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Abstract

The advent of compressed sensing provides a new way to sample and compress signals. In

this thesis, a parallel compressed sensing architecture is proposed, which samples a two-

dimensional reshaped multidimensional signal column by column using the same sensing

matrix. Compared to architectures that sample a vector-reshaped multidimensional signal,

the sampling device in the parallel compressed sensing architecture stores a smaller-sized

sensing matrix and has lower computational complexity. Besides, the reconstruction of

the multidimensional signal can be conducted in parallel, which reduces the computational

complexity and time for reconstruction at the decoder side. In addition, when parallel sam-

pling is not required but analog compressed sensing is desired, an alternative architecture

proposed in this thesis, named parallel compressed sensing reconstruction architecture, can

be used. In both proposed architectures, permutation is introduced and shown to enable

the reduction of the required number of measurements for a given desired reconstruction

error performance.
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Chapter 1

Introduction

In digital signal processing (DSP), sampling is a fundamental step which converts signal

from an analog form to a digital form. The conversion is usually achieved by an analog-to-

digital converter (ADC), whose input is an analog signal and output is a digital signal. The

corresponding inverse conversion, i.e., conversion from a digital signal to an analog signal,

is often achieved by a digital-to-analog converter (DAC). Most ADC and DAC devices

are designed based on the famous Nyquist-Shannon sampling theorem. In other words, in

the ADC, the analog signal is sampled with the Nyquist rate, which is determined by the

desired bandwidth of the reconstructed signal; in the DAC, the digital signal is converted

to an analog signal by interpolation algorithm. Besides, quantization is usually done in

the ADC, which converts the discrete-time signal to a digital signal. The word “digital”

means that the signal takes only a discrete set of values. For example, a digital signal can

be represented as 8 bit (256 levels), 16 bit (65536 levels), etc. The necessity of the ADC

and DAC makes DSP more complex than analog signal processing. On the other hand,

digital signal can be processed more easily and accepted by microprocessor-based devices,

e.g., computers, smart phones, etc. Thus, DSP has been applied to many areas such as

data compression, image processing, etc.

Typically, the raw digital data are redundant because it helps to achieve some acceptable

reconstruction quality. Then to reduce resource usage such as data storage space and trans-

mission capacity, data compression is introduced. A typical data compression technique for

“natural” data like audio signals or images is transform coding. The joint photographic

experts group (JPEG) standard is an application of transform coding to image compres-

sion [1]. The digital image signal acquired by the sampling devices is projected onto a basis,

e.g., the discrete cosine transform (DCT) basis, where only a few significant coefficients are

needed to preserve most energy/information of the signal. In this way, the signal can be
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compressed by simply discarding other insignificant coefficients. By knowing the basis and

the stored/transmitted coefficients, the digital signal can be reconstructed easily with a

small error.

In traditional architectures for data compression mentioned above, the sampling and the

compression processes are separated. Besides, the Nyquist rate sampling can be expensive

to implement for wideband signals. So it is reasonable to ask whether there is a way that

can either avoid the Nyquist rate sampling or combine the sampling and compression into

one step while still achieving the same compression quality. The compression quality is

determined by the error between the reconstructed digital signal and the digital signal

acquired by the Nyquist rate sampling.

The advent of compressed sensing (CS) theory provides a solution to this problem.

The core of CS theory demonstrates the possibility of recovering an analog signal from

fewer samples than the Nyquist rate requires [2–4]. In the CS architecture, the signal is

simultaneously compressed during the discretization, whereas in the traditional architecture

mentioned above, the signal is compressed after the discretization. Accordingly, Nyquist

rate sampling is avoided in the CS architecture. However, the reconstruction process of

the CS architecture needs to solve an ℓ0-pseudonorm minimization problem, which is an

NP-hard problem. Although it is proved that solving an ℓ1-norm minimization problem

instead can be effective [5], the reconstruction process is usually more complex than that

in the traditional architecture for data compression mentioned above (where the sampling

process and the compression process are separated). Thus, CS architecture is preferred for

less powerful sampling devices with more powerful reconstruction devices such as in wireless

sensor networks.

1.1 Proposed research problem

In recent years, CS has been applied for sampling multidimensional signals such as image

and video signals. Several imaging architectures based on CS have been proposed. For

example, the single-pixel camera can acquire a group of samples of an image with only one

optical sensor using different patterns of the digital micromirror device (DMD) array [6, 7];

the optically compressed image sensing uses random coded aperture to acquire random

projections of an image [8].

An immediate way to apply CS to a multidimensional signal is sampling it as a “vec-

tor”, as it is done in the single-pixel camera and the optically compressed image sensing.

However, the sampling process then becomes more difficult as the length of the “vector”
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increases since the sampling requires more storage and longer acquisition time. Besides, the

complexity of the reconstruction process, which relies on solving an ℓ1-norm minimization

problem, increases significantly with the increase of the “vector” length. Sometimes, it is

even impossible to use the CS architecture for multidimensional signal because of limited

resources, e.g., processor capacity, storage, etc.

Therefore, this thesis is focused on studying the way to reduce the complexity of the

sampling process and the reconstruction process in the CS architecture. To be specific, this

thesis exploits the possibility of sampling and/or reconstructing all segments of a multidi-

mensional signal in parallel by using the CS architecture. Furthermore, advantages brought

by introducing permutation into the CS architecture are discussed in the thesis.

In summary, this thesis makes the following contributions. First, a parallel CS architec-

ture is proposed, where a signal is divided into several segments and all segments are sampled

and reconstructed in parallel. Second, properties of permutation are investigated when ap-

plied to the parallel CS architecture proposed in the thesis. Third, a group-scan-based, a

zigzag-scan-based and a block-test-based permutations are introduced as specific examples

of practically appealing permutations. As an example, the zigzag-scan-based permutation

is shown to be an acceptable permutation with a large probability for two-dimensional (2D)

signals satisfying an introduced layer model. The block-test-based permutation is discussed

via simulation. Fourth, an application of the parallel CS architecture with permutation to

video compression is discussed. Finally, as a complement, a new parallel CS reconstruction

architecture is proposed, where a signal is sampled in centralized manner and reconstructed

in parallel. Compared to the parallel CS architecture, the parallel CS reconstruction ar-

chitecture integrates the permutation into the sampling process but sacrifices the ability of

parallel sampling.

1.2 Organization of the thesis

Preliminary and background materials are presented in Chapter 2. In Chapter 3, a new

parallel CS architecture is introduced and the properties of permutation when applied to the

parallel CS architecture are analyzed. Then a new parallel CS reconstruction architecture

is presented and discussed in Chapter 4. Chapter 5 concludes the thesis and discusses the

future work that can be done based on this thesis.
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Chapter 2

Preliminaries

In this chapter, some background on CS is given first. Traditional data compression tech-

nique is also presented here. The chapter is concluded with introduction of several existing

CS based imaging architectures.

2.1 Background on CS

2.1.1 CS for sparse signals

An L-length signal x ∈ R
L is called S-sparse if there are only S nonzero entries in x.

CS theory states that if S ≪ L, i.e., the signal is sparse enough, then the information

contained in an S-sparse signal x ∈ R
L can be fully preserved with only K(S ≪ K ≪ L)

measurements, which form a measurement vector y ∈ R
K [2, 4]. The measurement vector

y is obtained by the help of a sensing matrix A ∈ R
K×L, i.e.,

y = Ax. (2.1)

The S-sparse signal x can be reconstructed from the measurement vector y given in

(2.1) by solving, for example, the following ℓ1-norm minimization problem

min
z

||z||1 s.t. y = Az (2.2)

where || · ||1 denotes the ℓ1-norm of a vector.

The restricted isometry property (RIP) condition is a sufficient condition on A which

guarantees the exact recoverability of an S-sparse signal x by solving (2.2). The RIP

condition can be described in terms of the restricted isometry constants and the restricted

orthogonality constants of A, which are defined below.

Definition 1 [9]: The t-restricted isometry constant δt of a given sensing matrix A ∈ R
K×L
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is defined as

δt := min
c≥0

c s.t. (1− c)||z||22 ≤ ||Az||22 ≤ (1 + c)||z||22 (2.3)

for all S-sparse signals z ∈ R
L with S ≤ t. Here || · ||2 denotes the ℓ2-norm of a vector.

Definition 2 [9]: The (t, t′)-restricted orthogonality constant ζt,t′ of a given sensing matrix

A ∈ R
K×L is defined as

ζt,t′ := min
c≥0

c s.t. |zTATAz′| ≤ c||z||2||z′||2 (2.4)

for all S-sparse signals z ∈ R
L with S ≤ t and all S′-sparse signals z′ ∈ R

L with S′ ≤ t′

where t+ t′ ≤ L. Here | · | denotes the absolute value of a real number and the superscript

T stands for the transpose.

Many works have been devoted to deriving the RIP condition on A [5, 9–15]. For

example, the RIP condition derived in [9] is

δS + ζS,S + ζS,2S < 1. (2.5)

The RIP condition derived in [11], which merely depends on the 2S-restricted isometry

constant, is δ2S ≤
√
2 − 1. Meanwhile, an S-sparse signal x can also be exactly recovered

from the measurement vector y given in (2.1) using matching pursuit algorithm, or better

orthogonal matching pursuit (OMP) [16]. Similar RIP conditions for using OMP algorithm

to recover the sparse signal have also been derived [16–20]. A review of these conditions

can be found in [20]. In this thesis, only the RIP conditions related to the recovery problem

(2.2) are considered.

2.1.2 CS for compressible signals

In Section 2.1.1, strictly sparse signals have been considered. However, most practical

signals are not strictly sparse. Rather, they can be regarded as compressible, i.e., they have

only a few large1 elements. A compressible signal x can be approximated using its best

S-term approximation, denoted as xS . The best S-term approximate xS is an S-sparse

signal generated by keeping the S largest entries in x and changing the remaining entries

to zeros. The best S-term approximation is regarded as an optimal approximation using

only S elements since it preserves most energy of the compressible signal. However, such

approximation requires knowledge about the values and locations of all elements in x.

1In this thesis, when saying that a value is large or small, it means the magnitude of the value is large or
small.
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CS is still effective when applied to compressible signals. If the sensing matrix A obeys

the RIP condition, the reconstruction via solving (2.2) is nearly as good as that using the

best S-term approximation, as shown in the following Lemma 1 [21].

Lemma 1: Assume that δ2S <
√
2 − 1 for a sensing matrix A. Then for a signal x, the

solution x∗ to (2.2) obeys

||x∗ − x||1 ≤ G · ||x− xS ||1 and

||x∗ − x||2 ≤ G′ · ||x− xS ||1/
√
S (2.6)

for some constants G and G′.

As mentioned before, δ2S <
√
2 − 1 is the RIP condition. Sometimes, this RIP condi-

tion is called RIP of order S. According to Lemma 1, an S-sparse signal can be exactly

reconstructed via solving (2.2) if this RIP condition is held. For a compressible signal x,

if the RIP condition is held for the sensing matrix A, the reconstruction via solving (2.2)

has an error bounded by the ℓ1-norm of the approximation error when xS is used to ap-

proximate x. Note that, if (2.2) is solved for reconstruction, there is no need to know the

values and locations of all elements in x, whereas such knowledge is required if xS is used

to approximate x.

2.1.3 CS for general signals

Previous subsections discussed the situations when a signal itself is either sparse or com-

pressible. This subsection discusses the situation when the projection of a signal onto some

orthonormal basis is either sparse or compressible. Without loss of generality, only the

sparse case is considered since the compressible case can be similarly analyzed. The or-

thonormal basis where the projection of a signal is sparse is called sparsifying basis. For

example, the sparsifying basis of most audio signals can be the discrete Fourier transform

(DFT) basis since the audio signals are usually sparse in frequency domain; the sparsifying

basis of 2D piecewise smooth image signals can be either the DCT basis or the discrete

wavelet transform (DWT) basis. One way to apply CS to such signal is to pre-project the

signal onto its corresponding sparsifying basis and sample the projection which is sparse.

Then for reconstruction, the reconstructed sparse projection is projected back onto the

original basis to obtain the reconstructed signal. Obviously, it is not the preferred way, and

we will elaborate about it more in the thesis.

Denote the sparsifying basis of a signal x ∈ R
L as Ψ ∈ R

L×L and its corresponding

6



projection as θ ∈ R
L, i.e.,

x = Ψθ. (2.7)

Consider the following two sampling schemes. One scheme uses a sensing matrix A ∈ R
K×L

to sample θ, which is described above, i.e., y = Aθ. The other one uses a measurement

matrix Φ ∈ R
K×L to sample x, i.e., y = Φx. If A = ΦΨ, it is obvious that these two

schemes are equivalent. Therefore, the signal x can be directly sampled using the measure-

ment matrix Φ without being projected onto the sparsifying basis Ψ. When reconstructing

the signal x, θ is firstly recovered and then projected back onto the original basis, which

gives the reconstructed signal.

