k)
l − jY(k∗,k)

l

)

(4.16)

where

X
(k∗,k)
l ,

√

σ2wγ

L

∑

r∈Lk∗

l

arkx
(k∗,k)
r

Y
(k∗,k)
l ,

√

σ2wγ

L

∑

r∈Lk∗

l

arky
(k∗,k)
r (4.17)

can be approximated by zero-mean Gaussian random variables with variances

σ2X = E

{

(

X
(k∗,k)
l

)2
}

= E











√

σ2wγ

L

∑

r∈Lk∗

l

arkx
(k∗,k)
r





2



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=
σ2wγ

L
E











∑

r∈Lk∗

l

arkx
(k∗,k)
r





2




= σ2wγE
{

a2rk
}

E

{

(

x(k
∗,k)

r

)2
}

(4.18)

The expected values in (4.18) are given by

E
{

a2rk
}

= σ2a +m2
a

E

{

(

x(k
∗,k)

r

)2
}

= σ2u (4.19)

Thus, the following is valid

σ2X = σ2Y = γσ2wσ
2
u

(

σ2a +m2
a

)

(4.20)

where ma and σ2a are the mean and variance of the lognormal distributed ark given

by [200]

ma = em+σ2

2

σ2a =
(

eσ
2−1
)

e2m+σ2

(4.21)

Using (4.16) and the fact that |zk∗ |2 = 1, the received interference power at the

unintended BS/AP dk from the candidate set of nodes Lk∗

l can be expressed as

∣

∣

∣I
(

ϕk

∣

∣

∣Lk∗

l

)∣

∣

∣

2
=
(

X
(k∗,k)
l

)2
+
(

Y
(k∗,k)
l

)2
. (4.22)

Then the probability that the candidate set of nodes Lk∗

l is approved to join the

set of collaborative nodes N k∗

, i.e., the probability that the INR η from Lk∗

l at the

unintended BS/AP dk is lower than the threshold value ηthr, can be found as

p′ , Pr {η < ηthr} = Pr

{
∣

∣I(ϕk
∣

∣Lk∗

l )
∣

∣

2

σ2w
< ηthr

}

= Pr











(

X
(k∗,k)
l

)2
+
(

Y
(k∗,k)
l

)2

σ2w
< ηthr











= 1− exp

(

−ηthrσ
2
w

2σ2X

)

(4.23)

where the INR

η =

(

X
(k∗,k)
l

)2
+
(

Y
(k∗,k)
l

)2

σ2w
(4.24)
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is the summation of the squared zero-mean Gaussian random variables each with

variance σ2X multiplied by 1
σ2
w

. The INR η is exponentially distributed random

variable with the pdf

f

(

η

∣

∣

∣

∣

σ2w
2σ2

X

)

=

{

σ2
w

2σ2
X

exp
{

−σ2
wη
2σ2

X

}

, η ≥ 0

0, η < 0.
(4.25)

It is worth noting that any value of ηthr in the distribution range of the INR η will

result in non-zero value of p′. Indeed, the interference power
∣

∣I
(

ϕk
∣

∣Lk∗

l

)∣

∣

2
depends

on the set Lk∗

l . Although the number of possible combinations for constructing Lk∗

l

is finite. It equals to
(

M

L

)

=
M !

L!(M − L)! , (4.26)

which is very large number for typical WSNs consisting of hundreds or thousands

of sensor nodes. For example, if 256 candidate nodes have to be selected from

512 nodes, the number of combinations is 4.7255 × 10152 each corresponding to

different value of the beampattern levels. Different values of the interference power
∣

∣I
(

ϕk
∣

∣Lk∗

l

)∣

∣

2
, which correspond to different combinations of Lk∗

l , cover the same

range of the beampattern levels that can be achieved using L collaborative nodes.

Once we set ηthr to a value from that achievable range of beampattern levels, the

number of trials for selecting N k∗

should be finite.

It is also important to note that X
(k∗,k)
l and Y

(k∗,k)
l are defined through the

independent random variables x
(k∗,k)
r and y

(k∗,k)
r , respectively, and the channel gains

ark which are also independent random variables for different directions ϕk,∀k 6= k∗.

Therefore, X
(k∗,k)
l and Y

(k∗,k)
l are independent random variables ∀k 6= k∗ and the

interference levels caused by Lk∗

l at different directions ϕk,∀k 6= k∗,
∣

∣I
(

ϕk
∣

∣Lk∗

l

)∣

∣

2
,

are also independent random variables. If D unintended BSs/APs are present in

the neighborhood of the set of candidate collaborative nodes Lk∗

l , the probability

that the INR from Lk∗

l at any one of these unintended BSs/APs is lower than

the threshold value ηthr is given by (4.23). Therefore, the probability that Lk∗

l is

approved by all BSs/APs is the product of the probabilities that Lk∗

l is approved by

each of the unintended BSs/APs, that is,

p =

(

1− exp

(

−ηthrσ
2
w

2σ2
X

))D

. (4.27)

It can be seen from (4.27) that p decreases if the threshold ηthr decreases or the

number D of unintended BSs/APs increases.
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Using (4.27), a closed-form expression for the average number of trials can be

derived. Since the candidate nodes are selected randomly at each trial, the algorithm

itself can be viewed as a Bernoulli process. Since T0 = N/L of these Bernoulli

trials must be successful among the first T trials in order to construct N k∗

, the

probability distribution of the number of trials T is, in fact, negative binomial

distribution [201, p. 82], that is,

Pr{T = t} =
(

t− 1

T0 − 1

)

pT0 (1− p)t−T0 . (4.28)

The expression for the mean of the negative binomial distribution is derived as

follows. Consider an infinite sequence of independent Bernoulli trials with probabil-

ity of success p. Let Z1 denote the number of trials before the first successful trial.

