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Efficient interference cancellation often requires nonlinear processing
of a reference signal. In this paper, hyper radial basis function (HRBF)
neural networks for adaptive interference cancellation is devsloped. We
show that the HRBF networks, with an appropriate learning algorithm,
is able to approximate the interference signal more efficiently than
standard radial basis funetion (RBF) networks. The HEBF network-based
canceller achieves better results for interference cancellation. This is
due to the capabilities of the HRBF networks to approximate arbitrary
multidimensional nonlinear functions and better flexibility in comparison
to RBF networks. Simulation examples and comparisons to the FIR-based
linear canceller and the RBFN-based canceller demonstrate the usefulness
and effectiveness of the HRBFN based canceller.  © 2001 Acadomic Press
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INTRODUCTION AND PROBLEM FORMULATION

Interference cancellation refers to the minimization or cancellation of an in-
terference in an observed waveform, based on an estimate of the interference
signal that is a mapping of a separate signal called the reference signal. Linear
adaptive filters with the mean squared error criterion have been usually used
for interference and noise cancellation [1, 2]. However, for many applications
such as communication, geophysics, and especially biomedical signal process-
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FIG. 1. Interference cancellation prineiple.

ing, linear filter structures cannot in general implement optimum interference
and noise cancellers in a minimum mean squared error sense [3]. Using linear fi-
nite impulse response (FIR) or infinite impulse response filters we often cannot
achieve acceptable levels of interference and noise cancellation because these
techniques are not able to satisfactorily approximate an unknown determinis-
tic, but nonlinear mapping between the available reference and unknown inter-
ference signals. For many applications, the reference and interference signals
are usually primarily related through a deterministic nonlinear dynamic map-
ping (nonlinear filter) that is shown in Fig. 1 corresponding to block H. Thus,
it is reasonable to try to find an optimal cancellation system using nonlinear
adaptive processing models and associated training methods. Methods based on
nonlinear processing of the interference signal could be called nonlinear noise
cancellers.

In [3-5] Cha et al. and Lu et al. have demonstrated that accurate channel
equalization and cancellation of interference and noise can be achieved with
the use of radial basis function (RBF) neural networks and generalized radial
basis function networks. However, we are going to show that it is possible to
achieve better results using neural networks with more general and flexible
architectures. Alternative approaches for interference cancellation problem
have been studied in [6, 7]. In [6] an adaptive nonlinear filter modeled by a single
layer perceptron and a Pth-order Volterra filter have been used for estimation of
the nonlinear mapping between reference and interference signals. In [7], third-
order moments were used for the same purpose. However, it was shown in [3]
that RBF network is more accurate for the problem of interference cancellation
than multilayer perceptron and some other standard methods including linear
filters.

In this paper we study hyper radial basis function (HRBF) neural networks
with all parameters fully adjusted by using an associated adaptive online
learning algorithm for interference cancellation.

The basic problem is illustrated in detail in Fig. 1. The model of a corrupted
signal d(k) is

diky = s(ky+ vik). (1
where 5(k) is an unknown primary signal and v(4) is the undesired interference

or noise signal and £t =1,2..... n is discrete time. The reference noise vp(k)
is assumed to be available. Reference noise is related to the interference
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signal (k) via an unknown nonlinear operator H (i.e., unknown nonlinear
feedforward filter). Signals s(k), vik), and vg (k) are all assumed to be stationary
random processes with zero mean. In practice they can be also deterministic.
The solution consists of identifying the unknown nonlinear operator H by
a nonlinear filter (neural network) W. The canceller output (&), which is an
estimate of the desired signal s(4), is then given by

sty =dthy — viky = sthy + vk) — k). (2

2. MAIN RESULTS
——

2.1. Fundamentals

A hyper basis function (HBF) neural network has been first introduced
by Poggio and Girosi [8]. The main idea of a HBF network is to consider
the mapping to be approximated (in our problem it is nonlinear dynamic
mapping W) by a sum of several functions, each one with its own prior. The
corresponding regularization principle then yields a superposition of Green’s
functions, in particular, generalized Gaussian basis functions with different
widths. In detail, the operator W is regarded as the sum of M components f,,,
m=1.2..... M, each having a different prior probability. The functional L(1) to
minimize is defined as

» M g g
Liv)= Z( S tvg(ky) — V(k,)) “+ Z Yl Por o ”2 (3)
1

he=1 Nmra pra=1
where P, m =1.2..... M, are constraint operators (stabilizers) in Tikhonov’s
regularization theory [9] and y,,, m = 1.2..... M, are positive real numbers

(regularization parameters).
The approximate solution to the minimization problem defined by (3} is

M n
D=3 G e g, (4)

m=1 j=1
where ' are the weight parameters and G"(vp. "), j =1.2... .. n, mo=
7 7 _ N 7 .
1.2...... M, are Green’s functions. See | 8] for details.

