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Abstract

RESEARCH IN WIRELESS COMMUNICATIONS AND NETWORKING has been

popularly advocated. It is well-known that a crucial, and thus intensively-studied,

issue for improving the performance of wireless networks, i.e., increasing network capac-

ity and operation efficiency, is the efficient management of the available communications

resources.

This thesis, which consists of three major parts, explores resource allocation problems

in wireless data networks using convex optimization. In the first part, a beamforming

technique is developed to solve the spectrum sharing problem in wireless networks where

secondary users can co-exist with primary users without causing excessive interference. The

proposed problems can be solved efficiently using semidefinite programming. The second

part investigates different power allocation schemes for multi-user relay networks using ge-

ometric programming. Since it is typically not possible to guarantee the quality-of-service

for all users in power-limited relay networks, admission control may be necessary. For

such cases, an efficient heuristic-based algorithm for solving the joint admission control and

power allocation problem is developed. The last part presents a joint cross-layer optimiza-

tion approach in multi-hop wireless networks. Given the constraints of the total available

energy, network lifetime, and user rates, the problem formulation aims at maximizing the

network utility. Although the resulting optimization problem is nonlinear and nonconvex, a

convex-based algorithm via two-step optimization is proposed. Furthermore, the problem of

maximizing network utility within achievable network lifetime is shown to be quasi-convex.

In summary, this thesis research has proposed and then solved several resource allocation

problems in wireless networks using convex optimization.
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Chapter 1

Introduction

THE RECENT AND ANTICIPATED DEVELOPMENT of wireless communication

systems has attracted research efforts in investigating methods to increase system

capacity and operation efficiency. The future wireless networks will likely to be required

to support services possibly requiring high data rates and provide quality of service (QoS)

for subscribers. The focus of this thesis is on the resource allocation issues in wireless data

networks. Broadly speaking, resource allocation in wireless networks involves efficient man-

agement and distribution of communications resources to participating entities to achieve

some specific goals. Appropriate resource allocation in wireless networks helps to improve

the network capacity and operation efficiency.

1.1 Motivation

Wireless networks have recently emerged as essential means of communications to provide

reliable data communications among many users. The future wireless networks, i.e., cellu-

lar, mesh, or ad hoc networks will likely to be required to provide stringent QoS for users.

This is a challenging task to accomplish, especially for emerging high data rates wireless

applications. Therefore, there is a strong motivation to increase the network capacity and

also stabilize the network operation. Moreover, it is recognized that the issue of efficient

management of communications resources is essential to achieve the aforementioned targets

under difficult circumstances, for instance unreliable propagation channels, interference,
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user mobility, and resource scarcity. As a result, research on the development of effective

resource allocation techniques in wireless communications has been conducted actively. For

example, power control techniques for conventional cellular communication systems have

been a focus of intensive studies, see [1], [2], [3] and references therein. Since power control

is used to manage interference, it also affects individual user QoS. Resource allocation in

general multi-hop wireless networks includes power allocation, link scheduling, rate control

and so on [4], [5]. Generally, the objectives of resource allocation techniques are to enhance

both communication capacity and lifetime of studied networks, making the most of scarce

communications resources. Efficient and intelligent management of available communica-

tions resources is clearly one of the most, if not the most, challenging task in designing

wireless networks.

The radio spectrum available for wireless services is scarce. Therefore, a prime issue in

current wireless systems is the conflict between the increasing demand for wireless services

and the scarce spectrum. Moreover, note that almost all usable bandwidth resource is al-

ready licensed. However, extensive measurements obtained by the FCC [6] indicate that

specific bands of licensed spectrum remain unused for large amounts of time, space, and

frequency due to non-uniform spectral occupation. On the other hand, the implementation

of a variety of wireless devices and emergent wireless services has significantly increased

the spectrum demand. The inconsistency in spectrum licensing and utilization has inspired

much research attention in search for better spectrum access strategies which help to im-

prove system efficiency. As a result, one of the approaches allowing for improved bandwidth

efficiency is the introduction of secondary spectrum licensing, where non-licensed users may

obtain provisional usage of the spectrum. Naturally, secondary spectrum usage happens to

be possible given that the primary users suffer only an acceptable amount of performance

deprivation [7]. Therefore, channel sensing and medium access control (MAC) schemes are

critical for secondary users to detect and access the spectrum opportunity when no primary

users are currently occupying or transmitting. This thesis investigates the spectrum sharing

problem from spectrum underlay perspective [7]. In this context, the secondary access does

not affect the primary users’ operation if the interference power remains below a certain

threshold. Instead of relying on channel sensing and MAC schemes, the benefits of using

multiple antennas i.e., transmit diversity are exploited. Through the use of beamforming
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and power control techniques, the interference to the primary network can be effectively

controlled. Therefore, even when the primary users are operating, the network of secondary

users is able to exchange information continuously.

Recently, it has been shown that the operation efficiency and QoS of cellular and/or

ad-hoc networks can be increased through the use of relay(s) [8], [9]. In such systems, the

information from the source to the corresponding destination is transmitted via a direct-

link and also forwarded via relays. Due to its significant advantages, for example coverage

extension and performance improvement, relay-assisted communications can be seen as a

candidate for the deployment of future generation networks. Furthermore, in relay networks,

appropriate power allocation among the participating nodes helps to ensure the performance

and stability of the system. As a result, there have been numerous works which attempt to

optimize the available communication resources, i.e., power and bandwidth to improve the

system performance. It is worth mentioning that a single source-destination pair is typically

considered. Indeed, each relay is usually delegated to assist more than one users, especially

when the number of relays is (much) smaller than the number of users. Resource allocation

in a multi-user system usually has to take into account the fairness issue among users,

their relative QoS requirements, channel quality and available resources. Mathematically,

optimizing relay networks with multiple users is very difficult, if tractable, especially for

systems with a large number of sources and relays. Moreover, the power resource is typically

limited and it may happen to be not possible to satisfy QoS requirements for all users with

limited power. Therefore, admission control with some pre-specified objective(s) should

be carried out. Essentially, users are not automatically admitted into the system. So

far, none of the existing works have considered this practical scenario in the context of

relay communications. Therefore, an efficient joint admission control and power allocation

algorithm is desirable.

In the works mentioned above, wireless networks which employ single hop or 2-hop

transmission are considered. However, due to the random deployment and mobility of

wireless nodes, direct i.e., single-hop transmission from the traffic source nodes to the traffic

destination nodes may be impossible. Therefore, multi-hop transmission is necessary where

nodes can forward other nodes’ information, allowing beyond line of sight communication

for wireless nodes. Uninterrupted communications among many users is performed via a

14



shared wireless channel together with some packet switching protocols. In this case, the

efficient design of multi-hop wireless networks is a challenging task.

Recently, the concept of cross-layer design in wireless networks has been investigated

extensively. This is due to the interactions between power allocation, link scheduling,

routing, and rate control in a multi-hop network. Therefore, a cross-layer design across all

layers is important (see, e.g., [10] for an overview). Such a design methodology is shown to

outperform the method of designing each layer separately. Moreover, the existing routing

algorithms adopted in wireless networks try to minimize the total energy consumption which

may cause some particular nodes to run out of energy quickly, especially when nodes are

equipped with equal energy. On the other hand, it has been shown that energy distribution

is critical in multi-hop networks [11]. Generally, equal energy assignment to each node may

not be optimal. For example, in a mobile ad hoc network with a wireless gateway, nodes

closer to the gateway will likely have more traffic load, and thus will need more energy. This

thesis presents the joint design of medium access control, routing and energy distribution

in a multi-hop wireless network to maximize the network utility. Each node (or user) has a

minimum data rate which must be guaranteed, as well, the network is able to operate for a

given minimum lifetime.

The main mathematical tool for the above resource allocation problems is based on

convex optimization techniques which are briefly described in the next section.

1.2 Mathematical Background

Design and optimization of wireless networks rely heavily on mathematical modeling tools.

Although nonconvex optimization has been shown to be suitable in many scenarios, convex

optimization methods have been used extensively in modeling, analyzing, and designing of

communication systems, for example see [15], [16], [17] and references therein. In particular,

the popularity of convex optimization is due to the fact that many problems in communi-

cations and signal processing can be naturally formulated or recast as convex optimization

problems. Theoretically, convex optimization is appealing since a local optimum is also

a global optimum for a convex problem. Therefore, the computation required to find the

global optimum is much less as compared to the problems with multiple local optimums.
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Convex optimization is also attractive because it usually reveals insights into the structure

of the optimal solution and the design itself. The last feature usually can not be obtained

from nonconvex optimization methods since they concentrate on the computation of opti-

mum points. Furthermore, the availability of software, for example [12] and [13], for solving

convex problems makes convex optimization even more popular.

Suppose that S is a subset of Rn for n ≥ 1. A function f : Rn −→ R on a convex set

S 1 is a convex function if for any two points x,y ∈ S

f(ζx + (1 − ζ)y) ≤ ζf(x) + (1 − ζ)f(y), 0 ≤ ζ ≤ 1

In other words, along any line segment in S, f is less than or equal to the value of the linear

function agreeing with f at the end points. One says f is concave if −f is convex. Convex

functions are closed under summation, positive scaling, and pointwise maximum operation.

1.2.1 Convex problems in standard form

An optimization problem with arbitrary equality and inequality constraints can always be

written in the following standard form [17]

min
x

f0(x) (1.1a)

subject to fi(x) ≤ 0, i = 1, . . . , m (1.1b)

hi(x) = 0, i = 1, . . . , p (1.1c)

x ∈ S (1.1d)

where f0 is the objective function, fi(x), hi(x) are the inequality and equality constraint

functions, respectively, and S is the constraint set.

The optimization problem (1.1a)–(1.1d) is a convex optimization problem if the objective

and inequality constraint functions are convex and the equality constraint functions are

linear, i.e., the equality constraints hi(x) = 0, i = 1, . . . , p can be represented by matrix

equation Ax = b where A, b are matrix and vector of appropriate sizes. The optimization

variable x is said to be feasible if x ∈ S and it satisfies all the inequality and equality

1A convex set which means that for any pair of points that set, the line segment connecting them is also

in the set.
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constraints. A feasible solution xopt is said to be globally optimal if for all feasible solution

x, f0(xopt) ≤ f0(x).

In this thesis, the considered classes of convex problems, which are of particular inter-

ests, are linear and semidefinite programs. When the functions fi and hi in (1.1a)–(1.1d)

are linear (affine), the problem is called a linear program and is much simpler to solve.

Semidefinite program (SDP) usually has matrix inequality constraints [18], [40], [41]. Lin-

ear programming has found important applications in communication networks for several

decades. Some famous linear programming problems include the network flow problems,

i.e., minimizing linear cost subject to linear flow conservation and capacity constraints. As

well, SDP has been applied in numerous communications problems, from code division mul-

tiple access (CDMA), multiple input multiple output (MIMO) detection [39] to transmit

and receive beamforming [28], [29], [30] and many more.

1.2.2 Convex problems in geometric form

When formulating the resource allocation problems in communications, it often happens

that the objective(s) and constraint sets are nonconvex, which makes the problem hard to

solve efficiently for the global optimum. Fortunately, many of such optimization problems

have hidden convexity and can be equivalently recast as convex problems. One class of such

problems is so-called geometric programming (GP). A monomial is defined as a function

f : R
n
++ −→ R

f(x) = αxβ(1)

1 xβ(2)

2 . . . xβ(n)

n

where α ≥ 0 and the exponential constants β(j) ∈ R, j = 1, . . . , n. A posynomial is a sum

of monomials

g(x) =
N
∑

k=1

αkx
β

(1)
k

1 x
β

(2)
k

2 . . . x
β

(n)
k

n .

A GP problem in its standard form can be written as follows [3], [55]

min
x

f0(x) (1.2a)

subject to fi(x) ≤ 1, i = 1, . . . , m (1.2b)

hi(x) = 1, i = 1, . . . , p (1.2c)
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where fi, i = 1, . . . , m are posynomials and hi, i = 1, . . . , p are monomials, i.e., inequality

constraint functions are posynomials and equality constraint functions are monomials. The

GP problem in the standard form is nonconvex. However, a logarithmic change of the

variables, multiplicative constants, and the function values builds an equivalent convex

problem in new variables. The background and applications of GP in communications can

be found in [3], [17], [55]. In summary, GP is a nonlinear, nonconvex optimization problem

that can be recast as a nonlinear, convex problem. The problems of power allocation in

multi-user wireless relay networks in Chapter 3 are cast as GP problems.

1.2.3 Lagrange duality theory and KKT optimality conditions

The Langrangian of the optimization problem (1.1a)–(1.1d) is defined as L : Rn × Rm ×
Rp −→ R and

L(x, γ, λ) = f0(x) +
m
∑

i=1

γifi(x) +

p
∑

i=1

λihi(x) (1.3)

where the Lagrange multipliers γi, λi are associated with the ith inequality and ith equality

constraints, respectively. The Lagrange multipliers γi and λi are also called dual variables.

The Lagrange dual function is defined as

g(γ, λ) = infx∈SL(x, γ, λ) = infx∈S

(

f0(x) +
m
∑

i=1

γifi(x) +

p
∑

i=1

λihi(x)

)

. (1.4)

It can be seen that f0(x) ≥ g(γ, λ) for any feasible x and (γ, λ). Therefore, the best

lower bound on the optimal value f0(xopt) of the original problem (1.1a)–(1.1d) can be

found by solving the following optimization problem

max
γ,λ

g(γ, λ) (1.5a)

subject to γi ≥ 0, i = 1, . . . , m (1.5b)

which is always a convex optimization problem regardless the convexity structure of the

original problem. The difference between the f0(xopt) and the optimal dual objective

g(γopt, λopt) is called duality gap. An important property regarding duality gap is that if the

original optimization problem is convex, strong duality holds, i.e., f0(xopt) = g(γopt, λopt)

[17]. A useful application of strong duality is that the original convex optimization problem
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(1.1a)–(1.1d) can be solved equivalently by solving the dual problem (1.5a)–(1.5b). Other-

wise, weak duality holds, i.e., f0(xopt) > g(γopt, λopt). This is a helpful result since for some

problems, solving the dual problems is sometimes ’easier’ than solving the problems them-

selves. The optimal solutions xopt and (γopt, λopt) are related through Karush-Kuhn-Tucker

(KKT) conditions

hi(xopt) = 0, i = 1, . . . , p; fi(xopt) ≤ 0, i = 1, . . . , m (1.6a)

γiopt ≥ 0, i = 1, . . . , m (1.6b)

∂f0

∂x
(xopt) +

m
∑

i=1

γiopt
∂fi

∂x
(xopt) +

p
∑

i=1

λi
∂hi

∂x
(xopt) = 0 (1.6c)

γioptfi(xopt) = 0, i = 1, . . . , m (1.6d)

KKT conditions are necessary and sufficient for optimality in convex programming. There-

fore, solving for KKT conditions is equivalent to solving the primal and dual problems.

1.2.4 Solving convex problems

Convex optimization problems can be sometimes solved analytically using duality theory,

and closed-form expressions can be obtained via KKT conditions as described above. How-

ever, in general, iterative methods must be used [17]. It is worth noting the development of

efficient algorithms for solving convex optimization problems has attracted much research

attention. In particular, a major breakthrough in optimization has been the development

of powerful theoretical tools, as well as highly efficient computational algorithms like the

interior-point method, for nonlinear convex optimization.

Interior-point methods solve constrained problems by solving a sequence of uncon-

strained problems, usually using Newton’s method. A distinct feature of interior-point

methods is that the solution obtained at each iteration is strictly feasible. This is achiev-

able since at each iteration, a barrier function is used to guarantee that the solution is

inside the feasible set. Therefore, such methods are sometimes referred as barrier methods.

The log barrier method has been the most popular interior point method for solving convex

problems. Generally, the log barrier method is used to convert the inequality constrained

optimization problem to unconstrained one. It can be briefly described as follows.

Given strictly feasible x, l := l(0) > 0, ν > 1 (update parameter), ǫ > 0 (tolerance
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value).

Repeat:

1. Centering step. Compute x∗(l) by solving

min f(x) − 1

t
φ(x) (1.7)

subject to Ax = b (1.8)

using the gradient descent method, starting at x where the logarithmic barrier function

is given by

φ(x) =

m
∑

i=1

log(−fi(x)).

2. Update. x := x∗(l)

3. Stopping criterion. Stop if n+1
l ≤ ǫ

4. Increase. l := νl

It can be seen that φ(x) is convex and twice continuously differentiable.

1.3 Outline of Thesis

In general terms, the focus of this thesis is on the resource allocation in wireless networks.

The outline of each of the chapter is as follows.

Chapter 1, this chapter, gives the motivation, overview on convex optimization theory,

and outline of the thesis.