Then Z1 is geometric distributed random variable Z1 ∼ Geom(p), that is,

Pr(Z1 = k) = (1− p)k−1p, k = 1, 2, · · · ,∞. (4.29)

The corresponding moment generating function (MGF) for (4.29) is

MZ1
(t) , E{etZ1} =

∞
∑

k=1

etk(1− p)k−1p

= pet
∞
∑

l=0

(

(1− p)et
)l

=
pet

1− (1− p)et . (4.30)

Therefore, the average value of Z1 can be found as

E{Z1} =
d

dt
MZ1

(t)

∣

∣

∣

∣

t=0

=
(1− (1− p)et)(pet)− ((p − 1)et)(pet)

(1− (1− p)et)2
∣

∣

∣

∣

t=0

=
pet

(1− (1− p)et)2
∣

∣

∣

∣

t=0

=
p

p2
=

1

p
. (4.31)

Similarly, we can find the average number of trials between the first and second

successful trials E{Z2}, second and third successful trials E{Z3}, and so on until

the T0 = N/L-th successful trial. Since Z1, Z2, · · · , ZT0
are independent identically

geometric distributed random variables, i.e., Zi ∼ Geom(p), the summation T =
∑T0

i=1 Zi is negative binomial distributed, i.e., T =
∑T0

i=1 Zi ∼ NegBin(T0, p), with

average

E

{

T0
∑

i=1

Zi

}

= T0E{Zi} =
T0
p

=
N

L · p (4.32)

where the fact that Z1, Z2, · · · , ZT0
are independent identically distributed is used

again.
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Using (4.28) and the expression for the mean of the negative binomial distribu-

tion, the average number of trials for the proposed node selection algorithm can be

obtained as

E {T} = T0
p

=
N

L · p. (4.33)

It can be seen from (4.33) that the average number of trials is proportional to the

size of the set of collaborative nodes N k∗

, but it is inverse proportional to the size

of the candidate set of nodes Lk∗

l and to the probability that the set Lk∗

l is approved

to join the set N k∗

. Therefore, less number of trials is required in average for the

proposed node selection algorithm if L is chosen to be large for a certain value of

N . Moreover, if the probability p is large, then less number of trials is required.

4.4.2 CCDF of Interference

Once the collaborative nodes are assigned for each source-destination pair, the links

between different source-destination pairs have minimum interference to each other

and can be used independently for the multi-link CB. In this subsection, we study

the CCDF of the interference occurring during simultaneous multi-link CB commu-

nications of K + 1 different source-destination pairs.

At the intended destination dk∗ , other K collaborative sets that target different

dk,∀k 6= k∗ destinations are interfering. These sets are N k,∀k 6= k∗ and their union

is denoted hereafter as
⋃N k 6=k∗

. Using (4.16), the total interference collected at

the destination dk∗ from all K interfering collaborative sets can be expressed as

I
(

ϕk∗

∣

∣

∣

⋃

N k 6=k∗

)

=

√

σ2wγ

N

∑

k 6=k∗

zk
∑

r∈N k

ak∗r

(

x(k
∗,k)

r − jy(k∗,k)
r

)

(4.34)

where the power per one collaborative sensor node is P = σ2wγ/N in this case, and

the SNR at the intended BS/AP is 10 log10(Nγ) dB.

Using the fact that N k =
⋃Lkl and multiplying and dividing the right hand side

of (4.34) by
√
L, the total interference at dk∗ can be expressed as

I
(

ϕk∗

∣

∣

∣

⋃

N k 6=k∗

)
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l − j Ỹ

(k∗,k)
l

)

(4.35)
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where X̃
(k∗,k)
l and Ỹ

(k∗,k)
l are zero mean truncated Gaussian distributed random vari-

ables corresponding to X
(k∗,k)
l and Y

(k∗,k)
l of (4.16) for only approved candidate sub-

sets. It can be shown that the marginal conditional pdf of Ũ
(k∗,k)
l ∈

{

X̃
(k∗,k)
l , Ỹ

(k∗,k)
l

}

is [202, p. 191]
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where Q(x) = 1/
√
2π
∫∞
x exp(−u2/2) du is the Q-function of the Gaussian distribu-

tion.

Using (4.35), the total INR at dk∗ can be expressed as

η =
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Based on the central limit theorem, both summation terms in (4.37) correspond-

ing to the real and imaginary parts of the INR from each set of collaborative nodes,

i.e.,
√

L/Nσ2w
∑N/L

l=1 X̃
(k∗,k)
l and

√

L/Nσ2w
∑N/L

l=1 Ỹ
(k∗,k)
l , are zero mean Gaussian

distributed random variables with variance for both given as
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(4.38)
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where β = σ2wηthr/2σ
2
X.

Therefore, the total INR η collected at dk∗ from all collaborative sets is a sum

of exponentially distributed random variables (see (4.37)) and can be shown to be

Erlang distributed, that is,

f (η |K,α ) = αK(η)K−1 exp (−αη)
(K − 1)!