2.2, Practical Realization

To make the model (4) practical and as simple as possible we are interested in
the special case of Green’s functions. In particular, the appropriate choice of sta-
bilizers, which are rotationally and translationally invariant, (4) leads to radial
basis functions of multiple scales. Choosing, for example, a set of M stabilizers
whose Green’s functions are Gaussian &C}‘;*{EK‘ q =Dyl v q';" =@ 000
and setting ! = ... = ! =, we can write a simple form of hyper radial

i

basis function network as a two-layer neural network in which the hidden
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Unkoown Honlinear Adagtive Filter (FHIRBFN)
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FIG. 2. Model of HRBF network-based, nonlinear, interference cancellation system.

layer performs an adaptive nonlinear transformation with adjustable weight
and center parameters. This allows an M dimensional input space Vr(k) =
(vr(k), vpk=1),....vr(k—M+1))" to be mapped to the one-dimensional output
space D(k): RM — R as

H L
Dk =Y wi)®lpj(r. g =Y wi)®;(p;) =w' B(p). (5)
=1 =1

where W(k) = (wik), wa(k).....wa(k))T € R" is the vector of weights, ®(p) =
(D1(p1). Palp2)..... P,(ps)) | is the vector with elements

o1 1, ;
Pjlpj)= 3 exp (“‘5/7‘,‘) (6)
and
P =pir(k). Q) = pFER(K). ) = |Q;(Wr(k) — el
=(r(k)~¢)) Q] Q;(Vr(k) —¢))
MM 2
=3 1Y g Rtk = ¢+ 1) - c,»a} : (7
ma=l Lo=
j=1,2...., N (N is a number of neurons in hidden layer), with adaptive centers
c;=(ci1,.... (;j,;«,,;}? and matrices of widths Q; (see also Fig. 2).
Let us note that if (M x M) positive definite matrix Q?Q‘,’ is reduced to
a diagonal matrix diag(aﬁz..‘.,a;g) then the HRBF network is simplified

(degenerated) to the standard RBF neural network.

2.3. Learning Procedure

To adjust the HRBF network we must estimate all free parameters w;, ¢;,
and Q;, j=1.2,....n,in (5) and (7).

There is no explicit training set of input-output examples for learning of the
HRBF network in reference to the interference cancellation problem. Hence,
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the objective becomes the minimization of the cancellation system output power,
which can be written as

1 !2‘ 1 . ~ '
Stky=etk) =dky— viky=dk)— 5 Z“’i exp<w§§§Qj{§;g(k) - C; )igz). (&
1

J=

This is equivalent to the minimization of mean squared error between v(k)
and (k) under assumption that s(k) is uncorrelated with both v(k) and v(k).
Thus, we can use d(k) = s(k) + v(k) as the “desired output” and v(k) as the actual
output for learning of the HRBF network. The “error” e(k), whose power is to
be minimized, is s(k) + v(k) — D(k), i.e., output of the canceller.

Now, our objective is to estimate the set of all free parameters © =
{w. {e;}.{Q;}} of the HRBF network using the standard power function

1. 1. .
J(O) = .2-63(/\'): Qsz(k). (9

where the error e(k) is calculated using (8).
Applying the gradient descent approach, we obtain the following algorithm
for online learning of the HRBF network

wiky = wik—1) - 7]w(k)ij((’;)).
) aJ(e)
() = Q;tk — 1) = nq, (k) :

Q(/( ) Q}( } 77Q;( ) aQ‘;‘

(10)

where J(®) = J(w.{e;},{Q;}), j =12..... N, and nw(k), nq,(k), ne, (k) are
learning rates, which can be fixed for the simplest case.

The results of the gradient components calculation for all free parameters
® = {w.{c;}.{Q,}} are

Vw/(0) = —®(p)(d (k) — D)),
aJ(e)
Q;

Ve, /(@) = =8,(Q; Q;(Frtk) —¢;).

