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Introduction

Introduction

@ Adaptive Beamforming finds applications in many areas
such as radar, sonar, wireless communications, etc.

@ Conventional beamforming techniques assume

o the steering vector of the desired signal is known precisely
e large number of snapshots (training sample size)
e stationary training data set

@ In many practical situations there is mismatch between the
presumed steering vector and the actual one!
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Introduction

Signal Model

The output of a narrowband beamformer

y(k) = wx(k)
where

x(k)=sk)p + k) + n(k)

signal interference noise
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Introduction

Signal Model

The output of a narrowband beamformer

y(k) = wx(k)
where

x(k)=s(k)p + i(k) + n(k)
—~—

signal interference noise

Actual steering vector

a — + e

~— p ~—~

actual unknown mismatch iy
presumed &, ALBERTA
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Introduction

Maximum SINR criterion

o? |w'(p + e)?
wHR; W

max SINR | SINR =
w

Interference-plus-noise covariance matrix

Riso = E{(i(K) + n(k)) (i(K) + n())"'}
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Introduction

Maximum SINR criterion

o? |w'(p + e)?
wHR; W

max SINR | SINR =
w

Interference-plus-noise covariance matrix

Riso = E{(i(K) + n(k)) (i(K) + n())"'}

@ In practice, R;, is unavailable
o Sample estimate R 2 1 S}, x(k)x"(k) is used
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Worst-Case Performance Optimization Approach

Worst-Case Performance Optimization

The essence of this approach is to

@ Maintain a distortionless response towards a continuum of
steering vectors that belong to a certain uncertainty set

@ Guarantee that the distortionless response is maintained in
the worst case

@ Model the uncertainty about the mismatch vector using

@ spherical uncertainty set [Vorobyov, Gershman, Luo '03]
o elliptical uncertainty set [Lorenz and Boyd ’05]
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Worst-Case Performance Optimization Approach

Problem Formulation and Main Result

@ The spherical uncertainty set is (for some known ¢ > 0)
el <e
The robust MVDR beamformeing problem is formulated as
min w'BRw s.t. |wh(p+e)|>1, vV |e|<e
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Worst-Case Performance Optimization Approach

Problem Formulation and Main Result

@ The spherical uncertainty set is (for some known ¢ > 0)
el <e
The robust MVDR beamformeing problem is formulated as
min w'BRw s.t. |wh(p+e)|>1, vV |e|<e
@ Result 1 [Vorobyov, Gershman, Luo '03]: Infinite number of
non-convex constraints
wi(p+e)=1, Vv |e|<e
is equvalent to a single convex constraint

ellw] < w'p —1
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Worst-Case Performance Optimization Approach

Robust MVDR Beamforming

The robust MVDR beamformeing problem is equivalent to
min w’Rw st ¢|w| <whp—1

This is so-called convex second order cone (SOC)
programming problem! It can be easily solved!
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Probabilistically-Constrained Optimization Approach

Problem Formulation and Main Results

@ The probabilistically-constrained beamformer guarantees
that the distortionless response is maintained with a
certain “sufficient” probability

min w'Rw  s.t.  Pr{{wH(p+e)>1}>pp
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Probabilistically-Constrained Optimization Approach

Problem Formulation and Main Results

@ The probabilistically-constrained beamformer guarantees
that the distortionless response is maintained with a
certain “sufficient” probability

min w'Rw  s.t.  Pr{{wH(p+e)>1}>pp

@ Result 2 [Vorobyov, Chen, Gershman '08]: For Gaussian

mismatch
e~ NC(O, Ce)

the probabilistic constraint is tightly approximated by the
deterministic constraint

V/~In(1 = po) [|C&/*w|| < whp — 1
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Probabilistically-Constrained Optimization Approach

Probabilistically-Constrained Beamformer

@ Result 3 [Vorobyov, Chen, Gershman ’08]: For mismatch
with the worst-case distribution the probabilistic constraint
is tightly approximated by the deterministic constraint

1
Vi-m

Moreover, the worst-case distribution is discrete.

|Cy*w|| < whp — 1
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Probabilistically-Constrained Optimization Approach

Probabilistically-Constrained Beamformer

@ Result 3 [Vorobyov, Chen, Gershman ’08]: For mismatch
with the worst-case distribution the probabilistic constraint
is tightly approximated by the deterministic constraint

1
V1 —po
Moreover, the worst-case distribution is discrete.

@ The problem is equivalent to that of the worst-case based
robust adaptive beamforming if Ce = (c3/M)I.