, for K > 0, η ≥ 0, α =
1

2σ2∑
. (4.39)

Finally, using (4.39), the CCDF of the INR can be expressed in closed-form as

Pr {η ≥ η0} =
K−1
∑

k=0

(αη0)
ke−αη0

k!
. (4.40)

4.4.3 SINR and Transmission Rate

The average SINR at the intended BS/AP dk∗ for the proposed multi-link CB with

node selection can be found as

γk
∗
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E

{

∣

∣

∣
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. (4.41)

Using the facts that
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and

E
{

|I(ϕk∗ |
⋃

N k 6=k∗

)|2
}

= 2Kσ2I (4.43)

where the latter one follows from (4.38) with σ2I = σ2∑σ2w, the average SINR (4.41)

can be rewritten as

γk
∗

ML =
P (Nσ2a +N2m2

a)

2Kσ2I + σ2w

=
γσ2w(σ

2
a +Nm2

a)

2Kσ2I + σ2w
. (4.44)

Since K +1 source–destination links are used simultaneously, the transmission rate

in bits/sec/Hz of the multi-link CB with node selection can be expressed as

CML = (K + 1) log2(1 + γk
∗

ML)

= (K + 1) log2

(

1 +
γσ2w(σ

2
a +Nm2

a)

2Kσ2I + σ2w

)

. (4.45)
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Similarly, using (4.41), the average SINR at the intended BS/AP dk∗ for the

multi-link CB without node selection can be found as

γ̄k
∗

ML =
P (Nσ2a +N2m2

a)

2Kσ2X + σ2w

=
γσ2w(σ

2
a +Nm2

a)

2Kσ2
X
+ σ2w

(4.46)

where E
{

|I(ϕk∗ | ⋃N k 6=k∗

)|2
}

= 2Kσ2X in this case, i.e., σ2I in (4.44) is substituted

by σ2X in (4.46). Then the corresponding transmission rate can be expressed as

C ′
ML = (K + 1) log2

(

1 +
γσ2w(σ

2
a +Nm2

a)

2Kσ2
X
+ σ2w

)

. (4.47)

Finally, in the single-link CB case, the interference is not present and the SNR

at the intended BS/AP dk∗ can be found as

γk
∗
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E
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∣
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∣
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r∈Mk∗ ark∗

∣
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}

σ2w

=
P (Mσ2a +M2m2

a)

σ2w
= γ((K + 1)σ2a + (K + 1)2Nm2

a) (4.48)

where the number of sensor nodes used in the single-link CB case is the same as the

total number of sensor nodes used in all links in the multi-link CB case, i.e., for fare

comparison with the multi-link CB case M = (K + 1)N . Thus, the power per one

collaborative sensor node is P = σ2wγ/N . Then the corresponding transmission rate

is given as

CSL = log2(1 + γ((K + 1)σ2a + (K + 1)2Nm2
a)). (4.49)

It can be seen that although there is no interference for the single-link CB and

better SNR that SINR in the multi-link CB can be achieved, the single-link CB

transmission rate improvement over the multi-link CB is only logarithmic, while the

multi-link CB transmission rate improvement over the single-link CB due to multi-

ple links is linear. Moreover, sidelobe control via node selection achieves isolation

between different links in the multi-link CB and, thus, the interference is minimized

that leads to increased link transmission rate as well.

Finally, note that since the node selection has to be done at the deployment stage

of WSN and repeated only when the network configuration changes, the transmission

rate lose because of the overhead spent on node selection is insignificant since it is
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run in a much slower time scale than the actual data transmission. Moreover, this

overhead can be controlled if necessary and depends on the size of the candidate set

of nodes L and the threshold ηthr.

4.5 Simulation Results

In this section, we aim at demonstrating the advantages of the proposed node selec-

tion algorithm for the multi-link CB beampattern sidelobe control and verifying the

accuracy of the derived analytical expressions. Throughout this section the following

set up is considered, unless otherwise is specified. The sensor nodes are assumed to

be uniformly distributed over a disk with radius R = 2λ. The total number of sen-

sor nodes in the coverage area of the transmitting source node is M = 512 and the

desired number of collaborative nodes to be selected is N = 256. The power budget

for all N collaborative nodes γ equals to 20 dB, where all power values are normal-

ized to σ2w. The size of a group of candidate sensor nodes L is taken to be equal to

32 and the INR threshold value at the unintended BSs/APs is set to ηthr = 10 dB.

The intended BS/AP is located at the direction ϕ0 = 0o in all scenarios, while the

direction to the unintended BS/AP is ϕ1 = 65o in the scenarios with only one unin-

tended BS/AP. In the scenarios with multiple unintended BSs/APs, the directions

are defined in corresponding scenarios. Moreover, we always assume for simplicity,

but without any loss of generality, that ηthr is the same for all BSs/APs. Indeed, the

node selection is performed based on the ‘accept/reject’ bit from the correspond-

ing BS/AP, that is, the threshold ηthr is used only at the BS/AP. Therefore, it is

straightforward to use different threshold values at different BSs/APs without any

change to the node selection algorithm.

4.5.1 Sample CB Beampattern

Scenario 1: In this scenario, D = 4 unintended BSs/APs are present and the corre-

sponding directions are ϕ1 = −140o, ϕ2 = −70o, ϕ3 = 70o, and ϕ4 = 140o. Fig. 4.3

shows the sample beampattern corresponding to the multi-link CB with node se-

lection and compares it to the sample beampattern corresponding to the multi-link

CB without node selection and the average beampattern. It can be seen from the

figure that the CB with node selection achieves the lowest sidelobes in the directions

of unintended BSs/APs, while the sidelobes of the CB without node selection are

uncontrolled and high in the directions of unintended BSs/APs. Moreover, Fig. 4.4
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Figure 4.3. Beampattern: The intended BS/AP is located at ϕ0 = 0o and 4 unin-
tended BSs/APs at directions ϕ1 = −140o, ϕ2 = −70o, ϕ3 = 70o, and ϕ4 = 140o:
M = 512, N = 256, L = 32, ϕ0 = 0o, and ηthr = 10 dB.
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Figure 4.4. Beampattern: Multi-link beampatterns with BSs/APs at directions
ϕ0 = 0o, ϕ1 = −140o, ϕ2 = −70o, ϕ3 = 70o, and ϕ4 = 140o: M = 512, N = 256,
L = 32, and ηthr = 10 dB.
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shows the beampatterns of the multi-link CBs with node selection for all sets of

collaborative nodes. It can be seen from the figure that each beampattern has

minimum interference at the directions of the mainlobes of the other beampatterns.