= 5,(k)Q,; (Frh) —ej)Frtk) —e)) . (11)

where

1 1 TATey o~ s N .
5,‘{{\"} = ;)—w‘,‘ exp(w?v;g(k} —€;) Q} Q{,‘{v;e{k} — C‘;)) {d{ky — vik))
=w,;®;(p)Hsk). (12)
Substituting (11) into (10} results in a full online learning procedure for the
HRBF network-based canceller.

However, it should be noted that the power function (9) may have many
local minima. To avoid stacking in local minima, we apply the Manhattan
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learning algorithm of the form [10, 11]. Hence, procedure (10) can be changed
to

. ) . nw (k) sign(Ve J(©)), if Bk =05,
wik)=wk—1)— . ) . .
ree(Wik — 1) —wik — 2)). otherwise,
. JJ{E)N .
7 (k)sxgn( - ) if B (k)=0m.cm.
Q=Q k-1 'Y . 1Q; Y (13)

rQ, (Q;k —1) —Q;(k —2)). otherwise,

) , ; Ne, (k) sign(Ve, J(0)), i fe, (k)= 014,
cjtky=c;tk—1) — o N 2
’ ’ re;(€jk —1) —ejk — 2, otherwise.

where j = 1.2.. . N, pwlk) = [VwJ(OUD] o [V (O* — 1)), g, k) =
[0J(O))/dQ;] o [8J(O(k — 1))/0Q;], Be; (k) = [Ve, J(OUhN] o [Ve, J(OK — 1)),
o is Hadamard product (A o B = [a;;b;;]) symbol, 0., is (m X n) Zeros
matrix, 0 <rw <1, 0 <rq, = 1, 0 sre; = 1 are some values (typically
equal 0.2 to 0.5) and the gradient components are calculated using (11).
This adaptive procedure can work also in a slowly time-varying environ-

ment.

2.4. Learning Rates Adaptation

In order to improve the convergence speed of the procedure (13), the
learning rates nw(k), nq,(k), ne,(k) should also be optimally tuned. For this
purpose we may use heuristics, proposed by Cichocki and Unbehauen [10]
and Mazurek et al. [11] and summarized as follows. Each weight has its own
learning rate. The learning rates are adaptively adjusted during the learning
process on the basis of gradient information of the power function. When the
gradient component has the same sign for several iterations, the corresponding
learning rate is increased by some constant. When the gradient component
alternates (flips sign) for several consecutive time steps, the corresponding
learning rate is decreased exponentially to allow rapid decay when necessary.
Generally speaking, it is possible to show that some of these heuristics have
rigorous fundamentals and are simply modifications of nonparametric Mann-
Whitney and Kolmogorov-Smirnov criteria [13, 14].

It is possible to design a number of slightly different procedures for learning
rate adaptation using modifications of the previously mentioned nonparametric
criteria. However, in order to make learning of the HRBF network-bhased
canceller as simple as possible it is desirable and enough to construct some very
simple procedure. The simplest one is if we take into account only the signs
of the two last gradient components. Jacobs’ procedure, based on this simple
principle and can be written (for learning rate 5w (k)) in the form

mwik =1+ angd.if max{[Bytol;) > 0.
nw(k) = Anmyg ik — 1), if max{[fy(h)];} < 0. (14)

0, otherwise,
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where Az;i‘fd is a parameter for an additive increase and A noulis a parameter
for a multiplicative (exponential) decrease of the learning rate. Typically 10~ t<
Apidd <107V and 0.5 < A < 0.9, By th) =V J(Oth)] o [(1 = 11V J (O 1K) +
Ve J(O(k — 1)1], v is the momentum parameter (0 < v < 1), [By(k)]; is jth
element of the vector B (k), and max{[f(k)];} is the maximum element of the
vector By (k).

The procedures for the adaptation of learning rates nq (k) and s, (k) are the
same and we will not write them explicitly here.

In procedure (13) we have 2n + 1 different learning rates. We can expect that
adaptation properties of the learning algorithm (13) might be improved if we
would introduce a learning rate for each element of the vectors wik), ¢;(k) and
the matrix Q;(k), j=1.2..... n. However, then we would have i +nM + nM?
learning rates to adjust. This results in an increase of computational complexity,
which is not attractive. We will show in the simulation section that excellent
results can be achieved using only 2n 4 1 learning rates.

3. SIMULATION AND COMPARISON RESULTS
—

To demonstrate the performance of the HRBF network-based canceller we
present some simulation results. In order to make some comparison to the
previously proposed cancellers we use the following well-known models:

(i) the linear, FIR filter-based canceller with recursive least squares
learning algorithm [2];
(ii} the Gaussian, RBF network-based canceller that described as

i

. . Frik) —c;l? ;
x;(k‘):Zw; eXp(—“M(—**g‘““‘L’*) (15}

i=1 a;

(here o; are width parameters) with stochastic gradient learning algorithm {3].

