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FIG, 1. Interference cancellation principic.

ing. linear filter structures cannot in general implement optimum interference
and noise cancellers in a minimum mean squared error sense 131. Using linear fi
nite impulse response (FIR or infinite impulse response filters we often cannot
achieve acceptable levels of interference and noise cancellation because these
techniques arc not able to satisfactorily approximate an unknown determinis
tic, but nonlinear mapping between the available reference and unknown inter
ference signals. For many applications, the reference and interference signals
are usually primarily related through a deterministic nonlinear dynamic map
ping (nonlinear filter) that is shown in Fig. 1 corresponding to block H. Thus,
it is reasonable to try to find an optimal cancellation system using nonlinear
adaptive processing models and associated training methods. Methods based on
nonlinear processing of the interference signal could be called nonlinear noise
cancellers.

In [3—51 Cha et al. and Lu et al. have demonstrated that accurate channel
equalization and cancellation of interference and noise can be achieved with
the use of radial basis function (RBF) neural networks and generalized radial
basis function networks. However, we are going to show that it is possible to
achieve better results using neural networks with more general and flexible
architectures. Alternative approaches for interference cancellation problem
have been studied in 16, 71. In 161 an adaptive nonlinear filter modeled by a single
layer perceptron and a Pth-order Volterra filter have been used for estimation of
the nonlinear mapping between reference and interference signals. In 171. third-
order moments were used for the same purpose. Howevei it was shown in 131
that RBF network is more accurate for the problem of interference cancellation
than multilayer perceptron and some other standard methods including linear
filters.

In this paper we study hyper radial basis function (I{RBF neural networks
with all parameters fully adjusted by using an associated adaptive online
learning algorithm for interference cancellation.

The basic problem is illustrated in detail in Fig. 1. The model of a corrupted
signal d(k) is

Jfk)-- (ki + -(k (1)

where (k I is an unknown primary signal and iiI I is the undesired interference
or noise signal and k = 1. 2 n is discrete time. The reference noise ek
is assumed to be available. Reference noise is related to the interference
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signal ia an unknown nonlinear iiperator H i.e.. unknown nonlinear
feedforwarcl tilte signals A A . and r>A I are all assumed to he tationary

mdom loc with zero mean. In practice thtv can he also deterministic.
Che solution consits of identifying the unknown nonlinear operator H by
a nonlInear filter neural network W, The canceller output A which is an
estimate of the desired signal A . is then given by

-= d>A) s A (A) i (A>,

2. MAIN RESULTS

2.1. Fundamentals

A hyper basis function I I-IBFi neural network has been first introduced

by Poggio and Girosi 8!. The main idea of a HBF network is to consider
the mapping to be approximated fin our problem it is nonlinear dynamic
mapping W> by a sum of several functions, each one with its own prion The
corresponding regularization principle then yields a superposition of Green’s
functions, in particular, generalized Gaussian basis functions with different
widths. In detail, the operator W is regarded as the sum of 1 components ffi,
in — 1.2 W, each having a different prior probability. The functional L(L’) to
minimize is defined as

i>=(z titt5IA1)i>A)) t;’fiPmt,,i2. >3>

where Pd,. in -= 1.2 t!. are constraint operators stabilizers> in Tikhonov’s
regularization theory 191 and

‘.,.
. in = 1. 2 ‘i!, are positive real numbers

regu larization parametersL
The approximate solution to the minimization problem defined by (3) is

= (4)
iii 1 1

where n” are the weight parameters and (.‘ i(. / 1. 2... 0, in =

1. 2 tI. are Greens functions. See 181 for details.

2.2. Practical Realization

To make the model ‘4 practical and a simple as possible we are interested in

the “penal case of Green’s functions. In particular, the appropriate choice of sta
bilizers, which aic rotationally and translationallv inariant. 4> leads to radial
basis junctions of multiple cale Choosing. for example, a set of I stabilizers
whose Green’s functions are Gau-sian >G { vp. q l - It > q’ >1 >

and ‘etting u >1 0 e can write a simple form of hyper radial
basis function netu ark as a tno-laver neur’tl network in which the hidden
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FIG. 2. Model of HRBF network-based, nonlinear. interference cancellation —C tein.

layer performs an adaptive nonlinear transformation with adjustable weight
and center parameters. rhis allows an M dimensional input space v I? (k) —