Scenario 2: In this scenario, it is required to limit the interference in the range

φ ∈ [25o 45o]. The beampattern of the CB with node selection and the average

beampattern are shown in Fig. 4.5. It can be seen from the figure that the CB with

node selection is able to achieve a beampattern with sufficiently low sidelobes over

the whole range φ ∈ [25o 45o]. Note that this case corresponds, for example, to the

situation when the unintended BS/AP is actually another cluster of sensor nodes

distributed over space, which, therefore, cannot be viewed as a point in space.

Scenario 3: In the last scenario, we assume that D = 4 unintended Bs/APs are

located at the directions corresponding to the largest peaks of the average beam-

pattern. Therefore, the locations of the unintended BSs/APs are actually the worst

possible locations in terms of the corresponding average interference levels. Fig. 4.6

shows the average beampattern and the beampattern of the CB with node selection.

As it can be seen from the figure, using the node selection, we can achieve minimum

interference levels at the directions of unintended BSs/APs even in this case.

4.5.2 Average Number of Trials

The two parameters in the node selection algorithm are the INR threshold ηthr and

the size L of the candidate set of nodes Lk∗

for fixed N .

In this example, the INR threshold value changes in the range ηthr = [0 30] dB.

The parameters of the Gaussian distribution corresponding to the lognormal distri-

bution of the channel coefficients are m = 0 and σ2 = 0.2. Monte Carlo simulations

are carried over using 1000 runs to obtain average results.

Fig. 4.7 demonstrates the effect of the threshold ηthr on the average number of

trials required to select the set of collaborative nodes N k using the sets of candidate

nodes of different sizes L ∈ {16, 32, 64, 128}. It can be seen from the figure that the

curves obtained using the closed-form expression (4.33) for the average number of

trials are in good agreement with the simulation results. It can also be seen that by

decreasing the threshold ηthr, the number of trials increases. Moreover, the number

of trials for fixed N can be controlled using L. Indeed, as L increases, the number

of trials decreases.

In our next example, we study the effect of the number of unintended BSs/APs
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Figure 4.5. Beampattern: The interference is limited in the range φ ∈ [25o 45o]:
M = 512, N = 256, L = 32, ϕ0 = 0o, and ηthr = 10 dB.
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Figure 4.6. Beampattern: The unintended BSs/APs are at directions corresponding
to the peaks of the average beampattern: M = 512, N = 256, L = 32, ϕ0 = 0o, and
ηthr = 10 dB.
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D to the performance of the node selection algorithm.

In Fig. 4.8, the average number of trials is plotted versus the threshold ηthr for

different values of D ∈ {1, 2, 3}. It can be seen from this figure that as D increases,

the average number of trials of the node selection algorithm increases exponentially

if the threshold ηthr is low. Finally, it can be observed that the analytical and

simulation results are in a good agreement with each other.

4.5.3 CCDF of the Beampattern Level

Fig. 4.9 depicts the probability that the interference exceeds certain level, i.e., it

shows the CCDF of interference for different values of ηthr ∈ {−5, 0, 5, 10}. In

addition, Fig. 4.10 illustrates the CCDF of the interference for different numbers of

active collaborative sets K ∈ {1, 2, 3}. It can be seen from Fig. 4.9 that the CCDF

of the interference increases as ηthr decreases. Moreover, as can be observed from

Fig. 4.10, the CCDF of the interference increases if K increases. The latter fact

agrees with the intuition that for larger number of collaborative sets transmitting

simultaneously, the overall received interference by all BSs/APs must be higher.

The simulation results in both figures closely agree with our analytical results as

well.

4.5.4 SINR and Transmission Rate

In Fig. 4.11, the SNR of the single-link CB (4.44) and the SINR for one link of

the multi-link CB with node selection (4.46) and without node selection (4.48) are

plotted versus the threshold value ηthr for different numbers of collaborative sets

K ∈ {1, 2, 3} and compared with the simulation results. Since the single-link CB

does not have interference, it can be seen that it achieves higher SNR than the

SINR achieved by one link of the multi-link CB. Moreover, it can be seen from

this figure that the SINR of the multi-link CB with node selection increases as the

threshold ηthr decreases. The SINR is lower for the multi-link CB if larger number

of collaborative sets, K +1, is transmitting simultaneously because of the increased

interference. In the case of the single-link CB, larger K results in increase of M

since M = (K + 1)N . Therefore, more collaborative nodes are available for the

single-link CB with larger K and the SNR increase can be observed.

In Fig. 4.12, the corresponding total transmission rates computed according to

the expressions (4.45), (4.47), and (4.49) are plotted and compared with the
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Figure 4.10. The CCDF of the INR for different values of K: M = 512, N = 256,
L = 32, ϕ0 = 0o, and ηthr = 10 dB.
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ϕ0 = 0o.
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simulation results. It can be seen from this figure that for K > 1, the transmission

rate of the multi-link CB with and without node selection is larger than that achieved

by the single-link CB. Moreover, higher transmission rate can be achieved by the

multi-link CB with node selection as the threshold ηthr decreases.

