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Abstract—The problem of the adaptive identification of dynamic nonstationary objects under uncertain con
ditions, with respect to the drifting parameters, is considered. An adaptive algorithm for multiple identification
is proposed; this algorithm is constructed by using the exponentially weighted recursive least-squares method
with tunable coefficients for discounting obsolete information. A set of discounting coefficients is used when
estimating the parameters: some weight is assigned to each of these coefficients. The optimal algorithms for the
tuning of weights are synthesized. The proposed algorithm ensures the quality of identification that is higher
than that ensured by the common exponentially weighted recursive least-squares method or by the algorithm
for competitive identification [1].

INTRODUCTION

One of the most intensively developing fields of
control theory is the theory of adaptive systems which
develops and studies the methods for controlling
dynamic objects under the conditions where the num
ber of parameters determining the behavior of these
objects is unknown.

The self-tuning systems are most widely applied in
the class of adaptive systems. The former includes the
loop of adaptive identification which refines, in real
time, the parameters of the tuned model of the object
with the help of this or that recursive procedure. The
functioning quality of an entire self-tuning control sys
tem depends on the quality of solution of the identifica
tion problem. The most widely applied among the iden
tification algorithms are different modifications of the
recursive least-squares method and those of the method
of stochastic approximation [2, 3], which provide under
certain conditions for the convergence of the estimates
of the unknown constant parameters of the control
object to the true values of these parameters.

The problem becomes considerably more complex
if the parameters of the object change in time in an
unpredictable manner; in this case, the identification
algorithm should have both the filtering and tracking
properties, i.e., it should provide for the high accuracy
of the parameter estimation in conditions of the noise
action at the output of the object and to track the drift
of parameters. Here, the exponentially weighted recur
sive least-squares method (EWRLSM) is widely
applied [2J. Moreover, the choice of the numerical

value of the parameter regulating the process of forget
ting the “obsolete” information in this algorithm is a
nontrivial problem for the real practical applications.

The main idea of this paper consists in the combined
use of several parameter values for discounting the
“obsolete” information to which certain weights are
assigned. Moreover the estimator of parameters of the
object is presented in the form of a linear combination
of weight products and corresponding partial estima
tors for given values of the discounting parameter. The
proposed algorithm has a number of essential distinc
tions from the algorithm proposed in [11 in the aspect
of tuning weights and ensures a higher quality of iden
tification.

1. STATEMENT OF THE PROBLEM

Consider a nonstationary dynamical stochastic
object described by the difference equation

y(k) =—a1(k)y(k--l)—a2(k)y(k—2)—...

—a(k)y(k
a)

+b1(k)u(k —1) (1.1)

+b2(k)u(k — 2) + ... + b0 (k)u(k
— b) + oa(k),

where parametersa1(k), a2(k), ..., a,, (k), b1(k), b2(k),

b,, (k) change during unpredictably the course of

the process, u(k) and y(k) are the control and output
sequences, respectively, k = 0, 1, 2 is the current
discrete time, w(k) is the disturbing random sequence
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=

= y(k)-T(k-l)q(k),

with E{ (0(k)) = 0, E{ o)2(k) O <00, and E{) is the the models is respectively written in the formsymbol of expectation.
P (k— 1)p(k)E (k)Let us introduce into consideration the vector of O(k) = 01(k — 1) +

‘ Tunknown nonstationary parameters 0(k) = (a1(k),a2(k), A + ( (k)P(k — 1 )q)(k)
a0(k), b1(k), b2(k), ... b0(k))T and the vector of e(k) = y(k) — (k —the previous history of the process p(k) = (—y(k — 1), (2.1)—y(k — 2), ..., —y(k — n0), u(k — 1), u(k — 2), ..., u(k

— I ( P1(k — l)p(k)q>T(k)Pj(k
— 1)flb)) We can now rewrite (1.1) in the form P(k) = -iP1(k — 1)

