Robust Adaptive Beamforming: Evolution of Approaches, Analysis and Comparison

Sergiy A. Vorobyov

Department of Electrical and Computer Engineering University of Alberta

156th Meeting of the Acoustic Society of America, 2008

Sergiy A. Vorobyov Robust Adaptive Beamforming: Evolution of Approaches

Outline

- 2 Worst-Case Performance Optimization Approach
- Probabilistically-Constrained Optimization Approach
- Analysis of Approaches and a New One
- 6 Robust Adaptive Beamforming Using SQP

Comparison

Introduction

- Adaptive Beamforming finds applications in many areas such as radar, sonar, wireless communications, etc.
- Conventional beamforming techniques assume
 - the steering vector of the desired signal is known precisely
 - large number of snapshots (training sample size)
 - stationary training data set
- In many practical situations there is mismatch between the presumed steering vector and the actual one!

<ロト <問 > < 臣 > < 臣 >

Worst-Case Performance Optimization Approach Probabilistically-Constrained Optimization Approach Analysis of Approaches and a New One Robust Adaptive Beamforming Using SQP Comparison

Signal Model

The output of a narrowband beamformer

$$y(k) = \boldsymbol{w}^H \boldsymbol{x}(k)$$

where

Worst-Case Performance Optimization Approach Probabilistically-Constrained Optimization Approach Analysis of Approaches and a New One Robust Adaptive Beamforming Using SQP Comparison

Signal Model

The output of a narrowband beamformer

$$y(k) = \boldsymbol{w}^H \boldsymbol{x}(k)$$

where

Actual steering vector

Worst-Case Performance Optimization Approach Probabilistically-Constrained Optimization Approach Analysis of Approaches and a New One Robust Adaptive Beamforming Using SQP Comparison

Maximum SINR criterion

$$\max_{\boldsymbol{w}} \operatorname{SINR}, \qquad \operatorname{SINR} = \frac{\sigma_{\mathrm{s}}^{2} |\boldsymbol{w}^{H}(\boldsymbol{p} + \boldsymbol{e})|^{2}}{\boldsymbol{w}^{H} \boldsymbol{R}_{\mathrm{i+n}} \boldsymbol{w}}$$

Interference-plus-noise covariance matrix

$$\boldsymbol{R}_{i+n} = E\left\{ \left(\boldsymbol{i}(k) + \boldsymbol{n}(k)\right) \left(\boldsymbol{i}(k) + \boldsymbol{n}(k)\right)^{H} \right\}$$

Note

- In practice, **R**_{i+n} is unavailable
- Sample estimate $\hat{\boldsymbol{R}} \triangleq \frac{1}{N} \sum_{k=1}^{N} \boldsymbol{x}(k) \boldsymbol{x}^{H}(k)$ is used

イロト イポト イヨト イヨト

ALBERT

э

Worst-Case Performance Optimization Approach Probabilistically-Constrained Optimization Approach Analysis of Approaches and a New One Robust Adaptive Beamforming Using SQP Comparison

Maximum SINR criterion

$$\max_{\boldsymbol{w}} \operatorname{SINR}, \qquad \operatorname{SINR} = \frac{\sigma_{\mathrm{s}}^{2} |\boldsymbol{w}^{H}(\boldsymbol{p} + \boldsymbol{e})|^{2}}{\boldsymbol{w}^{H} \boldsymbol{R}_{\mathrm{i+n}} \boldsymbol{w}}$$

Interference-plus-noise covariance matrix

$$\boldsymbol{R}_{i+n} = E\left\{ \left(\boldsymbol{i}(k) + \boldsymbol{n}(k) \right) \left(\boldsymbol{i}(k) + \boldsymbol{n}(k) \right)^{H} \right\}$$

Note

- In practice, \boldsymbol{R}_{i+n} is unavailable
- Sample estimate $\hat{\boldsymbol{R}} \triangleq \frac{1}{N} \sum_{k=1}^{N} \boldsymbol{x}(k) \boldsymbol{x}^{H}(k)$ is used

ヘロン ヘアン ヘビン ヘビ

Worst-Case Performance Optimization

The essence of this approach is to

- Maintain a distortionless response towards a continuum of steering vectors that belong to a certain uncertainty set
- Guarantee that the distortionless response is maintained in the worst case
- Model the uncertainty about the mismatch vector using
 - spherical uncertainty set [Vorobyov, Gershman, Luo '03]
 - elliptical uncertainty set [Lorenz and Boyd '05]