Chapter 2 presents a spectrum sharing framework for secondary wireless networks with

three design criteria of interests: the interference, the signal-to-noise (SNR) of secondary

users and the transmit power. Specifically, a secondary downlink multicast network, where

the secondary access point (AP) is equipped with an antenna array is considered and the

objective is to transmit a common data stream to all the secondary users. The AP uses

transmit beamforming to direct signal power towards the secondary users while limiting

interference to primary users. In this scenario, the design of the transmit beamformer is

formulated as an optimization problem.
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Chapter 3 develops efficient power allocation schemes at the relays for multi-user wire-

less relay systems. Various design criteria, which take into account the fairness issue among

users, are used. It is shown that the corresponding optimization problems can be formulated

as GP problems. Therefore, optimal power allocation can be obtained efficiently even for

large-scale networks using convex optimization techniques. Another issue is that it may be

impossible to satisfy QoS requirements for all users with limited power. In such scenarios,

some sort of admission control with pre-specified objective(s) should be carried out. In

this chapter, an efficient joint admission control and power allocation algorithm is devel-

oped which aims at maximizing the number of users that can be admitted and served with

(possibly different) QoS demands.

Chapter 4 presents the joint design of MAC, routing and energy distribution in a multi-

hop wireless network, where the QoS of each node must be guaranteed in the minimum

required network lifetime, and the network utility within this lifetime is to be maximized.

The wireless relay service provisioning is formulated as a nonconvex network utility max-

imization (NUM) problem. It is proved that the aforementioned problem is equivalent to

a two-step convex problem. It is also proved that the NUM problem that maximizes the

network utility within achievable network lifetime is a quasi-convex problem, and thus can

be efficiently solved by traditional methods.

Chapter 5 concludes the thesis summarizing the obtained results and proposing some

possible future work.
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Chapter 2

Spectrum Sharing in Wireless

Networks via QoS-Aware

Secondary Multicast Beamforming

SECONDARY SPECTRUM USAGE has the potential to considerably increase spec-

trum utilization. In this chapter, QoS-aware spectrum underlay is investigated. Specif-

ically, this chapter considers a secondary network which consists of one multiple-antenna

access point serving N single-antenna secondary receivers in the presence of multiple pri-

mary transmitter-receiver links. The QoS assurance essentially means that the operation of

the secondary network does not cause excessive interference to primary users, and that the

performance of each secondary user is guaranteed. While typical non-licensed spectrum us-

age depends on channel sensing and access schemes, the main idea of our design is to exploit

the transmit diversity at the access point of the secondary network. Particularly, this chap-

ter studies the problem of downlink multicasting transmit beamforming for the secondary

system. For this purpose, this work proposes several problem formulations with different

design objectives and constraints for practical scenarios. Although the proposed optimiza-

tion problems are nonconvex, a convex relaxation approach via semi-definite programming

can be used for solving the problems efficiently. The simulation results demonstrate the

effectiveness of the proposed approaches and provide insights into the tradeoffs between

different design criteria. The work in this chapter can be seen as an extension to the work
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of Sidiropoulos et. al. [29] for conventional cellular system with further investigation on the

distinct features of secondary spectrum usage.

The rest of the chapter is organized as follows. Section 2.1 overviews the literature on

cognitive radios and summarizes the contributions. In Section 2.2, the system model and

assumptions are presented. Practical formulations for the multicast downlink beamforming

problem are developed in Section 2.3. Section 2.4 shows how semi-definite relaxation (SDR)

and tailored randomization techniques can be employed to solve the problems proposed in

Section 2.3. Section 2.5 provides insights into the method of SDR for one of the considered

beamforming problems. The extension to the case of probabilistically-constrained beam-

forming with unknown instant channels is given in Section 2.6. Numerical results which

demonstrate the effectiveness of our proposed approach are presented in Section 2.7, which

is followed by the conclusions in Section 2.8.

2.1 Introduction

Recently, there is a rapid growth in spectrum demand especially due to the implementation

of a variety of wireless devices and emergent wireless services. However, almost all usable

frequencies have already been licensed. Extensive measurements obtained by the FCC [6]

indicate that specific bands of licensed spectrum remain unused for large amounts of time,

space, and frequency due to non-uniform spectral occupation. The low utilization of licensed

spectrum has inspired a significant amount of research in searching for better spectrum

access strategies for improved efficiency. One of the approaches allowing for improved

bandwidth efficiency is the introduction of secondary spectrum licensing, where non-licensed

users may obtain provisional usage of the spectrum. Naturally, secondary spectrum usage

happens to be possible only if secondary network causes an acceptable (small) amount

of performance degradation to the primary users [51]. Therefore, a secondary network

should take into account the impact of its operation onto the transmission quality of the co-

existing primary users. Therefore, it poses the key challenge in secondary spectrum usage:

how to construct spectrum sharing schemes such that primary users would be protected

from excessive interference caused by the operation of secondary network, and at the same

time, the performance of secondary users would be guaranteed? Addressing this issue
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successfully will make secondary spectrum licensing feasible, and thus, likely to improve the

overall network efficiency.

Existing works on spectrum sharing/access so far mainly exploit either temporal or

spatial spectrum opportunity. For example, a design framework to maximize the throughput

of a secondary network is proposed in [47] based on partially observable Markov decision

process. This approach combines the design of spectrum sensor at the physical layer with

that of spectrum sensing and access policies at the medium access control (MAC) layer. A

graph-theoretic model for spectrum sharing among secondary users is proposed in [20] where

different objective functions are investigated. According to this approach, secondary users

collaboratively utilize the available spectrum holes for the entire network while avoiding

interference with its neighbors. An ad hoc secondary network configuration where the

secondary users operate over the spectrum resources unoccupied by the primary system is

proposed in [21]. This work is based on the so-called bandwidth sharing approach and the

secondary network does not interact with the primary users. In all aforementioned works, it

is assumed that the secondary users first listen to the environment, then decide to transmit

if some channels are not currently used by primary users. The latter strategy is commonly

called as spectrum overlay [51]. Therefore, the interference to the primary users in the

aforementioned works can only be caused by the sensing errors.

In the literature, there also exist several works which tackle the dynamic spectrum access

problem from an adaptive, game theoretic learning perspective. That is, secondary users

behave as game players which compete for unused radio channels. To this extend, each

player aims at capturing enough radio resources to satisfy its spectral demand. Moreover,

it should be noted that this approach happens to be viable only when channel sensing and

allocation occur much faster than changes in secondary user resource demands. For example,

a class of decentralized algorithms in which the secondary users are able to adapt to each

others’ activities and changes in their operating environment is developed in [23], [24]. The

formulation of distributed channel allocation problem using game theory is proposed in [22].

However, in these works the primary users are not explicitly protected from interference

due to spectrum access of secondary users.

In this thesis, the spectrum sharing problem is investigated from the spectrum underlay

perspective [51]. The concept of ‘interference temperature’ has been introduced in [31],
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and it indicates the allowable interference level at the primary receivers. Practically, the

secondary access does not affect primary licensees’ operation only if the interference power

remains below a certain threshold. While most of the current literature on secondary spec-

trum access rely on channel sensing and MAC schemes, this thesis exploits the benefits of

using multiple antennas. Through the use of beamforming and power control techniques,

the interference to the primary network can be effectively controlled. Therefore, even when

the primary users are operating, the network of secondary users is able to exchange infor-

mation continuously without any need for channel sensing. This potentially provides an

excellent method for spectrum sharing.

In traditional cellular systems, the beamforming and power control techniques are well-

known, and are used to control co-channel interference [27], [28], [29], [30]. In [27], an

iterative algorithm is proposed to jointly compute a set of feasible transmit beamforming

weight vectors and power allocations such that the signal-to-interference-plus-noise ratio

(SINR) at each mobile user would be greater than a target value. The approach developed

in [28], [29], [30] is based on convex optimization via semi-definite programming (SDP). For

the latter approach, solution can be efficiently computed using standard interior-point algo-

rithms with guaranteed convergence speed and complexity [13]. Note that in [27] and [28],

the authors consider the transmission of independent information to each of the downlink

users, while a broadcast scenario is considered in [29]. Moreover, an approach to robust

adaptive beamforming in the presence of an arbitrary unknown signal steering vector (chan-

nel) mismatch based on the optimization of the worst-case performance is developed in [30].

In the context of secondary networks, the transmit power control and dynamic spectrum

management problem has been initiated in [31]. In [32], two iterative algorithms have been

proposed for jointly optimal power control and beamforming. The latter work considers

two different system scenarios of spectrum sharing: with and without cooperation between

the secondary and primary networks. Moreover, the uplink-downlink duality has been used

to convert the downlink beamforming problem into the virtual uplink one [33]. In [34], an

admission control algorithm which is performed jointly with power/rate allocation based on

maximin fairness criterion is proposed.

This chapter presents a spectrum sharing framework for secondary wireless networks by

using three different optimization criteria: the interference minimization, the signal-to-noise
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ratio (SNR) of secondary users maximization, or the transmit power minimization. Specif-

ically, a secondary downlink multicast network is considered, where the secondary access

point (AP) is equipped with an antenna array and the objective is to transmit a common

data stream to all the secondary users. The AP uses transmit beamforming to direct signal

power towards secondary users while limiting interference to primary users. In this scenario,

the design of the transmit beamformer is formulated as an optimization problem. Our work

can be also viewed as an extension of the work in [29] for traditional cellular systems with

distinct features of secondary networks. Besides the optimization viewpoint, our work can

also be seen as an investigation the interactions between the aforementioned criteria. In

fact, the latter purpose is our initial motivation.

The following optimization problems are considered in this work in the context of cog-

nitive radio:

• Minimization of the total transmission power subject to constraints on the QoS for

each receiver;

• Minimization of the interference subject to constraints on the SNR of secondary users

and transmit power;

• Maximization of the smallest receiver SNR over the intended secondary users subject

to constraints on the transmit power and interference level;

It should be noticed that all the above problem formulations require perfect channel knowl-

edge at the design center. However, such channel knowledge may not be always easily

accessible in practice. Therefore, an extension to the case when the AP can not track the

channel to the secondary users is also provided. In this case, by exploiting the statistical

characteristic of the channel gains, it can be shown that a probabilistic constraint on the

SNR of the secondary users is equivalent to a lower bound constraint on the transmit power.

Although the proposed optimization problems are shown to be nonconvex and NP-hard, a

convex relaxation technique via SDP is adopted. Based on this technique the solutions that

are close to being optimal can be efficiently found [29], [36], [37].
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2.2 System Model

The network which consists of several secondary users in the presence of multiple primary

transmitter-receiver links is considered. An example of such network can be the temporary

deployment of a secondary wireless local area network (WLAN) in the area of an existing

primary WLAN. The particular scenario considered here is one in which the secondary

WLAN AP transmits common information to all secondary users. The secondary AP (or

base station) is equipped with M antennas while each of N secondary and K primary users

has single antenna. Since the primary and secondary networks coexist, the operation of the

latter must not cause excessive interference to the former. This can be accomplished in two

ways. One is to severely limit the total transmission power of the secondary AP, which will

limit the interference to any primary receiver irrespective of the associated coupling channel

vector, by virtue of the Cauchy-Schwart inequality. The drawback of this approach is that

it will typically over-constrain the transmission power and thus the spectral efficiency of the

secondary network. A more appealing alternative for the secondary AP is to estimate the

channel vectors between its antenna array and the primary receivers and use beamforming

techniques. If the primary system operates in a time-division duplex (TDD) mode, this

can be accomplished by monitoring primary transmissions in the reverse link.1 Otherwise,

blind beamforming techniques could be employed. Alternatively, the primary system could

cooperate (under a ’sublet’ agreement) with the secondary system to pass along channel

estimates (see also [25], [32] and references therein) - albeit this is far less appealing from

a practical standpoint. In a nutshell, although perfect channel state information (CSI) will

not be available in the considered scenario, very accurate CSI can be obtained in certain, for

example fixed wireless or low-mobility cases. Either way, (approximate or partial/statistical)

knowledge of the primary channel vectors enables (approximate) spatial nulling to protect

the primary receivers while directing higher power towards the secondary receivers - thereby

increasing the transmission rate for the secondary system.

Let hi, gk denote the M × 1 complex vectors which model the channel gains from M

1In this case, the secondary AP can listen to the transmission from the primary receivers and estimates

the channel vectors from itself to primary receivers, assuming reciprocity. Note that this approach is possible

only if the same frequency is used.
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Fig. 2.1. A secondary cell with N users and a single primary link

transmit antennas to the secondary user i, i = 1, . . . , N and to the receiver of the primary

link k, k = 1, . . . , K, respectively. Also let w denote the beamforming weight vector applied

to the transmit antenna elements. If the transmitted signal is zero-mean and white with

unit variance, and the noise at ith receiver is zero-mean and white with variance σ2
i , then

the received SNR of the ith user can be expressed as

SNRi =
|wHhi|2

σ2
i

. (2.1)

Note that for the sake of simplicity, the interference caused by primary users is not consid-

ered here. As long as the secondary receivers know the interference level, our model can be

easily extended to include this information. The interference power to the receiver of the

primary link k is given by |wHgk|2, k = 1, . . . , K. Note that (slow rate) reverse link com-

munications from N users to the AP, for example, for the purpose of channel estimation,

may also cause interference to the primary users. Here, only the interference caused by the

downlink transmission from the AP is considered.
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2.3 Beamforming for Secondary Multicasting in Wireless Net-

works with Perfect CSI

2.3.1 Transmit power minimization based beamforming

As discussed above, the operation of the secondary network should not cause excessive

interference to the primary receivers, and simultaneously the performance of secondary

users should be guaranteed. It is well-known that by exploiting the available CSI, one can

efficiently control the QoS of the receivers using optimized transmission. Given lower bound

constraints on the received SNR of each secondary user and upper bound constraints on the

interference to the primary users, the problem of designing the beamformer which minimizes

the transmit power can be mathematically posed as

min
w

‖w‖2
2 (2.2a)

subject to
|wHhi|2

δ2
i

≥ SNRmin
i , i = 1, . . . , N (2.2b)

|wHgk|2 ≤ η0, k = 1, . . . , K (2.2c)

where SNRmin
i is the prescribed minimum received SNR for the ith user and ‖.‖2 denotes

the Euclidean norm of a vector. The constraints (2.2b) require the SNR for each secondary

user be greater than a target minimum SNR denoted as SNRmin
i . The constraints (2.2c)

state that the interference level to any primary receiver must be less than the allowable

threshold value η0.

It can be seen that the problem (2.2a)-(2.2c) belongs to the class of quadratically con-

strained quadratic programming (QCQP) problems. Unfortunately, the constraints (2.2b)

are concave homogeneous quadratic constraints, but not convex. It is well known that a

general nonconvex QCQP problem is NP-hard and, therefore, cannot be solved efficiently in

polynomial time.2 Fortunately, approximate solutions can be generated using SDR which

will be presented in the following section. Moreover, it should be noted that as satisfying

the QoS constraints is the priority, it is assumed in the problem formulation (2.2a)-(2.2c)

2Note that a monotonic optimization approach developed to globally solve nonconvex QCQP [26] seems

to be an attractive option but its complexity may not be suitable for problems arising in wireless communi-

cations.
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that the AP is endowed with unlimited power. This is because the computed objective

value may turn out to be arbitrarily large.

Observation 1: At optimality, at least one of the constraints (2.2b) must be met with

equality. Otherwise, the beamformer can be scaled down by an appropriate coefficient

such that all the constraints are still met, and at the same time the objective function is

decreased.

It also worth noting that the beamforming problem (2.2a)-(2.2c) is not always feasible.

Geometrically, the feasible region of (2.2a)-(2.2c) is the region determined by the intersection

of the exteriors of N co-centered ellipsoids and of the interiors of K co-centered ellipsoids

[35]. Obviously, this region may turn out to be empty. Moreover, the set of interference

constraints (2.2c) can be satisfied by making the values of the beamformer vector w small.

On the other hand, the set of SNR constraints (2.2b) may require large values of the

beamformer vector w. Therefore, the two types of constraints can ‘conflict’ with each

other. As a result, infeasibility is possible for example when minimum SNR targets SNRmin
i ,

i = 1, . . . , N are too high or the number of secondary users N is too large. However, one

can argue that by means of Cauchy-Schwartz inequality, the set of interference constraints

(2.2c) can be replace by an upper bound constraint on the transmit power. However, this

approach admits an overly conservative design, thus, is sub-optimal.

2.3.2 Interference minimization based beamforming

Due to the broadcasting nature of wireless transmission, the operation of the secondary

network inevitably degrades the reception quality of the primary links by creating inter-

ference at the primary receivers. Therefore, a possible problem formulation is to minimize

the interference level while each secondary user has its SNR above some threshold. This

formulation corresponds to the scenarios when the secondary network lease the spectrum

of primary network, thus QoS requirements for secondary users must be guaranteed. In

practice, the QoS requirements are specified by the agreement with the primary network.
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Then, mathematically, the beamforming problem can be formulated as

min
w

K
∑

k=1

|wHgk|2 (2.3a)

subject to ‖w‖2
2 ≤ P (2.3b)

|wHhi|2
δ2
i

≥ SNRmin
i , i = 1, . . . , N. (2.3c)

Similarly to the problem (2.2a)-(2.2c), it can be shown that the problem (2.3a)-(2.3c) is a

nonconvex QCQP due to the constraints (2.3c). Practically, the constraint on the maxi-

mum allowable transmit power is applicable for the power-limited communication systems.