2.1.4 Sensing matrix and measurement matrix

According to the analysis in Subsection 2.1.3, the sensing matrix corresponds to the S-

sparse signal, whereas the measurement matrix corresponds to the original signal whose

projection on the sparsifying basis is an S-sparse signal. Obviously, if the original signal

is S-sparse itself, i.e., the sparsifying basis is the identity basis, then the measurement and

the sensing matrices are the same.

As mentioned in Subsection 2.1.1, the RIP condition is a condition on the sensing matrix.

Thus, constructing a sensing matrix A ∈ R
K×L that satisfies the RIP condition is a branch

of CS theory. The most popular matrix that satisfies the RIP condition is the Gaussian

random matrix. In [9], it is shown that if the entries of A are independent and identically

distributed (i.i.d.) Gaussian with zero mean and variance 1/K and the sparsity ratio S/L

is small enough, then the RIP condition (2.5) holds with an overwhelming probability.

Meanwhile, the following theorem derived in [22] gives a more general class of matrices that

obey the RIP condition.

Theorem 1 [22]: Assume that the probability distribution that generates entries of Φ ∈
R
K×L satisfies the concentration inequality, i.e.,

Pr
{
|||Φz||22 − ||z||22| ≥ ǫ||z||22

}
≤ 2e−Kc0(ǫ) (2.8)

for any z ∈ R
L and 0 < ǫ < 1, where Pr {·} denotes the probability of an event, c0(ǫ) is a

positive constant that depends only on ǫ. For any orthonormal basis Ψ ∈ R
L×L and a given

ǫ ∈ (0, 1), the S-restricted isometry constant of A = ΦΨ is equal to ǫ/2 with probability no

less than 1− 2e−c2(ǫ)K if

K ≥ c1(ǫ)S log(L/S) (2.9)

7



where positive constants c1(ǫ), c2(ǫ) depend only on ǫ.

Examples of distributions that satisfy the concentration inequality (2.8) are Gaussian

distribution and Bernoulli distribution [22]. In addition, Theorem 1 points out the uni-

versality of the measurement matrix Φ with respect to the sparsifying basis Ψ. In other

words, by constructing a measurement matrix Φ satisfying (2.8) and (2.9), the correspond-

ing sensing matrix A with respect to any orthonormal basis Ψ is guaranteed to obey the

RIP condition. It should be noted that the RIP condition used in Theorem 1 depends only

on the restricted isometry constants, whereas the RIP condition used in [9] depends on both

the restricted isometry constants and the restricted orthogonality constants.

2.1.5 CS for multidimensional signals

One way to apply CS to multidimensional signals is by using the Kronecker product of

matrices, named Kronecker CS [23]. The Kronecker product of two matrices U ∈ R
P×Q

and V ∈ R
R×S is defined as

U⊗V :=






U(1, 1)V · · · U(1, Q)V
...

. . .
...

U(P, 1)V · · · U(P,Q)V




 (2.10)

where U(i, j) denotes the (i, j)-th element of U.

Given a multidimensional signal x ∈ R
L1×L2×···×Ld , its vector-reshaped representation

is x̄ ∈ R
L̄ where L̄ =

∏d
i=1 Li. Assuming that the sparsifying basis of the i-th dimension of

x is Ψi ∈ R
Li×Li , the sparsifying basis for the multidimensional signal x̄ can be obtained

using Kronecker products as Ψ̄ = Ψ1 ⊗Ψ2 ⊗ · · · ⊗Ψd ∈ R
L̄×L̄. Then the projection of x̄

onto Ψ̄ is an S̄-sparse signal θ̄ ∈ R
L̄, i.e., x̄ = Ψ̄θ̄, and there are only S̄ ≪ L̄ nonzero entries

in θ̄. Let Φi and Ai be respectively the measurement and sensing matrices corresponding

to the i-th dimension of x, and let Ki be the number of rows in Φi and Ai. Then the

corresponding measurement matrix Φ̄ ∈ R
K̄×L̄ and sensing matrix Ā ∈ R

K̄×L̄ for x̄ can be

defined respectively as Φ̄ = Φ1⊗Φ2⊗ · · ·⊗Φd and Ā = A1⊗A2⊗ · · ·⊗Ad, and the total

number of rows in Φ̄ and Āi is K̄ =
∑d

i=1Ki. Therefore, the measurement vector ȳ ∈ R
K̄

can be expressed as

ȳ = Φ̄x̄ = Āθ̄. (2.11)

According to the analysis in Subsection 2.1.1, if Ā satisfies some RIP condition, θ̄ and x̄

can be recovered via solving the ℓ1-norm minimization problem.

Here compressible signal is not considered since it can be analyzed similarly.

8



2.1.6 Reconstruction algorithms

To solve (2.2), several algorithms have been developed, including interior point methods

[24], projected gradient methods [25], and iterative thresholding [26]. The computational

complexity of the interior point method such as the basis pursuit (BP) algorithm is O(L3),

where L is the length of the vector z in (2.2) [27].

Another way to recover the sparse signal from the measurement vector is to use greedy

algorithms, which iteratively approximate the projection and the support of the original

signal. Greedy algorithms are very fast and easy to implement. OMP is the most popular

greedy algorithm, which was introduced in [28]. Other examples of greedy algorithms are

stagewise OMP [29], regularized OMP [30], and compressive sampling matching pursuit [31].

2.2 Traditional data compression technique

The procedure of traditional data compression technique, especially for conventional im-

ages or videos, can be briefly described as “sampling, processing, keeping the important

information and throwing away the rest”. This compression technique typically exploits a

priori information about the data, e.g., an L-pixel image data can be well approximated as

a sparse linear combination of S ≪ L wavelets or frequency components. Such compression

technique is similar to representing an L-length signal with its best S-term approximation.

JPEG standard for image compression is a typical example of such compression tech-

nique [1]. Given a 2D digital image acquired by the charge-couple device (CCD) array or

the complementary metal-oxide-semiconductor (CMOS) array of size M ×N , it is divided

into several 8 × 8 blocks. Corresponding 64 DCT coefficients of each block are calculated

and quantized. The quantized DCT coefficients are then ordered into the “zigzag” sequence

via a zigzag scan, as shown in Fig. 2.1. The zigzag scan results in a “zigzag” sequence where

low-frequency coefficients are placed before high-frequency components. This ordering helps

to facilitate entropy coding since the low-frequency quantized coefficients are more likely

to be nonzero, whereas the high-frequency quantized coefficients are more likely to be zero.

Then, a simple way to compress data is to keep the first few coefficients in the “zigzag”

sequence and discard the rest which are likely to be zero.

2.3 CS based imaging architectures

The image compression technique presented in Section 2.2 has two major potential disad-

vantages. First, it can be expensive to acquire large amounts of raw image data, particularly
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Fig. 2.1: The zigzag scan order of an 8× 8 block.

at wavelengths where CCD and CMOS sensing technologies do not work well. Second, it

can be computationally demanding to compress large amounts of raw image data.

Fig. 2.2: The single-pixel camera architecture [6].

To address these two drawbacks, a new imaging architecture based on the CS theory has

been proposed in [6], named single-pixel camera. As shown in Fig. 2.2, in the single-pixel

camera architecture, an L-pixel image is formed on the plane of the DMD array of size L

via a biconvex lens and it is reflected according to the DMD array pattern. The reflected

light is then focused via the second biconvex lens onto the photodiode, which outputs a

voltage that corresponds to a measurement of the image. The DMD array is controlled by

the random number generators. Each different pattern of the DMD array acts as one row

in the measurement matrix. By producing K ≪ L different patterns of the DMD array, K

measurements of the image can be acquired.

The single-pixel camera collects K measurements of an image without first collecting
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the L pixels of the image. Besides, there is only a single photodiode, which potentially

enables imaging at new wavelengths that are too expensive to measure using CCD or CMOS

technology. Other features of the single-pixel camera include (1) the universal measurement

bases which are incoherent with arbitrary sparsifying bases, (2) encrypted measurements

which are tied to a random seed that can be kept secure, and (3) scalable progressive

reconstruction which yields better quality as more measurements are obtained.

Fig. 2.3: One possible optical setup to implement the imaging using random coded aperture
[8].

Another CS based imaging architecture is proposed in [8]. In this architecture, the

measurement matrix is implemented by employing random aperture coding. One possible

optical setup for such architecture is shown in Fig. 2.3. An L-pixel image is placed at a

distance of z1 from the lens. The image plane, which is the CCD array of size K ≪ L, is

placed at a distance of z2 from the lens on the other side. A random Gaussian phase mask

is attached to the lens, which randomly encodes the aperture. The scattered light from the

random phase mask is collected by the lens and reaches the CCD array where a K-pixel

image is formed.

The random coded aperture architecture and the single-pixel camera have their own

advantages and disadvantages. The random coded aperture architecture requires only a
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single shot, whereas the single-pixel camera requires successive random exposures to be

taken. A CCD array of size K is needed in the random coded aperture architecture, whereas

only one photodiode is needed in the single-pixel camera. Nevertheless, they both require

fewer optical sensors than traditional imaging devices.
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Chapter 3

Parallel Compressed Sensing with

Permutation for 2D Signals1

Recently, the research interest in applying CS to sample multidimensional signals has in-

creased significantly. 2D signals such as images and video frames are typical examples of

multidimensional signals. A branch of CS theory, named compressive imaging, is introduced

in [6], where the single-pixel camera is proposed. The single-pixel camera acquires a group

of measurements of an image using different patterns of the DMD array, without collecting

the pixels. Mathematically, each pattern of the DMD array plays the role of a row in the

measurement matrix Φ, and the image is viewed as a vector. Consequently, the size of

the DMD array is the same as the expected number of pixels in the image. The research

is extended to sample color images by combining the Bayer color filter and the DMD ar-

ray [34]. Furthermore, for reconstruction, the architecture proposed in [34] employs joint

sparsity models to exploit the correlation among different color channels. However, as the

expected number of pixels in the image increases, the number of columns and the required

number of rows in the measurement matrix Φ also increase. In other words, both the size

and the required number of patterns of the DMD array increase. Therefore, the implemen-

tation cost and the complexity of the encoder increase significantly as well. For example,

the storage of Φ and computational complexity for acquiring measurements are unwieldy

for any normal size images. A general framework for sampling multidimensional signals,

named Kronecker CS, is proposed in [23]. In Kronecker CS, a multidimensional signal is

vectorized and then sampled using a measurement matrix which is the Kronecker product of

several smaller-sized measurement matrices that correspond to the measurement processes

1Some preliminary results in this chapter have been presented at Asilomar 2012, Pacific Grove, Cali-
fornia, USA [32]. A version of this chapter has been submitted to IEEE Trans. on Signal Process. for
publication [33].
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for different portions of the multidimensional signal2. After finding such Kronecker product,

the resulting measurement matrix clearly has a very large size. Thus, the problem related

to the storage of Φ and computational complexity for acquiring measurements arises in the

Kronecker CS framework.

To address the above problem, instead of storing the Kronecker product of several mea-

surement matrices, all portions of the multidimensional signal can be sampled sequentially

using corresponding smaller-sized measurement matrices. Then the encoder needs to store

only the smaller-sized measurement matrices. Using this approach, a separable sensing

operator is designed for compressive imaging in [35], where an imaging operator (the mea-

surement matrix for the whole image) can be separated into two dimensions. The separable

sensing operator design significantly reduces the complexity of implementation, storage, and

usage of the imaging operator. Another solution to the problem of storage and computa-

tional complexity is the block CS of [36]. The idea is to divide a 2D signal into smaller

blocks and sample individual vectorized blocks, whereas all blocks need to be reconstructed

as a whole. The block CS of [36] uses a block-diagonal measurement matrix for sampling

the vectorized signal x. As a result, the block CS can reduce the storage and computational

complexity at the encoder side. Some improved reconstruction algorithms for the block CS

scheme are presented in [37]. They help to further reduce the required number of rows in the

measurement matrix Φ for a given reconstruction error requirement. Based on the block

CS architecture, a fast sampling operator is proposed in [38] using the block Hadamard

ensemble, which can be easily implemented in the optical domain.

The use of fast algorithms for computing measurements by taking advantage of the

measurement matrix’s structure is another way to address the problem of storage and com-

putational complexity at the encoder side. For example, in [5] and [39], a scrambled Fourier

ensemble is used as the sensing matrix A and the wavelet basis is used as the orthonor-

mal basis Ψ in which the image projection is sparse. Thus, the sampling process can be

implemented efficiently by first transforming a 2D image into the wavelet domain and then

applying A to the wavelet coefficients by means of the fast Fourier transform. The spar-

sity structure of the multidimensional signal can be employed as well to reduce the storage

and computational complexity at the encoder side. It is proposed in [40] to decompose the

wavelet coefficients of a 2D signal into sparse components and dense components, and apply

CS only to sparse components using a smaller-sized sensing matrix. In [41] and [42], the

2For example, for a 2D signal, the smaller-sized measurement matrices can correspond to the measurement
processes for rows and for columns of the 2D signal, respectively.
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statistical structure of the wavelet coefficients of a 2D image is considered for CS recon-

struction of the image by using a scale mixture model. It is shown that fewer measurements

are required in order to achieve a given reconstruction error performance. In addition,

the scheme in [41] suggests to rearrange the wavelet coefficients into a new 2D matrix and

sample each column of the matrix using the same sensing matrix A of a smaller size.