Comparing Figs. 4.7 and 4.12 to each other, we can observe a tradeoff between

the average number of trials required for node selection and the achieved transmis-

sion rate. Particularly, higher transmission rate is achieved by using smaller values

of ηthr in the multi-link CB with node selection or larger number of collaborative

sets transmitting simultaneously (see Fig. 4.12). This transmission rate increase is

achieved at the expense of larger number of trials in the selection algorithm (see

Fig. 4.7).

4.6 Conclusions

Node selection has been introduced for the multi-link CB sidelobe control in the

context WSNs and an efficient algorithm with low overhead has been developed and

analyzed. The expressions for the average number of trials required for the proposed

node selection algorithm and the CCDF of the interference of the multi-link CB

with node selection have been derived. Moreover, the transmission rate for the

multi-link CB with and without node selection has been analyzed and compared to

that of the single-link CB. From both the analytical and simulation results, we have

seen that the multi-link CB with node selection has perfect interference suppression

capabilities as compared to the multi-link CB without node selection. It has been

also shown that the transmission rate achievable by the multi-link CB with node

selection is significantly higher than that of the multi-link CB without node selection

and single-link CB. Although our theoretical analysis is approximate, the numerical

results show close agreement with our analytical results.
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Chapter 5

Power Control for Collaborative

Beamforming

5.1 Introduction

Energy conservation is a critical issue in WSNs where sensor nodes are mounted

with batteries of limited capacity as energy sources. Moreover, sensor nodes are

usually deployed in difficult-to-access areas and their batteries can not be replaced

once the WSN is deployed. Accordingly, sensor node lifetime is mainly limited by

the battery lifetime.

Energy harvesting can be used as an alternative source to power sensor nodes.

In this method, a harvesting device is mounted at the sensor node to extract energy

from the surrounding renewable sources such as light, temperature, or vibration.

Unfortunately, these sources often do not provide sufficient energy, and thus, the

extracted energy from these sources is limited for the existing current technology.

As a result, sensor nodes are still energy constrained and energy efficiency becomes

the most critical design requirement in WSNs. It is required to reduce the consumed

energy at individual sensor nodes to extend the WSN lifetime.

Another point about energy capabilities of sensor nodes is the energy consump-

tion rate. Typical WSNs have identical nodes with sensing, data processing, and

communication capabilities. However, the surrounding environment determines the

priority and the load of these tasks for each sensor node. Although sensor nodes

typically start with the same energy capacity once the WSN deployed, the energy

consumption rate for individual sensor nodes can be very different due to the cor-

responding assigned tasks. As a result, different sensor nodes will have different

residual energies at their batteries with progress of time. To maintain network con-
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nectivity and avoid uncovered regions in WSNs, sensor nodes are required to deplete

their energies over the same period.

Since increasing the energy capabilities of sensor nodes is not feasible with the

current technology, prolonging the WSV lifetime is addressed in this chapter by im-

plementing energy efficient schemes. Among different energy costs in sensor nodes,

energy consumed because of communication has received considerable attention over

the past few years. Wireless transmission dominates the energy consumption in

sensor nodes where the RF transceiver runs radio analog circuits. Energy-efficient

communication in WSNs is addressed in the network layer using multi-hop trans-

mission. Specifically, routing techniques have been designed to minimize the overall

energy consumption in WSNs [139]–[141], [203]. Some factors such as the hop length

and the number of hops in multi-hop transmission are optimized to minimize the

energy consumption in WSNs. Optimizing the frame sizes and coding techniques

in single-hop transmission [204] and multi-hop routing [205] is also considered to

increase the energy-efficiency of communication in WSNs. Additionally, scheduling

techniques are proposed to balance energy consumption among sensor nodes and

increase the network lifetime [206].

However, multi-hop transmission is not always the best choice for energy-efficient

communication in WSNs. Generally, single-hop transmission is almost always more

power efficient than multi-hop routing [84]. Moreover, the overhead of MAC and

routing protocols increases for multi-hop routing as compared to single-hop trans-

mission and this increases the associated energy consumption. Another problem

with multi-hop routing is the fact that sensor nodes located close to the destination

are part of the paths of many routes. Thus, these sensor nodes deplete their energy

faster than other sensor nodes in the WSN.

Energy-efficient communication can be addressed in the PHY layer by imple-

menting CB. In this technique, single-hop transmission is established using a cluster

of sensor nodes. It helps to avoid the overhead of multi-hop transmission and the

corresponding energy cost. Moreover, CB inherently spread the energy cost over

a group of collaborative sensor nodes and achieves directional gain at the destina-

tion [207].

In conventional CB, weights are designed to cancel out the phase difference

due to propagation delay and channel phase shift that helps to achieve coherent

transmission. Different methods are introduced in literature to consider other factors
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in designing the CB weights or improve the energy consumption pattern for CB. For

example, CB weight design is proposed in [91] to maximize the received SNR at the

BS/AP. In [208], sensor node scheduling is proposed for CB where the participating

sensor nodes are selected in each round of transmission to balance the remaining

energies at all sensor nodes. A game-theoretic model is used in [175] for power

control among different WSN clusters utilizing CB for transmission. The power-

saving effect of CB is studied in [207] with the assumption of free-space channels

between the sensor nodes and the BS/AP.

The energy consumption behavior in CB with power control should be inves-

tigated in more details. Implementing equal power CB with sensor nodes having

different energy budgets can lead to the situation when some sensor nodes drain out

of energy faster than the others. In this chapter, CB with power control is exploited

to prolong the overall network lifetime. A novel strategy is proposed to achieve this

goal by balancing the lifetime of individual sensor nodes instead of balancing their

energy consumption. Residual Energy Information (REI) available at each sensor

node is utilized to adjust the transmission power of each sensor node while achieving

the required average SNR at the BS/AP. The proposed algorithm requires signifi-

cantly low overhead and computational complexity as compared to the centralized

algorithms. However, the proposed algorithm does not guarantee globally optimum

CB power control. Note that in WSNs, distributed algorithms are generally pre-

ferred over centralized protocols even when it offers only sub-optimal solutions [209].