L’R (K) CR (k 1)., R (K — M * 1)) to be mapped to the one-dimensional output
space (k): R11 R as

‘5)

i—I 1-1

where w(k = )u1(kl. u’a(k)..... u’1,)k)) e R° is the vector of weights. (p)
( iti’i) 2Ip , )p)) is the vector with elements

(6)

and

p = p(iR(k). Q) = p(v11(k). q) — Qf(VR(Ih —

= (R)k) — C1) Q, — C,)

1! ru 2

=Z[Zei)1R(k_±1)—()] 7)

I = 1.2 ( \ is a number of neurons in hidden layer. with adaptive centers
C, ) and matrices of widths Q see also Fig. 2L

Let us note that if M tI) positive definite matrix Q, Q, is reduced to

a diagonal matrix diagc 2 x. then the HRBF network is aimplified
(degenerated to the standard RBF neural network.

2,3. Learning Procedure

To adjust the HRBF network we must estimate all free parameters ti, c,.

and Q. ./—1.2 ii. in 5 and 71.

There is no explicit training set of input—output examples for learning of the
HRBF network in reference to the interference cancellation problem. Hence.
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the objective becomes the minimization of the cancellation system output power.

which can be written as

1 / 1
ck =elk=dk — r(k)=d(ki — uexp —Q;Rk _c1i). 8)

This is equivalent to the minimization of mean squared error between (k)

and i’,k) under assumption that ,ck is uncorrelated with both v(k) and iki.

Thus, we can use tl(k) (k) + u(k as the “desired output” and k as the actual

output fiw learning of the HRBF network. The “error” ((k), whose power is to

be minimized, is .(k) ÷ Ilk) c(k). i.e., output of the canceller.

Now, our objective is to estimate the set of all free parameters =

{w. c1}. Q}} of the HRBF network using the standard power function

(9)

where the error ek) is calculated using (8).

Applying the gradient descent approach, we obtain the following algorithm

for online learning of the HRBF network

w(k) w(k — 1) — Ii(k)VwJ)),

Q,ki = Qk -1)— IlQk)Q. (10)

C1(k) = c1k 1)—

where J((-) = J(w (c1} 1Q11 ,, = 1 2 N and ‘i() t)Q (k), i (k) ale

learning rates, which can be fixed for the simplest case.

The results of the gradient components calculation for all free parameters

(-) {w. {c1}. {Q,}} are

Vw.I(()) = —P(p((d(k) —

=S1k)Q;R - c))(k) c,). (11)

= J(k(Q1QJ(VRtk) — C1),

where

= w1 eXP(—(R(k) — c,)Q1Qf(J?(k) — c/)))dk) —

ii(p, )v(k(. 1121

Substituting (11) into (10) results in a full online learning procedure for the

HRBF network-based canceller.

However, it should be noted that the power function (9) may have many

local minima. To avoid stacking in local minima, we apply the Manhattan
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learning algorithm of the form 10, 11. Hence, procedure (10) can be changed

to

I i7ksign(\J((-)fl, if k1 Oi
w(k) w(k 1)

rw)k 1) wck 2). otherwise.{ / /lJ*
‘(Q (k ) sign I — .

if 1k) 0j r
Q1kt=Q k—l— )Q 1 13

/Q tQ k - 1) Q 11 2 . otherwise.

I ‘/c )k)Sign)V.J*))). if /4th)
.

C1(k)=C.)k — it —

i’ (C It 1) C: It — 2 othCrVise.

where f — 1,2..... N, (k) = 1V.J(((k))l o lVJ.(-Hh 1))I, t3Q(k( =

1J(((k)) )Q j)Jt(k 1)) 3Q I. /4 (k) — IVc J(-tkH lV J((k 1))l,
is Hadamard product (. o B = 1a11b ) symbol. 0/11 is (in x n) zeros

matrix, 0 < < 1, 0 r < 1, 0 — re < 1 are some values (typically

equal 0.2 to 05) and the gradient components are calculated using (lfl,

This adaptive procedure can work also in a slowly time-varying environ

ment.