All above research works focus on the encoder side, aiming at reducing the implementa-

tion cost and the storage and computational complexity of the encoder. Joint reconstruction

is employed in these schemes, and thus, the complexity at the decoder side is still high.

Taking into account the implementation cost and the storage and computational com-

plexity of the decoder, a block-based CS architecture can be employed in video compression

where all blocks can be sampled and reconstructed independently. In [43] and [44], it is

proposed to apply CS only to sparse blocks found by a block classification scheme that con-

siders the difference of sparsity levels among different blocks in an image or a video frame.

Another block classification scheme based on inter-frame correlation is proposed in [45].

In this chapter, a parallel CS architecture is developed. A multidimensional sparse

signal is considered, i.e., the signal is assumed to be sparse in the identity basis. The

multidimensional signal is first rearranged into a 2D matrix, and then sampled column

by column via CS using the same sensing matrix. In this way, the required size of the

sensing matrix can be reduced significantly compared to the architecture that samples the

vectorized signal. Furthermore, both sampling and reconstruction can be conducted for

individual columns in parallel. Note that several works use a similar column-by-column

sampling setting at the encoder side, e.g., the aforementioned scheme of [41]. The focus

of [41] is on studying the scale mixture models used in CS for image reconstruction. The

signal considered in [41] is the matrix of wavelet coefficients.

Another example is the multiple measurement vectors (MMV) model of [46], which

considers a group of signals that share the same sparsity profile. In the MMV model, signals

from a group of signals are sampled using the same dictionary, which is analogous to the

sensing matrix in CS, while the group of signals can be viewed as a virtual 2D signal. Joint

reconstruction is then used for the MMV model. Compared to the aforementioned works

[41] and [46], which consider some specific sparse signals and require joint reconstruction

at the decoder side, we address a more general setting at the encoder side and develop a

parallel reconstruction at the decoder side. Moreover, we derive some analytical results

related to the parallel CS scheme. Although joint reconstruction of multiple vectors, e.g.,

reconstruction of multiple vectors via sum-of-norm minimization, can bring some benefits
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[47], it is shown that the uniform-recovery rate in the sum-of-norm minimization case cannot

exceed that for the case of individual reconstruction of each vector [48]. Besides, there are

problems that cannot be solved by the joint recovery via sum-of-norm minimization, but

can be solved by reconstructing each vector individually and independently [48].

In the parallel CS architecture proposed in this chapter, a 2D signal may be permuted

before it is sampled. It is because the permutation may provide benefits, for example, in

computation and storage. Permutations are studied in several papers related to CS, though

the goals of permutations in the existing literature are very different from our goal here. In

[49], a segmented CS architecture is proposed and it is shown that a similar improvement

to that obtained by increasing the size of the measurement matrix can be achieved by using

a virtual extended measurement matrix obtained by permuting the existing rows of the

initial measurement matrix. In [50], it is shown that if nonzero entries of a sparse signal

are clustered, the deterministic Delsarte-Goethals frame used as sensing matrix does not

work. Thus, it is proposed to apply permutations to the signal in order to avoid clustered

nonzero entries. In this chapter, the goal for applying permutations is different. Specif-

ically, the parallel CS architecture considers sensing matrices that satisfy the RIP, and

permutation is applied to 2D-reshaped signal aiming at ensuring that all columns of such

signal have similar sparsity levels. We show that if a so-called acceptable permutation is

conducted before sampling, the sensing matrix needs to satisfy the RIP of a smaller order

than the sensing matrix of the parallel CS without any permutation. Thus, the storage

and computational complexity can be further reduced. In this chapter, a group-scan-based

permutation is introduced for 2D signals which can be divided into a number of groups

with elements in each group having the same probability to be large in magnitude. As

a special case of such group-scan-based permutation, a zigzag-scan-based permutation is

introduced and investigated for 2D signals satisfying a newly introduced layer model. An-

other example of the group-scan-based permutation, named block-test-based permutation,

is introduced as well. A video compression scheme based on the parallel CS architecture

with the zigzag-scan-based permutation and/or the block-test-based permutation is investi-

gated. It improves the peak signal-to-noise ratio (PSNR) of reconstructed frames compared

to the parallel CS architecture without permutation. This demonstrates the effectiveness

of the zigzag-scan-based permutation and the block-test-based permutation in image and

video compression.

In summary, the work in this chapter makes four main contributions. First, we propose a

parallel CS scheme, which reduces the required size of sensing matrix and can be conducted
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at both the encoding and decoding sides in a parallel (column-by-column) manner. Second,

we investigate properties of permutations when applied to parallel CS. Third, we introduce

a group-scan-based permutation, a zigzag-scan-based permutation and a block-test-based

permutation. As an example we show that the zigzag-scan-based permutation is an ac-

ceptable permutation with a large probability for 2D signals satisfying a newly introduced

layer model. Finally, an application of the proposed parallel CS with the zigzag-scan-based

permutation to video compression in wireless multimedia sensor networks is discussed.

The remainder of this chapter is organized as follows. Subsection 3.1 introduces the

parallel CS scheme. Permutations are discussed in Subsection 3.2. Subsection 3.3 describes

the video compression scheme that employs parallel CS with the zigzag-scan-based permu-

tation in application to wireless multimedia sensor networks. Simulation results are given

in Subsection 3.4. Finally, Subsection 3.5 concludes this chapter.

3.1 Parallel CS

Any multidimensional sparse signal can be rearranged into a 2D matrix X ∈ R
M×N . A

multidimensional signal and the corresponding 2D matrix X are called to be S-sparse or

to have sparsity level S if X has only S nonzero entries. The sparsity level of X can also

be denoted in a sparsity vector s = [s1, s2, · · · , sN ] where sj is the sparsity level of the j-th

column of X and ||s||1 = S. In other words, the j-th column of X has only sj nonzero

entries.

In terms of the 2D signal X, the parallel CS architecture consists of sampling each

column of X by the same sensing matrix A and reconstructing these columns individually

and in parallel. In this chapter, for presentation simplicity, only 2D signals are considered,

i.e., rearrangement of a multidimensional signal into a 2D matrix is done in advance.

Based on Lemma 1, the following lemma gives a sufficient condition for exact recon-

struction of a 2D S-sparse signal in the parallel CS architecture.

Lemma 2: Consider a 2D S-sparse signal X with sparsity vector s, if the RIP of order

||s||∞ holds for the sensing matrix A, i.e., δ2||s||∞ <
√
2 − 1, then X can be exactly recon-

structed by the parallel CS architecture. Here || · ||∞ stands for the Chebyshev norm of a

vector.3

Proof. The proof follows the same steps as the proof for the following Lemma 3, and there-

fore, is omitted here for brevity.

3The Chebyshev norm of a vector is equal to the largest magnitude of the elements in the vector.
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For a 2D compressible signal X, the following lemma gives a sufficient condition that

the reconstruction error in the parallel CS architecture is bounded by the ℓ1-norm of the

approximation error when the best S-term approximation of X, denoted as XS , is used to

approximate X.

Lemma 3: Let XS ∈ R
M×N , which has a sparsity vector s = [s1, s2, · · · , sN ], be the best

S-term approximation of X ∈ R
M×N . If the sensing matrix A obeys the RIP of order

||s||∞, i.e., δ2||s||∞ <
√
2− 1, then the signal X̂ reconstructed in the parallel CS architecture

obeys

||X̂−X||1 ≤ G · ||X−XS ||1 and

||X̂−X||2 ≤ G′ · ||X−XS ||1 (3.1)

where G and G′ are finite constants.

Proof. Note that for all 1 ≤ j ≤ N , ||s||∞ ≥ sj . Then according to the definition of t-

restricted isometry constant, we have δ2sj ≤ δ2||s||∞ <
√
2− 1. In turns, according to (2.6),

the following inequalities hold for every j

||x̂j − xj ||1 ≤ Gj · ||xj − xS
j ||1

and

||x̂j − xj ||2 ≤ G′
j · ||xj − xS

j ||1 · s
−1/2
j

where x̂j and xS
j denote the j-th column of X̂ and the j-th column of XS , respectively, and

Gj and G′
j are finite constants. Therefore, by choosing G = maxj{Gj} and G′ = maxj{G′

j},
it can be obtained that

||X̂−X||1 =
N∑

i=1

||x̂j − xj ||1 ≤ G ·
N∑

j=1

||xj − xS
j ||1 = G · ||X−XS ||1

and

||X̂−X||2 =

√
√
√
√

N∑

j=1

||x̂j − xj ||22

≤

√
√
√
√G′2 ·

N∑

i=1

||xj − xS
j ||21 = G′ ·

√
√
√
√

N∑

j=1

||xj − xS
j ||21

≤ G′ ·
N∑

j=1

||xj − xS
j ||1 = G′ · ||X−XS ||1.

This completes the proof.
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To sum up, in the parallel CS architecture, the RIP condition for the sensing matrix A

for a given reconstruction quality is related to the Chebyshev norm of the sparsity vector,

i.e., ||s||∞. In Subsection 3.2.1, it will be shown that the RIP condition can be relaxed by

performing a so-called acceptable permutation before parallel sampling the signal.

3.2 Permutation

When the parallel CS architecture is applied to a 2D compressible signal4 X, the difference

of sparsity levels among columns of XS (which has sparsity vector s) is not considered.

Thus, the “worst-case” sparsity level of the columns of XS , i.e., ||s||∞, needs to be taken

into account when designing the sensing matrix. In this section, permutation is introduced

such that by permuting5 entries of X all columns of the best S-term approximation of the

newly formed 2D signal would share similar sparsity levels.

Let P(·) be a permutation operator which maps a matrix into another matrix by per-

muting its elements and P−1(·) be the corresponding inverse permutation operator. Then

X† = P(X) and X = P−1(X†) where X† ∈ R
M×N is a permuted 2D signal.

With permutation performed before sampling, the parallel sampling process can be

described as follows

yj = Ax†
j (3.2)

where x†
j is the j-th column of X†, and yj is the measurement vector of x†

j . The equation

(3.2) can be rewritten in the matrix form as

Y = AX† = AP(X) (3.3)

where Y = [y1,y2, · · · ,yN ].

For signal reconstruction, all columns of X† can be reconstructed in parallel by any

existing CS reconstruction algorithm. Let X̂† be the reconstructed permuted signal. Then

we can apply inverse permutation to X̂† to obtain reconstructed 2D signal X̂, i.e.,

X̂ = P−1(X̂†). (3.4)

3.2.1 Discussion about permutation

For any multidimensional signal, the permutation can be either applied after or included

in the process of rearranging the multidimensional signal into a 2D matrix. The block-

4Without loss of generality, compressible signals are considered in the remainder of the chapter, since
sparse signals can be regarded as special case of compressible signals.

5In this chapter, when we say “permute”, it means exchanging entries in a 2D matrix, while not changing
the dimension of the matrix.
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based CS employed in [36], [37], and [44] is a special case of the parallel CS architecture,

which can be interpreted as making each vectorized block as a column of a new 2D signal.

Furthermore, the problem of difference of sparsity levels among blocks is addressed in [44]

by employing a classification scheme to identify sparse blocks and dense blocks and then

applying CS only to the sparse blocks. In the parallel CS architecture, permutation is

applied to a 2D compressible signal X or integrated into the process of rearrangement of a

multidimensional signal to a 2D compressible signal X such that all columns of (X†)S (the

best S-term approximation of the resulted 2D signal) are sparse. Thus, the classification

step which is necessary in [44] can be avoided.

Consider a compressible 2D signalX and its best S-term approximationXS with sparsity

vector s (then we have ||s||1 = S). If the sensing matrix A ∈ R
K×M is constructed from

Gaussian ensembles with

K ≥ C · ||s||∞ log (M/||s||∞) (3.5)

for some constant C, then it will satisfy the RIP of order ||s||∞ [9]. Thus, according to

Lemma 3, the signal X̂ reconstructed in the parallel CS architecture obeys (3.1).

Definition 3: For a 2D compressible signal X ∈ R
M×N and its best S-term approximation

XS with sparsity vector s, a permutation P(·) is called acceptable for X if the Chebyshev

norm of the sparsity vector of the best S-term approximation of the permuted 2D signal

P(X) is smaller than ||s||∞.