+ T(k)P(k
— 1)q(k)

y(k) = OT(k)q,(k)+o(k). (1.2)
=

Put the tuned model in correspondence to (1.2) in the whereform

(k) = OT(k- I)(k), (1.3) P1(k) = I(j)T(i)Ak
J (2.2)where 0(k— 1)=(â1(k— 1), â2(k— 1), ..., an (k-— 1),

for detP (k)0.b1 (k— I), b2(k— 1) bn (k — 1))T is the vector of
unknown tuned parameters. Algorithm (2.1) is obtained by means of minimizing

the following test:The EWRLSM is written in the form

P(k- 1)(k)e(k) = €(i)A’. (2.3)
A+q,T(k)P(k— 1)ip(k)

I The degenerate case arises for A = 0 when test (2.3)
(1.4) and matrix (2.2) take the form

P(k) = !(P(k
— 1)

— P(k — I )q(k)pT(k)P(k 1))
=A A+q (k)P(k—1)q,(k)
T + (k T(k.i (2.4)o<A1, P1(k) = (p(k)q (k)) =

flp(k)IJwhere A is the discounting parameter of the “obsolete”
Substituting the value for P from (2.4) into (2.1) weinformation.

. .
.

obtain the following algorithm for tuning the parame-.The principal problem encountered within the use of tars:(1.4) consists in choosing parameter A. It is clear that A
shouldbelessthan 1, inorderthat(1.4)shouldtrackthe

Oi(k) = O1(k— l)+
E1(,

(2.5)nonstationanties. But, under uncertamty conditions
I m(k )I 2with respect to the drift of parameters, it is difficult to

choose beforehand the constant optimal value of A that this algorithm corresponds with the Kaczmarz algowould realize the compromise between the filtering and nthm [8].
tracking properties of the algorithm on the whole inter- . .On the basis of estimators 81(k) j = 1 J we estival of estimation. This problem can be solved either by
using along with the estimation procedure different mate the generalized estimator
procedures of controlling A [4—7] that provide addi
tional sluggishness to the ioop of identification, which O(k) = t .(k)01(k), (2.6)results in the impossibility of applying these proce
dures in conditions of fast drift, or by the parallel use of
a set of different values of A. where the coefficients p.1(k) are computed according to

the following rule:

2. COMPETITIVE IDENTIFICATION
2ALGORITHM BY L. KOWALCZUK [1] E, (k -1)

In [1], it is proposed to estimate the parameters of J1,(k) =
(2.7)model (1.3) being tuned with the use of J different val

ues A, A2 A’,..., A. Under this procedure, we have
J models, and an algorithm for tuning the parameters of

± [‘Ek —

j=I i=O

-M/2

i )J
— cz,(k)

- a1(k)
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here Mis the interval of smoothing. *(k) = (YT(k)Y(k))IYT(k)Y(k)
The set of weights .t{k) can be represented in the

- T
(3.3)

form of the weight vector 11(k) = (ji1(k), $.t2(k), .. , S(k)Y (k)Y(k),
,..tXk))T. It is seen from (2.7) that where l.L*(k) is the estimator obtained by using the

1 (2 8)
least-squares method and p is the penalty parameter,

— ‘

A similar result can be obtained if one uses the
where E = (1, 1, ... l)T is the vector of dimension (I x method of indefinite Lagrangian multipliers. Let us in
1) consisting of unities. troduce into consideration the estimation error

It is easy to see that 0<1.t(k) 1. But it is fairly dif- T
ficult to analytically estimate the accuracy of the mcxiel = y(k) — 5(k) y(k) — JL y(k)
based on (2.6) with the computation of t(k) according 11TEy(k) — 11T(k) = 11T(Ey(k)

— (k)) = LT(k)
to (2.7).

and let us wnte the Lagrangian with respect to £(k) with
due regard for condition (2.8):