Moreover, the constraint (2.3b) is necessary here because of the following lemma.

LEMMA 2.1: Suppose that K ≤ M . When there is no constraint on the transmit power

in (2.3a)-(2.3c), the optimal interference value is zero.

PROOF: One can always find a vector w0 as a solution of the set of equalities |wHgk|2 =

0, ∀k = 1, . . . , K. Then, by scaling the length of such vector by an appropriate factor, one

can always satisfy all the received SNR constraints. Therefore, all the constraints are met

and the objective function value is 0. �

Observation 2: Since the objective function (2.3a) is decreasing w.r.t. w, at optimality,

at least one of the constraints (2.3c) must be met with equality. Otherwise, the beamformer

can be scaled down such that all the constraints are still met, and the objective function is

decreased.

It can be easily seen that the interference minimization based beamforming problem

(2.3a)-(2.3c) is not always feasible. In fact, the feasibility of the problem (2.3a)-(2.3c)

depends on many factors such as the number of transmit antennas M , the number of

receivers N , the channel realizations hi, i = 1, . . . , N , and the constraints for secondary

users, i.e., the SNR thresholds and the available transmit power. A practical implication

of the infeasibility is that it may not be possible to serve all the secondary subscribers at

their desired QoS from a single power-limited AP, and an admission control schemes may

be required. However, investigation of such possibilities is outside of the scope of this work

and is a subject of future research.

Furthermore, since the objective function in the problem (2.3a)-(2.3c) is a sum of in-

terferences to all primary receivers, there may be excessive interferences to some particular
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primary receivers at optimality. Therefore, another beamforming problem which prevents

primary users from extreme interferences can be formulated as follows

min
w

max
k=1,...,K

{

|wHgk|2
}

(2.4a)

subject to The constraints (2.3b)–(2.3c). (2.4b)

For the interference minimization based beamforming, only the optimization problem (2.3a)-

(2.3c) is considered In the sequel.

2.3.3 Maximin fairness based beamforming

The performance of the worst user(s) is often of concern to the cellular network operator.

Therefore, in addition to providing preferential treatment to high priority connections, the

services for low priority users must be taken into account. The beamforming problem which

aims at maximizing the minimum received SNR over all receivers subject to the bound on

total transmit power and interference constraint on the primary user can be written as

max
w

min
i=1,...,N

{

|wHhi|2
δ2
i

}

(2.5a)

subject to ‖w‖2
2 ≤ P (2.5b)

|wHgk|2 ≤ η0, k = 1, . . . , K. (2.5c)

Note that other forms of fairness, for example, weighted fairness can be considered. In this

case, the objective function will be a weighted sum of the received SNRs with different

weights for different users. The following lemma is in order.

LEMMA 2.2: At optimality, either one of the constraints in (2.5b) or (2.5c) will be met

with equality.

PROOF: It can be proved by contradiction. Suppose that wopt is the optimal solution

and none of the constraints is met with equality. Then, the beamformer wopt can be scaled

by a factor α > 1 which is determined by

α = min

{

P

‖wopt‖2
2

,
η0

|wH
optgk|2k=1,...,K

}

> 1. (2.6)

It can be seen that the resulting beam-vector w̃ = αwopt is also feasible. This will improve

the objective function, thus contradicting the optimality assumption since the objective

function mini=1,...,N

{

|wH
hi|

2

δ2
i

}

is an increasing function of w. �
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Introducing a new variable t, the problem (2.5a)-(2.5c) can be equivalently rewritten as

the following optimization problem

min
w, t

−t (2.7a)

subject to
|wHhi|2

σ2
i

≥ t, i = 1, . . . , N (2.7b)

‖w‖2
2 ≤ P, t ≥ 0 (2.7c)

|wHgk|2 ≤ η0, k = 1, . . . , K. (2.7d)

It is easy to check that the constraints (2.7c)-(2.7d) are convex on w and t. However, the

constraints (2.7b) are nonlinear and nonconvex on w and t. Hence, the problem (2.7a)-

(2.7d) also belongs to the class of semi-infinite nonconvex QCQP, and thus, is NP-hard.

Interesting enough, the problem (2.7c)-(2.7d) contains the one in [29] as a special case. Note

that in [29], the constraint on total transmission power had to be met with equality. This

is not the case for our problem (2.7a)-(2.7d) due to the presence of the primary interference

constraints. Therefore, it is not surprising that at least one of the constraints (2.7b) must

be achieved with equality at optimality. Otherwise, t can always be increased, and thus,

the objective function can be decreased.

2.3.4 Worst user SNR-Interference tradeoff analysis

In this subsection the tradeoff between the secondary users’ received SNRs and the interfer-

ence to the primary user is investigated. The corresponding optimization problem can be

formulated as a simultaneous maximization of the users’ received SNRs and minimization

of the interference caused to the primary user. Therefore, the objective function under

consideration should strike a balance between maximizing the performance of the worst

secondary user(s) and minimizing the interference to the primary user. Mathematically,

the problem can be written as

min
w

{

− min
i=1,...,N

|wHhi|2
δ2
i

,
K
∑

k=1

|wHgk|2
}

(2.8a)

subject to ‖w‖2
2 ≤ P. (2.8b)

This problem is a multi-criterion optimization problem with quadratic objective functions.

The optimal operating point depends on the total available transmit power and the priority
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factor between the design objectives. Following the popular approach [55], one can obtain

an optimization problem with single objective for the problem (2.8a)-(2.8b). This can

be accomplished by using arbitrary importance factors for each objective function and

combining the objectives into a single objective function to be minimized. The resulting

single-objective problem can be written as

min
w

p1

K
∑

k=1

|wHgk|2 − p2 min
i=1,...,N

{

|wHhi|2
δ2
i

}

(2.9a)

subject to ‖w‖2
2 ≤ P. (2.9b)

It can be seen that −mini=1,...,N

{

|wH
hi|

2

δ2
i

}

is concave. Therefore, the optimization problem

(2.9a)-(2.9b) can be shown to be a nonconvex QCQP problem and it is also NP-hard. The

parameters p1 and p2 quantify the desire to make the sum interference small and the SNR

of the worst user large, respectively. Moreover, the ratio of p1 and p2, i.e., p1/p2, can be

seen as a relative importance of the sum interference and the performance of the secondary

users. In particular, for a fixed value of p2, a larger value of p1 results in smaller interference

at the cost of performance degradation for the worst user in the network. Without loss of

generality, one can set p2 = 1 and by varying p1 > 0, obtain the Pareto optimal points by

solving (2.9a)-(2.9b). Furthermore, it should be noticed that the objectives are competing

since in order to decrease one objective, the other must be increased.

In the following section, we show how the proposed formulations can be solved efficiently

using SDR.

2.4 Solutions

2.4.1 Transmit power minimization based beamforming

Although the optimization problem (2.2a)-(2.2c) is nonconvex QCQP problem, it can be

solved using the theory of SDP relaxation. Using the fact that hH
i wwHhi = trace(wwHhih

H
i )

where trace(·) denotes the trace of a matrix, the optimization problem (2.2a)–(2.2c) can be
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recast as follows

min
w

trace(wwH) (2.10a)

subject to trace(wwHHi) ≥ SNRmin
i , i = 1, . . . , N (2.10b)

trace(wwHGk) ≤ η0, k = 1, . . . , K (2.10c)

where Hi , hih
H
i /δ2

i , i = 1, . . . , N and Gk , gkg
H
k , k = 1, . . . , K.

Introducing a new variable X , wwH with X being symmetric positive semi-definite

matrix, i.e., X < 0, the problem (2.10a)–(2.10c) can be equivalently rewritten as

min
X

trace(X) (2.11a)

subject to trace(XHi) ≥ SNRmin
i , i = 1, . . . , N (2.11b)

trace(XGk) ≤ η0, k = 1, . . . , K (2.11c)

X < 0, rank(X) = 1 (2.11d)

where rank(·) denotes the rank of a matrix. The objective function and the trace constraints

are linear in X, while the set of symmetric positive semidefinite matrices is convex. However,

the rank constraint is nonconvex. Dropping the rank constraint, the so-called SDR can be

obtained, that is,

min
X

trace(X) (2.12a)

subject to trace(XHi) ≥ SNRmin
i , i = 1, . . . , N (2.12b)

trace(XGk) ≤ η0, k = 1, . . . , K (2.12c)

X < 0 (2.12d)

which is an SDP problem. This SDP problem is convex and can be efficiently solved

using interior point methods, at a complexity cost that is at most O((N + K + M2)3.5).

SeDuMi [13], a MATLAB toolbox that implements modern interior point methods for SDP,

can then be used to solve problem (2.12a)-(2.12d) efficiently

2.4.2 Randomization algorithm

Let Xopt denote the optimal solution to the problem (2.12a)-(2.12d). If the matrix Xopt

is rank-one, then the optimal weight vector can be straightforwardly recovered from it by
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finding the principal eigenvector corresponding to the only non-zero eigenvalue. However,

because of the SDR step, i.e., relaxation of rank-one constraint, the matrix Xopt may not

be rank-one in general. Similar to [29], once the relaxed SDP problem (2.12a)-(2.12d) is

solved, a randomization approach can be used to obtain an approximate solution to the

original problem from the solution to its relaxed version. Various randomization techniques

have been developed so far, see [39]- [41] and references therein. A common idea of these

techniques is to generate a set of candidate vectors {w̃cand,l}L
l=1 using Xopt and choose the

best solution from these candidate vectors. Here, L is the number of randomizations used.

In application to our problem, the randomization technique can be modified as follows.

First, to obtain the candidate vectors, the eigen-decomposition of Xopt is calculated in the

form

Xopt = UΣUH (2.13)

and the candidate beamforming vector

w̃cand,l = UΣ1/2vl (2.14)

is selected as an ‘initial’ candidate vector, where vl is uniformly distributed on the unit

sphere. This ensures that w̃H
cand,lw̃cand,l = trace(Xopt) for any realization of vl. Since the

rank of Xopt is larger than one, at least one of the constraints (2.2b) or (2.2c) should be

violated for the so-obtained candidate weight vector w̃cand,l. Moreover, since ‖w̃cand,l‖2
2 is

the lower bound on the optimal value due to the relaxation step, the vector w̃cand,l needs

to be scaled up by a coefficient
√

α > 1. Therefore, more specifically, at least one of the

constraints (2.2b) is violated. The scaling parameter α can be determined as

α = max
i=1,...,N

σ2
i SNRmin

i

|w̃H
cand,lhi|2

> 1. (2.15)

Thus, a new candidate vector w̃cand,l =
√

αw̃cand,l can be found. This ‘scaled’ candidate

vector is guaranteed to satisfy all the QoS constraints (2.2b). However, it is also necessary

to check whether the constraints (2.2c) are satisfied using this new scaled candidate vector.

If any of the constraints (2.2c) is violated, then such candidate vector can not be a ‘proper’

candidate for the sub-optimal beamformer. In other words, the particular realization of vl

does not help to generate ‘proper’ candidate vector, and several realizations of vl should be
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tried. Finally, among the ‘proper’ candidate vectors, the vector w̃cand,l with smallest norm

is chosen as the sup-optimal beamformer vector.

The aforementioned randomization process is different from most of the existing tech-

niques such as, for example, the randomization technique used in [29]. This is because

the beamforming problem (2.2a)-(2.2c) incorporates both convex and concave constraints.

Therefore, it is essential to check that the candidate beamformer satisfies both types of

constraints. It also worths mentioning that the derivation of a theoretical a priori bounds

offered by the sub-optimal beamformers generated by the above randomization technique

is an interesting research problem. However, there are no existing results on this issue and,

it seems that such derivation is a challenging problem. However, for a simplified version of

the optimization problem (2.2a)-(2.2c) in which the constraints (2.2c) are not present, the

approximation bound for the resulting quadratic optimization with homogeneous quadratic

constraints when SDP relaxation coupled with randomization is used has been established

in [35].

2.4.3 Interference minimization based beamforming

Following the approach developed for the case of transmit power minimization based beam-

forming, the SDP relaxation of the problem (2.3a)-(2.3c) can be written as

min
X

K
∑

k=1

trace(XGk) (2.16a)

subject to trace(X) ≤ P (2.16b)

trace(XHi) ≥ SNRmin
i , i = 1, . . . , N (2.16c)

X < 0. (2.16d)

In the randomization step, the initial candidate vector w̃cand,l can be obtained from Xopt

and ‖w̃cand,l‖2
2 = trace(Xopt) ≤ P . At least one of the constraints (2.3c) is violated for the

candidate vector w̃cand,l. Indeed,
∑K

k=1 trace(XoptGk) =
∑K

k=1 |w̃H
cand,lgk|2 is only a lower

bound on the optimal value. Therefore, w̃cand,l needs to be scaled up as w̃cand,l =
√

αw̃cand,l

where α can be chosen according to (2.15).

Moreover, since the initial candidate vector was scaled by a coefficient
√

α > 1, it is also

necessary to check whether the scaled vector ‖w̃cand,l‖2
2 ≤ P . If it holds, then this candidate
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vector is a ‘proper’ candidate for the sub-optimal beamformer. Finally, among the ‘proper’

candidate vectors, the vector w̃cand,l such that
∑K

k=1 |w̃H
cand,lgk|2 is smallest is choosen as

the sup-optimal beamformer vector.

2.4.4 Maximin fair based beamforming

In the same manner, the SDR of the optimization problem (2.7a)-(2.7d) can be written as

min
X, t

−t (2.17a)

subject to trace(XHi) ≥ t, i = 1, . . . , N (2.17b)

trace(X) ≤ P (2.17c)

trace(XGk) ≤ η0, k = 1, . . . , K (2.17d)

X < 0, t ≥ 0. (2.17e)

The objective function and the trace constraints in (2.17a)-(2.17e) are linear and, hence,

convex on X and t. Therefore, the optimization problem (2.17a)-(2.17e) is a SDP problem.

The randomization step can also can be developed as before with some appropriate mod-

ifications. First, the initial candidate vector w̃cand,l is obtained using Xopt and ‖w̃cand,l‖2
2 =

trace(Xopt) ≤ P . It is also necessary to check if the interference constraints (2.5c) are sat-

isfied. If all K interference constraints are satisfied as inequalities, the objective (2.5a) can

be increased by scaling the candidate beamforming vector w̃cand,l up by
√

α

α = min







P

‖w̃cand,l‖2
;

η0

|w̃H
cand,lgk|2

∣

∣

∣

∣

∣

k=1,...,K







≥ 1. (2.18)

If at least one of K interference constraints is not satisfied, the candidate beamforming

vector w̃cand,l must be scaled down by
√

β

β = min
k=1,...,K

{

η0

|w̃H
cand,lgk|2

}

≤ 1. (2.19)

The so obtained new scaled candidate beamforming vector always satisfies both the power

constraint (2.5b) and the interference constraints (2.5c). Therefore, the sub-optimal beam-

forming vector is the new scaled candidate vector which yields the largest

mini=1,...,N

{

|w̃H
cand,l

hi|
2

σ2
i

}

and therefore, provides the maximum to the objective (2.5a).
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2.4.5 Worst user SNR-Interference tradeoff analysis

Introducing a new variable t and using SDR, the following SDR version of the optimization

problem (2.9a)-(2.9b) is obtained

min
X, t

p1

K
∑

k=1

trace(XGk) − t (2.20a)

subject to trace(X) ≤ P (2.20b)

trace(XHi) ≥ t, i = 1, . . . , N (2.20c)

X < 0, t ≥ 0. (2.20d)

At least one of the constraints trace(XHi) ≥ t, i = 1, . . . , N must be met with equality

at optimality . Otherwise, t can always be increased, thus, reducing the optimal value and

hence contradicting the optimality.

The randomization step is much simpler for this problem than for the previous in prob-

lems. In fact, any of the initial candidate vector w̃cand,l obtained from Xopt is a ‘proper’

one. Therefore, the sub-optimal beamformer is the ‘proper’ candidate vector which provides

the smallest objective value.

2.5 SDR via Rank-one Relaxation as the Lagrange Bidual

Program

In the previous section, the SDRs have been derived in a straightforward manner by relaxing

the nonconvex rank-one constraint. It is interesting to provide some mathematical insight

related with the rank relaxation. This section aims at showing that the resulting SDR

for the transmit power minimization based beamforming problem is in fact the Lagrange

bidual of the original problem. Similar results can be found in earlier literature, for example,

see [36], [37] and references therein. The result still holds in the context of secondary radios

with some technical modifications.

It is well-known that for a minimization (or maximization, respectively) problem, there

exists a convex Lagrange dual problem for which the optimal value is a lower (or upper,

respectively) bound on the optimal value of the original optimization problem [37], [55].
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Moreover, if the original problem is convex, then the dual of its dual problem is usually the

original problem itself.

For the problem (2.2a)-(2.2c), its bidual problem is not exactly the original one since the

bidual problem is always convex, while the original one is shown to be nonconvex. However,

the bidual approach is commonly considered as a standard technique to convexify nonconvex

problems. Therefore, let us prove that the bidual of (2.2a)-(2.2c) corresponds exactly to the

optimization problem (2.12a)-(2.12d). In other words, the bidual of a nonconvex QCQP is

its SDR via dropping rank-one constraint. It should be noted that the general result on the

relationship between bidual and relaxed original problems can be found also in [42].