When permutation is applied before parallel CS, the signal after permutation is X†, and

the best S-term approximation of X† is denoted as (X†)S with sparsity vector s† (then we

have ||s†||1 = S). Consider that M ≫ ||s||∞ as well as M ≫ ||s†||∞, i.e., XS and (X†)S

are sparse enough. If ||s†||∞ < ||s||∞, it can be seen that in the parallel CS architecture

with an acceptable permutation, the lower bound of K in (3.5) is smaller than that in

the parallel CS architecture without an acceptable permutation. In other words, for the

sufficient condition in Lemmas 2 and 3, the condition that “A obeys the RIP of order

||s†||∞” for the parallel CS architecture with an acceptable permutation is weaker than the

condition that “A obeys the RIP of order ||s||∞” for the parallel CS architecture without an

acceptable permutation. To sum up, the RIP condition for a given reconstruction quality

is weaker after permutation if ||s†||∞ is smaller than ||s||∞.

Since ||s†||1 = ||s||1 = S, it is desired that after an acceptable permutation, the S

nonzero elements in the best S-term approximation of the permuted 2D signal are evenly

distributed among the columns, which leads to minimum ||s†||∞. The permutation that
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allows to achieve minimum ||s†||∞ is called an optimal permutation and it is formally

defined below.

Definition 4: For a 2D compressible signal X ∈ R
M×N and its best S-term approximation

XS, if after a permutation, the best S-term approximation (X†)S of the resulted 2D signal

X† has sparsity vector s∗ satisfying maxi{s∗i }−mini{s∗i } ≤ 1, where s∗i denotes the i-th entry

of s∗, then s∗ is called an optimal sparsity vector of XS and the corresponding permutation

is call an optimal permutation of X.

Lemma 4: For a 2D compressible signal X ∈ R
M×N and its best S-term approximation

XS, there exists
(

N
S−⌊S/N⌋

)
optimal sparsity vectors s∗ of XS, where

(
n
k

)
is the binomial

coefficent “n choose k” and ⌊·⌋ denotes the floor function.

Proof. Obviously, ||s∗||1 = S. If ⌈S/N⌉ = ⌊S/N⌋ = S/N (where ⌈·⌉ denotes the ceiling

function), we can immediately find an optimal sparsity vector s∗ whose entries are all

S/N , and this is the only optimal sparsity vector under this case. If ⌈S/N⌉ 6= ⌊S/N⌋, we
consider a permutation on X such that for the best S-term approximation of the resulted

2D signal, there are ⌈S/N⌉ nonzero elements in each of the first S−N⌊S/N⌋ columns, and

the remaining nonzero elements are evenly distributed among the remaining columns. Then

each of the last N⌈S/N⌉ − S columns has ⌊S/N⌋ nonzero entries. Therefore, the sparsity

vector of the best S-term approximation of the permuted 2D signal is an optimal sparsity

vector. Obviously, there are totally
(

N
S−⌊S/N⌋

)
optimal sparsity vectors. This completes the

proof.

From the proof of Lemma 4, it follows that optimal sparsity vector and optimal permu-

tation may not be unique, and the Chebyshev norm of an optimal sparsity vector of XS is

equal to ⌈S/N⌉.
In most scenarios, finding an optimal permutation may not be practical. Thus, an

acceptable permutation (see Definition 3) can be used instead.

3.2.2 Group-scan-based permutation

The following observation is of interest. For a 2D compressible signal X ∈ R
M×N consider

a permuted signal X† and its best S-term approximation (X†)S . For any 1 ≤ i ≤ N , if all

elements in the i-th row of (X†)S share the same probability to be nonzero, denoted as pi,

then all columns of (X†)S have the same expected sparsity level, given as
∑M

i=1 pi.

For example, when M = N = 4, if after a permutation the elements in the 1st, 2nd,

3rd, and 4th rows of (X†)S have respectively probabilities p1 = 0.9, p2 = 0.3, p3 = 0.2, and
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p4 = 0.1 to be nonzero, then for the sparsity vector of (X†)S , denoted as s† = [s†1, s
†
2, s

†
3, s

†
4],

we have

E

{

max
j

{s†j} −min
j

{s†j}
}

= 1.3881

and

Pr

{

max
j

{s†j} −min
j

{s†j} ≤ 1

}

= 0.6003 (3.6)

where E{·}means expectation of an event. Thus, the permutation in this example is optimal

with probability 0.6003.

For the best S-term approximation XS of a 2D compressible signal X ∈ R
M×N consider

that elements in XS can be divided into several non-overlapped groups, and in each group

all elements share the same probability to be nonzero. Based on the observation at the

beginning of this subsection, a permutation, named group-scan-based permutation, can work

as follows: 1) preform group-by-group scan6 of the 2D compressible signal X into a vector,

and 2) row-wisely reshape the resulted vector into a new M ×N 2D signal. In this way, all

columns of the best S-term approximation of the new 2D signal are likely to have similar

sparsity levels.

3.2.3 Zigzag-scan-based permutation

Definition 5: For a 2D signal X ∈ R
M×N , let X(i, j) denote the element in the position

(i, j). The m-th (1 ≤ m < M+N) layer of X is the group of all elements X(i, j)’s satisfying

i+ j − 1 = m.

For example, when M = N = 4, the following matrix

X =







x1 x2 x6 x7
x3 x5 x8 x13
x4 x9 x12 x14
x10 x11 x15 x16







(3.7)

has 7 layers, including {x1}, {x2, x3}, {x4, x5, x6}, {x7, x8, x9, x10}, {x11, x12, x13}, {x14, x15},
{x16}, respectively. The layers of X are parallel to each other.

For a 2D compressible signalX, if elements in each layer of its best S-term approximation

XS have similar probabilities to be nonzero (an example when this condition is satisfied is

to be given later in this subsection), then the following zigzag-scan-based permutation can

be applied, which is a special example of the group-scan-based permutation.

Define the zigzag-scan-based permutation P: RM×N → R
M×N for a 2D signal X ∈

R
M×N as P(X) = R(Z(X)), where R: RMN → R

M×N is the row-wisely reshaping function

6That is, first scan all elements in the first group, then scan all elements in the second group, and so on.
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which row-wisely turns a vector into an M×N matrix and Z: RM×N → R
MN is the zigzag

scan function which turns a matrix into a “zigzag” sequence.

Correspondingly, define the inverse zigzag-scan-based permutation P−1: RM×N → R
M×N

for a 2D signal X† ∈ R
M×N as P−1(X†) = Z−1(R−1(X†)), where R−1: R

M×N → R
MN is a

vectorization function which row-wisely turns a matrix into a vector and Z−1: RMN → R
M×N

is inverse zigzag scan function which turns a “zigzag” sequence into an M ×N matrix.

For example, the matrix X given in (3.7) becomes a “zigzag” sequence after zigzag scan,

i.e.,

Z(X) = [x1, x2, x3, x4, x5, x6, x7, · · · , x16]

and then becomes the permuted signal X† after row-wisely reshaping, that is,

X† = P(X) = R(Z(X))

= R([x1, x2, x3, x4, x5, x6, x7, · · · , x16])

=







x1 x2 x3 x4
x5 x6 x7 x8
x9 x10 x11 x12
x13 x14 x15 x16







and again becomes a “zigzag” sequence after vectorization, that is,

R−1(X†) = Z(X) = [x1, x2, x3, x4, x5, x6, x7, · · · , x16]

and then returns to the original 2D signal X after inverse zigzag scan, that is,

P−1(X†) = Z−1(R−1(X†)) = X.

Thus, according to the analysis in Subsection 3.2.2, if elements in each layer of XS share

similar probabilities to be nonzero, after the zigzag-scan-based permutation, all columns of

the permuted XS tend to have similar sparsity levels.

Definition 6: Consider a 2D compressible signal X ∈ R
M×N and its best S-term approxi-

mation XS. For given transition layer indices r0, r1, r2 and a decay factor α, we say that

X follows the (r0, r1, r2, α)-layer model if the probability of the event Em that an element

in the m-th layer of XS is nonzero follows the probability distribution

Pr {Em} =







0 1≤ m ≤r0
1 r0+1≤ m ≤r1
e−α(m−r0) r1+1≤ m ≤r2
0 r2+1≤ m≤M+N−1.

Based on the (r0, r1, r2, α)-layer model, we have the following proposition for the zigzag-

scan-based permutation.
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Proposition 1: If a 2D compressible signal X ∈ R
M×N follows the (r0, r1, r2, α)-layer

model with r2 ≥ 2r1 − 3r0 − 1 and 0 ≤ r0 < r1 < r2 ≤ min{M,N}, the zigzag-scan-based

permutation P(·) is an acceptable permutation with a large probability that is given as

Pr {P is acceptable} = Pr
{

||s||∞ > ||s†||∞
}

≥ 1−
[ r2∏

m=r1+1

(1− pm)m
]

·
r2∏

j=1

{

1+

min{⌈(r0+r2+1)/2⌉,
r2−r0,r2−j+1}

∑

k=kj+1

∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

1

(eα(a1−1−r0)−1)· · ·(eα(ak−kj
−1−r0)−1)

}

(3.8)

where s and s† are the sparsity vectors of the best S-term approximation of X and X†,

respectively, X† is a 2D signal after the zigzag-scan-based permutation, and for 1 ≤ j ≤ r2,

Aj := {mj , mj + 1, · · · , r2}, mj = max {r1 + 1, j}, and

kj =







r1 − r0, 1 ≤ j ≤ r0
r1 − j + 1, r0 + 1 ≤ j ≤ r1
0, r1 + 1 ≤ j ≤ r2.

Proof. Denote the j-th element of the sparsity vector s as sj , i.e., the sparsity level of the j-

th column of XS is sj . Since X follows the (r0, r1, r2, α)-layer model, the nonzero elements

in XS are all in layers of XS whose indices range from r0 + 1 to r2. After performing

the zigzag-scan-based permutation on XS , the maximal number of nonzero entries in any

column is u=⌈(r0 + r2 + 1)(r2 − r0)/2N⌉. Therefore, u ≥ ||s†||∞. Let l = ⌈(r0 + r2 + 1)/2⌉.
Since r2 ≤ min {M, N} and r2 ≥ 2r1 − 3r0 − 1, we have l ≥ u and l ≥ r1 − r0.

As a result, the probability that the zigzag-scan-based permutation of a 2D signal sat-

isfying the (r0, r1, r2, α)-layer model is an acceptable permutation can be expressed as

Pr {P is acceptable} = Pr{||s||∞ > ||s†||∞} (3.9a)

=

r2−r0∑

t=1

Pr{||s||∞ = t, ||s†||∞ ≤ t− 1} (3.9b)

≥
r2−r0∑

t=u+1

Pr{||s||∞ = t, ||s†||∞ ≤ t− 1}

=

r2−r0∑

t=u+1

Pr{||s||∞ = t} (3.9c)

= Pr{||s||∞ ≥ u+ 1}= 1− Pr{||s||∞ ≤ u}

≥ 1− Pr{||s||∞ ≤ l}. (3.9d)
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Fig. 3.1: Regions in the (r0, r1, r2, α)-layer model .

To write (3.9a), we have used the fact that an acceptable permutation must result in

||s†||∞ < ||s||∞. For deriving (3.9b), we have used the fact that the maximal sparsity

level among columns of the best S-term approximation XS is upper bounded by (r2 − r0),

i.e., ||s||∞ ≤ r2 − r0, which immediately follows from the (r0, r1, r2, α)-layer model. For

deriving (3.9c), we have used the fact that u ≥ ||s†||∞. Finally, for deriving (3.9d), we have

used the fact that u ≤ l. Based on (3.9d), we focus on the cumulative distribution function

of ||s||∞.

Since the events that sj ≤ l for different j’s are independent with each other, we have

Pr{||s||∞ ≤ l} =

N∏

j=1

Pr{sj ≤ l}. (3.10)

Moreover, since the position (i, j) of an element in XS indicates the index m of the layer

where the element is located, i.e., m = i+ j − 1, we can define three regions in XS :

R1 = {(i, j) ∈ Z
2|r0 + 1 ≤ i+ j − 1 ≤ r1}

R2 = {(i, j) ∈ Z
2|r1 + 1 ≤ i+ j − 1 ≤ r2}

R3 = {(i, j) ∈ Z
2|1 ≤ i+ j − 1 ≤ r0} ∪

{(i, j) ∈ Z
2|r2 + 1 ≤ i+ j − 1 ≤ M +N − 1}.

These regions are separated by three transition layers, i.e., the r0-th layer, the r1-th layer,
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and the r2-th layer. Theses regions are shown in Fig. 3.1. Therefore, according to Definition

6, all elements of XS are nonzero with probability 1 in region R1. In region R3, all elements

of XS are zero with probability 1. In region R2, the probability of an element to be nonzero

decreases exponentially with decay factor α as the layer index m increases. We use pm to

denote the probability of an element in the m-th layer of XS to be nonzero.

For the j-th column of XS , if r2 + 1 ≤ j ≤ N , all elements of the column are in region

R3 and thus are all zeros. We have Pr{sj ≤ l} = 1 since l ≥ r1 − r0 ≥ 1. According to

(3.10), we have

Pr{||s||∞ ≤ l} =

r2∏

j=1

Pr{sj ≤ l} =

r2∏

j=1

l∑

k=0

Pr{sj=k}. (3.11)

Consequently, we focus on the probability distribution of sj for the first r2 columns of XS ,

i.e., Pr{sj = k} for all 0 ≤ k ≤ l and 1 ≤ j ≤ r2.