2.4. Learning Rates Adaptation

In order to improve the convergence speed of the procedure I 131, the

learning rates I;k, I/Q.(Is(. 1c (It) should also be optimally tuned. For this

purpose we may use heuristics, proposed by Cichocki and Unbehauen 1101
and Mazurek et al. Ill! and summarized as follows. Each weight has its own
learning rate. The learning rates are adaptively adjusted during the learning

process on the basis of gradient information of the power function. When the

gradient component has the same sign tbr several iterations, the corresponding

learning rate is increased by some constant. When the gradient component

alternates (flips sign) for several consecutive time steps, the corresponding

learning rate is decreased exponentially to allow rapid decay when necessary.

Generally speaking. it is possible to show that some of these heuristics have

rigorous fundamentals and are simply modifications of nonparametric Mann—

Whitney and Kolmogorov—Smirnov criteria f13. 141.
It is possible to design a number of slightly different procedures for learning

rate adaptation using modifications of the previously mentioned nonpararnetric

criteria. However, in order to make learning of the HRBF network-based

canceller as simple as possible it is desirable and enough to construct some very

simple procedure. The simplest one is if we take into account only the signs
of the two last gradient components. Jacobn’ procedure. based on this bimple
principle and can be written (for learning rate 1,(k)J in the form

i1(A ifmax{1/(k1J,} 0.

)1i7 (It 1). if max{t/ It J} - 0. 11

0. otherwise,
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where is a parameter for an additive increase and \ 1 is a paranietor
tbr a multiplicative exponential) decrease of the learning rate. Typically 10

and 0.5 09, )k) — J(-tkh) 1(1 (\J((HA))

iVJ (k 1) I, r is the momentum parameter 0 1, is Ith

element of the vector d . and max h } is the maximum element of the

vector /(k
The procedures for the adaptation of learning rates P and L are the

ame and we will not write them explicitly here.
In procedure ( 13 we have 2ii 1 different learning rates. We can t’xpeet that

adaptation properties of the learning algorithm 13 might he improved if we

would introduce a learning rate fir each element uf the vectors w I c A ) and

the matrix Q, A ), j = I . 2... n. However, then we would have n — ii 11 + ii

learning rates to adust. l’hic results in an increase of computational complexity

which is not attractive. We will show in the simulation section that excellent

results can be achieved using only 2n - 1 learning rates.

3. SIMULATION AND COMPARISON RESULTS

To demonstrate the performance of the HRBF network-based canceller we

present some simulation results. In order to make some comparison to the

previously proposed cancellers we use the following well-known models:

i the linear, FIR filter-based canceller with recursive least squares

learning algorithm [21;
(ii) the Gaussian. RBF network-based canceller that described as

(15)

(here r are width parameters) with stochastic gradient learning algorithm 3

Performance of the interference cancellers is measured by the normalized

mean squared error )NMSE) defined as

NMSE
[2[

Efi’2A 2

where V is the number of iterations.
The NMSE performance is evaluated on a eparate test -et of 5000 saml)les

measured at intervals of 500 samples during training.
Following the traditional style of notation, we will denote by HRBFN ti.i’

the HRBF network-based canceller with input dimension 14 and number of
hidden units h n J,ikewise. RBFN 14 ii and FIR V will refer to RBF, network

haed interference canceller and a linean FIR filter-based canceller with 11 taps,

respecti ely.
Initialization conditions are as follows. The weight . / 1, 2 a. are

all initialized to ua1l random values in tlw rang 0 1. 0. ii. The initial centers
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of the REF network are deteimined by a k-means clustering using the first
100 samples of the input data [151 fhe initial width parameters n are set to
the average of the 1 nearest-negihbor distances among the initialiied centers
It was observed before 31 and we hase found in our simulations that the
performance of the REF network-based .anceller was rather robut to variations
over a significant range of alues for the initial sp cad parameters. For the
HRBF network, the initial conditions are the game as for the RBF network;
i.e., we use the same initial centers. initial elements of matrix Q are q” ‘

and qU ( 0 for all rn ç. Then the RBF and HRBF networks are equivalent
before learning.

It is well know n that feedforward networks are universal approxima
tors [16—181. Hence, the study of different classes of nonlinearity between the
reference signal and interference in our application seems not to be necessary
ilowas eg theoretical results of the paper 181 are valid if the network has an in
finite number of neurons Thus, the performance of such methods depending on
the number of neurons in the hidden layer, is highly desirable N ext. we follow
this scenario in our simulation study. We give examples for signals of a different
nature (deterministic and random) and a linear relationship between the refer
ence signal and interference Each example is given by different levels of details
for results presentation.