The Lagrangian associated with the program (2.2a)-(2.2c) can be written as

L , ‖w‖2
2 +

K
∑

k=1

λk

(

|wHgk|2 − η0

)

−
N
∑

i=1

βi

(

|wHhi|2
δ2
i

− SNRmin
i

)

(2.21)

where λk ≥ 0, k = 1, . . . , K, and βi ≥ 0, i = 1, . . . , N are the Langrange multipliers

associated with the interference and SNR constraints respectively.

Introducing new terms

Q(λ, β) , I +
K
∑

k=1

λkGk −
N
∑

i=1

βiHi (2.22)

c(λ, β) , −η0

K
∑

k=1

λk +

N
∑

i=1

βiSNRmin
i (2.23)

where Gk and Hi are appropriate matrices, the Lagrangian (2.21) can be written as the

following quadratic form

L = wHQ(λ, β)w + c(λ, β). (2.24)

Using the notations (2.22) and (2.23), the dual of the original problem (2.2a)-(2.2c) can

be defined as

Dual :
{

max
λk≥0, ∀k, βi≥0, ∀i

min
w

wHQ(λ, β)w + c(λ, β)
}

. (2.25)

Introducing a slack variable t, the problem (2.25) can be further rewritten as

Dual : max
λk≥0, ∀k, βi≥0, ∀i

t (2.26a)

s.t. wHQ(λ, β)w + c(λ, β) ≥ t, ∀w. (2.26b)
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The following lemma establishes one fundamental property of the optimization problem

(2.26a)-(2.26b).

LEMMA 2.3 [37]: Let A be a symmetric matrix. The condition wHAw+2bHw+c ≥ 0

holds for all w if and only if the matrix





A b

bH c



 is positive semidefinite.

Using lemma 2.3, the dual program (2.26a)-(2.26b) can be expressed as

Dual : max
λk≥0, ∀k, βi≥0, ∀i

t (2.27a)

s.t.





Q(λ, β) 0

0H c(λ, β) − t



 < 0. (2.27b)

It equips us with all necessary tools to derive the dual of the dual problem. Indeed, the

Lagrangian associated with the program (2.27a)-(2.27b) can be expressed as

LDual = −t − trace

{

X





Q(λ, β) 0

0H c(λ, β) − t





}

= −t − trace
{

X1,1Q(λ, β)
}

− x2,2

(

c(λ, β) − t
)

= −t
(

1 − x2,2

)

− trace(X1,1) +
N
∑

i=1

βi

(

trace(X1,1Hi) − x2,2SNRmin
i

)

−
K
∑

k=1

λk

(

trace(X1,1Gk) − x2,2η0

)

(2.28)

where X =





X1,1 x1,2

xH
1,2 x2,2



 < 0 is a Langrange matrix with sub-matrices of appropriate sizes.

The linear terms in (2.28) are bounded from below only if they are identically equal to zero.

Moreover, one has the following trivial fact that

min
x≥0

αx = 0 ⇐⇒ x = 0, and α ≥ 0 (2.29)

because, otherwise, it is unbounded below.

Therefore, the dual of of the dual problem (2.27a)-(2.27b), which is also the bidual of
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the original problem (2.2a)–(2.2c), can be expressed as

DDual : min
X1,1

trace(X1,1) (2.30a)

s.t. trace(X1,1Hi) ≥ x2,2SNRmin
i , ∀i (2.30b)

trace(X1,1) ≤ x2,2η0, ∀k (2.30c)

X1,1 < 0, 1 − x2,2 = 0. (2.30d)

The problem (2.30a)-(2.30d) is identical to the SDR of the original problem (2.2a)-(2.2c),

which has been derived in the previous section (see (2.12a)–(2.12d)).

2.6 Beamforming for Secondary Multicasting in Wireless Net-

works with Channel Statistics Only

Previously, it has been assumed that the base station has perfect knowledge of CSI to

the users. However, besides the deterministic QoS requirements, the probability constraint

on the users’ QoS and the statistical variation of the channel are more appropriate for

consideration from a practical viewpoint. Specifically, instead of the constraint (2.2b), let

us consider the following probabilistic constraint

Pr

{

min
i=1,...,N

θ2
i

δ2
i

∣

∣wHhi

∣

∣

2 ≥ η

}

≥ ρ (2.31)

where Pr{·} denotes the probability operator of a random variable and the effects of two

signal strength attenuation factors, i.e., path loss and shadowing, are taken into account

by using the constant θi. The constraint (2.31) requires the probability of the event that

the minimum received SNR among all secondary users is greater than some constant η be

lower bounded by a constant 0 ≤ ρ ≤ 1.

Let the channel fading gains hi, i = 1, . . . , N consist of independent zero-mean unit-

variance Gaussian random variables. Introducing the notation η̂i , δ2
i η/θ2

i , it can be shown

that

Pr

{

min
i=1,...,N

∣

∣wHhi

∣

∣

2 ≥ η̂i

}

= Pr

{

min
i=1,...,N

‖w‖2
2λi ≥ η̂i

}

(2.32)

where λi, i = 1, . . . , N are exponential distributed random variables with unit mean. It can

be assumed for brevity that η̂i = η̂, i = 1, . . . , N . Introducing the notation γi , ‖w‖2
2λi,
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it can be shown that γi, i = 1, . . . , N are exponential distributed with mean γ̄i = γ̄ =

‖w‖2
2,∀i = 1, . . . , N . Therefore, the probability distribution function (pdf) of γi is given by

fγi
(x) =

1

γ̄
exp
{

−x

γ̄

}

(2.33)

and the pdf of the smallest received SNR w = mini=1,...,N γi can be expressed as [38]

fw(x) = (N − 1)fγ(x)
[

1 − Fγ(x)
]N−1

(2.34)

where Fγ(x) is cumulative distribution function of exponential variable γ, i.e., Fγ(x) =

1 − exp
{

−x
γ̄

}

. Therefore, one can rewrite fw(x) as

fw(x) =
N − 1

γ̄
exp
{

−Nx

γ̄

}

. (2.35)

Substituting (16) into (13), one could obtain that

Pr

{

min
i=1,...,N

∣

∣wHhi

∣

∣

2 ≥ η̂

}

=

∫ ∞

η̂
fw(x)dx

=

∫ ∞

η̂

N − 1

γ̄
exp
{

−Nx

γ̄

}

dx

=
N − 1

N
exp
{

−Nη̂

γ̄

}

. (2.36)

Thus, the constraint (2.31) is equivalent to the following constraint

N − 1

N
exp
{

−Nη̂

γ̄

}

≥ ρ. (2.37)

Taking the logarithm from the left- and right-hand side of (2.37) after simple algebraic

operations, the following equivalent constraint can be obtained

‖w‖2
2 ≥ Nη̂

log
(

N−1
Nρ

) . (2.38)

It can be concluded that the probabilistic constraint on the worst received SNR (2.31) is

equivalent to the lower bound constraint on the transmit power (2.38). It is easy to see

that the larger lower bound on the SNR η requires more transmit power. the more power

needs to be used. Similarly, more power is required when there are more users or when the

worst user SNR is larger than η with larger probability ρ.
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Similarly, the probabilistic constraint on the interference level can be written as follows

Pr

{

max
k=1,...,K

θ2
i

∣

∣wHgk

∣

∣

2 ≥ ζ

}

≤ ρ (2.39)

where again θ2
i takes into account the effects of signal strength attenuation factors which is

assumed to be equal to 1 for brevity.

Following the same line of arguments as applied for the constraint (2.31) , the pdf of

the largest interference level w̃ = maxk=1,...,K

∣

∣wHgk

∣

∣

2
is given by

fw̃(x) =
K

γ̄
exp
{

−x

γ̄

}

[

1 − exp
{

−x

γ̄

}]K−1
. (2.40)

Therefore, we have

Pr

{

w̃ ≥ ζ

}

=

∫ ∞

ζ

K

γ̄
exp
{

−x

γ̄

}

[

1 − exp
{

−x

γ̄

}]K−1
dx

=
[

1 − exp
{

−x

γ̄

}

]K
∣

∣

∣

∣

∣

∞

ζ

= 1 −
[

1 − exp
{

− ζ

γ̄

}

]K
. (2.41)

Using (2.41), it can be shown that the constraint (2.39) is equivalent to the following

constraint

1 −
[

1 − exp
{

− ζ

γ̄

}

]K
≤ ρ

⇐⇒ ‖w‖2
2 ≤ − ζ

log
(

1 − (1 − ρ)1/K
) . (2.42)

Therefore, the probabilistic constraint on the interference level (2.39) is equivalent to the

upper bound constraint on the transmit power (2.42). For example, for fixed ρ, larger ζ

results in larger allowable transmit power.

It can be concluded that in order to guarantee a certain outage probability for the worst

user SNR and largest interference level, the transmit power should be lower bounded and

upper bounded, respectively. If the two bound levels match, we have a simple solution to the

problem under consideration that at least provides probabilistic guarantees. In this case,

we have designed the simplest possible method for spectrum sharing in wireless networks.
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2.7 Simulation Results

Two system configurations are considered in the simulations. The first configuration has

a secondary network with 4-antenna AP and four users, while the second configuration

has a secondary network with 4-antenna AP and eight users. The standard independent

identically distributed (i.i.d.) Rayleigh fading channel model is assumed with noise variance

σ2
i = 1, i = 1, . . . , N . Only one primary link is considered and it is assumed that all

secondary users have the same received SNR thresholds. All results are averaged over 1000

simulation runs with L = 2000 randomizations.

2.7.1 Transmit power minimization based beamforming

Fig. 2.2 shows the transmit power versus the SNR requirements of the users for both con-

figurations when there is no interference allowed.3 It can be seen that the transmit power

increases when the SNR thresholds increase, or equivalently more power is needed to im-

prove the users’ performance. With the same QoS requirements, more power is also needed

to satisfy eight users than the power needed to satisfy four users. The other specialties in

Fig. 2.2 are that for 4-user system, the optimal power obtained by randomization process

is indistinguishable from its lower bound obtained by SDR. Therefore, the randomization

process almost always provides optimal solution. However, for a larger system of eight

users, there is a gap between the lower bound obtained by SDR and the solution obtained

via randomization. This gap increases for high QoS requirements. Moreover, to gain 1 dB

improvement at high QoS region, one needs to transmit more power than that required at

low QoS region. This property is helpful for network operator to allocate its resource(s).

On the other hand, the transmit power minimization based beamforming problem can be

used be network operators to determine the maximum SNR level at which all the users can

be supported given a limited power. For example, when the transmit power at the AP is

40 W, the maximum SNR for which all users are satisfied is about 8 dB for 4-user secondary

network.

Fig. 2.3 displays the required transmit power versus the interference threshold η0 for

3In this case, randomization is performed using the randomly-generated unit norm vectors which belong

to the null space of g.
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both system configurations. Two sets of curves are drawn, when users’ SNR thresholds are

fixed at 5 dB and 10 dB, correspondingly. It can be seen that for a fixed SNR threshold, the

required transmit power is smaller when the allowable interference level is higher. Mathe-

matically, if a higher level of interference is allowed, the feasible set of the proposed power

minimization beamforming problem expands, thus giving an opportunity to further decreas-

ing the objective function. Moreover, the decrease of transmit power is less noticeable at

high interference region. For the same interference and SNR levels, more power is needed

in the 8-user network than in the 4-user network, especially when the SNR level is large

(than 10 dB). Furthermore, to achieve 10 dB threshold for all secondary users, significantly

more transmit power is required than that required to achieve 5 dB threshold.

2.7.2 Interference minimization based beamforming

In this example, the interference level at the primary receiver is examined when the SNR

of secondary users is guaranteed to be larger than a threshold. The transmit power is

constrained to be less than 15 W and 20 W. Fig. 2.4 shows the interference level versus

the users’ SNR threshold. Note that this problem is not always feasible. Therefore, only

average over channel realizations which make the problem feasible have been considered. It

can be seen that for both 4-user and 8-user networks the interference level can be reduced

when there is more available transmit power. For example, to achieve the performance of

10 dB for all users in the 8-user network, the interference must be about 9 dB and 12 dB for

P = 20 W and P = 15 W, respectively. Therefore, the interference can be reduced in 3 dB

if the transmit power is increased in 5 W. Furthermore, it can be seen that the resulting

interference at the primary receiver is very low when the performance of 5-6 dB is achieved

for secondary users. The latter observation makes the proposed beamforming technique a

promising candidate for practical use in the considered scenario. Fig. 2.4 also indicates that

for the same transmit power and the same users’ SNR, the 8-user secondary network causes

more interference to the primary link as compared to the interference caused by the 4-user

secondary network.
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Fig. 2.4. Interference minimization based beamforming: interference versus user SNR

thresholds.
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2.7.3 Maximin fair based beamforming

Two scenarios are considered. The first scenario corresponds to the case of fixed transmit

power and varying interference threshold in the interval [0, 10] dB. The second scenario

corresponds to the case of fixed interference threshold and varying transmit power in the

interval [5, 50] W.

Fig. 2.5 displays the SNR of the worst user versus the interference threshold when the

transmit power is fixed at 8 and 10 W, correspondingly. It can be seen that as the interfer-

ence threshold increases, the performance of the worst user also increases. Mathematically,

the feasible set of the corresponding optimization problem is larger when the allowable

interference level is larger. However, it appears that the performance gain of secondary net-

work decreases as the interference threshold increases. Furthermore, for the same transmit

power, the SNR of the worst user in the 4-user network is larger than that in the 8-user

network. Fig. 2.5 also confirms the fact that the secondary network performance improves

when more transmit power is available.

Fig. 2.6 shows the performance of the worst user versus the transmit power for two

cases of no allowable interference and 5 dB interference. It can be seen that the SNR of the

worst user in the secondary network improves significantly when the interference threshold

is 5 dB as compared to the case of no allowable interference. For example, for 4-user

secondary network the SNR is 6 dB and 10 dB in the former and latter cases, respectively,

if P = 20 W. Moreover, the secondary network performance increases when more power is

available, as well as the performance of the worst user in the 4-user network is always better

than that of the 8-user network.

2.7.4 Worst user SNR-Interference tradeoff analysis

In this example, the tradeoffs between the performance of the user with the worst SNR

and the interference are investigated. Fig. 2.7 shows the worst SNR and the interference

level when the transmit power is varied in the interval [2, 20] W, and p1 = 0.5 and p2 =

1 in the optimization problem (2.20a)-(2.20d). It can be seen that both the SNR and

interference curves increase with a constant ratio while the transmit power increases. The

8-user secondary network has smaller SNR for the worst user and smaller interference level
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as compared to the 4-user secondary network. The simulation results clearly show the

tradeoffs between the interference and SNR. It can also be seen that improved performance

of the secondary network causes more interference to the primary network.

Fig. 2.8 displays the interference level versus the worst user SNR for varying parameter

p1 in the interval [0.1, 1], while the parameter p2 is fixed and equals to 1, and the transmit

power is fixed at 10 W and 20 W. It should be noted that for smaller p1, the proposed

multi-objective beamforming tries to improve the worst user SNR, while for large p1 it tries

to suppress interference. It can be seen in Fig. 2.8 that for p1 = 0.1, the interference is

indeed the largest and the worst user SNR is the largest, while for p1 = 1, the worst user

SNR is the smallest and the interference is the smallest. Fig. 2.8 shows that the interaction

between those two metrics depends on the weight factors that are set for each objective.
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2.8 Conclusions

Problem formulations and solution approaches for multicast beamforming for secondary

wireless networks have been developed. Using the CSI available at the transmitter, the QoS

for both primary and secondary users can be effectively controlled. Therefore, the network of

secondary users is able to operate simultaneously with the network of primary users without

any need for channel sensing. In particular, a number of practically important design

scenarios with different criteria involving the interference level at the primary receivers, the

received SNR of the secondary users and the transmit power have been considered. Although

the proposed designs are nonconvex and NP-hard, a convex relaxation approach coupled

with suitable randomization post-processing provides approximate solutions at a moderate

computational cost that is strictly bounded by a low-order polynomial. Our approach

can also be applicable in conventional cellular systems when broadcasting to a number of

receivers and at the same time protecting some specific ‘directions’ from interference.
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Chapter 3

Power Allocation in Wireless

Multi-user Relay Networks

WE CONSIDER IN THIS CHAPTER AN AMPLIFY-and-FORWARD (AF) wireless

relay network where multiple source nodes communicate with their corresponding

destination nodes with the help of relay nodes. While each user1 is assisted by one relay,

one relay can assist many users. Conventionally, each relay node is assumed to equally

distribute the available communication resources to all sources for which it helps to relay

information. This approach is clearly sub-optimal since each user experiences dissimilar

channel conditions, and thus, demanding different amount of allocated resources to meet its

QoS requirements. For that reason, this work presents novel power allocation schemes to

i) maximize the minimum end-to-end signal-to-noise ratio among all users; ii) minimize the

total transmit power over all sources; iii) maximize the network throughput. Moreover, due

to limited power resource, even with optimal power allocation, it may happen to be not pos-

sible to satisfy QoS requirements for all users. As a result, an admission control algorithm

should be carried out to maximize the number of users that can be served. Depending on

the set of admitted users, optimal power allocation is then performed. Because of its com-

binatorial hardness, the joint optimal admission control and power allocation problem has

high complexity to compute the solution. Therefore, an efficient heuristic-based algorithm

1Hereafter, the term ’user’ refers to a source-destination pair or only the source node depending on the

context.
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is developed for solving the aforementioned problem with significantly reduced complexity.