3. ADAPTIVE IDENTIFICATION ALGORITHM.
TUNING THE WEIGHT VECTOR U -

2 T
L(g,ri) = E(k—i)+rIQL E—I)The following algorithm is proposed as an alterna

tive to the heuristic algorithm (2.7) for computing the =

weight vector. M

Let us introduce into consideration the generalized = 1i€(k — i)E (k — i)11 + .l(TE
— 1) (3.4)

model [9], i.e., =

9(k) =tT(k)(k) — T(k)T(k)(k) (3.1) = l.ITR(k),L+ri(1LTE— 1),

where (k) = (5 (k), Y2 (k),
..., .9,, (k)) is the (.1 x 1).. where r is the indefinite Lagrangian multiplier, R(k) is

the covariance matnx of estimation errors:
vector of outputs, 0 (k) = (01 (k), 02 (k), ..., 0,,(k))

— U
((12a+ b) x J) is the matrix of coefficients of models

R(k) = £(k — i)T(k
— i). (3.5)y( ).

The weight vector 11(k) should be chosen in such a
way that the accuracy of generalized model (3.1) would Solving the Kuhn—Tucker system of equations
be optimal in some sense. Let us use the penalty func- IV u” n’ — 2R(k)” + E = 0tion method for the synthesis of the procedures of tun- “‘ I’ — I

ing the weight vector 11(k). tL(i, i)/ = 11TE
— 1 = 0,

Denote by Y(k)=(y(k—M+ 1),y(k—M+ 2),
y(k))T the (M x 1)-vector of outputs of the object on the we obtain the expression for i(k):

interval of smoothing; Y(k) = (5(k — M + 1). (k— Ik) = RI(k)E(ETRI(k)E)I,
M + 2),

..., y (k))T is the (M x J)-matrix of predictions
T -i

(3.6)
withrespecttomodelsfrom(k—M+ 1)thtokth. IT1(k) = —2E R (k)E.

Then, by using the penalty function method with Moreover, the Lagrangian (3.4) at the saddle point hasregards to (2.8), we write the test of the following form: the value

I(p, p) = (Y(k) —Y(k)11)T(Y(k) — Y(k)i) LQi, Ti) = (ETR’(k)E). (3.7)
+ p (1 — i E), Proving the optimality of the obtained procedure for

from which we obtain the following expression for i:
the computation of the weight vector, let us consider
the pair of vectors X and Z. On the basis of the Kantor

11(p)
(T()

(k) +
2EET) I ovich—Bergstrem inequality [11] the following rela

tions are valid:
-T

x (Y (k)Y(k) ÷ p E). T 2 T 112 —1/2 2
(X Z) = (X R (k)R Z)

The final estimator 11(k) is obtained for p —--- 0:
in T p 2 12 12

I E’ * k
= ((R (k)X) (R (k)Z)) R (k)X (3.8)

11(k) = lim(p) = 11*(k) + S(k)
T

11 ( E, (3.2) in T T iE S(k)E x R (k)Zh = (X R(k)X)(Z R (k)Z).
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Further, let us bring into consideration the (J X 1)-
vector E1 consisting of zeros, except for the jth position
which is a unit one, E = (0, 0,..., 1(j), ..., 0) and let
us rewrite (3.8) in the form

(ETE)2 (EJR(k)E1)(ETR’(k)E). (3.9)

In (3.9), (ET E)2 = 1 and EJR(k), = R11(k) is the jth
diagonal entry of the covariance error matrix R(k); this
entry characterizes the accuracy of the prediction
according to the jth model.