Performance of the interference cancellers is measured by the normalized
mean squared error (NMSE) defined as

NMSE — E{(E(ﬂk} - sthn?) _ Z’il(i{k} - ‘qmﬁ‘
E{v2h)) PNSREILY
where ¥ is the number of iterations.

The NMSE performance is evaluated on a separate test set of 5000 samples
measured at intervals of 500 samples during training.

Following the traditional style of notation, we will denote by HRBFN(A 1)
the HRBF network-based canceller with input dimension M and number of
hidden units by n. Likewise, RBFN(A/ 71 and FIR(M 1 will refer to RBF, network-
based interference canceller and a linear, FIR filter-based canceller with M taps,
respectively.

Initialization conditions are as follows. The weights {u,}, j =1.2..... 0, are
all initialized to small random values in the rang [ ~0.1. 0.1]. The initial centers
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of the RBF network are determined by a K-means clustering using the first
100 samples of the input data [15]. The initial width parameters o; are set to
the average of the M nearest-neighbor distances among the initialized centers.
It was observed before [3] and we have found in our simulations that the
performance of the RBF network-based canceller was rather robust to variations
over a significant range of values for the initial spread parameters. For the
HRBF network, the initial conditions are the same as for the RBF network;
i.e., we use the same initial centers. Initial elements of matrix Q; are ¢7" =0,
and q?"g =0 for all m # ¢. Then the RBF and HRBF networks are equivalent
before learning.

It is well known that feedforward networks are universal approxima-
torg [16-18]. Hence, the study of different classes of nonlinearity between the
reference signal and interference in our application seems not to be necessary.
However, theoretical results of the paper [18] are valid if the network has an in-
finite number of neurons. Thus, the performance of such methods, depending on
the number of neurons in the hidden layer, is highly desirable. Next, we follow
this scenario in our simulation study. We give examples for signals of a different
nature {deterministic and random) and a linear relationship between the refer-
ence signal and interference. Each example is given by different levels of details
for results presentation.

EXAMPLE 1. In this example, both the signal s(k) and the interference v(k)
are deterministic sinusoids while the reference signal vg (k) is a random process.
The signal s(k) and the reference signal are given by

s{k) = 0.7cos(270.1k) + 0.3sin(270.25L),
vr(k) = sin(27x0.06k + x (b)),

where x(k) is an iid super-Gaussian random process with mean zero and
variance o, . The interference v(k) is

v(k) = cos(270.06k) — 0.5sin%(270.06(k — 1))
+ (cos(270.06k) — 0.5sin%(270.06(k — 1)))2.

The interference canceller has to estimate the deterministic interference v(k)
with samples of a random reference signal vg (k). Obviously, the relationship
between vp(k) and v(k) is highly nonlinear, even without considering the effect
of the phase noise x (k) in the reference signal (see also Fig, 3). Figures 3 and 4
show the time waveforms and magnitude spectra of the corrupted signal d(k) =
stky + vik), the desired signal s(k), the interference v(k), and the reference
signal vg(k), respectively. Figure 4 shows that the two frequency components
(one at f1 = 100 and the other at f» = 250) of the signal s(k) are heavily masked
by the frequency components of the interference.

The NMSE performance is evaluated on a separate test set of 5000 samples
measured at intervals of 500 samples during training. Figures 5-7 show
the NMSE learning curves of the FIR(M), RBFN(5,n), and HRBFN(5,7)
interference cancellers, respectively. The number of neurons in the hidden layer
is n and is varied from 5 to 40. The input dimension for the RBFN and HRBFN



(TNAVIV YAV ku\/\”‘f\fi
IV VIRAT

a{kp=s(k)+vik)

i

R R T I 7

sk}
@

\J \wf\\w]w N \J
S VAVAVAVAVAVAVAVAY

Time

FIG. 8. Time waveforms of the corrupted signal do) = sth) + vk, the desired signal vk,
the interference viky, and the reference signal v, (k), respectively (Example 1),