Although theoretically sub-optimal, the devised algorithm performs remarkably well. The

proposed power allocation problems are formulated using GP, a well-studied class of non-

linear and nonconvex optimization problems. Since GP problem is readily transformed into

an equivalent convex optimization problem, optimal solution can be obtained efficiently.

Numerical results demonstrate the effectiveness of our proposed approach.

The rest of this chapter is organized as follows. Section 3.1 overviews the literature

review on resource allocation for wireless relay networks and summarizes our contributions.

In Section 3.2, a multi-user wireless relay model with multiple relays is described. Section 3.3

contains the problem formulations for three different power control schemes. The proposed

problems are converted into GP problems in Section 3.4. The problem of joint admission

control and power allocation is presented in Section 3.5. The algorithm for solving the

joint admission control and power allocation problem is described in Section 3.6. Numerical

examples are presented in Section 3.7, followed by the conclusions in Section 3.8.

3.1 Introduction

3.1.1 Literature review

Recently, it has been shown that the operation efficiency and QoS of cellular and/or ad-

hoc networks can be increased through the use of relay(s) [8], [9]. In such systems, the

information from the source to the corresponding destination is transmitted via a direct-

link and also forwarded via relays. Due to its significant advances, for example, coverage

extension and performance improvement, relay-assisted communications can be seen as a

candidate for the deployment of future generation networks. Although various relay system

models have been proposed and studied, the conventional two-hop relay model has attracted

much research attention [8], [9], [43], [44], [45]. This is because it is viable to implement

such systems in practice. The performance of a two-hop relay system is investigated for

various channel models, i.e., Rayleigh or Nakagami-m, and relaying models, i.e., AF or

decode-and-forward (DF). Note, however, that resource allocation is assumed to be fixed in

these works.

Another critical issue for improving the performance of wireless networks is efficient
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management of available radio resources [4], [5]. Specifically, resource allocation via power

control is commonly used. Furthermore, in relay networks, appropriate power allocation

among the participating nodes helps to ensure the performance and stability of the system.

As a result, there have been numerous works which attempt to optimize the available

communication resources, i.e., power and bandwidth to improve the system performance

[46], [47], [48], [49], [50], [51]. It is worth mentioning that a single source-destination pair

is typically considered in the aforementioned papers. In [46], for example, the authors

derive closed-form expressions for the optimal and near-optimal relay transmission powers

for the single relay and the multiple relays cases, respectively. Both AF and DF relaying

scenarios are considered. The problem of minimizing the transmission power given that a

target outage probability is achieved was tackled in [47]. In [48], the authors derive power

allocation strategies for 3-node AF relaying system based on the knowledge of channel

means. The performance criteria used are either the SNR gain or the outage probability. An

information theoretic analysis for a similar system model with Rayleigh fading and CSI at

the transmitter side is carried out in [49] where the upper and lower bounds on the channel

capacity are derived. Optimal power allocation scheme is also studied. The bandwidth

allocation problem in 3-node Gaussian orthogonal relay channel is also investigated in [50].

The optimization parameter which represents the fraction of the bandwidth assigned to

source-relay channel is computed to maximize a lower bound on the capacity. Given either

full CSI of the links or channel statistics, [51] presents two power allocation schemes to

minimize the outage probability. A cross-layer optimization framework, i.e., congestion

control, routing, relay selection and power allocation via dual decomposition for multihop

networks using cooperative diversity is proposed in [52].

3.1.2 Motivation and contributions

It should be noted that very few works have considered the aforementioned 2-hop relay

model for more practical case of multiple users.2 Therefore, the above-mentioned analy-

sis is applicable to only a special case of the problem under consideration. Indeed, each

2Note that multi-user cooperative network employing orthogonal frequency-division multiple-access

(OFDMA) where subscribers can relay information for each other is already considered, for example

see [53], [54] and references therein.
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relay is usually delegated to assist more than one user, especially when the number of

relays is (much) smaller than the number of users. An example of such scenario is the

deployment of few relays in a cell at convenient locations to assist mobile users operating

in heavily scattering environment for uplink transmission. Resource allocation in a multi-

user system usually has to take into account the fairness issue among users, their relative

quality-of-service (QoS) requirements, channel quality and available resources. Mathemat-

ically, optimizing relay networks with multiple users is very difficult, if tractable, especially

for systems with large number of sources and relays.

This chapter develops efficient power allocation schemes for multi-user wireless relay

systems. Specifically, optimal power allocation schemes are derived to i) maximize the min-

imum end-to-end SNR among all users; ii) minimize the total transmit power of all sources;

iii) maximize the system throughput. It can be shown that the corresponding optimization

problems can be formulated as GP problems. Therefore, optimal power allocation can be

obtained efficiently even for large-scale networks using convex optimization techniques.3

Another issue is that the power resource is limited and it may happen to be not possible

to satisfy QoS requirements for all users with limited power. Therefore, some sort of admis-

sion control with some pre-specified objective(s) should be carried out. Essentially, users

are not automatically admitted into the system. So far, none of the existing works have

considered this practical scenario in the context of relay communications. Therefore, an

efficient joint admission control and power allocation algorithm is also developed. Particu-

larly, when the QoS requirements for all users can not be achieved with the available power

resource, our proposed admission control algorithm aims at maximizing the number of users

that can be admitted and served with (possibly different) QoS demands. Depending on the

set of admitted users, the transmit power is then minimized. The proposed joint admission

control and power allocation problem has a combinatorially high complexity. Therefore,

a heuristic-based algorithm is studied to efficiently solve the aforementioned problem with

significantly reduced complexity. Moreover, the proposed algorithm determines correctly

which users can be admitted for most of the simulation examples. The complexity in terms

of running time of the approximate algorithm is much smaller than that of the original

3Note that GP has been successfully applied to solve the problem of power allocation in traditional

cellular and ad hoc networks [55], [3].
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optimal admission control problem.

3.2 System Model

Consider a multi-user relaying model where a set of M source nodes Si, i ∈ {1, ...M}
transmits data to their corresponding destination nodes Di, i ∈ {1, ...M}.4 A total number

of L relay nodes, denoted by Rj , j ∈ {1, ..., L} is employed for forwarding the information

from source to destination nodes. The conventional two-stage AF relaying is assumed. This

work also assumes orthogonal transmission through time devision [8], [9], [51]. Therefore, to

increase the throughput (or more precisely, to prohibit decreasing of the throughput), each

source Si is assisted by one relay RSi
. Single relay assignment for each user also reduces

the coordination between relays and/or implementation complexity at the receivers. 5 The

set of source nodes using relay Rj is denoted by S (Rj), i.e., S(Rj) = {Si | RSi
= Rj}.

Let PSi
, PRSi

denote the power transmitted by source Si and relay RSi
corresponding

to Si-RSi
-Di link. Since unit duration time slots are assumed, PSi

and PRSi
correspond

also to the average energies consumed by source Si and relay RSi
. For simplicity, only the

signal model for link Si-RSi
-Di is presented here. In the first time slot, source Si transmits

the signal xi with unit energy to the relay RSi
.6 The received signal at relay RSi

can be

written as

rSiRSi
=
√

PSi
aSiRSi

xi + nRSi

where aSiRSi
stands for the channel gain for link Si-RSi

, nRSi
is the additive circularly

symmetric white Gaussian noise (AWGN) at the relay RSi
with variance NRSi

. The channel

gain includes the effects of path loss, shadowing and fading. In the subsequent time slot,

assuming the relay RSi
knows the CSI for link Si-RSi

, it uses the AF protocol, i.e., it

normalizes the received signal and retransmits to the destination node Di. The received

4This includes the case of one destination node for all sources, for example base station in cellular network,

or central processing unit in a sensor network.
5The single relay assignment may be done during the connection setup phase, or done by relay selection

process [51].
6This work considers the case in which the source-to-relay link is (much) stronger than the source-to-

destination link, that is usual scenario in practice.
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signal at the destination node Di can be expressed as

rDi
=
√

PRSi
aRSi

Di

rSiRSi
√

E
{

|rSiRSi
|2
}

+ nDi

=

√

PRSi
PSi

PSi
|aSiRSi

|2 + NRSi

aRSi
Di

aSiRSi
xi + x̂Di

where E{·} denotes statistical expectation operator, aRSi
Di

is the channel coefficient for link

RSi
-Di, nDi

is the AWGN at the destination node Di with variance NDi
, x̂Di

is the modified

AWGN noise at Di with equivalent variance NDi
+
(

PRSi
|aRSi

Di
|2NRSi

)

/
(

PSi
|aSiRSi

|2 +

NRSi

)

. One can proceed to find the equivalent end-to-end SNR of the virtual channel

between the nodes Si and Di which can be written as [51]

γi =
PRSi

PSi
|aRSi

Di
|2|aSiRSi

|2
PSi

|aSiRSi
|2NDi

+ PRSi
|aRSi

Di
|2NRSi

+ NDi
NRSi

=
PSi

PRSi

ηiPSi
+ αiPRSi

+ βi

where ηi =
NDi

|aRSi
Di

|2
, αi =

NRSi

|aSiRSi
|2

, βi =
NRSi

NDi

|aSiRSi
|2|aRSj

Di
|2

.

LEMMA 3.1: The end-to-end SNR γi for user i is concave increasing with respect to

(w.r.t) PSi
(when PRSi

is fixed) and vice versa.

PROOF: Suppose that PRSi
is fixed. The SNR γi for the virtual channel i can be

rewritten as

γi =
PRSi

ηi
−

PRSi

ηi

αiPRSi
+ βi

ηiPSi
+ αiPRSi

+ βi
.

It can be easily seen that γi is a concave increasing function of PSi
. This means that

by increasing its own transmit power PSi
, a source Si can always increase its end-to-end

SNR γi. However, the maximum achievable γi can be shown to be equal to PRSi
/ηi when

PSi
→∞. In other words, with fixed power allocation at the relay PRSi

, γi is upper bounded

by a constant no matter how much power PSi
is used at the source Si. Vice versa, when PSi

is fixed, γi is concave increasing w.r.t. PRSi
and the corresponding maximum achievable

SNR is PSi
/αi. Since γi is concave increasing w.r.t. PSi

, the incremental change in γi is

smaller for large PSi
. This is also confirmed by the fact that first derivative of γi w.r.t. PSi

is decreasing. �

The convexity and monotonicity of γi are extremely useful properties. While the former

61



property helps to exploit convex programming, the second property provides some insights

into the optimization problems at optimality.

Our approach is centralized 7, and thus, it assumes that there is a central unit (CU)

which coordinates the power allocation at the sources and at the relays. For such purpose,

the CU has to acquire perfect channel knowledge for all the transmission links, i.e., source-

relay and relay-destination links. The power allocation factors can be communicated to

relays and sources via a secured channel. The sources and relays then adjust their transmit

power accordingly. This work focuses on the power adaptation dynamics of the wireless

relay network, and thus, it implicitly assumes that the time scale of channel variation is

much larger than that of power adaptation. Moreover, the network structure is assumed to

be quasi-static. The aforementioned assumptions correspond to networks with stationary

topology or low-mobility users.

3.3 Problem Formulations

Power control for single user relay networks has been popularly advocated [46], [47], [48],

[49], [50], [51]. This section extends the power allocation framework to multi-user networks.

Different power allocation based criteria which are suitable and distinct for multi-user net-

works are investigated.

3.3.1 Maximin SNR based power allocation

Power control in wireless networks often has to take into account the fairness consideration

since the fairness among different users is also a major issue in a QoS policy. In other

words, the performance of the worst user(s), i.e., user(s) with smallest end-to-end SNR, is

also of concern to the network operator. Note that the traditionally used maximum sum

SNR power allocation is biased towards users which have the best channel quality and is

unfair to the other links. Instead, maximin fair power allocation problem which aims at

maximizing the minimum SNR over all users is considered.8 This can be mathematically

7Note that it is usually very difficult, if not impossible, to perform admission control with the proposed

objectives distributively.
8In this way, the minimum data rate among users is also maximized since data rate is a monotonic

increasing function of SNR.
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posed as

max
PSi

, PRSi

min
i=1,...,M

γi(PSi
, PRSi

) (3.1a)

subject to:
∑

Si∈S(Rj)

PRSi
≤ Pmax

Rj
, j = 1, . . . , L (3.1b)

M
∑

i=1

PSi
≤ P (3.1c)

0 ≤ PSi
≤ Pmax

Si
, ∀Si, i ∈ {1, ...M} (3.1d)

where Pmax
Rj

is the total power available at the relay node Rj and P is the total power

allocated to all sources. The right-hand side of (3.1b) is the total power that the relay Rj

allocates to the users which it assists and it is constrained to be less than the relay’s total

power. The constraints (3.1d) specify the peak power limit Pmax
Si

for each source Si. Note

that the constraint (3.1c) is necessary in this case since otherwise, sources Si, ∀i would

transmit with their maximum power. Moreover, the constraint (3.1c) assumes that the

sources can be coordinated to share the power resource.

LEMMA 3.2: The optimization problem (3.1a)–(3.1c) is feasible. Moreover, to obtain

maximum performance for the system, the inequality constraints (3.1b), (3.1c) must be met

with equality at optimality.

PROOF: Clearly, the constraint set is compact and nonempty, and thus, the opti-

mization problem (3.1a)–(3.1c) is feasible. Using contradiction, we suppose that P ∗
S =

[P ∗
S1

, . . . , P ∗
SM

]T , P ∗
R = [P ∗

RS1
, . . . , P ∗

RSM
]T are the optimal power allocation of the sources

and relays respectively. First, it can be shown that the constraint (3.1c) must be achieved

with equality. If it is not, P ∗
S can be scaled by a factor α > 1 which is determined by

α =
P

∑M
i=1 P ∗

Si

> 1

i.e., P+
S = αP ∗

S . It is clear that the power allocation P+
S , P ∗

R is also feasible. This power

allocation will improve the objective function since each of γi is an increasing function w.r.t.

PSi
, or equivalently mini=1,...,M γi is increasing w.r.t. PSi

. This contradicts the optimality

assumption. This completes the proof. �

For all users to achieve their maximum performance, the constraints (3.1b) should also

be met with equality. Using similar argument, suppose that the constraint associated with
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relay Rj is not met with equality at optimality. One then can scale P ∗
RSi

, Si ∈ S (Rj) by a

factor greater than 1 and show that the new power allocation is also feasible. This power

allocation will improve the SNR of the users which the relay Rj assists. If the worst user(s)

is assisted by Rj , its performance will be improved. Otherwise, the performance of the

worst user(s) is not affected.

It can be seen that, although the end-to-end performance of user i depends only on

‘local’ power allocation i.e., PSi
and PRSi

, the performance of users interact with each other

via the constraints on the available resources. Therefore, resource allocation in a multi-user

network is not as simple as allocating resources for each user individually, albeit orthogonal

transmissions are assumed.

3.3.2 Transmit power minimization based power allocation

In practical wireless networks, one of the targets of power allocation is to prolong the lifetime

of battery-powered devices since nodes with long lifetime help to ensure uninterrupted

information exchange. Commonly, to achieve better performance, the source itself transmits

at its maximum available power as Lemma 3.1 reveals. As a result, the energy may run out

quickly. However, since each user has a minimum QoS requirement in terms of SNR, by

taking into account the optimal power allocation at the relays, the source node might not

need to transmit at its largest power level. Therefore, sources save their power and prolong

its lifetime. Since the relay nodes are usually energy-unlimited devices, this problem exploits

the available power at the relay nodes to save power at the battery-powered source nodes.

The transmit power minimization problem subject to constraints on the end-to-end SNR

for each user can be formulated as follows

min
PSi

, PRSi

M
∑

i=1

PSi
(3.2a)

subject to: γi ≥ γmin
i , i = 1, . . . , M (3.2b)

The constraints (3.1b), (3.1d) (3.2c)

where γmin
i is the threshold SNR for ith user.9 It can be seen that the optimization problem

(3.2a)–(3.2c) is also always feasible. The power constraints (3.1b) in (3.2c) are used to pro-

9In this problem formulation, it assumes that the threshold γmin
i is not larger than the maximum achiev-

able SNR for user i as discussed in Lemma 3.1.
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hibit a situation when some particular relays are allocating too much power to the user(s).

The resulting optimal power allocation obviously can require some sources to transmit more

power than the others. Therefore, additionally, a weighted sum of powers, or the maximum

user power can be minimized. A practical application of the power optimization problem

(3.2a)–(3.2c) is in the stage of network planning for wireless mesh or ad hoc networks.

LEMMA 3.3: At optimality, the inequality constraints (3.2b), (3.1b) in (3.2c) of the

problem (3.2a)–(3.2c) must be met with equality.