→ E → < E →</p>

Problem Formulation and Main Result

• The spherical uncertainty set is (for some known $\varepsilon > 0$) $\| \boldsymbol{e} \| < \varepsilon$

The robust MVDR beamformeing problem is formulated as

$$\min_{\boldsymbol{w}} \boldsymbol{w}^{H} \hat{\boldsymbol{R}} \boldsymbol{w} \quad \text{s. t.} \quad |\boldsymbol{w}^{H} (\boldsymbol{p} + \boldsymbol{e})| \geq 1, \quad \forall \quad \|\boldsymbol{e}\| \leq \varepsilon$$

 Result 1 [Vorobyov, Gershman, Luo '03]: Infinite number of non-convex constraints

$$|\boldsymbol{w}^{H}(\boldsymbol{p}+\boldsymbol{e})| \geq 1, \quad \forall \quad \|\boldsymbol{e}\| \leq \varepsilon$$

is equvalent to a single convex constraint

$$|\varepsilon||w|| \leq w^H p - 1$$

Problem Formulation and Main Result

• The spherical uncertainty set is (for some known $\varepsilon > 0$)

 $\|\boldsymbol{e}\| \leq \varepsilon$

The robust MVDR beamformeing problem is formulated as

$$\min_{\boldsymbol{w}} \boldsymbol{w}^{H} \hat{\boldsymbol{R}} \boldsymbol{w} \quad \text{s. t.} \quad |\boldsymbol{w}^{H} (\boldsymbol{p} + \boldsymbol{e})| \geq 1, \quad \forall \quad \|\boldsymbol{e}\| \leq \varepsilon$$

 Result 1 [Vorobyov, Gershman, Luo '03]: Infinite number of non-convex constraints

$$|\boldsymbol{w}^{H}(\boldsymbol{p}+\boldsymbol{e})| \geq 1, \quad \forall \quad \|\boldsymbol{e}\| \leq \varepsilon$$

is equvalent to a single convex constraint

$$\varepsilon \| \boldsymbol{w} \| \leq \boldsymbol{w}^H \boldsymbol{p} - 1$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Robust MVDR Beamforming

The robust MVDR beamformeing problem is equivalent to

$$\min_{\boldsymbol{w}} \boldsymbol{w}^{H} \hat{\boldsymbol{R}} \boldsymbol{w} \quad \text{ s. t. } \quad \varepsilon \|\boldsymbol{w}\| \leq \boldsymbol{w}^{H} \boldsymbol{p} - 1$$

This is so-called convex second order cone (SOC) programming problem! It can be easily solved!

Problem Formulation and Main Results

• The probabilistically-constrained beamformer guarantees that the distortionless response is maintained *with a certain "sufficient" probability*

 $\min_{\boldsymbol{w}} \boldsymbol{w}^{H} \hat{\boldsymbol{R}} \boldsymbol{w} \qquad \text{s. t.} \qquad \Pr\{|\boldsymbol{w}^{H}(\boldsymbol{p} + \boldsymbol{e})| \geq 1\} \geq \rho_{0}$

Result 2 [Vorobyov, Chen, Gershman '08]: For Gaussian mismatch

 $oldsymbol{e} \sim \mathcal{N}_{\mathcal{C}}(oldsymbol{0},oldsymbol{C}_{oldsymbol{e}})$

the probabilistic constraint is tightly approximated by the deterministic constraint

$$\sqrt{-\mathrm{ln}(1-
ho_0)} \|oldsymbol{\mathcal{C}}_{oldsymbol{e}}^{1/2} \mathbf{w}\| \leq \mathbf{w}^H \mathbf{p} - 1$$

ヘロト ヘ回ト ヘヨト ・

Problem Formulation and Main Results

• The probabilistically-constrained beamformer guarantees that the distortionless response is maintained *with a certain "sufficient" probability*

$$\min_{\boldsymbol{w}} \boldsymbol{w}^{H} \hat{\boldsymbol{R}} \boldsymbol{w} \qquad \text{s. t.} \qquad \Pr\{|\boldsymbol{w}^{H}(\boldsymbol{p} + \boldsymbol{e})| \geq 1\} \geq \rho_{0}$$

Result 2 [Vorobyov, Chen, Gershman '08]: For Gaussian mismatch

$$oldsymbol{e} \sim \mathcal{N}_{\mathcal{C}}(oldsymbol{0}, oldsymbol{\mathcal{C}_e})$$

the probabilistic constraint is tightly approximated by the deterministic constraint

$$\sqrt{-\ln(1-p_0)} \| oldsymbol{\mathcal{C}}_{oldsymbol{e}}^{1/2} oldsymbol{w} \| \leq oldsymbol{w}^H oldsymbol{p} - 1$$

Probabilistically-Constrained Beamformer

 Result 3 [Vorobyov, Chen, Gershman '08]: For mismatch with the worst-case distribution the probabilistic constraint is tightly approximated by the deterministic constraint

$$\frac{1}{\sqrt{1-p_0}} \|\boldsymbol{C}_{\boldsymbol{e}}^{1/2} \boldsymbol{w}\| \leq \boldsymbol{w}^H \boldsymbol{p} - 1$$

Moreover, the worst-case distribution is discrete.