Hence, the following inequality is valid:

1 R1(k)(ETR(k)E),

from where we finally obtain

R1(k) = (y(k i) - (k - i))2

I(’(k) = (E(k_i)ET(k_i]

= R(k - 1)-
R(k —l )E(k)ET(k)R(k — 1)

1 + (k)R’(k — I )(k)

= €(k - i)ET(k - i)j

R’(k)E(k — M)€T(k— M)R(k)

I — €(k — M)R’(k)E(k * M)

Similarly, making use of the fact that S(k) = S(k —

the recursive form:

M

S(k) = [(k — i)T(k — i)J
= S(k—
1)S(k_ l)(k)T(k)S(k— 1)

1+T(k)S(k— I)(k)

5(k) = ((k_i)T(k_i)j

= S(k)
+ S(k)I(k — M)T(k — M)S(k)

I—T(k—M)S(k)(k—M)

Jx*(k) =

+ S(k)(y(k) —T(k)*(k
— 1 ))(k),

= p.*(k) + S(k)(1 — ET,.t*(k))(ETS(k)E),

= J1.

ft should be noted that (3.11) or (3.12) is used
jointly with (2.1) and (2.6). To this end, the grid of val
ues of the parameter of discounting the “obsolete”
information X, , ..., A,

...,
is assigned; the estima

tors O1 (k) are computed according to (2.1) on the basis
of these values; after that the generalized estimator
O (k) is computed according to (2.6), where the vector
of weight parameters .t(k) is present; this vector is
obtained from (3.11) or (3.12). When choosing the grid

Fig. 1. Estimators of drifting parameters obtained according
to the method developed by L. Kowalczuk.

i=o
(3.10)

= (k - i) (ETR(k)E) = L*(, i).

From (3.10) it follows that the generalized predic
tion 5’ (k) compares well in its accuracy with all predic
tions according to the models 9 (k).

In order to guarantee the control over the measure
ments of the output of y(k) induced by the parametric
changes of the model of the object in real time, let us

make use of the fact that R(k) = R(k — 1) + € (k)ET (k).
By using the well-known Sherman—Morrison lemma
on inversion of matrices of this type, procedure (3.6)
can be written in the following recursive form:

I

(3.12)

R(k)

= R(k)E(ETR(k)E)

Moreover, the first three relations in procedures
(3 Jl’ (3.11) and (3.12) are the recursive least-squares method

on the sliding window 112].

1) + (k)T(k), let us rewrite procedure (3.2), (3.3) in
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The results of the computation are presented in the
form of graphs in Figs. I and 2.

The maximal estimation error of parameters when
using both the algorithm (2.1), (2.6), (2.7) and the algo
rithm (2.1), (2.6), (3.11) corresponds to the initial tun
ing of the parameters. But the maximal deviation of
estimators of parameters from their true values at the
instants of changing the direction of the drift is larger
for the algorithm from [1] and makes up 8—10 per cent
of the range of change of parameters. Meanwhile, the
maximal deviation of parameters estimators obtained
with the use of the algorithm proposed in this paper is
no more than 6 per cent in the range of change of
parameter values.

Thus, for a given level of disturbances in the case of
the arbitrary drift of parameters, the algorithm for para
metric identification proposed in this paper guarantees
more exact estimation than the algorithm from [I] sim
ilar to it, which, in turn, operates better than the
EWRLSM in conditions of drift of parameters.
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Fig. 2. Estimators of drifting parameters obtained with the
use of the algorithm proposed in the paper.

of values
,

one should take into
account the constraints on the computational costs.

4. EXAMPLE

As an example, let us consider the problem of the
parametric identification of the nonstationary stochas
tic object of the form

y(k) =a1(k)y(k—1)+a2(k)y(k—2)

+a3(k)y(k -3) + co(k) = OT(k)(p(k) + w(k)

with the use of the algorithms (2.1), (2.6), (2.7), and
(2.1), (2.6), (3.11). Moreover, it is assumed that ar,, =

0.1, the parameter a1 = —0.15 is constant, and the other
parameters a2(k) = 0.7sin0.02k, a3(k) = 1.2cos0.04k
are changing according to the harmonic law. The fol

lowing conditions are taken as the initial ones: 0 (0)
(O,O.O);pT(O)=(y(2),y(1),y(O))=(1, 1, 1);J=3;X=
r

10 1 1
P1(0) = 1 10 1 = 1,2,3;

1 1 10

10 1 1

R(0)= 1101

1 1 10

The identification algorithm should track the drift of
the parameters of the object.
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