Let kj denote the number of elements in the j-th column of XS that are in the region

R1, i.e.,

kj =







r1 − r0, 1 ≤ j ≤ r0
r1 − j + 1, r0 + 1 ≤ j ≤ r1
0, r1 + 1 ≤ j ≤ r2.

Meanwhile, in the j-th column (1 ≤ j ≤ r2) of X
S , mj = max{r1 + 1, j} and r2 are the

starting and ending layer indices of region R2, respectively.

In (3.11), for 1 ≤ j ≤ r2, i.e., the first r2 columns of XS , we consider three cases

depending on the value of k: 1) k = kj ; 2) kj + 1 ≤ k ≤ min{r2 − r0, r2 − j + 1}; and
3) k ≤ kj − 1 or k ≥ min{r2 − r0 + 1, r2 − j + 2}.

For the first case, i.e., k = kj , it can be seen that the event that sj = k happens when

the elements of the j-th column of XS that are in the region R2 are all zeros. Therefore,

we have

Pr{sj = k} =

r2∏

m=mj

(1− pm). (3.12)

For the second case, i.e., kj+1 ≤ k ≤ min{r2−r0, r2−j+1}, the event that sj = k means

that the j-th column of XS has (k − kj) nonzero elements in the region R2. Denote the

indices of these (k − kj) nonzero elements as a1, a2, · · · , ak−kj with a1 < a2 < · · · < ak−kj .
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So a1, a2, · · · , ak−kj ∈ Aj
△
= {mj ,mj + 1, · · · , r2}. We then have

Pr{sj = k}

=
∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1 · · · pak−kj

r2∏

m=mj

m6=ai
i=1,···,k−kj

(1−pm)

=
∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1 · · · pak−kj

(1−pa1) · · · (1−pak−kj
)

r2∏

m=mj

(1−pm)

=

[ r2∏

m=mj

(1−pm)

]
∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1 · · ·pak−kj

(1−pa1)· · ·(1−pak−kj
)
. (3.13)

For the third case, i.e., k ≤ kj − 1 or k ≥ min{r2 − r0 + 1, r2 − j + 2}, since kj ≤ sj ≤
min{r2 − r0, r2 − j + 1} for 1 ≤ j ≤ r2, the event that sj = k never happens, i.e.,

Pr{sj = k} = 0. (3.14)

According to (3.9d) and (3.11)-(3.14) and the fact that l ≥ r1 − r0 ≥ kj , we have

Pr {P is acceptable}
≥ 1−∏r2

j=1

{
∏r2

m=mj
(1− pm)

+
∑min{l,r2−r0,r2−j+1}

k=kj+1

[
∏r2

m=mj
(1−pm)

]
∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1 ···pak−kj

(1−pa1 )···(1−pak−kj
)

}

= 1−∏r2
j=1

[
∏r2

m=mj
(1−pm)

]

·∏r2
j=1

{

1+
∑min{l,r2−r0,r2−j+1}

k=kj+1

∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1 ···pak−kj

(1−pa1 )···(1−pak−kj
)

}

(a)
= 1−

[
∏r1

j=1

∏r2
m=r1+1

(1−pm)

·∏r2
j=r1+1

∏r2
m=j(1−pm)

]

·∏r2
j=1

{

1+
∑min{l,r2−r0,r2−j+1}

k=kj+1

∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1 ···pak−kj

(1−pa1 )···(1−pak−kj
)

}

= 1−
[
∏r2

m=r1+1(1− pm)r1 ·∏r2
m=r1+1(1− pm)m−r1

]

·
∏r2

j=1

{

1+
∑min{l,r2−r0,r2−j+1}

k=kj+1

∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1···pak−kj

(1−pa1 )···(1−pak−kj
)

}

= 1−
[
∏r2

m=r1+1(1− pm)m
]

·∏r2
j=1

{

1+
∑min{l,r2−r0,r2−j+1}

k=kj+1

∑

a1,a2,···,ak−kj
∈Aj

a1<a2<···<ak−kj

pa1···pak−kj

(1−pa1 )···(1−pak−kj
)

}

where to obtain (a) we have used the fact that mj = r1 + 1 for 1 ≤ j ≤ r1 and mj = j

for r1 + 1 ≤ j ≤ r2. Using the facts that l = ⌈(r0 + r2 + 1)/2⌉ and pm = e−α(m−r0−1) for

r1 + 1 ≤ m ≤ r2, we obtain (3.8). This completes the proof.
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Fig. 3.2: Lower bound of Pr {P is acceptable} in (3.8) for r0 = 0, r1 = 1.

Figs. 3.2–3.4 show the value of the lower bound on the probability Pr{P is acceptable} in

(3.8) under different α and r2 for 1) r0 = 0, r1 = 1; 2) r0 = 0, r1 = 2; and 3) r0 = 3, r1 = 5.

It can be seen that the lower bound on Pr {P is acceptable} is large enough in general. For

other values of r0 and r1, the results are similar.

From Proposition 1, it can be seen that the zigzag-scan-based permutation is an accept-

able permutation for a very broad class of signals. The knowledge of exact locations of the

nonzero entries of the best S-term approximation XS , i.e., the knowledge of the support of

the 2D signal XS , is not needed.

As an example, we show that the zigzag-scan-based permutation is particularly useful

for 2D-DCT (DCT2) coefficient matrices of 2D piecewise smooth image signals. Since most

of the large elements in the DCT2 coefficient matrix of a piecewise smooth image signal

typically lie in the top left corner, and small elements lie in the bottom right corner because

most of the energy of such image signal is concentrated in low frequencies, the zigzag scan

process is commonly used in image compression like JPEG [1]. Thus, the DCT2 coefficient

matrices of piecewise smooth image signals satisfy the (r0, r1, r2, α)-layer model with r0 = 0

(which will also be shown via simulations in Subsection 3.4.1), and thus, the proposed

zigzag-scan-based permutation has a large probability to be an acceptable permutation

when parallel CS is applied to the DCT2 coefficient matrices. Note that the knowledge
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Fig. 3.4: Lower bound of Pr {P is acceptable} in (3.8) for r0 = 3, r1 = 5.

of the layer indices r1, r2 and the decay factor α of the layer model is not needed when

applying the zigzag-scan-based permutation to the DCT2 coefficient matrices.

Fig. 3.5 shows the difference before and after the zigzag-scan-based permutation when
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(a) Before the zigzag-scan-based permu-
tation

(b) After the zigzag-scan-based permu-
tation

Fig. 3.5: Energy distribution of a DCT2 coefficient matrix before and after the zigzag-scan-
based permutation.

the 2D signal is the DCT2 coefficient matrix of an image. The energy, which can be loosely

viewed as an interpretation of the sparsity vector, if all non-zero entries of the 2D signal

have magnitude of the same order, is distributed more evenly among columns after the

zigzag-scan-based permutation.

One advantage of the zigzag-scan-based permutation is that it is a pre-defined per-

mutation, and thus, the encoder and decoder know it in advance without any additional

communication. In Subsection 3.4.1, we will also show by simulations that the zigzag-scan-

based permutation is an acceptable permutation for DCT2 coefficient matrices of several

typical images.

3.2.4 Block-test-based permutation

In this subsection, another permutation based on the notion of group-scan-based permuta-

tion is proposed, named block-test-based permutation. Consider a 2D signal whose nonzero

entries are clustered in some regions, e.g., the difference between two consecutive frames in a

low-motion video sequence, whose nonzero entries are likely to be clustered in regions where

the moving objects in the video frames are located. If the 2D signal is divided into a number

of blocks, then all blocks are classified into two groups: one group includes blocks that have

nonzero entries, and the other group includes blocks with all entries being zeros. Then in

the group-scan-based permutation, blocks in the first group are scanned first, followed by

blocks in the second group. The classification is called block test, and the corresponding
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permutation is named block-test-based permutation.

For clarity, X[i] ∈ R
b1×b2 is used to denote the i-th block of X ∈ R

M×N when divided

into B non-overlapping blocks of size b1 × b2, i.e.,

X =








X[1] X[2] · · · X[ 1
MB]

X[ 1
MB + 1] X[ 1

MB + 2] · · · X[ 2
MB]

...
...

. . .
...

X[M−1
M B + 1] X[M−1

M B + 2] · · · X[B]







.

A block X[i] is said to pass the block test if X[i] has sparsity larger than 0. Define the

set of block indices that pass the block test as

B = {i | I(||X[i]||1 > 0), 1 ≤ i ≤ B}

where I(·) is the indicator function.

For i1 < i2 < · · · < im and j1 < j2 < · · · < jn, define the block test function T:

R
M×N → R

MN of X as

T(X) = [V(X[i1]),V(X[i2]), · · · ,V(X[im]),V(X[j1]),V(X[j2]), · · · ,V(X[jn])]

where ik ∈ B for 1 ≤ k ≤ m = |B|, jl ∈ B̄ for 1 ≤ l ≤ n = B −m, and V: Rb1×b2 → R
b1b2 is

a vectorization function. By knowing B and block dimensions b1 and b2, the inverse block

test function T−1 : RMN → R
M×N can recover the “block” sequence T(X) into the original

matrix, i.e.,

T−1(T(X)) = X.

Define the block-test-based permutation P: RM×N → R
M×N for a 2D signal X ∈ R

M×N

as P(X) = R(T(X)), where R: RMN → R
M×N is a row-wisely reshape function which turns

a vector into a matrix and T: RM×N → R
MN is block test function which turns a matrix

into a “block” sequence.

Correspondingly, define the inverse block-test-based permutation P−1 : RM×N → R
M×N

for a 2D signal X† ∈ R
M×N as P−1(X†) = T−1(R−1(X†)), where R−1 : RM×N → R

MN is

a vectorization function which turns a matrix into a vector and T−1 : RMN → R
M×N is

inverse block test function which turns a “block” sequence into a matrix by knowing B and

block dimensions b1 and b2.

The block-test-based permutation is introduced for 2D block sparse signals, whose

nonzero entries occur in clusters. The block sparse 1D signals are consider in [51], [52],

and [53]. In this section, it is extended into 2D signals. The definition of 2D block J-sparse

signals is given as follows.
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Definition 7: A 2D signal X ∈ R
M×N is called block J-sparse if J blocks of X have one

or more nonzero entries.

In this thesis, the block-test-based permutation is optionally used for difference between

a non-reference frame and its preceding reference frame in the compressed video sensing

scheme as described in Section 3.3. It will be shown in Section 3.4.3 that the best S-term

approximation of the difference between a non-reference frame and its preceding reference

frame is block J-sparse signal with J ≪ B, and the block-test-based permutation is an

acceptable permutation for these signals.

3.3 Example of video compression via parallel CS with per-

mutations in wireless multimedia sensor networks

As an application example, we design a pair of CS video encoder and decoder based on

parallel CS with the zigzag-scan-based permutation. This CS video encoder and decoder can

be plugged into the application layer of the compressive distortion minimizing rate control

(C-DMRC) system [54]. In wireless multimedia sensor networks, the C-DMRC system is

preferred compared to traditional video coding standards such as the moving picture experts

group (MPEG) standards, since the C-DMRC system has less-complex video encoder and

can tolerate much higher bit error rates. The CS video encoder and decoder in the C-DMRC

system are built based on the block CS architecture proposed in [38]. Thus, as we discussed

at the beginning of this chapter, the CS video decoder in the C-DMRC system requires

a joint reconstruction. By replacing the CS video encoder and decoder at the application

layer of the C-DMRC system with the CS video encoder and decoder based on parallel CS

architecture, the computational complexity of the video decoder can be reduced and the

reconstruction process can be parallelized.

In this example, frames with odd and even indices are taken as reference frames and

non-reference frames, respectively.7 The block diagram of the CS video encoder is shown

in Fig. 3.6. The average compression ratio is the ratio of the number of measurements to

the total number of pixel values for a pair of a reference frame and a non-reference frame.

The average compression ratio is computed by the rate controller at the transport layer

according to current network status (e.g., the end-to-end round trip time and the estimated

sample loss rate of the network), and it controls the number of measurements for a video

frame. For every pair of a reference frame and its following non-reference frame, the rate

7More sophisticated index assignment schemes for the reference frame and non-reference frame can be
used as well.
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Fig. 3.6: Block diagram of the CS video encoder.

controller gives an average compression ratio. According to this average compression ratio,

the compression ratios of the reference and non-reference frames in a pair are obtained. At

the output of the CS video encoder we have the frame measurements. The image acquisition

device turns the physical input into video frames and outputs the video frames to different

processing blocks according to the frame index.