For the worst-case mismatch distribution: & = oe, /m

For Gaussian mismatch: & = g/ =20 —F0)

|CY?w| < wHp —1
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Analysis of Approaches and a New One

Analysis and a New Idea

Problems with previous approaches

@ If mismatch is Gaussian, its norm is Chi-square distributed
(not norm bounded)

@ Over/under estimation of the parameters, e.g. , may lead
to degradation in performance
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Analysis of Approaches and a New One

Analysis and a New Idea

Problems with previous approaches

@ If mismatch is Gaussian, its norm is Chi-square distributed
(not norm bounded)

@ Over/under estimation of the parameters, e.g. , may lead
to degradation in performance

Essence of a new approache

Estimate the mismatch vector and form the beam using the
corrected steering vector [Hassanien, Vorobyov, Wong ’08]
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Robust Adaptive Beamforming Using SQP

Problem Formulation

@ First maximize the beamformer output SINR by solving the
optimization problem

m“i,n w"Rw  subject to w(p +e) =1

e

& RUSERTA

Sergiy A. Vorobyov Robust Adaptive Beamforming: Evolution of Approaches




Robust Adaptive Beamforming Using SQP

Problem Formulation

@ First maximize the beamformer output SINR by solving the
optimization problem

m“i,n w"Rw  subject to w(p +e) =1
@ Solution

R'(p+e)

) = pr R (pe)
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Robust Adaptive Beamforming Using SQP

Problem Formulation

@ First maximize the beamformer output SINR by solving the
optimization problem

m“i,n w"Rw  subject to w(p +e) =1

@ Solution .
R'(p+e)

w(e) = -
& (p+e)"R'(p +e)
@ The beamformer output power

1

O bR pre)
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Robust Adaptive Beamforming Using SQP

Problem Formulation and Difficulties

Estimate the unknown mismatch vector e by maximizing the
beamformer output power

mein(p+e)Hﬁ“(p+e) s.t. |prel=vM
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Robust Adaptive Beamforming Using SQP

Problem Formulation and Difficulties

Estimate the unknown mismatch vector e by maximizing the
beamformer output power

mein(p+e)Hﬁ“(p+e) s.t. |prel=vM

Two difficulties

@ The corrected vector p + & might converge to a vector
associated with interference

@ Non-convex constraint!
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Robust Adaptive Beamforming Using SQP

Robust Adaptive Beamforming Using SQP

@ To avoid first difficulty, enforce p + e to belong to a
subspace that is spanned by the actual steering vector

Py(p+e)=0

P# £ | — UU* is a projection onto a subspace that is
orthogonal to the actual steering vector
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Robust Adaptive Beamforming Using SQP

Robust Adaptive Beamforming Using SQP

@ To avoid first difficulty, enforce p + e to belong to a
subspace that is spanned by the actual steering vector

Py(p+e)=0

P# £ | — UU* is a projection onto a subspace that is
orthogonal to the actual steering vector

@ U= [uy,uy, ..., ukl, {u 1K, are K principal eigenvectors
of

A H
cs /@ p(0)p*(0) b
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Robust Adaptive Beamforming Using SQP

Robust Adaptive Beamforming Using SQP (Cont'd)

@ Result 4 [Hassanien, Vorobyov, Wong ’08]: The initial
optimization problem is equivalent to the problem

min  (p+e)"R™"(p+e)
subject to Pé(p +e)=0
Ip+e| = VM
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Robust Adaptive Beamforming Using SQP

Robust Adaptive Beamforming Using SQP (Cont'd)

@ Result 4 [Hassanien, Vorobyov, Wong ’08]: The initial
optimization problem is equivalent to the problem

min  (p+e)"R™"(p+e)
subject to Pé(p +e)=0
Ip+e| = VM

@ How to get rid of non-convexity?
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Robust Adaptive Beamforming Using SQP

lterative Solution

Last iteration
First iteration

llall = llpll = VM




Robust Adaptive Beamforming Using SQP

lterative Solution

Last iteration
First iteration

llall = llpll = VM

min  (p+e )R '(p+e.)

e
subject to P#(p+e) =0
Ip+eLl <VM+5s
pfe, =0
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Robust Adaptive Beamforming Using SQP

lterative Algorithm

Algorithm:
@ Estimate e by solving the problem in previous slide
Q If|leL| =“small”, go to Step 5.
© Update the presumed steering vectorp =p + €.
© Project the updated steering vector back to the sphere
p= (\/M/lel) p, then go to Step 1.

© Calculate the robust adaptive beamformer weights

R-1
Wse = b
p"R-'p
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Comparison

Simulation Setup

@ M = 10 sensors spaced half wavelength apart. N = 100
data snapshots.

@ Desired signal is assumed to impinge on the array from
direction 6, = 5°

@ Two interfering sources with DOAs —50° and —20°; INR
= 30 dB.

@ Look direction mismatch:
actual DOA is uniformly drawn from [1° 9°]

@ Array perturbation:
Sensors are assumed to be displaced from its original
location and the displacement is drawn uniformly from the
set [-0.05, 0.05] measured in wavelength. SenEn
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Comparison

Simulation Results
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