80 ; T T
{ (“._ vik) |
o | : “' ik} H
40 4
: %
ful é ,
" % , ’{
I .
10 31 i ;
a ?‘; }i i & £. 1. 1 H i
o 100 156 200 250 300 350 400 450 500
0 t v 3 v T T
g - ViR
é S SRRV AUV L O SR E
]
8 i 3 ) L i k4 i i H
g 50 100 150 00 250 300 380 400 45¢ 560
80 T 7 T d v
. ; : sk
2 : i : z
ﬁ:‘ﬁ} ,,,,,,,,,,,,,,,,,,,, e o - e s
§ A . :
i1
s i Aod i H ; i
¢} 50 100 15¢ 200 250 300 358 400 450 560

frequency

FIG. 4. Magnitude spectra of the desired signal s, the interference vik). the reference
signal ve ok, and the corrupted signal diky = stk + vk (Example 11



Vorobyov and Cichocki: HRBF Networks for Interference Cancellation 213

& FIR(40}
-6 FIR(20}
| -=- FIR{5)
[ FIR(1D)

NMSE n d8

»

i
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Training iterat

FI1G. 5. Normalized mean square error for the linear FIR-based canceller: FIR(M), M =
5. 10, 20, 40 (phase noise power o2 = 0.001) (Example 1).

—+ RBFN(5 5]
v RBFN(S, 10)
-6~ RBFN[S.20}
& RBEN(S 40}

-5

NMSE in dB
i
3

i i i S 4
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Training terations

FIG. 6. Normalized mean square error for the RBF network-based canceller: RBFN(5,1),
1 =5.10.20.40 (phase noise power o] =0.001) (Example 1).




214 Dugeial Signal Processing Vol 11, No. 3 July 2001
[ -+ HRBFN(SS)
% e HRBENGS, 10}
5 -5~ HREFNIS.20}
[ & HRBEN(S 40
- *3 =
P A
g -2 :
€
! B
g .
-3
~35
M&\\
[ - S——
e,
-40 B
\Mw
~45 . . : .
4 500 1004 1860 2000 2500 3300 380G 4000 45050 5000

Training derations

FIG. 7. Normalized mean square error for the HRBF network-based canceller: HRBFNG, ),
7 = 5.10.20. 40 (phase noise power 0% = 0.001) (Example 1).

cancellers is fixed to 5. The input dimension for the FIR canceller is varied
from 5 to 40. The power crf‘ of the phase noise y (k) is 0.001 in this simulation,
corresponding to —30 dB in logarithmic scale. Here we focus on the study of
performance of the various cancellers for approximating the nonlinear mapping
hetween the reference signal and interference. The influence of phase noise on
the performance we will discuss in detail below.

The FIR canceller performed very poorly. The performance of the FIR
canceller depends on the size of the filter. The best performance was achieved
for the HRBF network-based canceller. The HRBF network-based canceller was
about 15-20 dB better than the RBF network based canceller of the same
size. However, performance of the HRBFN canceller of a smaller size can,
of course, be worse than the performance of the RBFN canceller a of larger
size. As expected, the performance generally improved with increased size for
both RBFN and HRBFN cancellers. Let us note that the stochastic gradient
algorithm was used for learning of the RBFN canceller, A possible improvement
in the performance of the RBFN canceller could be achieved using some other
Jearning algorithm. However, the results of this simulation seems to be general.
Better performance of the HRBFN canceller is related to the highly flexible
structure of the network. However, as we will show below, it can lead to less
robustness in comparison to the RBFN canceller.

The Figs. 8 and 9 show the waveforms and magnitude spectra of the test
set outputs of the FIR(10), RBFN(5,20), HRBEFN(5,20) cancellers, respectively.
Cancellers with nonlinear processing of the reference signal with moderate size
are obviously effective in contaminating interferences that are related to the
reference signal in a nonlinear way. The HRBFN canceller clearly achieves
better performance than the RBFN canceller of the same size.
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FIG. 8. Estimated waveforms of the interference signal (k) obtained by the FIR(10},
RBFN(5,20), and HRBFN(5,20) cancellers, respectively (Example 1).

We observed the effect the phase noise on the performance of the various
cancellers. Figure 10 shows the performance of the FIR(10), RBFN(5,20), and
HRBFN(5,20) cancellers, when the phase noise power is varied. In this figure,
the NMSEs for various cancellers, after training of 10,000 samples, were plotted
versus the value of a on a logarithmic scale. We can see from the graphs that
the cancellers with nonhnea}s processing of the reference signal performed much
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FIG. 10. Normalized mean square error learning curves for the FIR(10), RBFN(5,20), and
HRBFN(5,20) cancellers, respectively, versus the phase noise power lgio?) (Example 1).

better than the linear canceller, even when the phase noise power is significant.
Moreover, the performance of the HRBFN canceller is always better than the
performance of the RBFN canceller. However, we can observe that the RBFN
canceller is more robust to the power of the phase noise than the HRBFN
canceller. The performance of all the cancellers is almost the same for the power
of the phase noise around 0 dB.