The procedure for encoding the reference frame is as follows: 1) compute DCT2 on the

reference frame; 2) perform the zigzag-scan-based permutation on the DCT2 coefficient ma-

trix; 3) perform parallel compressed sampling of the permuted DCT2 coefficient matrix. The

procedure for encoding the non-reference frame is as follows: 1) compute the difference be-

tween the non-reference frame and the preceding reference frame; 2) optionally perform the

block-test-based permutation on the difference coefficient matrix; 3) perform parallel com-

pressed sampling of this (permuted) difference. The outputs of all CS sampling processors

are combined.8 If the block-test-based permutation is performed, the block test results will

be sent with the measurements of frames. The block-test-based permutation is an optional

process (shown by the dashed line border in Fig. 3.6) because according to our simulation,

it improves only a little the performance of the reconstruction of the non-reference frames.

Details would be discussed in Subsection 3.4.4.

Considering that the sparsity level of the difference between the non-reference frame

and its preceding reference frame is smaller than that of the DCT2 coefficient matrix of the

reference frame, the compression ratio of the non-reference frames should be higher than

8Quantization is omitted in the example presented here, but it has to been done in a practical video
coding scenario.
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Fig. 3.7: Block diagram of the CS video decoder.

that of the reference frames, i.e., fewer measurements are assigned to the non-reference

frames. In our experiment in Section 3.4.4, we set the ratio of measurements being 4:1, i.e.,

the number of measurements for the reference frames is 4 times that for the non-reference

frames. For example, if current average compression ratio given by the rate controller is

0.5, then the compression ratio of the reference frame is 0.8 and the compression ratio of

the non-reference frame is 0.2. Other ratios can be set according to the motion intensity of

the video.

The block diagram of the CS video decoder is shown in Fig. 3.7. To decode a reference

frame at the receiver side, the following steps are performed: 1) parallel CS reconstruction

from the measurements of the reference frame; 2) the inverse zigzag-scan-based permutation;

3) inverse DCT2 on the reconstructed DCT2 coefficient matrix. To decode a non-reference

frame, the following steps are performed: 1) parallel CS reconstruction from the measure-

ments of the non-reference frame; 2) the block-test-based permutation if the block test

result of the current non-reference frame is available; 3) adding the reconstructed difference

between the non-reference frame and its preceding reference frame to the corresponding

reconstructed reference frame. For parallel CS reconstruction, any ℓ1-norm minimization

solver, e.g., the BP algorithm, can be used.
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Fig. 3.8: Layer model of Boat.tiff.

3.4 Simulation results

3.4.1 The layer model and the zigzag-scan-based permutation

We first check the layer model for the DCT2 coefficient matrix of the gray image: Boat

(512 × 512). The format used in the simulation is tagged image file format (TIFF) . The

best S-term approximation is obtained by keeping all DCT2 coefficients with magnitudes

not less than 1000 and changing the remaining to zeros.

In Fig. 3.8, the x-axis is the layer index m, and y-axis is the probability of an element

in the m-th layer of the best S-term approximation XS of the DCT2 coefficient matrix to

be nonzero, calculated as pm = (1/m)
∑

i+j−1=m I(XS(i, j) 6= 0). The pm’s versus layer

index m for the real image “Boat.tiff” and the result of the (r0, r1, r2, α)-layer model with

r0 = 0, r1 = 3, r2 = 32, α = 0.15 are shown in Fig. 3.8. It can be seen that the two curves

are close to each other. Similar results are also achieved for other images. Then according

to Proposition 1, the zigzag-scan-based permutation is an acceptable permutation for DCT2

coefficient matrices of such images with an overwhelming probability.

The changes of ||s||∞ of the best S-term approximation of the DCT2 coefficient matrix

before and after the zigzag-scan-based permutation are shown in Table 3.1. The DCT2

coefficient matrices are taken from four test images: Boat (512 × 512), Lena (512 × 512),
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Table 3.1: Comparison of ||s||∞ before and after the zigzag-scan-based permutation.

Image
Magnitude Threshold

400 600 800 1000

Boat 33 vs. 2 23 vs. 2 19 vs. 2 16 vs. 1

Cameraman 13 vs. 2 8 vs. 2 7 vs. 1 4 vs. 1

Lena 14 vs. 3 11 vs. 2 8 vs. 1 7 vs. 1

Peppers 27 vs. 3 15 vs. 2 11 vs. 2 11 vs. 2

Cameraman (256 × 256), Peppers (512 × 512). The best S-term approximation is chosen

according to different magnitude thresholds by keeping DCT2 coefficients whose magnitudes

are not less than the magnitude threshold and setting the remaining to be zeros. Table 3.1

shows that ||s||∞ decreases significantly after the zigzag-scan-based permutation, which is

consistent with Proposition 1.

3.4.2 Image compression via parallel CS with the zigzag-scan-based per-

mutation

The performance of image compression via parallel CS with the zigzag-scan-based permuta-

tion is shown by compressing the DCT2 coefficients of four images: Boat, Lena, Cameraman,

and Peppers. The PSNR is employed to show the reconstruction performance. We compare

the performances of the parallel CS scheme for the configurations: 1) with no permutation;

2) with the zigzag-scan-based permutation. Entries of the sensing matrix A ∈ R
K×M are

drawn from Gaussian ensembles, with variance 1/K. The parallel CS reconstruction is

implemented using BP algorithm by the CVX optimization toolbox.9

Other reconstruction algorithms than the BP can also be used. PSNR performance for

different methods is shown in Fig. 3.9 versus the compression ratio, which is the ratio of the

number of measurements to the total number of elements in the DCT2 coefficient matrix.

From Fig. 3.9, we can see that under the same compression ratio, the zigzag-scan-based

permutation helps to improve the PSNR by around 4 dB for all images. Consequently, it

shows that the PNSR performance is indeed improved significantly after permutation.

3.4.3 Block sparse model and the block-test-based permutation

In Tables 3.2 and 3.3, the block sparse model for the DCT2 coefficient matrices of the four

different gray images and the matrices of the difference between the non-reference frame

and its preceding reference frame in several video sequences have been checked. In this

9The toolbox was downloaded at http://cvxr.com/cvx.
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Fig. 3.9: PSNR for the parallel CS scheme with/without the zigzag-scan-based permutation
in image compression.

simulation, the best S-term approximation is chosen so that all elements have absolute

value not less than the magnitude threshold shown in the table. The block size is 8 × 8.

Then, for each image, there are B = 4096 blocks, except that Cameraman has only B = 1024

blocks. For each video frame, there are 396 blocks. According to our simulation, the block

sparsity J is much less than B for either the DCT2 coefficient matrices of images or the

matrices of the difference between the non-reference frame and its preceding reference frame

of videos.

The changes of ||s||∞ of the best S-term approximation before and after the block-test-

based permutation are also shown in Tables 3.4 and 3.5. It can be seen from the tables that

||s||∞ decreases, although sometimes slightly, after the block-test-based permutation.

3.4.4 Video compression via parallel CS with permutation

The test video sequences in this example are three standard YUV video sequences: Akiyo,

Foreman, Coastguard. The format used in the simulation is quarter common intermediate

format (QCIF). The performance of the proposed video compression scheme is shown by

compressing the luminance components of the first 10 frames, i.e., 5 reference frames and 5

non-reference frames. The average PSNR for the reference frames and non-reference frames
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Table 3.2: Block sparsity of the DCT2 coefficient matrices of images.

Image
Magnitude Threshold

400 600 800 1000

Boat 33 23 19 16

Cameraman 13 11 7 4

Lena 14 11 8 7

Peppers 27 15 11 11

Table 3.3: Block sparsity of the matrices of the difference between two consecutive frames
in video sequences.

Akiyo
Magnitude Threshold 2 4 6 8

Block Sparsity 18 3 2 1

Carphone
Magnitude Threshold 20 40 60 80

Block Sparsity 51 31 19 8

Claire
Magnitude Threshold 20 30 40 50

Block Sparsity 12 6 4 1

Coastguard
Magnitude Threshold 20 40 60 80

Block Sparsity 13 6 2 1

Foreman
Magnitude Threshold 20 40 60 80

Block Sparsity 42 19 9 1

Salesman
Magnitude Threshold 5 10 15 20

Block Sparsity 11 5 3 1

is used as performance metric. All settings are the same as in the example in Subsec-

tion 3.4.2. The following parallel CS schemes are compared: 1) the scheme with no permu-

tation; 2) the scheme with only the zigzag-scan-based permutation on the reference frames;

3) the scheme with the zigzag-scan-based permutation on the reference frames and the

block-test-based permutation on the non-reference frames. PSNR performance for different

methods is shown in Figs. 3.10–3.12 versus the average compression ratio, that is computed

as (compression ratio of reference frames + compression ratio of non-reference frames)/2.

From Fig. 3.10, we can see that under the same average compression ratio, the zigzag-

scan-based permutation helps to improve the PSNR of the reference frames by around

3∼9 dB for Akiyo, 5∼6 dB for Foreman, and 4∼8 dB for Coastguard.

Fig. 3.11 shows that the zigzag-scan-based permutation also improves the PSNR perfor-

mance of the non-reference frames by around 3∼9 dB for Akiyo, 2∼5 dB for Foreman, and

3∼7 dB for Coastguard. The improved PSNR for the non-reference frames is a bit lower
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Table 3.4: Comparison of ||s||∞ before and after the block-test-based permutation (DCT2
coefficient matrices of images).

Image
Magnitude Threshold

400 600 800 1000

Boat 33 vs. 3 23 vs. 2 19 vs. 2 16 vs. 1

Cameraman 13 vs. 3 11 vs. 2 7 vs. 1 4 vs. 1

Lena 14 vs. 3 11 vs. 2 8 vs. 2 7 vs. 1

Peppers 27 vs. 3 15 vs. 2 11 vs. 2 11 vs. 2

Table 3.5: Comparison of ||s||∞ before and after the block-test-based permutation (matrices
of the difference between two consecutive frames in video sequences).

Akiyo
Magnitude Threshold 2 4 6 8

Block Sparsity 18 vs. 9 3 vs. 1 2 vs. 1 1 vs. 1

Carphone
Magnitude Threshold 20 40 60 80

Block Sparsity 51 vs. 16 31 vs. 17 19 vs. 4 8 vs. 2

Claire
Magnitude Threshold 20 30 40 50

Block Sparsity 12 vs. 4 6 vs. 3 4 vs. 1 1 vs. 1

Coastguard
Magnitude Threshold 20 40 60 80

Block Sparsity 13 vs. 8 6 vs. 3 2 vs. 1 1 vs. 1

Foreman
Magnitude Threshold 20 40 60 80

Block Sparsity 42 vs. 18 19 vs. 16 9 vs. 2 1 vs. 1

Salesman
Magnitude Threshold 5 10 15 20

Block Sparsity 11 vs. 6 5 vs. 3 3 vs. 1 1 vs. 1

than that of the preceding reference frames because the reconstruction of the non-reference

frames relies on both the reconstruction of their preceding reference frames and the recon-

struction of the difference between the non-reference frames and their preceding reference

frames.

Moreover, Fig. 3.12 demonstrates that the block-test-based permutation scheme slightly

improves the PSNR performance. This is because the PSNR performance for the non-

reference frames can hardly be better than that for the reference frames due to the fact that

the reconstruction of the non-reference frames is based on the reconstruction of the reference

frames. Furthermore, the difference between the reference and non-reference frames is

already sparse enough such that the space for improvement due to the block-test-based

permutation in reconstruction of the non-reference frames is limited. Thus, we recommend

to use the block-test-based permutation as an optional process. However, the simulation
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Fig. 3.10: Average PSNR of the reference frames.

result still proves that the block-test-based permutation works. Therefore, we can use it for

2D compressible signals in other scenarios, e.g., to encode fast motion videos.

To show the advantage of the video compression scheme proposed in Section 3.3, we

compare the total time of reconstructing one pair of the reference and non-reference frames

using (i) the video encoder and decoder employed in the C-DMRC system proposed in

[54] and (ii) the video encoder and decoder proposed in Section 3.3. We also show the

PSNRs of the reconstructed reference and non-reference frames for both schemes. The video

sequence used in the simulation is the standard YUV sequence Akiyo (QCIF format). The

measurement matrices used in the C-DMRC system and our scheme are the scrambled block

Hadamard matrix (block length equal to 32) and the random Gaussian matrix, respectively.

The CS reconstruction algorithm is implemented using the l1-magic package.10 To eliminate

the effects of randomness, we run 200 trials for each average compression ratio and show the

average PSNR and total reconstruction time. The results are shown in Tables 3.6 and 3.7.

It can be seen from Tables 3.6 and 3.7 that the reconstruction time using the video

encoder and decoder proposed in Section 3.3 is less than that for the video encoder and

decoder employed in [54], especially when the compression ratio is low. In addition, if there

10The package is available at http://users.ece.gatech.edu/~justin/l1magic.