In addition, energy consumption model is proposed for CB in WSNs to study the

effect of CB power control on the network life time. Simulation results show that

CB with power control outperforms equal power CB in terms of the network lifetime

and the achieved SNR at the destination.

5.2 Signal and Channel Models

We consider a cluster of N sensor nodes randomly placed over a plane and one

BS/AP, denoted as D, at a point (̺D, ϕD) in the same plane according to the ge-

ometrical model of Chapter 3. The distances between sensor nodes are typically

much smaller than the distance between the cluster center and the BS/AP. Thus,

the path losses in the channels from sensor nodes to the BS/AP due to distances

are approximately the same and the pass loss effect on the channel model is not

considered in the analysis. The wireless channel attenuation/fluctuation for rth col-
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laborative node is modeled as ar which is a lognormal distributed random variable,

i.e., ar ∼ exp{N (0, σ2)}. We also assume that sensor nodes are frequency and phase

synchronized.

During the information sharing step, each sensor transmits its measurement to

the other sensor nodes in the cluster using any of the information sharing techniques

presented in Chapter 2. Collaborative sensor nodes use the same codebook with

zero mean, unit power, and independent symbols, denoted as z, i.e., E {zn} = 0,

|zn2| = 1, and E {znzm} = 0 for n 6= m.

During the CB step, each collaborative node cr, r = 1, 2, . . . , N , transmits the

signal

tr = z wr e
jψr , r = 1, 2, . . . , N, (5.1)

where wre
jψr is the CB weight for senor node cr and ψr is the initial phase of its

carrier. The real value weight amplitude wr controls the transmission power since

Pr = w2
r . The Euclidean distance between the collaborative node cr and a point

(̺D, φ) in the same plane is given as

δr(φ) ,
√

̺2 + ρ2r − 2ρr̺ cos(φ− φr) ≈ ̺− ρr cos(φ− φr) (5.2)

where ̺ ≫ ρr in the far-field region. Thus, the initial phase of each sensor node

carrier is set as ψr = (2π/λ)δr(ϕD) to achieve coherent addition at the destination

D. Then, the received signal at angle φ from all collaborative nodes can be written

as

g(φ) = z

N
∑

r=1

wre
jψr ar e−jθr(φ) + w (5.3)

where w ∼ CN (0, σ2w) is the AWGN at the direction φ.

The received signal at the BS/AP can be written as

y , z

N
∑

r=1

wrar + w (5.4)

In the following, we refer to wr as the CB weights for simplicity, however, the actual

CB weight is wre
jψr .

5.3 Power Control Strategy for CB

In this section, we present an energy consumption model for WSNs with focus on the

energy dissipation corresponding to CB transmission. We introduce new definition
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for the network lifetime for WSNs implementing CB for long distance transmission.

Finally, we propose a low-complexity power control strategy that is implemented in

a distributed manner and, thus, matches the constrains and requirements of WSNs.

The power control strategy aims at extending the network lifetime by balancing

lifetimes of individual sensor nodes. Power control for CB transmission is considered

a PHY layer solution for extending the network lifetime.

5.3.1 Energy Consumption Model

A popular energy consumption model has been introduced in the literature for the

communication task in sensor nodes [208], [210], [211]. This model is commonly

used for the analysis of the MAC and network layer protocols designed in order

to maximize the network lifetime. Other tasks such as sensing and processing are

assumed to have smaller energy consumption as the energy consumed for commu-

nication [143]. The model considers the energy consumed by the RF transceiver

hardware in both transmission and reception. The consumed energy in the trans-

mitter is dissipated on the circuit electronics and the power amplifier, where most

of the consumed energy goes to the power amplifier. On the other hand, the re-

ceiver does not have power amplifier and the energy is dissipated on the the circuit

electronics only. Therefore, less energy is consumed during reception than during

transmission.

The minimum energy consumed by the transmitter to achieve certain SNR γ, at

the destination can be expressed as

Etx = Ee
tx + Ea (5.5)

where Ee
tx represents the energy consumption of the transmitter electronics and Ea is

the energy consumed by the transmit power amplifier. The energy Ee
tx is consumed

in the transmitter hardware, including the oscillator, frequency synthesizer, mixers,

filters, baseband processing, etc. This energy is considered constant for specific

hardware. However, Ea is the transmitted energy and it have to compensate the

attenuation due to propagation distance. If free-space propagation is considered,

Ea can be modeled as

Ea = e dα (5.6)

where e is the received energy at the destination corresponding to γ, d represents

the distance over which data is being communicated, and α represents the path loss
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exponent. The energy consumed at the receiver can be expressed as

Erx = Ee
rx (5.7)

where Ee
rx represents the energy consumption of the receiver electronics. Similar to

Ee
tx, E

e
rx is considered constant for specific hardware.

In the following analysis, we modify the energy consumption model to consider

the energy consumed for CB transmission in WSNs. In our scenario, the destination

is the BS/AP which has unconstrained power source. Thus, the energy consumed

at reception Erx is not considered here. We are interested in the effect of CB

weights on the energy consumption behavior and, thus, neglect Ee
tx in the following.

Energy consumed in intra-cluster transmissions for data sharing is neglected in our

analysis. The energy consumption in the power amplifier depends on the CB weight.

To achieve the required SNR γ at the BS/AP, CB with power control is used for

transmission and CB weight wr is assigned for each sensor node cr, r = 1, 2, . . . , N .