The problem is equivalent to that of the worst-case based robust adaptive beamforming if C_e = (σ_e²/M)I.
 For the worst-case mismatch distribution: ε = σ_e √ 1/M(1-p₀)

For Gaussian mismatch: $arepsilon=\sigma_{m{e}}\sqrt{rac{-\ln(1-\mu)}{M}}$

Probabilistically-Constrained Beamformer

 Result 3 [Vorobyov, Chen, Gershman '08]: For mismatch with the worst-case distribution the probabilistic constraint is tightly approximated by the deterministic constraint

$$\frac{1}{\sqrt{1-p_0}} \|\boldsymbol{C}_{\boldsymbol{e}}^{1/2} \boldsymbol{w}\| \leq \boldsymbol{w}^H \boldsymbol{p} - 1$$

Moreover, the worst-case distribution is discrete.

• The problem is equivalent to that of the worst-case based robust adaptive beamforming if $C_e = (\sigma_e^2/M)I$.

For the worst-case mismatch distribution: $\varepsilon = \sigma_{e_1} \sqrt{\frac{1}{M(1-p_0)}}$

For Gaussian mismatch: $\varepsilon = \sigma_{e} \sqrt{\frac{-\ln(1-p_0)}{M}}$

Analysis and a New Idea

Problems with previous approaches

- If mismatch is Gaussian, its norm is Chi-square distributed (not norm bounded)
- Over/under estimation of the parameters, e.g. ε, may lead to degradation in performance

Essence of a new approache

Estimate the mismatch vector and form the beam using the corrected steering vector [Hassanien, Vorobyov, Wong '08]

Analysis and a New Idea

Problems with previous approaches

- If mismatch is Gaussian, its norm is Chi-square distributed (not norm bounded)
- Over/under estimation of the parameters, e.g. ε, may lead to degradation in performance

Essence of a new approache

Estimate the mismatch vector and form the beam using the corrected steering vector [Hassanien, Vorobyov, Wong '08]

Problem Formulation

 First maximize the beamformer output SINR by solving the optimization problem

$$\min_{\mathbf{w}} \mathbf{w}^{H} \hat{\mathbf{R}} \mathbf{w} \text{ subject to } \mathbf{w}^{H} (\mathbf{p} + \mathbf{e}) = 1$$

$$\mathbf{w}(\mathbf{e}) = \frac{\hat{\mathbf{R}}^{-1}(\mathbf{p} + \mathbf{e})}{(\mathbf{p} + \mathbf{e})^{H}\hat{\mathbf{R}}^{-1}(\mathbf{p} + \mathbf{e})}$$

The beamformer output power

$$P(\mathbf{e}) = rac{1}{(\mathbf{p} + \mathbf{e})^H \hat{\mathbf{R}}^{-1} (\mathbf{p} + \mathbf{e})}$$

Problem Formulation

 First maximize the beamformer output SINR by solving the optimization problem

$$\min_{\mathbf{w}} \mathbf{w}^{H} \hat{\mathbf{R}} \mathbf{w} \text{ subject to } \mathbf{w}^{H} (\mathbf{p} + \mathbf{e}) = 1$$

Solution

$$\mathbf{w}(\mathbf{e}) = \frac{\hat{\mathbf{R}}^{-1}(\mathbf{p} + \mathbf{e})}{(\mathbf{p} + \mathbf{e})^{H}\hat{\mathbf{R}}^{-1}(\mathbf{p} + \mathbf{e})}$$

• The beamformer output power

$$P(\mathbf{e}) = \frac{1}{(\mathbf{p} + \mathbf{e})^H \hat{\mathbf{R}}^{-1} (\mathbf{p} + \mathbf{e})}$$

Problem Formulation

 First maximize the beamformer output SINR by solving the optimization problem

$$\min_{\mathbf{w}} \mathbf{w}^{H} \hat{\mathbf{R}} \mathbf{w} \text{ subject to } \mathbf{w}^{H} (\mathbf{p} + \mathbf{e}) = 1$$