ExAMPLE 1. In this example, both the signal s(k) and the interference v(k)
are deterministic sinusoids while the reference signal lRk) is a random process.
The signal s (k and the reference signal are given by

s(k) —0 7cos(2r0.lk) r 0,3sin(2jrO,25k),

ii4k) — sin(2jrO 06k f y(k)j,

where 7(k) is an ud super-Gaussian random process with mean zero and
variance x, The interference i(k) is

v(k) = cos(2irO,06k) 0.5sin2(2jrO,06(k 1))

(cos(2yr0,06k) 0,5sin22r0,06tk lb)2.

The interference canceller has to estimate the deterministic interference 0(k)
with samples of a random reference signal o (k), Obiously, the relationship
between LR(k) and i (lb is highly nonlinear, even without considering the effect
of the phase noise X(k) in the reference signal ‘see also Fig. 3) Figures 3 and 4
show the time waveforms and magnitude spectra of the corrupted signal d(k —

s(k) * i (Ib, the desired signal 1(k), the interference Lh). and the ieference
signal i R(k). respectively Figure 4 shows that the two fiequency components
(one at f 100 and the other at f2 250) of the signal uk) are heavily masked
by the frequency sompunents of th iiitei’ference,

The NMSE performance is evaluated on a separate test set of 5000 samples
measured at intervals of 500 samples during traininh, Figures 5 7 show
the NMSE learning curses of the FIRt lJl, RBFN(5,n), and HRBFNt5,n)
interference cancellers, respectively: The number of neurons in the hidden layer
is ii and is varied from 5 to 40. The input dimension for the RBFN and HRBFN
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cancellers is fixed to 5. The input dimension for the FIR ranceller is varied

from 5 to 40. The power r of the phase noise / L) is 0.001 in this aimulation.

corresponding to 30 dB in logarithmic scale, Here e focus on the study of

performance of the various cancellers for approximating the nonl in°ar mapping

between the teference signal and interference. The influence of phase noise en

the perfbrmance we will discuss in detail below.

The FIR canceller performed very poorly. I’he performance of’ the FIR

canceller depends on the size of the filter. The best performance was achieved

for the HRBF network-based canceller. The HRBF network-based canceller was

about 15 20 dB better than the RBF network based canceller of’ the same

size. flowevet performance of the HRBFN canceller of a smaller size can.

of’ course. be worse than the performance of’ the RBFN canceller a of larger

sue. As expected. the performance generally improved with increased size for

both RBFN and HRBF’N cancellers. Let u note that the stochastic gradient

algorithm was ut-ed fhr learning of the RBF’N eanceliei A posibie improvement

in the performance of the RBFN canceller could be achieved using some other

learning aigolul Nm. F{e; ever, the result of thu imulation seems to he genei al.

Better performance of the FIRBFN canceller is related to the highly flexible

structure of the network, However, as we will ‘how below, it can lead to less

robust un—’. ir comp wison to the RBFN cancelleu

The Figs. a’id 9 huw the wavefornis and magnitude .peetl’:i ol the test

-Set output- of the FiR 1W. RBFN 5,205 HRBF’NiS,20 caneellen-, repectt’elx.

Canceller’. n ith nonlinear processing of the refet ent’e signal with moderate izo

are nhviousiv effective in (‘ontaminating tnterference, that ire related to the

reference signal in a nonlinear way Uhe HRBFN canceller clearly achiee

better performance than the RBFN canceller of’ the une size
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We observed the efftct the phase noise on the performance of the 5’arious
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HRBFN 5.20 canceliers. when the phase noise power is varied. In this figure.
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FIG. 10. Normalized mean square error learning curves for the F’IR) 10. RBFN 5,20, and
HRBFN5.2O cancellers. respectively. versus the phase noise power 1gio Example 1).

better than the linear canceller, even when the phase noise power is significant.
Moreover, the performance of the HRBFN canceller is always better than the
performance of the RBFN canceller. However, we can observe that the RBFN
canceller is more robust to the power of the phase noise than the HRBFN
canceller. The performance of all the cancellers is almost the same fbr the power
of t.he phase noise around 0 dB.