PROOF: It can be proved using the monotonicity of the γi w.r.t. PSi
and PRSi

.

Specifically, since γi is increasing w.r.t. PSi
and PRSi

, in order to minimize PSi
, PRSi

must

attain its possible maximum value. Likewise, γi must attain its possible minimum value to

minimize PSi
. Therefore, the inequalities (3.2b), (3.1b) in (3.2c) must be met with equality

at optimality. �

3.3.3 Network throughput maximization based power allocation

The maximin based power allocation aim at improving the system performance by improving

the performance of the worst user. On the other hand, it is well-known that in order to

achieve maximin rate fairness among users, there is a loss in the system throughput, i.e., the

users sum rate. For some applications, for example, applications which require high data

rate transmission from any user, the system throughput with optimal power allocation is

desirable. Users with good channel quality can transmit faster and users with bad channel

quality can transmit slower. Moreover, the network throughput, in the case of perfect CSI

and optimal power allocation, defines the upper bound on the system achievable rates.

Given the end-to-end SNR γi of user i, the data rate Ri can be written as a function of γi

as follows

Ri =
1

T
log2(1 + Kγi) ≈

1

T
log2(Kγi)

where T is the symbol period which is assumed to be equal to 1 for brevity, K = −ζi

ln(ζ2BER) ,

BER is the target bit error rate, and ζ1, ζ2 are constants dependent on the modulation

scheme [56]. Note that 1 + Kγi has been approximated as Kγi which is reasonable when

Kγi is much larger than 1. For notational simplicity in the rest of the chapter, K is set to
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be equal to 1. Then, the network aggregate throughput can be written as [3]

R =

M
∑

i=1

Ri = log2

[

M
∏

i=1

γi

]

.

The power allocation problem to maximize the network throughput can be mathematically

posed as

max
PSi

, PRSi

R = log2

[

M
∏

i=1

γi

]

(3.3a)

subject to: The constraints (3.1b), (3.1c), (3.1d). (3.3b)

Note that in the high SNR region, the problem of maximizing network throughout is equiv-

alent to that of maximizing the product of SNRs. Here, no lower constraint on the data

rate for each user is assumed. However, these constraints can be incorporated easily, and

they will not change the GP structure of the problems. Moreover, the achievable network

throughput in this case will be less than that of (3.3a)–(3.3b) due to smaller feasible set.

LEMMA 3.4: At optimality, the inequality constraints (3.3b) of the problem (3.3a)–

(3.3b) must be met with equality.

PROOF: The proof can be constructed similarly as the proof of Lemma 3.3.

Note that the throughput maximization based power allocation (3.3a)–(3.3b) does not

penalize users with “bad” channels and favor users with “good” channels. Interesting that

the system throughput maximization criterion in the power control techniques for cellular

networks usually results in the situation when some users are prevented from transmitting

data [3]. However in our case, as Lemma 3.1 suggests, the SNR γi for a particular user i is

concave increasing function of allocated powers, that is, the incremental change in SNR is

smaller for larger transmit power. In Fig. 3.1, SNRs are plotted versus allocated power at

the relays when source powers are fixed and equal. It can be seen that instead of allocating

more power to the users with “good” channel conditions at high SNR, the proposed scheme

allocates power to the users with “bad” channel conditions at low SNR. It results in im-

provement in the sum throughput of the network as compared to the conventional power

allocation schemes in cellular networks, because the performance of the users with “bad”

channel conditions is not severely affected. This fact is also confirmed in the simulation

section.
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3.4 Power Allocation in Relay Networks via GP

GP is a well-investigated class of nonlinear, nonconvex optimization problems with attrac-

tive theoretical and computational properties [55], [3]. Since equivalent convex reformulation

is possible for a GP problem, there exist no local optimum points but only global optimum.

Moreover, the availability of large-scale software solvers makes GP more appealing.

3.4.1 Maximin SNR based power allocation

Introducing a new slack variable t, one can equivalently rewrite the optimization problem

(3.1a)–(3.1c) as follows

min
PSi

, PRSi
, t≥0

1

t
(3.4a)

subject to:
PSi

PRSi

ηiPSi
+ αiPRSi

+ βi
≥ t, i = 1, . . . , M (3.4b)

The constraints (3.1b), (3.1c), (3.1d). (3.4c)

The objective function of the problem (3.4a)–(3.4c) is a monomial function. Moreover,

the constraints in (3.4b) can be easily converted into posynomial constraints. The con-

straints (3.1b), (3.1c), (3.1d) are linear w.r.t. the power variables, and thus, are posynomial

constraints. Therefore, the optimization problem (3.4a)–(3.4c) is the GP problem.

3.4.2 Transmit power minimization based power allocation

In this case, the objective function is clearly a posynomial function. The constraints can

be written as posynomial ones. Therefore, the power minimization based power allocation

is the GP problem.

3.4.3 Network throughput maximization based power allocation

A simple manipulation of the optimization problem (3.3a)–(3.3b) gives

min
PSi

, PRSi

1
∏M

i=1 γi

(3.5a)

subject to: The constraints (3.1b), (3.1c), (3.1d). (3.5b)
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Each of the terms 1/γi is a posynomial in PSi
and PRSi

, and the product of posynomials

is also a posynomial. Therefore, the optimization problem (3.5a)–(3.5b) also belongs to

the GP class. 10 As maximizing aggregate throughput can be extremely unfair to some

users, a weighted sum of data rates, i.e.,
∑M

i=1 wiRi where wi is a given weight coefficient

for user i, can be used an objective function to be maximized. Using some manipulations,

the resulting optimization problem can be reformulated as a GP problem as well.

It has been shown that all three aforementioned power allocation schemes can be re-

formulated as GP problems. The proposed optimization problems with distinct features

of relaying model are mathematically similar to the ones in [3] for conventional cellular

network. However, the numerator and denominator of the SNR expression for each user

considered in [3] are linear functions of the power variables which is not the case in our

work.

3.5 Joint Admission Control and Power Allocation

It is well-known that one of the important resource management issues is the determination

of which users to establish connections. Then, communications resources are to be assigned

to connected users to ensure that each connected user has an acceptable signal quality [57].

Traditionally, each user has a minimum QoS requirement that needs to be satisfied. Due to

the fact that wireless communication systems are usually resource-limited, they are typically

unable to meet all users’ QoS requirements. As a result, users are not certainly admitted.

In other words, only a limited number of users can be admitted into the system. Our

admission control algorithm determines which users can be served concurrently. Then, the

power allocation is used to minimize the transmit power.

3.5.1 A revised transmit power minimization based power allocation

As mentioned above, the problem formulation (3.2a)–(3.2c) is always feasible as long as

γmin
i , ∀i is less than the maximum achievable value. This is because the sources have been

10Note that the high operating SNR region is assumed. If medium or low SIR regions are assumed, the

approximation 1 + Kγi by Kγi may not be accurate. In this case, successive convex approximation method

as in [3] can be used. However, it is out of the scope of this work.
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assumed to be able to transmit as much power as possible to increase their end-to-end

SNRs. However, this is clearly impractical in power-limited systems. Therefore, the power

minimization based allocation problem (3.2a)–(3.2c) incorporating the power constraint can

be re-expressed as follows

min
PSi

, PRSi

M
∑

i=1

PSi
(3.6a)

subject to: γi ≥ γmin
i , i = 1, . . . , M (3.6b)

∑

Si∈S(Rj)

PRSi
≤ Pmax

Rj
, j = 1, . . . , L (3.6c)

M
∑

i=1

PSi
≤ P (3.6d)

0 ≤ PSi
≤ Pmax

Si
, ∀Si, i ∈ {1, . . . , M}. (3.6e)

There are instances when the optimization problem (3.6a)–(3.6e) becomes infeasible.

For example, it is likely to be infeasible when SNR targets γmin
i are too high, or simply

when the number of users M is large. Clearly, the channel quality also affects the feasibility

of (3.6a)–(3.6e). It can be seen that infeasibility happens due to the power limits of both the

relays and/or the sources. A practical implication of the infeasibility is that it is impossible

to serve (admit) all M users at their desired QoS requirements. Some approaches to the

infeasible problem can be however used. For example, some users can be dropped or the

SNR targets could be relaxed, i.e., made smaller. This work investigates the former scenario

and try to maximize the number of users that can be served at their desired QoS.

3.5.2 A mathematical framework for joint admission control and power

allocation problem

The joint admission control and power allocation problem can be mathematically stated as

a 2-stage optimization problem [58]. In the first stage, one finds a set S0 of users such that

S0 = arg max
S⊆{1,...,M}, PSi

, PRSi

|S| (3.7a)

subject to: γi ≥ γmin
i , i ∈ S (3.7b)

The constraints (3.6c), (3.6d), (3.6e) (3.7c)
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where |S| denotes the cardinality of S. Given the optimal set of admitted users S0, in the

second stage, the required transmit power at the relays is minimized. The second stage

optimization can be written as

min
PSi

, PRSi

M
∑

i=1

PSi
(3.8a)

subject to: γi ≥ γmin
i , i ∈ S0 (3.8b)

The constraints (3.6c), (3.6d), (3.6e). (3.8c)

Alternatively, the joint admission control and power minimization can be regarded as a

bilevel programming problem. The more difficult part is the admission control problem

which is combinatorially hard. Once the set of admitted users are determined, the power

minimization problem can be shown to be a convex programming problem. Due to its com-

binatorial hardness, the joint admission control and power allocation problem admits high

complexity for practical implementation. In the following section, an efficient algorithm for

solving sub-optimally (3.7a)–(3.7c) and (3.8a)–(3.8c) with significantly reduced complexity

is proposed.

3.6 Proposed Algorithm

3.6.1 A reformulation of joint admission control and power allocation

problem

A brute-force way of doing admission control (3.7a)–(3.7c) involves exhaustively solving

all subsets of users which has high complexity.11 Therefore, a better way of solving the

problem of joint admission control-power allocation is highly desirable. It can be shown

that the admission control problem (3.7a)–(3.7c) can be mathematically recast using the

indicator variables si, i = 1, . . . , M , i.e, si = 0, si = 1 means that user i is not admitted,

or otherwise, respectively. The following theorem is in order.

11In practice, it may not need to search all the sets of users to find the optimal solution.
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THEOREM 3.1: The aforementioned 2-stage optimization problem (3.7a)–(3.7c), (3.8a)–

(3.8c) is equivalent to the following 1-stage optimization problem

max
si∈{0,1}, PSi

, PRSi

ǫ

M
∑

i=1

si − (1 − ǫ)

M
∑

i=1

PSi
(3.9a)

subject to: γi ≥ γmin
i si, i = 1, . . . , M (3.9b)

The constraints (3.6c), (3.6d), (3.6e) (3.9c)

where ǫ is some constant that is chosen such that P/(P + 1) < ǫ < 1..

PROOF: The proof is a 2-step process. First, one needs to prove that the optimization

problem (3.9a)–(3.9c) extracts the maximum number of possibly admitted users. Second,

among all sets of maximum possibly admitted users, solving (3.9a)–(3.9c) gives the set of

users which requires least total power.

Suppose that S∗
0 , P ∗

Si
, P ∗

RSi
are the admitted users and power allocated to users at

the corresponding relays 12, respectively obtained by solving (3.9a)–(3.9c), and |S∗
0 | = n∗.

Thus, the optimal value of the objective function is L∗ = ǫn∗ − (1 − ǫ)
∑M

i=1 P ∗
Si

. Suppose

that there is another feasible solution S+
0 , P+

Si
, P+

RSi
such that |S+

0 | = n+ > n∗ with the

objective value L+ = ǫn+ − (1 − ǫ)
∑M

i=1 P+
Si

. One has

L+−L∗ = ǫ(n+ − n∗) + (1 − ǫ)

(

M
∑

i=1

P ∗
Si

−
M
∑

i=1

P+
Si

)

≥ ǫ − (1 − ǫ)P > 0. (3.10)

The first inequality corresponds to the assumption that n+ − n∗ ≥ 1 and the fact that

∣

∣

∣

M
∑

i=1

P ∗
Si

−
M
∑

i=1

P+
Si

∣

∣

∣
≤ P.

The second inequality is due the choice of ǫ > P
P+1 . This obviously contradicts the as-

sumption that S∗
0 , P ∗

Si
, P ∗

RSi
are optimal solutions. Therefore, by solving (3.9a)–(3.9c), one

obtains the largest set of users that can be served at their desired QoS with the available

power. In other words, users are dropped only when necessary.

In the second step, it needs to be proved that among the sets with equal maximum

possibly admitted users, solving (3.9a)–(3.9c) gives the minimum transmit power. Again,

12The optimal set of admitted users is S∗

0 = {i | s∗i = 1}.
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suppose that S†
0, P †

Si
, P †

RSi
is another feasible solution such that |S†

0| = n∗ with the objective

value L† = ǫn∗ − (1 − ǫ)
∑M

i=1 P †
Si

. Since S∗
0 , P ∗

Si
, P ∗

RSi
are the optimal solutions to the

problem (3.9a)–(3.9c), L† < L∗. Therefore, it can be concluded that
∑M

i=1 P ∗
Si

<
∑M

i=1 P †
Si

.

This completes the proof. �

Note that the problem formulation (3.9a)–(3.9c) is similar to a multi-objective optimiza-

tion problem, i.e., maximization of the number of admitted users and minimization of the

transmit power, with ǫ being the priority for the former criterion. Therefore, it is reasonable

to set ǫ large to maximize number of admitted users as a priority.

LEMMA 3.5: The optimization problem (3.9a)–(3.9c) is always feasible.

PROOF: It is easy to see that no users are admitted in the worst case, i.e., si = 0, ∀i =

1, . . . , N . In this case, the problem is always feasible. �

The indicator variables help to represent the admission control problem in a more com-

pact mathematical form. However, the combinatorial nature of the admission control prob-

lem still exists due to the binary variables si. To this end, it should be mentioned that the

optimization problem (3.9a)–(3.9c) is extremely hard, if not impossible, to solve. It belongs

to the class of nonconvex integer optimization problems. Even when the binary variables si

are relaxed to be continuous, the resulting optimization problem is also nonconvex. This is

a subtle difference compared to the optimization in [58]. Therefore, we propose a reduced-

complexity heuristic algorithm to perform admission control and power allocation. Albeit

theoretical sub-optimal, its performance is remarkably close to that of the optimal solution

for most of the testing instances.

3.6.2 Proposed algorithm

As discussed above, once the difficult admission control part is solved, the problem of

minimizing the transmit power boils down to a convex programming problem. The following

heuristic algorithm can be used to solve (3.9a)–(3.9c).13

• Step 1. Set S := {Si | i = 1, . . . , M}.

• Step 2. Solve GP problem (3.6a)–(3.6e) without the constraint (3.6e) for the

sources in S. Let P ∗
Si

, P ∗
RSi

denote the resulting power allocation values.

13It should be noted that more efficient may be developed.
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• Step 3. If
∑

Si∈S P ∗
Si

≤ P , then stop and P ∗
Si

, P ∗
RSi

being power allocation values.

Otherwise, user Si with largest required power value, i.e., Si = arg maxSi∈S

{

P ∗
Si

}

is

removed from S and go to step 2.

It can be seen that after each iteration, either the set of admitted users and the cor-

responding power allocation levels are determined or one user is removed from the list of

most possibly admitted users. Since there are M initial users, the complexity is bounded

above by that of solving M GP problems with different dimensions. It worths mentioning

that the proposed reduced complexity algorithm always returns one solution.

3.7 Simulation Results

To demonstrate the effectiveness of the proposed power allocation schemes, consider a wire-

less relay network as in Fig. 3.2 with 10 users and 3 relays distributed in a two-dimensional

region 200m×200m. The relays are fixed at coordinates (100,50), (100,100), and (100,150).

The 10 source nodes and their corresponding destination nodes are deployed randomly in

the area inside the box area [(0, 0), (50, 200)] and [(150, 0), (200, 200)], respectively. In our

simulation, each source is assisted by a random (and then fixed) relay. No microscopic

fading is assumed and the gain for each transmission link is computed using the path loss

model as a = 1/d where d is the Euclidean distance between two transmission ends. The

noise power at the receiver ends is assumed to be identical and equals to N0 = −50 dB.

Although each relay node may assist different number of users, they are assumed to have the

same maximum power level Pmax
Rj

. Similarly, all users are assumed to have equal minimum

SNR thresholds γmin. The software package [12] has been used for solving convex programs

in our simulations.