Solution

$$\mathbf{w}(\mathbf{e}) = \frac{\hat{\mathbf{R}}^{-1}(\mathbf{p} + \mathbf{e})}{(\mathbf{p} + \mathbf{e})^{H}\hat{\mathbf{R}}^{-1}(\mathbf{p} + \mathbf{e})}$$

• The beamformer output power

$$P(\mathbf{e}) = rac{1}{(\mathbf{p} + \mathbf{e})^H \hat{\mathbf{R}}^{-1} (\mathbf{p} + \mathbf{e})}$$

< □ > < 同 > < 回 > < 回

Problem Formulation and Difficulties

Estimate the unknown mismatch vector **e** by maximizing the beamformer output power

$$\min_{\mathbf{e}}(\mathbf{p}+\mathbf{e})^{H}\hat{\mathbf{R}}^{-1}(\mathbf{p}+\mathbf{e}) \quad \text{s. t.} \quad \|\mathbf{p}+\mathbf{e}\| = \sqrt{M}$$

Two difficulties

- The corrected vector p + ê might converge to a vector associated with interference
- Non-convex constraint!

Problem Formulation and Difficulties

Estimate the unknown mismatch vector **e** by maximizing the beamformer output power

$$\min_{\mathbf{e}}(\mathbf{p}+\mathbf{e})^{H}\hat{\mathbf{R}}^{-1}(\mathbf{p}+\mathbf{e}) \quad \text{s. t.} \quad \|\mathbf{p}+\mathbf{e}\| = \sqrt{M}$$

Two difficulties

- The corrected vector p + ê might converge to a vector associated with interference
- Non-convex constraint!

Robust Adaptive Beamforming Using SQP

 To avoid first difficulty, enforce p + e to belong to a subspace that is spanned by the actual steering vector

$$\mathsf{P}^{\perp}_{\mathsf{p}}(\mathsf{p}+\mathsf{e})=\mathsf{0}$$

- $\mathbf{P}_{\mathbf{p}}^{\perp} \triangleq \mathbf{I} \mathbf{U}\mathbf{U}^{H}$ is a projection onto a subspace that is orthogonal to the actual steering vector
- $\mathbf{U} \triangleq [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_K], \{\mathbf{u}_k\}_{k=1}^K$ are *K* principal eigenvectors of

$$\mathbf{C} \triangleq \int_{\Theta} \mathbf{p}(\theta) \mathbf{p}^{H}(\theta) \, d\theta$$

Robust Adaptive Beamforming Using SQP

 To avoid first difficulty, enforce p + e to belong to a subspace that is spanned by the actual steering vector

$$\mathsf{P}^{\perp}_{\mathsf{p}}(\mathsf{p}+\mathsf{e})=\mathsf{0}$$

- $\mathbf{P}_{\mathbf{p}}^{\perp} \triangleq \mathbf{I} \mathbf{U}\mathbf{U}^{H}$ is a projection onto a subspace that is orthogonal to the actual steering vector
- $\mathbf{U} \triangleq [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_K], \{\mathbf{u}_k\}_{k=1}^K$ are K principal eigenvectors of

$$\mathbf{C} \triangleq \int_{\boldsymbol{\Theta}} \mathbf{p}(\boldsymbol{\theta}) \mathbf{p}^{H}(\boldsymbol{\theta}) \, d\boldsymbol{\theta}$$

Robust Adaptive Beamforming Using SQP (Cont'd)

Result 4 [Hassanien, Vorobyov, Wong '08]: The initial optimization problem is equivalent to the problem

$$\min_{\mathbf{e}} \quad (\mathbf{p} + \mathbf{e})^{H} \hat{\mathbf{R}}^{-1} (\mathbf{p} + \mathbf{e})$$

subject to
$$\mathbf{P}_{\mathbf{p}}^{\perp} (\mathbf{p} + \mathbf{e}) = \mathbf{0}$$
$$\|\mathbf{p} + \mathbf{e}\| = \sqrt{M}$$

• How to get rid of non-convexity?

Robust Adaptive Beamforming Using SQP (Cont'd)

Result 4 [Hassanien, Vorobyov, Wong '08]: The initial optimization problem is equivalent to the problem

$$\min_{\mathbf{e}} \quad (\mathbf{p} + \mathbf{e})^{H} \hat{\mathbf{R}}^{-1} (\mathbf{p} + \mathbf{e})$$

subject to
$$\mathbf{P}_{\mathbf{p}}^{\perp} (\mathbf{p} + \mathbf{e}) = \mathbf{0}$$
$$\|\mathbf{p} + \mathbf{e}\| = \sqrt{M}$$

• How to get rid of non-convexity?