EXAMPLE 2. This example shows interference cancellation when both the
interference and reference signal are autoregressive, moving-average (ARMA)
random processes and the relationship between the interference and reference
signal is highly nonlinear. Thus, in this example we will consider the case of
random interference and reference signals. The reference signal is given by

}‘R(k) = o(k) — 0.5o(k — 1) + 0.3o( — 2).

o(k) 1.1443o(k — 1) — 09801oi.k —2) + w(k), w) NW. 005).

The interference is related to the reference signal is nonlinear way and is given
by

= 0.3i(k — 1) + 0.6i(k — 2) 4— ho 1k)).

fluk)) =u3tki O3u2kj — 0.4uk) (k). rtk -- VO. 0.05.

ttk=0.341Rk)±087rRk — 1)±034vtk --31,

The desired signal k is the two-component sinusoid as used in the previous
example. hut with modified amplitudes: i.e..

/=0.2cos2T0. ikH.-0.lsin2rO25k.

—12 —tB
P14ASE NOISE POWER dB

The waveforms of all of the signals are shown in Fig. 11.
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Similar to previous example, the NMSE performance is evaluated on a
separate test set of 5000 samples measured at intervals of 500 samples during
training. Figures 12—14 show, respectively the NMSE learning curves of the
FIR(M). RBFN(15.n). and HRBFNII5,,i) cancellers. where n is varied from 15
to 50 and the input dimension 14 for both RBFN and HRBFN cancellers is fixed
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FIG. 12. Normalized mean square error for the linear FIR filter-based canceller: FIR; .i
- IN :3(1. .50 E\ample 2.
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and equal to 15. The input dimension 14 for the FIR canceller i varied from 1.5
to .50.

The FIR canceller failed in this ituation. The best performance was achieved
for the HRBFN canceller provided that the RBFN and HRBFN cancellers have
the aine size. However, an RBFN canceller of bigger size may demonstrate
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better perfa’mance than the HRBFN canuelier of much rnaHer iize. Generally.
the results of interfrence cancellation foi all cancellers were worse than the
iesult of previous evampic fbr the deterministic interfrence signal.

Exssipii: 3. In this example. the interference and ruft-’rence signals are
jeintlv G-ausian ARMA random processes. Thor are generated according to

i jk) — o(k) Oio(k 1) 4 O3ok 2),

1. [443ok 1 —0 98Olok 2i -

and

1k) uk) 4 0 6u(k 1) 0 3iok 2j

u(k) l1443u(k fl—0.9801u(k if —(k).

Here, the two correlated Gaussian noise processes u(k and k are given hr

w(k) = 03agt -- 0.9f(k).

v(k) = O3bk - 0.9f(k),

where o(/ i. bk and 5jk are iid zero-mean Gaussian processes with variance 1.
all independent of each other. The desired signal vk is the same as in previous
examples.

Since i’(ki and tJ?(k) are jointly Gaussian, it may be expected that the
FIR canceller would outperform both the RBFN and the HRBFN cancellers.
Figure 15 depicts the NMSE learning curves for FIRS). RBFN(5,30), and
HRBFN5,25f and illustrates that, indeed, all cancellers of appropriate size can
give approximately the same results,

-- HRBFN5 25t
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FIG. 15. Noirni tied naan rquarc etrer learning curves for the fTP 5 . RBF\ 5,30 and
HRBF’\ 525 canceller-.. re-..p cm do Examplc 3



Digital S,gnai Pi o’ssing Vol. 11. No. 3. July 201)1

4. CONCLUSION

In this paper, the HRBF network-based canceller and corresponding new
learning algorithm have been proposed. The HRBF network-based cancellers
achieve better approximation of the interference signal in comparison to the
standard RBF network-based cancellers. The reason lies in the use of a
nonlinear mapping between reference and interference signals, approximated
by a linear combination of specialized Green’s functions called Gaussian
hyper radial basis functions. The fully adaptive online learning algorithm
was developed for the proposed flexible and simple form of HRBF network.
Simulation study has shown applicability and efficiency of the proposed
canceller. It is also important that the HRBF network-based canceller is robust
to initial conditions, However the HRBFN canceller may be less robust to the
value the phase noise power than the RBNF canceller, even though it always
achieves better performance.
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