Hence, the transmitted power P a
r from each individual sensor node is given as

P a
r = w2

r , r = 1, 2, . . . , N. (5.8)

A time-slotted transmission model is considered and sensor nodes transmit data

to the BS/AP over time slot t of length T seconds. The energy consumed at the

power amplifier of sensor node cr during the tth time-slot for CB transmission,

denoted as etr, is given by

etr = w2
r T = P a T = Ea, r = 1, 2, . . . , N. (5.9)

5.3.2 Network Lifetime

The network lifetime, denoted hereafter as T0, has many definitions in the literature.

However, the common understanding of the network lifetime is the time period

until the WSN stops performing its assigned tasks [212]. The definition is, however,

different from one application to another depending on the criteria according to

which the network is recognized as not functional. In the context of WSNs utilizing

CB for transmission, two main tasks should be performed in order for the network

to be functional. First, sensor nodes are required to collect information from the

surrounding environment. Second, sensor nodes are required to communicate the

collected information to the far away BS/AP using CB. Thus, we define the network

lifetime as the time period during which the WSN is covering the sensing field with
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more than a certain percentage of sensor nodes and also is able to achieve acceptable

SNR at the BS/AP.

5.3.3 Power Control Strategy

In this section, we propose a simple power control scheme for CB aiming at balancing

the lifetimes of individual sensor nodes to maximize the overall network lifetime.

Power control for CB should achieve the following requirements:

• The CB weights should balance the lifetime of individual sensor nodes instead

of balancing the energy consumption for individual transmissions.

• It should be guaranteed that the received SNR γ at the BS/AP achieves a

predetermined average value γ̄ , E{γ}.

Let us introduce the vector u = [u1, u2, . . . , uN ] ∈ [0, 1]N as the normalized CB

weight vector and wmax as the maximum CB weight. Then, the CB weight vector

is w = [w1, w2, . . . , wN ] ∈ [0, wmax]
N where wr = wmax ur, r, 1, 2, . . . , N . Also, let

us introduce the vector E = [E1, E2, . . . , EN ] ∈ [0, Emax]
N as the REI vector and

Emax as the maximum energy available at each node. Note that Emax is bounded

by the battery capacity.

To achieve the aforementioned requirements, power control is divided into two

steps. Namely, the first step is to calculate a normalized CB weights based on the

REI at each sensor node to balance the lifetime of individual sensor nodes. The

second step is to find a scaling factor, i.e., maximum CB weight, to achieve the

required average SNR γ̄ at the targeted BS/AP.

To find the normalized CB weights u, assume that each sensor node is able

to measure its own REI Er, r = 1, 2, . . . , N . The normalized CB weight vector is

designed to balance the lifetime of different sensor nodes so that we set larger CB

weights to sensor nodes with larger REI. A simple choice to the normalized CB

weights can be expressed as

ur =
Er
Emax

, r = 1, 2, . . . , N. (5.10)

While the normalized weight vector u is arbitrary, the scaling factor wmax cor-

responding to arbitrary u is used to adjust the average received SNR at the BS/AP.
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The average SNR γ̄ at the intended BS/AP D can be then found as

γ̄ = E{γ} =

E

{

∣

∣

∣z
∑N

r=1wrar

∣

∣

∣

2
}

σ2w

=

∑N
r=1E

{

w2
r

}

E
{

a2r
}

+
∑N

r=1

∑N
j=1,j 6=rE {wr}E {ar}E {wj}E {aj}
σ2w

=
w2
maxNσ

2
uσ

2
a +N(N − 1)w2

maxm
2
um

2
a

σ2w
. (5.11)

Then, the maximum transmission CB weight corresponding to the average SNR

(5.11) at the intended BS/AP can be expressed as

wmax =

√

γ̄σ2w
Nσ2uσ

2
a +N(N − 1)m2

um
2
a

(5.12)

where σ2u and mu are the mean and the variance of the normalized CB weights,

respectively. These mean and variance can be found from the meanmE and variance

σ2E of REI as

mu =
mE

Emax

σ2u =
σ2E
E2

max

(5.13)

where mE and σ2E can be obtained through consensus or distributed estimation

algorithms. Note that the number of sensor nodes N in the cluster should be large

enough to achieve the required SNR with wmax ≤ Wmax where Wmax corresponds

to the maximum transmitted power specified by the sensor node transmitter rating.

Let E0
r to be the initial energy available at the collaborative node cr. Then the

residual energy at the sensor node cr at the end of the t0th transmission round is

Et0r = E0
r −

t0
∑

t=1

etr. (5.14)

The residual energy at each sensor when the network dies, denoted as ewr , is given

by

ewr = ET0

r = E0
r −

T0
∑

t=1

etr. (5.15)

Finally, the wasted energy is defined as the total unused energy in the network when

it dies and it is given by

Ew =

N
∑

r=1

ewr . (5.16)
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5.4 Simulation Results

In this section, numerical simulations are used to illustrate the effect of CB with

power control on the network lifetime. We consider a cluster of uniformly distributed

sensor nodes over a disk with radius R = 2λ. The BS/AP is located at the direction

ϕD = 0o. The total number of collaborative nodes in the cluster is N = 256. The

required average SNR at the BS/AP γ̄ is set to 20 dB and the noise power σ2w is

set to 0.05 W. The energies at different sensor nodes are assumed to be uniformly

distributed between 0 and Emax, i.e., Er ∼ U [0, Emax], r = 1, 2, . . . , N , however,

other distributions can be also used. The maximum energy available at each sensor

nodes Emax is set to 2 J and thus mE = 1 J.

