
Introduction
Worst-Case Performance Optimization Approach

Probabilistically-Constrained Optimization Approach
Analysis of Approaches and a New One

Robust Adaptive Beamforming Using SQP
Comparison

Robust Adaptive Beamforming: Evolution of
Approaches, Analysis and Comparison

Sergiy A. Vorobyov

Department of Electrical and Computer Engineering
University of Alberta

156th Meeting of the Acoustic Society of America, 2008

Sergiy A. Vorobyov Robust Adaptive Beamforming: Evolution of Approaches



Introduction
Worst-Case Performance Optimization Approach

Probabilistically-Constrained Optimization Approach
Analysis of Approaches and a New One

Robust Adaptive Beamforming Using SQP
Comparison

Outline

1 Introduction

2 Worst-Case Performance Optimization Approach

3 Probabilistically-Constrained Optimization Approach

4 Analysis of Approaches and a New One

5 Robust Adaptive Beamforming Using SQP

6 Comparison

Sergiy A. Vorobyov Robust Adaptive Beamforming: Evolution of Approaches



Introduction
Worst-Case Performance Optimization Approach

Probabilistically-Constrained Optimization Approach
Analysis of Approaches and a New One

Robust Adaptive Beamforming Using SQP
Comparison

Introduction

Adaptive Beamforming finds applications in many areas
such as radar, sonar, wireless communications, etc.

Conventional beamforming techniques assume

the steering vector of the desired signal is known precisely
large number of snapshots (training sample size)
stationary training data set

In many practical situations there is mismatch between the
presumed steering vector and the actual one!
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Signal Model

The output of a narrowband beamformer

y(k) = wHx(k)

where

x(k) = s(k)p︸ ︷︷ ︸
signal

+ i(k)︸︷︷︸
interference

+ n(k)︸︷︷︸
noise

Actual steering vector

a︸︷︷︸
actual

= p︸︷︷︸
presumed

+ e︸︷︷︸
unknown mismatch
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Maximum SINR criterion

max
w

SINR , SINR =
σ2

s |wH(p + e)|2

wHRi+nw

Interference-plus-noise covariance matrix

Ri+n = E
{

(i(k) + n(k)) (i(k) + n(k))H
}

Note
In practice, Ri+n is unavailable
Sample estimate R̂ , 1

N
∑N

k=1 x(k)xH(k) is used
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Worst-Case Performance Optimization

The essence of this approach is to
Maintain a distortionless response towards a continuum of
steering vectors that belong to a certain uncertainty set

Guarantee that the distortionless response is maintained in
the worst case

Model the uncertainty about the mismatch vector using

spherical uncertainty set [Vorobyov, Gershman, Luo ’03]
elliptical uncertainty set [Lorenz and Boyd ’05]
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Problem Formulation and Main Result

The spherical uncertainty set is (for some known ε > 0)

‖e‖ ≤ ε
The robust MVDR beamformeing problem is formulated as

min
w

wHR̂w s. t. |wH(p + e)| ≥ 1, ∀ ‖e‖ ≤ ε

Result 1 [Vorobyov, Gershman, Luo ’03]: Infinite number of
non-convex constraints

|wH(p + e)| ≥ 1, ∀ ‖e‖ ≤ ε
is equvalent to a single convex constraint

ε‖w‖ ≤ wHp − 1
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Robust MVDR Beamforming

The robust MVDR beamformeing problem is equivalent to

min
w

wHR̂w s. t. ε‖w‖ ≤ wHp − 1

This is so-called convex second order cone (SOC)
programming problem! It can be easily solved!
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Problem Formulation and Main Results

The probabilistically-constrained beamformer guarantees
that the distortionless response is maintained with a
certain “sufficient” probability

min
w

wHR̂w s. t. Pr{|wH(p + e)| ≥ 1} ≥ p0

Result 2 [Vorobyov, Chen, Gershman ’08]: For Gaussian
mismatch

e ∼ NC(0,Ce)

the probabilistic constraint is tightly approximated by the
deterministic constraint√

−ln(1− p0) ‖C
1/2
e w‖ ≤ wHp− 1
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Probabilistically-Constrained Beamformer

Result 3 [Vorobyov, Chen, Gershman ’08]: For mismatch
with the worst-case distribution the probabilistic constraint
is tightly approximated by the deterministic constraint

1√
1− p0

‖C1/2
e w‖ ≤ wHp− 1

Moreover, the worst-case distribution is discrete.
The problem is equivalent to that of the worst-case based
robust adaptive beamforming if Ce = (σ2

e/M)I .
For the worst-case mismatch distribution: ε = σe

√
1

M(1−p0)

For Gaussian mismatch: ε = σe

√
−ln(1−p0)

M
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Analysis and a New Idea

Problems with previous approaches
If mismatch is Gaussian, its norm is Chi-square distributed
(not norm bounded)
Over/under estimation of the parameters, e.g. ε, may lead
to degradation in performance

Essence of a new approache
Estimate the mismatch vector and form the beam using the
corrected steering vector [Hassanien, Vorobyov, Wong ’08]
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Problem Formulation

First maximize the beamformer output SINR by solving the
optimization problem

min
w

wHR̂w subject to wH(p + e) = 1

Solution

w(e) =
R̂−1(p + e)

(p + e)HR̂−1(p + e)

The beamformer output power

P(e) =
1

(p + e)HR̂−1(p + e)
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Problem Formulation and Difficulties

Estimate the unknown mismatch vector e by maximizing the
beamformer output power

min
e

(p + e)HR̂−1(p + e) s. t. ‖p + e‖ =
√

M

Two difficulties
The corrected vector p + ê might converge to a vector
associated with interference
Non-convex constraint!
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Robust Adaptive Beamforming Using SQP

To avoid first difficulty, enforce p + e to belong to a
subspace that is spanned by the actual steering vector

P⊥p (p + e) = 0

P⊥p , I− UUH is a projection onto a subspace that is
orthogonal to the actual steering vector
U , [u1,u2, . . . ,uK ], {uk}Kk=1 are K principal eigenvectors
of

C ,
∫

Θ
p(θ)pH(θ) dθ
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Robust Adaptive Beamforming Using SQP (Cont’d)

Result 4 [Hassanien, Vorobyov, Wong ’08]: The initial
optimization problem is equivalent to the problem

min
e

(p + e)HR̂−1(p + e)

subject to P⊥p (p + e) = 0

‖p + e‖ =
√

M

How to get rid of non-convexity?
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Iterative Solution

min
e⊥

(p + e⊥)HR̂−1(p + e⊥)

subject to P⊥p (p + e) = 0

‖p + e⊥‖ ≤
√

M + δ

pHe⊥ = 0
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Iterative Algorithm

Algorithm:
1 Estimate e⊥ by solving the problem in previous slide
2 If ‖e⊥‖ = “small”, go to Step 5.
3 Update the presumed steering vector p = p + e⊥.
4 Project the updated steering vector back to the sphere

p =
(√

M/‖p‖
)

p, then go to Step 1.

5 Calculate the robust adaptive beamformer weights

wSQP =
R̂−1p

pHR̂−1p
,
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Simulation Setup

M = 10 sensors spaced half wavelength apart. N = 100
data snapshots.
Desired signal is assumed to impinge on the array from
direction θp = 5◦

Two interfering sources with DOAs −50◦ and −20◦; INR
= 30 dB.
Look direction mismatch:
actual DOA is uniformly drawn from [1◦ 9◦]
Array perturbation:
Sensors are assumed to be displaced from its original
location and the displacement is drawn uniformly from the
set [−0.05, 0.05] measured in wavelength.
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Simulation Results
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