3.7.1 Power allocation without admission control

Fig. 3.3 and Fig. 3.4 show the minimum rate among all users and the network throughput

i.e., sum of users’ rates when the maximum power levels of the relays Pmax
Rj

and sources P are

varied. The performance of the equal power allocation (EPA) scheme is also plotted. In this

case, the power is allocated equally among all sources, i.e., PSi
= P/10, ∀Si and each relay

distributes power equally among all users which it assists. For P = 50 (see Fig. 3.3), the
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Fig. 3.2. A wireless relay system

optimal power allocation (OPA) scheme achieves about 0.8 bits performance improvement

over the EPA scheme for the worst user data rate. The performance improvement of both

schemes is higher when Pmax
Rj

is small (less than 30). The EPA scheme provides a slight

performance improvement for the worst user(s) for Pmax
Rj

≥ 35. This can be explained

based on Lemma 3.1. However, the OPA scheme is able to take advantage from larger

Pmax
Rj

. This demonstrates the effectiveness of OPA scheme in general and our proposed

approach in particular. In Fig. 3.4, Pmax
Rj

is taken to be equal to 50. It can be seen that

the OPA scheme also outperforms the EPA scheme. The improvement is about 0.8 bits and

increases when P increases. In both scenarios, it can be seen that since our objective is to

improve the performance of the worst user(s), there is a loss in the network throughput.

This confirms the well-known fact that achieving maximin fairness among users usually

results in performance loss for the whole system.

Fig. 3.5 displays the total power consumed by source nodes in two scenarios: the first

scenario is to attain a minimum SNR γmin with fixed Pmax
Rj

= 50; in the second scenario,

it is assumed that Pmax
Rj

is varied with fixed γmin = 10 dB. For the first case, the OPA

scheme allocates less required power than that of the EPA scheme when γmin ≤ 17 dB.

However, when γmin ≥ 18 dB, since this threshold exceeds the maximum value of γi for
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Fig. 3.3. Data rate versus Pmax
Rj

, P = 50
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some users as discussed in Lemma 3.1, EPA scheme can not find a feasible power allocation

(in fact, suggests negative power allocation) which represented by weird part in the EPA

curve. It can be seen that by appropriate power distribution at the relays, OPA scheme

can find power allocation to achieve larger target SNR γmin. This further demonstrates

the advantage of our proposed approach over the EPA scheme. For the second case, the

OPA scheme requires less sum power than that of the EPA scheme, especially when Pmax
Rj

is small. It can be observed that as there is more available Pmax
Rj

, less sum power is required

to achieve a target SNR.

The last example uses the OPA to maximize the sum users’ throughput. Fig. 3.6

shows the performance of our proposed approach versus Pmax
Rj

when P = 50. The OPA

scheme outperforms the EPA for all values of Pmax
Rj

. It is noticeable that OPA scheme

achieves better performance in terms of both worst user data rate and network throughput.
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Fig. 3.6. Network throughput versus Pmax
Rj

, P = 50

Comparing with the results in Figs. 3.3 and 3.4, the tradeoff between achieving fairness

and sum throughput can be observed.

3.7.2 Joint admission control and power allocation

In this section, several testing instances to demonstrate the performance of the proposed

admission control are provided. For such purpose, the performance of the optimal admis-

sion control is used as benchmark results.14 The convenient and informative method of

representing results as in [58] is used.

In Tables 3.1 and 3.2, Pmax
Rj

are taken to be equal to 50 and 20, respectively while

P is fixed at P = 50. Different values of γmin
i are used. To gain more insights into the

optimal admission control and power allocation problem, all feasible subsets of users which

14Optimal admission control is done by solving (3.7a)–(3.7c) for all possible users combinations.
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have maximum possible number of users are also provided in Table 3.1.15 The optimal

subset of users is the one which requires the smallest transmit power. The running times

required for the optimal exhaustive search based algorithm and the proposed algorithm

are also shown. As it can be seen, our proposed algorithm determines exactly the optimal

number of admitted users in all cases, and the users themselves except when Pmax
Rj

= 20,

γmin
i = 19 dB. The transmit power required by our proposed algorithm is exactly the same

as that required by the optimal admission control using exhaustive search. However, the

complexity in terms of running time of the former algorithm is much smaller than that

of the latter. This makes the proposed approach attractive for practical implementation.

Moreover, it is natural that when γmin
i increases, less users are admitted with a fixed amount

of power. For example, when Pmax
Rj

= 50, eight users and six users are admitted with SNR

γmin
i = 17 dB and 19 dB, respectively. Similarly, when more power is available, more users

are likely to be admitted for a particular γmin
i threshold. For instance, when γmin

i = 19 dB,

six and four users are admitted with Pmax
Rj

= 50 and 20, respectively.

Table 3.3 displays the performance of the proposed algorithm when Pmax
Rj

= 50 and

P = 20. The proposed algorithm is able to decide correctly (optimally) which users are

admitted and the power required. As before, less users are admitted when the required

SNR threshold is larger. Moreover, as P increases, more users can also be admitted. For

example, when Pmax
Rj

= 50 and γmin
i = 17 dB, four and eight users are admitted for P = 20

and P = 50, respectively.

TABLE 3.1: Admission Control: P = 50, Pmax
Rj

= 50, Running time in

seconds

Enumeration Proposed Algorithm

SNR 17 dB 17 dB

# users served 8 8

Users served 1, 2, 4, 5, 7, 8, 9, 10 1, 2, 4, 5, 7, 8, 9, 10

Transmit power 44.8083 44.8083

Users served 1, 2, 3, 4, 5, 8, 9, 10 -

Transmit power 48.1041 -

Continued on next page

15In Tables 3.2 and 3.3, only the optimal set of users and its corresponding transmit power are provided.
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TABLE 3.1 – continued from previous page

Enumeration Proposed Algorithm

Users served 1, 2, 3, 4, 7, 8, 9, 10 -

Transmit power 49.2948 -

Users served 1, 2, 4, 5, 6, 8, 9, 10 -

Transmit power 48.7522 -

Users served 1, 2, 4, 6, 7, 8, 9, 10 -

Transmit power 48.6768 -

Running time 231.68 11.77

SNR 18 dB 18 dB

# users served 7 7

Users served 1, 2, 4, 5, 8, 9, 10 1, 2, 4, 7, 8, 9, 10

Transmit power 47.0270 47.2129

Users served 1, 2, 3, 4, 8, 9, 10 -

Transmit power 49.9589 -

Users served 1, 2, 4, 7, 8, 9, 10 -

Transmit power 47.2129 -

Users served 1, 4, 5, 7, 8, 9, 10 -

Transmit power 48.9124 -

Running time 683.96 14.66

SNR 19 dB 19 dB

# users served 6 6

Users served 1, 2, 4, 8, 9, 10 1, 2, 4, 8, 9, 10

Transmit power 44.9402 44.9402

Users served 1, 4, 7, 8, 9, 10 -

Transmit power 49.4305 -

Running time 1411.23 17.48

SNR 20 dB 20 dB

# users served 5 5

Users served 1, 4, 8, 9, 10 1, 4, 8, 9, 10

Transmit power 44.9199 44.9199

Users served 1, 2, 4, 8, 10 -

Transmit power 46.3774 -

Users served 1, 2, 8, 9, 10 -

Transmit power 46.0823 -

Continued on next page
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TABLE 3.1 – continued from previous page

Enumeration Proposed Algorithm

Users served 2, 4, 8, 9, 10 -

Transmit power 46.0185 -

Running time 2170.6 18.95

TABLE 3.2: Admission Control: P = 50, Pmax
Rj

= 20

Enumeration Proposed Algorithm

SNR 17 dB 17 dB

# users served 7 7

Users served 1, 2, 4, 5, 8, 9, 10 1, 2, 4, 5, 8, 9, 10

Transmit power 42.1896 42.1896

SNR 19 dB 19 dB

# users served 4 3

Users served 1, 4, 8, 10 8, 9, 10

Transmit power 29.6160 19.7388

SNR 21 dB 21 dB

# users served 3 3

Users served 4, 8, 10 8, 9, 10

Transmit power 33.0519 46.0857

TABLE 3.3: Admission Control: P = 20, Pmax
Rj

= 50

Enumeration Proposed Algorithm

SNR 17 dB 17 dB

# users served 4 4

Users served 1, 8, 9, 10 1, 8, 9, 10

Transmit power 14.7282 14.7282

SNR 19 dB 19 dB

# users served 3 3

Continued on next page
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TABLE 3.3 – continued from previous page

Enumeration Proposed Algorithm

Users served 8, 9, 10 8, 9, 10

Transmit power 14.9059 14.9059

SNR 21 dB 21 dB

# users served 2 2

Users served 8, 10 8, 10

Transmit power 10.1811 10.1811

3.8 Conclusions

In this chapter, the optimal power allocation schemes for wireless relay networks have

been proposed. AF relaying model has been assumed where each of the source nodes

communicated with its corresponding destination node with the help of one relay node. The

proposed approach was based on GP. Although GP is nonconvex, it allows for an equivalent

convex reformulation which provides an efficient method for obtaining optimal solution. In

particular, this chapter has presented power allocation schemes to i) maximize the minimum

end-to-end SNR among all users; ii) minimize the total transmit power over all sources; iii)

maximize the system throughput. Simulation results demonstrate the effectiveness of the

proposed approach over the EPA scheme. Moreover, since it may not be possible to serve

every user at its desired QoS demand due to limited power resource, this work has proposed

an admission control algorithm which aimed at maximizing the number of users that can

be served and QoS-guaranteed. Then, the transmit power is also minimized. Although

nonconvex and combinatorially hard, a highly efficient GP heuristic-based algorithm is

developed. In this work, the GP problems are solved in a centralized manner using the

highly efficient interior point methods.
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Chapter 4

Joint Medium Access Control,

Routing and Energy Distribution

in Multi-Hop Wireless Networks

IT IS A CHALLENGING TASK TO PROVIDE end-to-end QoS (QoS) provisioning

in multi-hop wireless networks which involves a cross-layer optimization. This chap-

ter presents a joint cross-layer optimization approach, i.e., joint medium access control,

routing, and energy distribution. Given the constraints of the total available energy, the

minimum required network lifetime and the minimum user rates, the proposed approach

aims at maximizing the user satisfaction during the required network lifetime. Although

the optimization problem is nonlinear and nonconvex, it can be proved that it is equivalent

to a two-step convex problem. Furthermore, the problem of maximizing network utility

within achievable network lifetime is shown to be quasi-convex, and thus can be efficiently

solved by traditional methods.

The rest of this chapter is organized as follows. Section 4.1 presents a brief overview

of cross-layer designs in wireless networks. Network model is given in Section 4.2. The

joint MAC, routing, and energy distribution design is presented in Section 4.3. Numerical

results are given in Section 4.4, followed by further discussions in Section 4.5 and concluding

remarks in Section 4.6.
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4.1 Introduction

Supporting multimedia traffic with end-to-end QoS guarantee in multi-hop wireless networks

(e.g., mobile ad hoc networks, wireless sensor networks, and wireless mesh networks) is a

challenging technical problem. In such networks, a node may have the functionality of

both a source node and a relay node. Therefore, MAC and routing should be involved and

jointly designed in the wireless relay service provisioning, where the MAC is to deal with

the transmission over a wireless hop, and routing is to find a path from the source node to

the destination node [59], [60]. The joint MAC/routing design has attracted much attention

recently [61]. On the other hand, it has been also shown that energy distribution is critical

in multi-hop networks [11]. Generally, equal energy assignment to each node may not be

optimal. For example, in a mobile ad hoc network with a wireless gateway, nodes closer

to the gateway will likely have more traffic load, and thus will need more energy. In [11],

energy distribution methods in sensor networks are studied, depending on the locations of

the nodes.

This chapter presents the joint design of MAC, routing and energy distribution in a

multi-hop wireless network, where the QoS of each node must be guaranteed in the mini-

mum required network lifetime, and the network utility within this lifetime is to be maxi-

mized. The wireless relay service provisioning is formulated as a nonconvex network utility

maximization (NUM) problem. It is proved that the problem is equivalent to a two-step

convex problem. It is also proved that the NUM problem that maximizes the network utility

within achievable network lifetime is a quasi-convex problem, and thus can be efficiently

solved by traditional methods.

4.2 Network Model

A network with a node set S is considered. For the simplicity of presentation, it is assumed

that there is only one traffic destination (not included in S) for all the nodes in S, and the

traffic destination does not have any traffic to other nodes.1 Note that the simplified formu-

lation can be easily extended to the case when any node acts as both a traffic source and a

1One example of the traffic destination is the traffic sink in a wireless sensor network.
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traffic destination, since such a node can be represented by two nodes at the same location,

one being the traffic source and relay node, and the other being the traffic destination.

For each node s ∈ S, information is generated and injected into the network at source

rate rs. Each node is guaranteed a minimal level of QoS, i.e., rs should be no less than a

lower bound rLB
s . It is assumed that each node has sufficient traffic to send if allowed. Note

that the problem formulation can be also extended straightforwardly to the case when each

node has a source rate upper bound.

Let L denote the set of one-hop unidirectional links in the network.2 For each node s,

let O(s) denote the set of outgoing links, and I(s) the set of incoming links. Then for node

s, the difference of its total outgoing traffic and total incoming traffic should be exactly the

traffic generated at s, that is

∑

l∈O(s)

Rl −
∑

l∈I(s)

Rl = rs, s ∈ S (4.1)

where Rl is the transmission rate over link l.

For each link l, let ǫl and εl denote the energy needed to transmit and receive a unit

of traffic, respectively. Then the constraint on total energy consumption at node s can be

expressed as
[

∑

l∈O(s)

ǫlRl +
∑

l∈I(s)

εlRl

]

· Ts ≤ Es, s ∈ S (4.2)

where Es is the initial energy supply at node s, and Ts denotes the lifetime of node s.

Requiring that the QoS requirement of each node is guaranteed during the network lifetime,

i.e., during the time before any node dies3, the network lifetime can be expressed as

T = min
s∈S

Ts = min
s∈S

Es
∑

l∈O(s)

ǫlRl +
∑

l∈I(s)

εlRl

.

The work in this chapter designs a method for the stage of network planing. Therefore,

low node mobility in the network, e.g., in a sensor network and/or mesh network is assumed.

2Note that a bidirectional link in the network, if any, can be represented by two unidirectional links.
3Although this definition is appropriate for ad hoc networks and mesh networks, it may not be appropriate

for sensor networks. When a sensor network is considered, the network lifetime can be partitioned into a

number of intervals, and a node dies at the end of each interval. Our proposed design can be applied in each

interval to find the optimal solution.
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In the network planning stage, the network designer needs to assign each wireless node a

certain amount of energy (e.g., a number of AAA batteries) according to the network

topology and QoS constraints of the nodes. Apparently equal energy distribution among

the nodes may not work well. Thus one of the design tasks is to equip different wireless

nodes with different battery capacities. Let Etot denote the total available energy for the

whole network, which is under the form of available batteries with different capacities. Thus,

assuming continuous energy distribution, the following constrain must be satisfied for the

whole network
∑

s∈S

Es ≤ Etot. (4.3)

4.2.1 Link contention graph and maximal cliques

Link contention graph and maximal cliques [61], [62], [63], [64] are popular and powerful

tools used to capture the contention relations in a network. In a link contention graph,

a link is represented by a vertex, while an edge between two vertices indicates that the

two represented links contend with each other. In the link contention graph, a clique is a

subgraph within which any two vertices have an edge, and a maximal clique is the clique

which is not included in any other clique. Some links may belong to several maximal cliques.

A necessary condition for the successful transmission through a target link is that it is the

only link that transmits in any maximal clique that it belongs to. Let Cl denote the capacity

of the wireless link l. Since only one link can be active at a time at any maximal clique, it

can be written that
∑

l∈Mk

Rl

Cl
≤ 1, k = 1, . . . , K (4.4)

where Rl

Cl
is the fraction of time when link l is active, K is the total number of maximal

cliques in the link contention graph, and Mk is the kth maximal clique. Moreover, it is

assumed here that the link contention graph is perfect.4 Therefore, the condition (4.4) also

means that a feasible schedule exists to achieve the link rates Rl’s [63].

4For a link contention graph that is not perfect, the proposed formulation is also meaningful, since it

provides an upper bound for the network performance.
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4.3 Joint Design of MAC, Routing, and Energy Distribution

4.3.1 Problem formulation

This section presents a joint MAC, routing, and energy distribution optimization problem

which aims at maximizing the total utility values of all nodes in a multi-hop wireless network.

It is also required that the network lifetime is at least Tmin. Therefore, the target is to

maximize the user satisfaction during at least the time Tmin.

The NUM framework [65] has been considered as a powerful tool for network rate allo-

cation problems. According to this framework, the utility denoted as Uβ(rs) represents the

satisfaction level of a user in terms of the allocated resources, i.e., rs. The following NUM

problem is proposed in this work

max
{rs}, {Rl}, {Es}, T

∑

s∈S

Uβ (rs) (4.5a)

subject to:
∑

l∈O(s)

Rl −
∑

l∈I(s)

Rl = rs, s ∈ S (4.5b)

rs ≥ rLB
s , s ∈ S (4.5c)

[

∑

l∈O(s)

ǫlRl +
∑

l∈I(s)

εlRl

]

· T ≤ Es, s ∈ S (4.5d)

T ≥ Tmin (4.5e)
∑

s∈S

Es ≤ Etot (4.5f)

∑

l∈Mk

Rl

Cl
≤ 1, k = 1, . . . , K. (4.5g)

In this optimization problem, the objective function represents the total network utility for

all nodes. Constraint (4.5b) requires that the traffic generated by all nodes is routed prop-

erly. Constraint (4.5c) specifies the minimal traffic generating rate at each node. Constraint

(4.5d) requires that the total energy consumed during the network lifetime at each node

must be no more than the node’s energy supply. Constraint (4.5e) guarantees the minimum

network lifetime. Note that the required minimum life time Tmin is determined based on

the design goal of the network5. Constraint (4.5f) guarantees that the total energy supply

5In case when Tmin is not designed appropriately or the total energy is not sufficient to achieve the Tmin,

the problem (4.5a)-(4.5g) may be infeasible, such as in the case of Scheme 1 in Fig. 4.3 when Etot < 40K

in Section IV.
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in the network does not exceed the total available energy. Constraint (4.5g) represents a

sufficient and necessary condition for a feasible schedule assuming that the link contention

graph of the network is perfect.