40



0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

15

20

25

30

35

40

Compression Ratio

P
S

N
R

(d
B

)

 

 

akiyo no permutation
akiyo zigzag−scan−based permutation
foreman no permutation
foreman zigzag−scan−based permutation
coastguard no permutation
coastguard zigzag−scan−based permutation

Fig. 3.11: Average PSNR of the non-reference frames (comparison for the zigzag-scan-based
permutation).

are multiple decoding processors simultaneously reconstructing the columns of a video frame

as shown in Fig. 3.7, the reconstruction time can be further reduced approximately to the

total reconstruction time divided by the number of decoding processors. It can also be

observed in Table 3.6 that the time for reconstruction using the video encoder and decoder

employed in [54] decreases as the average compression ratio increases. This is because

the reconstruction algorithm converges faster as the number of measurements increases.

According to Table 3.7, the time for reconstruction using the video encoder and decoder

proposed in Section 3.3 is less sensitive to the compression ratio. In addition, we can see that

compared to the video encoder and decoder employed in [54], the PSNR of reconstructed

video frames for the video encoder and decoder proposed in Section 3.3 is larger when the

average compression ratio is larger than 0.3, and it is almost the same (less than 0.3 dB

degradation) when the average compression ratio is smaller than 0.3.

3.5 Chapter summary

In this chapter, a parallel CS architecture with permutation has been proposed. It has been

proved that with a so-called acceptable permutation, the RIP condition for the sensing
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Fig. 3.12: Average PSNR of the non-reference frames (comparison for the block-test-based
permutation).

matrix in the parallel CS can be relaxed. The group-scan-based permutation has been

introduced. As an example, the zigzag-scan-based permutation for 2D signals satisfying

the (r0, r1, r2, α)-layer model, such as the DCT2 coefficient matrices of 2D images, has

been analyzed. Meanwhile, the block-test-based permutation is introduced for 2D signals

satisfying the block sparse model. The application to image and video compression has

been discussed as well. In the simulations, it has been shown that both the zigzag-scan-

based and the block-test-based permutations for the DCT2 coefficient matrices of images

are acceptable permutations. The zigzag-scan-based permutation is shown to be effective

and bring a significant performance improvement, while the block-test-based permutation is

shown to be effective, though not necessarily significant. In addition, the simulation results

have shown that the permutation improves the reconstruction performance of images and

videos in terms of PSNR.
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Table 3.6: Total reconstruction time and PSNR of reconstructed video frames using the
video encoder and decoder employed in [54].

Average Compression Ratio 0.1 0.2 0.3 0.4 0.5

Reconstruction Time (seconds) 55.32 47.34 37.23 37.08 30.49

PSNR
(dB)

Reference
Frame

24.43 27.52 29.79 32.53 36.24

Non-reference
Frame

24.44 27.53 29.73 32.27 35.32

Table 3.7: Total reconstruction time and PSNR of reconstructed video frames using the
video encoder and decoder proposed in Section 3.3.

Average Compression Ratio 0.1 0.2 0.3 0.4 0.5

Reconstruction Time (seconds) 12.85 14.30 20.17 18.40 18.67

PSNR
(dB)

Reference
Frame

24.17 27.30 30.32 33.79 38.34

Non-reference
Frame

24.17 27.29 30.29 33.71 38.10
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Chapter 4

Parallel Compressed Sensing

Reconstruction1

Block-diagonal measurement matrix has been used in several papers on distributed sampling

scenario, i.e., different segments of the signal x can be sampled in parallel [36], [38]. It is

further proved in [56] and [57] that given any sparsifying basis Ψ, the corresponding sensing

matrix A for a block-diagonal random measurement matrix Φ would always satisfy the

RIP condition. In the aforementioned works, the reconstruction has to be conducted in a

centralized manner, i.e., the projection θ has to be reconstructed as a whole. Thus, the

reconstruction has high computational complexity, especially when the length of the signal

x is very large. In applications where the time for reconstruction is a crucial evaluation

criterion, parallel reconstruction is desired. In the parallel CS architecture presented in

Chapter 3, the projection θ has to be obtained and “explicitly” permuted at the encoder

side. However, when the signal x is an analog signal, obtaining θ requires a high-rate

sampling of x first, whereas one major advantage of CS is the ability to compress x directly

using the measurement matrixΦ without such high-rate sampling. Besides, the permutation

performed at the encoder side in Chapter 3 increases the workload of the encoder.

To address the above problem of the parallel CS architecture, we propose in this chapter

a parallel CS reconstruction architecture as a centralized sampling and parallel reconstruc-

tion architecture. It is efficient in applications where centralized sampling is acceptable and

fast reconstruction is preferred, e.g., the single-pixel camera of [7]. In this architecture,

a block-diagonal sensing matrix is employed. Thus, different segments of the projection

θ can be reconstructed in parallel, which helps to significantly reduce the computational

complexity and the time needed in reconstruction. Furthermore, we show that the error

performance of the parallel reconstruction architecture can be improved by permuting θ,

1A version of this chapter has been submitted to IEEE Trans. on Signal Process. Lett. for publication [55].
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and the permutation on θ can be implicitly implemented by a new measurement matrix.

Therefore, given a fixed permutation for θ, signal x can be directly compressed using the

new measurement matrix at the encoder side. In this way, the projection θ is not required

to be obtained and explicitly permuted at the encoder side, and thus, the high-rate sam-

pling can be avoided when x is an analog signal. Compared to existing CS architectures

with centralized sampling, our only modification on the CS encoder is on the measurement

matrix. Thus, the parallel CS reconstruction architecture proposed in this letter is suitable

for most existing CS acquisition architectures, e.g., the single-pixel camera.

The remainder of this chapter is organized as follows. Subsection 4.1 explains the parallel

CS reconstruction architecture and investigates the permutations. Simulation results are

presented in Subsection 4.2. Subsection 4.3 concludes the work.

4.1 Parallel CS reconstruction

Given a multidimensional signal x ∈ R
N1×···×Nd , its vector-reshaped representation is x̄ ∈

R
N̄ where N̄ =

∏d
i=1Ni. Denote θ as the projection of x onto some orthonormal sparsifying

basis, and denote the vector-reshaped representation of θ as θ̄. Using the Kronecker product

property of sparsifying basis [23], θ̄ is the projection of x̄ on an orthonormal sparsifying

basis Ψ̄ ∈ R
N̄×N̄ , i.e., x̄ = Ψ̄θ̄. Thus, the measurement vector for x̄ can be obtained by

ȳ = Φ̄x̄ = Φ̄Ψ̄θ̄ = Āθ̄ where Φ̄ is the Kronecker product measurement matrix and Ā
△
= Φ̄Ψ̄

is the sensing matrix. The decoder needs to reconstruct θ̄ from ȳ = Āθ̄.

In the parallel CS reconstruction architecture proposed in this chapter, our objective is

to design the sensing matrix Ā such that different segments of θ̄ can be reconstructed in

parallel. We partition θ̄ into M segments such that

θ̄ = [θ1 · · · θl1
︸ ︷︷ ︸

θT [1]

θl1+1 · · · θl1+l2
︸ ︷︷ ︸

θT [2]

· · · θl1+l2+···+lM−1+1 · · · θN̄
︸ ︷︷ ︸

θT [M ]

]T

where θi denotes the i-th element of the projection θ̄, (·)T stands for the transpose operation,

and θ[i] denotes the i-th segment of the projection θ̄ with length li. So we have N̄ =
∑M

i=1 li.

Besides, we design the sensing matrix of size K × N̄ as a block-diagonal matrix, i.e.,

Ā =








A[1] 0 . . . 0
0 A[2] . . . 0
...

...
. . .

...
0 0 . . . A[M ]








(4.1)

where A[i] ∈ R
Ki×li and

∑M
i=1Ki = K.
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Fig. 4.1: Block diagram of the system employing the parallel CS reconstruction architecture.

The block diagram of the system employing the parallel CS reconstruction architecture

is given in Fig. 4.1. In practice, during the acquisition of measurements, θ̄ and Ψ̄ are

not required to be obtained or stored, which is shown in the diagram by the dashed line

and dashed line border of the corresponding block. At the encoder side, the measurement

matrix is given by Φ̄ = ĀΨ̄
T
and the measurement vector is given by ȳ = Φ̄x̄. When x̄ is

an analog signal, the measurements acquisition process can be implemented via hardware

without the digitalization of x̄ by high-rate sampling [58]. At the decoder side, since Ā

is block-diagonal, the measurement vector ȳ = Āθ̄ can be divided into M segments, i.e.,

y[i] = A[i]θ[i] (i = 1, 2, . . . ,M) where y[i] denotes the i-th measurement sub-vector. In

this way, all segments of the sparse signal θ̄ can be reconstructed in parallel, and the signal

can be recovered via ˆ̄x = Ψ̄ˆ̄
θ where ˆ̄x and ˆ̄

θ are the reconstructed signal and its projection

on corresponding sparsifying basis, respectively. In the block diagram shown in Fig. 4.1, the

block A[i] represents a CS decoding processor. The inputs of the CS decoding processor are

the measurement sub-vector y[i]’s and the outputs are the reconstructed segments θ̂[i]’s,

which are then stacked in one vector ˆ̄θ.

Denote the sparsity level of projection θ̄ as S, i.e., there are only S ≪ N̄ nonzero

entries in θ̄, and denote the sparsity level of θ[i] as Si. Thus,
∑M

i=1 Si = S. It is known

that in order to reconstruct exactly θ[i], the sensing matrix A[i] needs to satisfy the RIP

condition determined by Si [9]. Smaller Si indicates looser RIP condition, and thus Ki,

that is, the number of measurements for θ[i], can be smaller. Therefore, the design of the

sensing matrix Ā depends on the sparsity levels of the θ[i]’s.
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4.1.1 Computational considerations

We briefly compare the computational complexity of the parallel CS reconstruction archi-

tecture with that of the architectures employing centralized reconstruction. Several solvers

exist to reconstruct θ̄ ∈ R
N̄ from ȳ = Āθ̄, including for example, the basis pursuit (BP)

algorithm based on interior point methods that have computational complexity O(N̄3) [27].

Therefore, for multidimensional signals, since N̄ can be dramatically large, the reconstruc-

tion process becomes rather slow.

For the parallel CS reconstruction architecture in Fig. 4.1, each decoding processor only

needs to reconstruct a segment of the sparse signal θ̄. Thus, the computational complex-

ity of the i-th decoding processor is only O(l3i ), and the total computational complex-

ity is O(
∑M

i=1 l
3
i ). The total computational complexity is minimized to O(N̄3/M2) when

li = l= N̄/M for all i. Thus, by using the parallel CS reconstruction architecture, the

computational complexity is much lower.

4.1.2 Permutation

To ensure that all decoding processors in Fig. 4.1 have the same configurations, we assume

li = l and A[i] = A0 for all i. Therefore, to reconstruct exactly all θ[i]’s, i = 1, 2, . . . ,M ,

A0 needs to satisfy the RIP condition determined by maxi {Si}. However, considering

the difference of sparsity levels among all θ[i]’s, i = 1, 2, . . . ,M , the above setting is not

efficient because fewer measurements are actually needed for some segments with smaller

Si. This problem can be solved by applying permutation on θ such that all segments have

similar sparsity level. Then, the required number of measurements to achieve a given error

performance can be reduced.

For a permutation π of N̄ elements: {1, . . . , N̄} → {1, . . . , N̄} with π(i) denoting the

new index of the original i-th element after the permutation, its permutation matrix is

Pπ ∈ R
N̄×N̄ , whose entries are all 0 except that the π(i)-th entry in the i-th row is 1.

Fig. 4.2 describes the parallel CS reconstruction architecture with permutation on the

projection θ̄. At the encoder side, signal x̄ is first projected onto the sparsifying basis Ψ̄,

which gives the projection θ̄ = Ψ̄T x̄. Then permutation Pπ on the projection θ̄ is applied,

which gives the permuted projection θ̄
† = Pπθ̄. The measurement vector ȳ† of permuted

projection θ̄
† is then given using the sensing matrix Ā as ȳ† = Āθ̄

†. At the decoder side, all

segments θ
†[i] can be reconstructed in parallel from y†[i] = A[i]θ†[i] where y†[i] and θ

†[i]

are the i-th segment of ȳ† and the i-th segment of θ̄†, respectively. The inverse permutation

is performed after parallel reconstruction of all segments of θ̄†, i.e., ˆ̄θ = P−1
π

ˆ̄
θ
† = PT

π
ˆ̄
θ
†.
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Fig. 4.2: Block diagram of the system employing the parallel CS reconstruction architecture
with permutation on the projection θ̄.

As shown in Fig. 4.2, to introduce permutation into the parallel CS reconstruction archi-

tecture, the digital projection θ̄ is obtained during the measurements acquisition process,

which requires a high-rate sampling of x̄ if x̄ is an analog signal. However, one major ad-

vantage of CS is the ability to avoid the high-rate sampling. Besides, the permutation has

to be done during the measurements acquisition process, which increases the workload on

the encoder. To solve the above two problems, we have the following lemma.