EXAMPLE 2. This example shows interference cancellation when both the
interference and reference signal are autoregressive, moving-average (ARMA)
random processes and the relationship between the interference and reference
signal is highly nonlinear. Thus, in this example we will consider the case of
random interference and reference signals. The reference signal is given by

vriky=0k) - 050k - 1) + 0.30(k — 2,
ol{k) =1.14430k — 1) — 0.98010k — 2) + w(k), wik)y ~ N0, 0.05).

The interference is related to the reference signal is nonlinear way and is given
by

vik)=0.3vk - 1)+ 0.6v(k — 2) + flu(k)).
Fluth)y =u k) +0.3u% (k) — 0.4uk) + vik).  vik) ~ N0.0.05).
(k) =0.34vp k) +08Tvgk — 1)+ 0.34vr ik - 3).
The desired signal s(k) is the two-component sinusoid as used in the previous
example, but with modified amplitudes; i.e.,

sthy=0.2¢c0s(2720.1k) + 0.1 5in(270.254).

The waveforms of all of the signals are shown in Fig. 11.
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Similar to previous example, the NMSE performance is evaluated on a
separate test set of 5000 samples measured at intervals of 500 samples during
training. Figures 12-14 show, respectively, the NMSE learning curves of the
FIR(M), RBFN(15,n), and HRBFN(15,1) cancellers, where n is varied from 15
to 50 and the input dimension M for both RBFN and HRBFN cancellers is fixed
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M = 15.30.50 (Example 2).
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FIG. 13. Normalized mean square error for the RBF network-based canceller: RBFN(15.4),
== 15,30, 50 tExample 2).

and equal to 15. The input dimension M for the FIR canceller is varied from 15
to 50.

The FIR canceller failed in this situation. The best performance was achieved
for the HRBFN canceller provided that the RBFN and HRBFN cancellers have
the same size. However, an RBFN canceller of higger size may demonstrate
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FIG. 14, Normalized mean syuare error {or the HRBF network-based canceller: HRBFN«15,11,
no= 15,3050 (Example 2.
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better performance than the HRBFN canceller of much smaller size. Generally,
the results of interference cancellation for all cancellers were worse than the
results of previous example for the deterministic interference signal.

EXAMPLE 3. In this example, the interference and reference signalg are
jointly Gaussian ARMA random processes. They are generated according to

vek) =olk) = 050k — 1) + 0300k — 2).
olky=1.14430(k — 1) — 0.98010(k — 2) + wik):
and
vik) =ulk)+0.6uk — 1) — 0.3utk —2),
ulky=1.1443uk — 1) — 0.9801uk — 1) + v(k).

Here, the two correlated Gaussian noise processes w(k) and v(k) are given by

wik) =0.3alk) + 0.95k),
v(k)y =0.3b(k) + 0.98(k),

where a(k), b(k) and £(k) are iid zero-mean Gaussian processes with variance 1,
all independent of each other. The desired signal s(k) is the same as in previous
examples.

Since v(k) and vg(k) are jointly Gaussian, it may be expected that the
FIR canceller would outperform both the RBFN and the HRBFN cancellers.
Figure 15 depicts the NMSE learning curves for FIR(5), RBFN(5,30), and
HRBFN(5,25) and illustrates that, indeed, all cancellers of appropriate size can
give approximately the same results.
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FIG. 15. Normalized mean square error learning curves for the FIR(5), RBFN(5,30), and
HREBFN(5,25) cancellers, respectively (Example 3).
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4. CONCLUSION
—

In this paper, the HRBF network-based canceller and corresponding new
learning algorithm have been proposed. The HRBF network-based cancellers
achieve better approximation of the interference signal in comparison to the
standard RBF network-based cancellers. The reason lies in the use of a
nonlinear mapping between reference and interference signals, approximated
by a linear combination of specialized Green’s functions called Gaussian
hyper radial basis functions. The fully adaptive online learning algorithm
was developed for the proposed flexible and simple form of HRBF network.
Simulation study has shown applicability and efficiency of the proposed
canceller. It is also important that the HRBF network-based canceller is robust
to initial conditions. However, the HRBFN canceller may be less robust to the
value the phase noise power than the RBNF canceller, even though it always
achieves better performance.
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