It has been shown that different utility functions can result in different types of fairness

[65], [66]. For example, the following family of utility functions, parameterized by β ≥ 0, is

proposed in [66]

Uβ (x) =







(1 − β)−1 x1−β , β 6= 1, β ≥ 0

log x, β = 1.
(4.6)

For example, when β = 0, the maximization of the network utility (i.e., the sum of the utility

values of all the nodes in the network) will lead to the maximization of system throughput.

Moreover, when β → ∞, β = 1, and β = 2, the network utility maximization will result

in maximin, proportional, and harmonic mean fairness, respectively [66]. Since such utility

definition is general enough, it is adopted also here.

The aforementioned NUM problem (4.5a)-(4.5g) looks intractable since it is both non-

linear and nonconvex. However, in the sequel, an algorithm for solving it optimally in

polynomial time is developed.

4.3.2 Optimal solution

Let us consider the optimization problem (4.5a)–(4.5g) without the constraint on the min-

imum network lifetime, that is

max
{rs}, {Rl}, {Es}, T

∑

s∈S

Uβ (rs) (4.7a)

subject to: The constraints (4.5b), (4.5c), (4.5d), (4.5f), (4.5g). (4.7b)

THEOREM 4.1: If the network lifetime T is fixed in (4.7a)–(4.7b), then the optimal

value of the optimization problem (4.7a) is non-increasing w.r.t. T .
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PROOF: Suppose that the network lifetime T in (4.7a)–(4.7b) is fixed at Tf , and define

Ẽs = Es

Tf
. After some mathematical manipulations, (4.7a)–(4.7b) can be reformulated as

max
{rs}, {Rl}, {Ẽs}

∑

s∈S

Uβ (rs) (4.8a)

subject to:
∑

l∈O(s)

Rl −
∑

l∈I(s)

Rl = rs, s ∈ S (4.8b)

rs ≥ rLB
s , s ∈ S (4.8c)

∑

l∈O(s)

ǫlRl +
∑

l∈I(s)

εlRl ≤ Ẽs, s ∈ S (4.8d)

∑

s∈S

Ẽs ≤ Ẽtot =
Etot

Tf
(4.8e)

∑

l∈Mk

Rl

Cl
≤ 1, k = 1, . . . , K. (4.8f)

It can be seen that the optimization problem (4.7a)–(4.7b) with T = Tf and total energy

Etot is equivalent to the case of the fix network lifetime T = 1 with new total energy

Ẽtot = Etot
Tf

. If Tf is increased to T ′
f , Etot

T ′

f

becomes smaller than Etot
Tf

. Therefore, a feasible

set of
{

{rs}, {Rl}, {Ẽs}
}

’s that satisfies (4.8b)–(4.8f)) with T ′
f will be a sub-set of a feasible

set that satisfies (4.8b)–(4.8f)) with Tf , and the optimal value of (4.8a) with T ′
f will be no

more than the optimal value of (4.8a) with Tf . This completes the proof. �

For an example network in Fig. 4.1, we plot the total network throughput (viewed as

the network utility in (4.8a)) versus the (fixed) network lifetime T for different values of

minimal rate requirement rLB
s and total energy Etot, and show the result in Fig. 4.2. It can

be seen that for each value of rLB
s and Etot, the network throughput first keeps constant,

then starts to decrease after a threshold Tthreshold. It is because for small network lifetime,

the energy supply in the network is sufficient, while the contention constraints are dominant

for determining the network throughput. When the network lifetime increases, the energy

constraint becomes more stringent, and becomes dominant for determining the network

throughput after a specific threshold Tthreshold.

Using Theorem 4.1, the following algorithm for solving (4.5a)–(4.5g) is proposed.

Step 1. Given Etot, the threshold point Tthreshold if any is determined.6

6Note that the bisection search method can be used to determine Tthreshold. Therefore, the exhaustive

search is not necessary.
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Fig. 4.1. An example of the network model

Step 2. Set T = max
{

Tthreshold, Tmin

}

in (4.5a)–(4.5g).

Step 3. Solve (4.5a)–(4.5g) with T determined as in Step 2.

The following theorem establishes the convexity of the optimization problem (4.5a)–(4.5g)

with T determined as in Step 2.

THEOREM 4.2: The optimization problem (4.5a)–(4.5g) with fixed T is a convex opti-

mization problem.

PROOF: The utility function Uβ (rs) given in (4.6) is concave on source rate variables

rs, ∀s ∈ S [66]. It is easy to show that the constraints in (4.5b)–(4.5g) with fixed T are

linear constraints with respect to the variables rs, Rl, Es, ∀l, s. Thus, the optimization

problem is convex. �

Theorem 4.1 indicates that the optimization problem (4.5a)–(4.5g) is equivalent to the

two-step convex problem. Generally this two-step convex problem should be solved in a

centralized manner. Therefore, for a large-size networks (such as a sensor networks), the

involved complexity may be high. However, this drawback can be compensated by the
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Fig. 4.2. Throughput versus minimum network lifetime requirement Tmin.
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following two facts. 1) The first step of the two-step optimization algorithm can be solved

using bisection search, while in the second step a traditional convex optimization problem

is to be solved. Therefore, the whole network design problem can be efficiently solved using

traditional methods with limited complexity; 2) Although for large-size sensor networks,

a centralized algorithm is not scalable, the network can be partitioned into clusters (as

discussed in [67] and references therein), and centralized operation can be performed in each

cluster. Therefore, the target network of the proposed algorithm is a small- or medium-size

network, or a cluster in a large-size network.

4.4 Numerical Results

Consider a multi-hop network consisting of 14 nodes and 42 unidirectional links (21 bidirec-

tional links) as in Fig. 4.1 where the Sink Node is the traffic destination for all other nodes’

traffic. Each node has sufficient traffic to send if allowed. The energy for transmitting 1

unit of data on any link l is set to be 1 unit of energy, while the energy for receiving 1 unit

of data on any link is set to be 0.2 unit of energy, i.e., ǫl = 1, εl = 0.2, ∀l. The capacity of

each link, i.e., Cl, is 20 units of rate.

Three different scenarios are tested: network throughput maximization with all nodes

having equal energy, network throughput maximization with energy distribution, and max-

imin fairness optimization with energy distribution, referred to as Scheme 1, 2, and 3,

respectively. First, the total available energy Etot is varied and the corresponding network

throughput in the three schemes can be obtained as shown in Fig. 4.3. The minimum net-

work lifetime requirement is Tmin = 5000 unit of time. The minimum rate requirement for

each node is rLB
s = 0.1 or 0.2 unit of rate. Scheme 2 attains the maximum network through-

out, while Scheme 1 attains the least. Next, let Tmin = 5000, rLB
s = 0.2, and Etot = 100K be

fixed. Table 4.1 shows the assigned energy (i.e., Es) and source rate (i.e., rs) of each node.

In Scheme 1, each node is assigned the same energy level. Scheme 2 has the largest variance

in terms of the assigned source rate at each node. Scheme 3 undoubtedly provides fairness

among nodes where all nodes are able to generate the same amount of traffic. Although

nodes are injecting the same traffic amount to the network, their energy assignments are

different. This is due to the functionality of a node as a wireless relay. The more traffic a
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node needs to relay, the more energy it is assigned.

The effect of users’ QoS demands on the network throughput is also investigated. Fig. 4.4

displays the network throughput when Etot = 100 KJ, and each node’s source rate demand

rLB
s is 0.1 and 0.2, respectively. It can be seen that when the users’ demands increase, the

optimized total network throughput is non-increasing. Mathematically, in the optimization

problem (4.5a)–(4.5g), when the source rate demands increase, the constraint (4.5c) becomes

more stringent. Thus the feasible set of
{

{rs}, {Rl}, {Es}, T
}

’s becomes smaller, which gives

the same (e.g., Scheme 3 in the example) or smaller (e.g., Schemes 1 and 2 in the example)

optimal value of the network utility.
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TABLE 4.1

Assigned energy and source rate at each node when Tmin = 5000, rLB
s = 0.2 and

Etot = 100K

Node ID N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13

Scheme 1 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7

Energy Scheme 2 1.4 1.0 3.2 1.8 5.3 2.4 1.0 1.0 23.9 28.2 2.8 2.2 25.9

Scheme 3 3.6 2.7 8.1 5.0 13.3 7.1 2.7 2.7 6.0 23.2 8.3 6.0 11.4

Scheme 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.9 0.7 0.2 0.2 0.7

Rate Scheme 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 4.5 4.3 0.2 0.2 4.4

Scheme 3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
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4.5 Further Discussions

In the NUM formulation in Section 4.3, the objective is to maximize the user satisfaction,

i.e., network utility, within the minimum required network lifetime. An alternative for-

mulation is to maximize the network utility within the achievable network lifetime, while

guaranteeing that the achievable life time is, at least, as long as the minimum required

network lifetime. For this case, the energy supply at each node (i.e., Es) is fixed, and have

the following NUM problem:

max
{rs}, {Rl}, T

T ·
∑

s∈S

Uβ (rs) (4.9a)

subject to:
∑

l∈O(s)

Rl −
∑

l∈I(s)

Rl = rs, s ∈ S (4.9b)

rs ≥ rLB
s , s ∈ S (4.9c)

[

∑

l∈O(s)

ǫlRl +
∑

l∈I(s)

εlRl

]

· T ≤ Es, s ∈ S (4.9d)

T ≥ Tmin (4.9e)
∑

l∈Mk

Rl

Cl
≤ 1, k = 1, . . . , K. (4.9f)

THEOREM 4.3: The optimization problem (4.9a)–(4.9f) is quasi-convex.

PROOF: Introducing a new variable B = 1/T , the problem (4.9a)–(4.9f) can be equiv-

alently rewritten as

min
{rs}, {Rl}, B

− 1

B
·
∑

s∈S

Uβ (rs) (4.10a)

subject to:
∑

l∈O(s)

ǫlRl +
∑

l∈I(s)

εlRl ≤ BEs, s ∈ S (4.10b)

B ≤ 1/Tmin (4.10c)

The constraints (4.9b), (4.9c), (4.9f). (4.10d)

The constraints (4.10b)–(4.10d) in the above problem are linear on variables {rs}, {Rl}
and B. In order to prove that the objective function (4.10a) is quasi-convex, consider the
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following sub-level set

N =

{

{rs}, {Rl}, B
∣

∣

∣
− 1

B
·
∑

s∈S

Uβ (rs) ≤ α, α ∈ R
}

=

{

{rs}, {Rl}, B
∣

∣

∣
−
∑

s∈S

Uβ (rs) − α · B ≤ 0

}

where α is a constant. Since
∑

s∈S Uβ (rs) is concave, −∑s∈S Uβ (rs) is convex. And

α · B is linear on B. Therefore, the set N is convex, and the objective function (4.10a) is

quasi-convex [55]. This completes the proof. �

Note that the problem (4.10a)–(4.10d) can be efficiently solved by traditional methods

such as interior-point methods [55].

4.6 Conclusions

Achieving end-to-end QoS guarantee in multi-hop wireless networks requires a cross-layer

design approach. In this chapter, the joint design of MAC, routing, and energy distribution

in a multi-hop network is formulated as NUM optimization problem. The method for

solving the nonconvex and nonlinear NUM optimization problem optimally is developed. It

is also show that the problem of maximizing sum utility within achievable network lifetime

is quasi-convex. This research should provide insights to the development and deployment

of multi-hop wireless networks, such as wireless sensor networks, mobile ad hoc network,

and wireless mesh networks.
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Chapter 5

Conclusions and Future Work

THIS THESIS HAS CONSIDERED A NUMBER OF resource allocation problems

for various wireless networks using convex optimization. While the first problem

studied the spectrum sharing in cognitive wireless networks using beamforming techniques,

the second problem investigated the power allocation issue, with and without admission

control, in wireless multi-user relay networks. A cross-layer design problem in multi-hop

wireless networks to maximize the total utility of all users was also studied. Details for each

chapter is summarized as follows.

5.1 Conclusions

Chapter 1 has provided the motivation of the thesis, brief overview of convex optimization

theory on which the results of this thesis are based on, and the outline of the thesis.

Chapter 2 has proposed several problem formulations and solution approaches for multi-

cast beamforming for secondary wireless networks. For such purposes, the thesis considered

practical design scenarios with different criteria involving the interference level at the pri-

mary receivers, the received SNRs of the secondary users and the transmit power. By

exploiting the available CSI via transmit optimization, the network of secondary users is

able to co-exist and exchange information between its users simultaneously with the net-

work of primary users. Although the proposed designs are nonconvex and NP-hard, a

convex relaxation approach coupled with suitable randomization post-processing can pro-
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vide approximate solutions at a moderate computational cost that is strictly bounded by a

low-order polynomial.

Chapter 3 has focused on the optimal power allocation schemes for multi-user wireless

AF relay networks. Power allocation is done at both the relays and the mobile users.

Specifically, optimal power allocation schemes to i) maximize the minimum end-to-end

SNR among all users; ii) minimize the total transmit power of all sources; iii) maximize the

system throughput were derived. It has been shown that the corresponding optimization

problems can be formulated as GP problems. Therefore, optimal power allocation can

be obtained efficiently even for large-scale networks using convex optimization techniques.

Although GP is nonconvex, it allows for an equivalent convex reformulation which provides

an efficient method for obtaining optimal solution. Moreover, since it may not be possible

to serve every user at its desired QoS demand due to limited power resource, this thesis

have proposed a joint admission control and power allocation algorithm which aimed at first

maximizing the number of users that can be served and then minimizing the transmit power.

Although the original problem is nonconvex and combinatorially hard, a highly efficient GP

heuristic-based algorithm which has running time much smaller than that of the original

optimization problem was developed. This makes the proposed approach attractive for

practical implementation.

Chapter 4 has proposed a joint design of MAC, routing, and energy distribution in a

multi-hop network. The problem has been formulated as NUM optimization problem. The

method for solving the nonconvex and nonlinear NUM optimization problem optimally is

developed. It was also shown that the problem of maximizing sum utility within achievable

network lifetime is quasi-convex. This research should provide insights to the development

and deployment of multi-hop wireless networks, such as wireless sensor networks, mobile ad

hoc network, and wireless mesh networks.

5.2 Future Work

To extend the obtained results, several lines for future research have been recognized.

Regarding the multicast beamforming problem in Chapter 2, it has been assumed that

the design center has perfect channel knowledge from the base station (access point) to both
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secondary and primary users. However, perfect CSI may not be available in the considered

scenarios. This is because in practice, there is some estimation error in the channel gains

(because of noisy measurements and/or channel variations over time). Therefore, it is

interesting to extend the results which were initially obtained for the case of perfect CSI, to

account for imperfect CSI. Actually, some preliminary results when imperfect CSI is present

have been published [68]. However, the effects of imperfect CSI need to be investigated more

thoroughly. Moreover, broadcasting has also been assumed. This assumption may not be

suitable for some applications where different information needs to be sent to different users.

Semidefinite programming is still a useful tool in this case. However, it is interesting to

investigate the performance of such networks. Another interesting issue is regarding the

admission control problem in such multicast network. Due to limited resources, not all

(secondary) users can always be served at their desirable QoS requirements. Therefore,

some sort of admission control should be carried out and it is interesting to study efficient

admission control algorithms in such cases.

In Chapter 3, the power allocation process is carried out in a centralized manner. In

such context, a central unit (CU) is necessary to coordinate the power allocation at the

sources and at the relays. Moreover, the CU should have channel knowledge for all the

transmission links. This is sometimes impractical due to high complexity, especially for

large-scale networks. Therefore, it is challenging to investigate whether distributed power

allocation via GP is possible. In networks which implement distributed power control,

only local channel information is required for each user. Power allocation is updated by

exchanging control messages between participating relays and users. Therefore, it is scalable

for networks with large sizes. Note that distributed power allocation has been studied

intensively in cellular networks, for example see [2]. Moreover, each source is assumed to

be assisted by one relay which makes it easy to utilize GP. In practice, information from

a source to destination can be forwarded by several relays. It is worth studying efficient

power allocation techniques in this scenarios.

Chapter 4 has discussed the cross-layer design in wireless networks to maximize the total

utility of all users. What makes convex programming applicable is the assumption that

utility functions are convex. However, nonconcave utility functions are shown to be more

appropriate in some particular scenarios. In this case, convex programming is unsuitable
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and global nonconvex programming is necessary. Therefore, it is desirable to look at cross-

layer design problems with nonconvex utility functions.
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