Equal power CB weights are used as the benchmark for comparison. In this case,

the CB weights can be found as

wmax =

√

γ̄σ2w
Nσ2a +N(N − 1)m2

a

(5.17)

Each sensor node transmits in discrete values, thus quantized CB weights are

used in simulation. We quantize the CB weights into 8 levels from 0 to wmax. The

cluster of sensor nodes is considered dead when more than 90% of the sensor nodes

deplete energy or the achieved SNR at the BS/AP with CB reduces by 3 dB below

the nominal average value.

Fig. 5.1 shows the percentage of sensor nodes in life. It can be seen that it

changes with time for both cases of equal power CB and CB with power control.

As expected, the percentage of sensor nodes in life decay linearly with time in the

case of equal power CB because the initial energies at sensor nodes are not equal.

In the case of CB with power control, the percentage of sensor node in life is almost

constant at the beginning and then drops abruptly.

Fig. 5.2 shows the received SNR at the BS/AP versus time. The SNR demon-

strates similar behavior as the percentage of sensor nodes in life. For equal power

CB, SNR decays linearly because the sensor nodes are lost over time linearly as well.

While for CB with power control, SNR is stable over the network lifetime and drops

sharply due to the the drop in the percentage of sensor nodes in life.

Fig. 5.3 shows the total available energy at all sensor nodes versus time. The

network starts with total initial energy of 256 J. Then the energy decreases linearly

for both cases of equal power CB and CB with power control. However, the decay
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Figure 5.1. Percentage of sensor nodes in life versus time.
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rate is higher for the case of CB with power control and this results in less wasted

energy Ew when the network dies. It clearly demonstrates the advantage of using

CB power control strategy where sensor node manage to use most of the WSN’s

energy. In the case of equal CB powers, most of sensor nodes die or unable to

achieve acceptable SNR when still about half of WSN’s initial energy is wasted.

5.5 Conclusions

We analyzed the energy consumption behavior in a cluster of sensor nodes due

to CB transmission. In particular, we modeled the circuit energy consumption

to target CB transmission and focus on energy dissipated at the power amplifier.

Power control algorithm for CB weights is introduced as a PHY layer solution to

the problem of extending the WSN lifetime. A strategy for power control that

considers the remaining energy at each sensor node is proposed. Only the local

energy level and the average energy available at the cluster are required for our

power control strategy. While the proposed strategy is very simple, simulation

results illustrate the improvements of the network lifetime due to the CB power

control. More complicated and sophisticated power control strategies are expected to

improve the lifetime even further. However, the implementation complexity should

be taken into account in designing new schemes.
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Chapter 6

Concluding Remarks and

Future Work

6.1 Conclusions

This thesis addressed different aspect od CB for WSNs. Two directions related to the

CB beampatten have been investigated, namely the effect of the sensor nodes spatial

distribution on the CB beampattern and node selection for CB sidelobe control.

Also, Power control is introduced for CB to balance the lifetime of individual sensor

nodes having different energy budgets.

We have started with studying the effect of spatial distribution of sensor nodes

on the CB beampattern. Gaussian spatial distribution is proposed as a realistic

distribution of sensor nodes and its CB beampattern is compared with the CB

beampattern of uniformly spatial distribution for sensor nodes. The average char-

acteristics and the random behavior of the beampatter were considered. Our results

show that the CB beampattern has similar characteristics for both uniform and

Gaussian spatial distributions. However, Gaussian distribution have better perfor-

mance than uniform distribution in terms of lower sidelobe levels. Also, it has been

shown that the control of the cluster area is an effective way to control the width of

the mainlobe of the CB beampattern for any spatial distribution of sensor nodes.

The results from our analysis of the CB beampattern characteristics have showed

that the mainlobe is almost deterministic for arbitrary realizations of WSNs. On

the other hand, the sidelobes of CB beampattern are random and depend mainly

on the sensor node locations. To achieve more controlled CB beampattern, sidelobe

control using node selection has been introduced in CB. Node selection algorithm

with low feedback overhead was introduced to reduce the interference at directions of
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unintended BSs/APs. The proposed node selection algorithm has showed promising

results for sidelobe control. Moreover, multi-link CB with sidelobe control is utilized

to increase the transmission rate compared to the conventional single-link CB.

Finally, power control is introduced for CB to prolong the WSN lifetime. The

proposed power control strategy utilized the REI available at each sensor node to

balance the lifetime of individual sensor nodes while achieving the required SNR at

the destination. It has been shown that even simple power control strategy is able

to balance the remaining energy available at individual sensor nodes and prolong

the network lifetime.

6.2 Proposed Future Work

Many research directions and open problems need to be investigated to reach prac-

tical implementation for CB in WSNs.

Multi-link CB provides new strategy for data transmission in WSNs. It has

been shown that higher SINR and increased data rates are achieved with multi-

link CB utilizing sidelobe control. However, our analysis considered the PHY layer

only, specifically reducing the cross interference among different links using sidelobe

control. To implement Multi-link CB, it is required to investigate the associated

algorithms in the MAC and network layers. Clustering techniques should be specif-

ically designed to assign sensor nodes to different collaborative groups utilizing CB.

Energy-efficient transmission is the main motivation to implement CB in WSNs,

however, some research still need to be done to even improve the energy consumption

behavior of sensor nodes. A more realistic energy consumption model for sensor

nodes that considers energy consumption in the sensing and processing tasks should

be proposed.

Also, the proposed power control strategy in this thesis is considered a starting

point to investigate the potential advantages of power control for CB. It is expected

to find a tradeoff between the network lifetime and the complexity of the power

control algorithm. Moreover, sensor node scheduling and the estimated CSI at the

sensor node can also be considered in designing power control algorithms for CB.
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