<ロト <問 > < 臣 > < 臣 >

Iterative Solution

Iterative Solution

subject to

$$\begin{aligned}
\mathbf{P}_{\mathbf{p}}^{\perp} & (\mathbf{p} + \mathbf{e}_{\perp}) \quad \mathbf{n} \quad (\mathbf{p} + \mathbf{e}_{\perp}) \\
\mathbf{P}_{\mathbf{p}}^{\perp} (\mathbf{p} + \mathbf{e}) &= \mathbf{0} \\
\|\mathbf{p} + \mathbf{e}_{\perp}\| &\leq \sqrt{M} + \delta \\
\mathbf{p}^{H} \mathbf{e}_{\perp} &= \mathbf{0}
\end{aligned}$$

Iterative Algorithm

Algorithm:

- **()** Estimate \mathbf{e}_{\perp} by solving the problem in previous slide
- 2 If $\|\mathbf{e}_{\perp}\| =$ "small", go to Step 5.
- **③** Update the presumed steering vector $\mathbf{p} = \mathbf{p} + \mathbf{e}_{\perp}$.
- Project the updated steering vector back to the sphere $\mathbf{p} = \left(\sqrt{M} / \|\mathbf{p}\|\right) \mathbf{p}, \text{ then go to Step 1.}$
- Salculate the robust adaptive beamformer weights

$$\label{eq:sQP} \boldsymbol{w}_{\text{SQP}} = \frac{\hat{\boldsymbol{R}}^{-1}\boldsymbol{p}}{\boldsymbol{p}^{H}\hat{\boldsymbol{R}}^{-1}\boldsymbol{p}},$$

Simulation Setup

- M = 10 sensors spaced half wavelength apart. N = 100 data snapshots.
- Desired signal is assumed to impinge on the array from direction $\theta_{\text{p}}=5^{\circ}$
- Two interfering sources with DOAs -50° and -20° ; INR = 30 dB.
- Look direction mismatch:

actual DOA is uniformly drawn from $[1^{\circ} 9^{\circ}]$

• Array perturbation:

Sensors are assumed to be displaced from its original location and the displacement is drawn uniformly from the set [-0.05, 0.05] measured in wavelength.

Simulation Results

Sergiy A. Vorobyov

Robust Adaptive Beamforming: Evolution of Approaches

References

[1] Vorobyov, S.A., Gershman, A.B., and Luo, Z.-Q. "Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem," IEEE Trans. Signal Processing, 51, 313-324 (2003).

[2] Vorobyov, S.A., Gershman, A.B., and Luo, Z.-Q., and Ma N. "Adaptive beamforming with joint robustness against mismatched signal steering vector and interference nonstationarity," IEEE Signal Processing Letters, 11, 108-111 (2004).

[3] Lorenz, R.G. and Boyd, S.P. "Robust minimum variance beamforming," IEEE Trans. Signal Processing, 53, 1684-1696 (2005).

[4] Gershman, A.B., Luo, Z.-Q., and Shahbazpanahi, S. "Robust adaptive beamforming based on worst-case performance optimization," in Robust Adaptive Beamforming, P. Stoica and J. Li, Eds., John Wiley & Sons, Hoboken, NJ, 49–89 (2006).

References (Cont'd)

[5] Vorobyov, S.A., Gershman, A.B., and Rong, Y. "On the relationship between the worst-case optimization-based and probability-constrained approaches to robust adaptive beamforming," in Proc. IEEE ICASSP, Honolulu, Hawaii, USA, 977–980 (2007).

[6] Vorobyov, S.A., Chen, H., and Gershman, A.B. "On the relationship between robust minimum variance beamformers with probabilistic and worst-case distrortionless response constraints," IEEE Trans. Signal Processing, 56, 5719–5724 (2008).

[7] Hassanien, A., Vorobyov, S.A., and Wong, K.M. "Robust adaptive beamforming using sequential quadratic programming, in Proc. IEEE ICASSP, Las Vegas, Nevada, USA, 2345–2348 (2008).

[8] Hassanien, A., Vorobyov, S.A., and Wong, K.M."Robust adaptive beamforming using sequential programming: An iterative solution to the mismatch problem," IEEE Signal Processing Letters, to appear (2008).

< ロ > < 同 > < 三 >