Lemma 5: Consider a signal x̄ ∈ R
N̄ , its projection θ̄ onto the sparsifying basis Ψ̄, a

sensing matrix Ā, and a permutation matrix Pπ. The measurements acquired in Fig. 4.2,

i.e., ȳ† = Āθ̄
†, can also be acquired by sampling x̄ directly using a measurement matrix Φ̄†

given by Φ̄† = ĀPπΨ̄
T .

Proof. We have the following observation

ȳ† = Āθ̄
† = Ā(PπΨ̄

T x̄) = (ĀPπΨ̄
T )x̄. (4.2)

Therefore, the same measurements ȳ† can be given using a new measurement matrix Φ̄† =

ĀPπΨ̄
T .

Based on Lemma 5, the encoder in Fig. 4.2 can be replaced by the encoder shown

in Fig. 4.3, which avoids the high-rate sampling. In addition, since the new measurement

matrix Φ̄† is pre-generated and stored at the encoder side, no permutation process is actually

required at the encoder side to obtain ȳ†. The only difference between the encoder in
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Fig. 4.3: Block diagram of the encoder that is equivalent to the encoder in Fig. 4.2.

Fig. 4.1 and that in Fig. 4.3 is the measurement matrix Φ̄ = ĀΨ̄ in Fig. 4.1 and the new

measurement matrix Φ̄† in Fig. 4.3..

Denote the sparsity level of θ†[i] as S†
i . Recall that we assume li = l, A[i] = A0. If

maxi{S†
i } < maxi {Si}, the required RIP condition for A0 to reconstruct θ̄† is weaker than

that to reconstruct θ̄. Thus, with permutation on θ̄, fewer measurements are needed to

achieve the same reconstruction error performance. Note that the exact positions of nonzero

entries of θ̄ are not known, and optimal permutation which results in uniform sparsity

levels among all segments of θ̄† is not practical. Thus, permutation design in practice must

be based on a sparsity model of the projection θ̄, as introduced in Chapter 3 for video

compression application. If no sparsity model is known, the best choice of permutation is

a random permutation, which we consider here. Since we assume li = l, θ̄ can be rewritten

as a matrix Θ ∈ R
l×M by letting θ[i] be the i-th column of Θ. Let Ci be the number of

nonzero entries in vi, which is the i-th row of Θ. There are M ! different permutations that

can be applied to vi. With a random permutation from the M ! possibilities, a nonzero entry

in vi is permuted to the columns of 1, 2, . . . ,M with equal probability of 1/M . Therefore,

considering the permuted i-th row, denoted as v†
i , the average number of nonzero entries

in every column is Ci/M . Assuming that the permutations applied to different rows are

independent from each other, the average number of nonzero entries in each column of the

resulted matrix is
∑l

i=1Ci/M . Therefore, in average, every column of the resulted matrix

has the same sparsity level. For example, if the projection θ̄ has length 1000 and we set

l = 100 and M = 10, for a randomly generated sparse signal Θ with S = 60 nonzero entries,

after random permutation, the mean and standard deviation of the sparsity level of each

column obtained via 105 trails are 6 and 2.28, respectively. Therefore, random permutation

results in an acceptable sparsity distribution among segments.
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4.1.3 Application of the parallel CS reconstruction architecture

In most existing CS acquisition devices, the measurement matrix is pre-generated and stored

in the encoder. The decoder “stores” a corresponding sensing matrix for reconstruction.

The reconstruction in CS is known to have high computational complexity compared to the

sampling process, especially when the dimension of the signal is very large. Thus, when the

computational complexity and time for reconstruction is a crucial evaluation criterion and

centralized sampling is acceptable, parallel CS reconstruction is very useful. For example,

the compressive imaging via coded aperture architecture proposed in [8] uses a pre-designed

random coded aperture as the measurement matrix; the single-pixel camera uses a digital

micromirror device array with pre-designed random patterns as the measurement matrix

[7]. For such acquisition devices, the parallel CS reconstruction architecture can be applied

immediately by designing the measurement matrix as described above in this section.

4.2 Simulation results

We compare the error performance and the reconstruction time among three different

schemes: the centralized CS reconstruction, i.e., M = 1; the parallel CS reconstruction,

i.e., M ≥ 2, without permutation; and the parallel CS reconstruction with permutation.

The reconstruction time includes the sum of reconstruction time of the decoding processors,

as well as the average reconstruction time and the worst reconstruction time of the decoding

processors.

Our simulations are performed using Matlab on a laptop computer with Intel Dual Core

CPU at 2.70 GHz and 8 GB of memory. The sparse projection θ̄ is a random binary

sequence of length N̄ = 1200 with S = 60 nonzero entries, which are randomly distributed

across the signal. To ensure that all decoding processors have the same configuration, we

set li = l and A[i] = A0 ∈ R
K0×l for all i, where K0 = K/M . Entries of A0 are drawn from

Gaussian ensembles with variance 1/K0. The reconstruction algorithm that we use in each

decoding processor is the BP algorithm. The goal of our simulation is to show the maximum

improvement that can be brought by introducing permutation. So, Pπ is selected to ensure

that all segments of θ̄† have the same sparsity level, i.e., S†
i = S/M for all i, although such

permutation may not be practical. We set M to 1, 2, 3, 4, 5 and 10. For M = 1, the parallel

CS reconstruction boils down to the centralized CS reconstruction. In our simulation, we

run 500 trials for each combination of (M,K) and average the results over the trails.

Fig. 4.4 and Fig. 4.5 shows the mean square error (MSE) (normalized to the signal en-
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Fig. 4.4: Reconstruction error performance vs. the number of measurements K for
M = 1, 2, 3.
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Fig. 4.5: Reconstruction error performance vs. the number of measurements K for
M = 4, 5, 10.
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Table 4.1: Minimum number of measurements required for exact reconstruction and corre-
sponding reconstruction time (in seconds).

M Permutation K ttotal taverage tworst

1 N/A 340 5.9085±2.5978 5.9085 5.9085

2 No 370 1.5741±0.0900 0.7870 0.8701

2 Yes 330 1.4208±0.0928 0.7104 0.7819

3 No 380 1.0059±0.0990 0.3353 0.4178

3 Yes 330 0.9331±0.1021 0.3110 0.3861

4 No 400 0.8889±0.2012 0.2222 0.3104

4 Yes 360 0.8801±0.1255 0.2200 0.3090

5 No 450 0.9549±0.1614 0.1910 0.2833

5 Yes 350 0.9222±0.0847 0.1844 0.2739

10 No 560 1.1764±0.1596 0.1176 0.1967

10 Yes 430 1.1771±0.1436 0.1177 0.1944

ergy) of the reconstructed signal in the three aforementioned schemes versus the number

of measurements. It can be seen that the MSE for a fixed number of measurements in-

creases as the number of segments M increases. In other words, the minimum number of

measurements required for exact reconstruction increases as M increases. It is reasonable

since the required number of measurements per segment does not linearly decrease when M

increases. Besides, it is shown in Fig. 4.4 and Fig. 4.5 that for a fixed K, the MSE can be

reduced with the permutation. The minimum number of measurements required for exact

reconstruction is also reduced with the permutation.

Table 4.1 shows the minimum number of measurements and reconstruction time required

for exact reconstruction. The total reconstruction time ttotal is the time used to reconstruct

all segments, and we show its mean and standard deviation in the table. The average recon-

struction time taverage = ttotal/M is the average time used to reconstruct each segment. The

worst reconstruction time tworst is the maximal reconstruction time used to reconstruct the

‘worst’ segment, given as tworst = maxi {ti} where ti denotes the reconstruction time for the

i-th segment. From Table 4.1, the total reconstruction time decreases as M increases from

1 to 4. When M further increases, the total reconstruction time may increase. This is be-

cause more measurements are required for exact recovery. However, the total reconstruction

time, and the average and the worst reconstruction time of the parallel CS reconstruction

are much less than those of the centralized CS reconstruction.
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4.3 Chapter summary

The parallel reconstruction architecture for CS has been proposed, where all segments

of the projection of a signal onto the sparsifying basis can be reconstructed in parallel.

Both the analysis and simulations have shown that via the parallel CS reconstruction,

the computational complexity and the reconstruction time can be reduced significantly.

Permutation has been employed to reduce the minimum number of measurements required

for exact reconstruction in the parallel CS reconstruction architecture. It is also proved that

the permutation can be implicitly done via using a permuted version of the measurement

matrix. Consequently, the measurements of the permuted projection of the signal can be

obtained by directly sampling the signal without any permutation being actually performed.
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Chapter 5

Conclusion

In this chapter, a summary of the contributions of the thesis are given. In addition, the

future work that can be done based on the thesis is discussed.

5.1 Summary of contributions

In this thesis, two CS architectures have been proposed to sample multidimensional signals.

Both of them help to reduce the complexity of the sampling process and/or the reconstruc-

tion process.

In the parallel CS architecture proposed in Chapter 3, both the sampling process and

the reconstruction process can be parallelized. Thus, it significantly reduces the storage

requirements and computational complexity. The RIP condition on the sensing matrix in

the parallel CS architecture has been discussed. Moreover, the acceptable permutation has

been shown to enable relaxation of the RIP condition on the sensing matrix. Several accept-

able permutations have been proposed in Chapter 3, including the group-scan-based, the

zigzag-scan-based and the block-test-based permutations. The group-scan-based permuta-

tion has provided a guideline for designing acceptable permutations. The zigzag-scan-based

permutation has been shown to be an acceptable permutation for 2D signals satisfying the

(r0, r1, r2, α)-layer model, such as the DCT2 coefficient matrix of 2D images. The block-

test-based permutation has been proposed for block sparse signals. As an example, a video

compression scheme that uses the parallel CS architecture with permutation has been pro-

posed. In the simulations, the zigzag-scan-based permutation has been shown to be an

acceptable permutation for the DCT2 coefficient matrix of 2D images. Besides, the block-

test-based permutation has been shown to be an acceptable permutation for both the DCT2

coefficient matrix of 2D images and the difference of two frames of a video. The simulation

results for the video compression scheme that is based on the parallel CS architecture with
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the zigzag-scan-based permutation and the block-test-based permutation have shown that

the zigzag-scan-based permutation improves significantly the reconstruction performance of

the reference frames in a video in terms of PSNR, whereas the block-test-based permuta-

tion improves, though insignificantly, the reconstruction performance of the non-reference

frames in a video in terms of PSNR.

The permutation in the parallel CS architecture has to be performed before the signal

being sampled in parallel and it requires the projection of the signal onto the sparsifying

basis. This issue has been addressed in Chapter 4. In the parallel CS reconstruction ar-

chitecture proposed in Chapter 4, the sampling process is not parallelized. It enables the

permutation to be performed implicitly during the sampling process via using a permuted

version of the measurement matrix. In this way, the measurements of the permuted pro-

jection can be obtained by directly sampling the signal without any permutation being

actually performed. The computational complexity for the reconstruction process in the

parallel CS reconstruction architecture has been analyzed. The simulation has been also

performed to compare the empirical performance of the centralized CS reconstruction archi-

tecture, the parallel CS reconstruction architecture without permutation, and the parallel

CS reconstruction architecture with permutation. It has been shown that the reconstruc-

tion time can be reduced significantly as the number of segments increases. It has also been

shown that although the minimum number of measurements required for exact reconstruc-

tion increases as the number of segments increases, the permutation helps to reduce this

number.

5.2 Future work

5.2.1 Extension of permutation

The group-scan-based permutation gives only a guideline for designing an acceptable per-

mutation. It is more challenging to develop an analytical result similar to that derived for

the zigzag-scan-based permutation in Proposition 1 in Chapter 3 since there is no prior

information about the positions of nonzero entries. Even knowing that the signal is block

sparse does not help for analyzing the probability that the block-test-based permutation is

acceptable. So more theoretical analysis about this permutation can be done in future using

a different machinery from the one used in the thesis for the zigzag-scan-based permutation

analysis. Moreover, it is possible to adaptively choose permutation while sampling a stream

of signals by estimating the sparsity level of each segment in the signal.
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5.2.2 Practical video coding scheme

In this thesis, a rough video compression scheme has been proposed and studied. However,

the practical video coding scheme has much more details to be considered, for example, the

quantization, the source encoding and the channel encoding, etc. Besides, the inter-frame

coding scheme can be more powerful by introducing, for example, motion estimation and

compensation. Thus, it is interesting to design a practical video coding scheme based on

the parallel CS architecture or the parallel CS reconstruction architecture with permutation

as a practical extension of the results of this thesis.

5.2.3 Optimal segment size for the parallel CS reconstruction architec-

ture

From the simulation example in Chapter 4, it can be noticed that there should exist an

optimal value for the number of segments or the size of each segment, considering the trade-

off between the reconstruction time and the required number of measurements. Thus, the

optimal segment size can be studied in future. For example, the reconstruction time can

be formulated as a function of the segment size, and the required number of measurements

can be given via information theoretical analysis.
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