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CHAPTER

Adaptive and Robust
Beamforming�

Sergiy A. Vorobyov
Department of Signal Processing and Acoustics, Aalto University, FI-00076 AALTO, Finland and Department of

Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada

3.12.1 Introduction
Adaptive beamforming is a versatile approach to detect and estimate the signal-of-interest (SOI) at
the output of sensor array using data adaptive spatial or spatio-temporal filtering and interference
cancellation [1–3]. Being a very central problem of array processing (see [4]), adaptive beamform-
ing has found numerous application to radar [5,6], sonar [7], speech processing [8], radio astronomy
[9,10], biomedicine [11,12], wireless communications [13–15], cognitive communications [16], and
other fields. The connection of adaptive beamforming to adaptive filtering is emphasized in [4]. The
major differences, however, come from the fact that adaptive filtering is based on temporal process-
ing of a signal, while adaptive beamforming stresses on spatial processing. The latter indicates also
that the signal is sampled in space, i.e., the signal is measured/observed by an array of spatially
distributed antenna elements/sensors. Electronic beamforming design problem consists of computing
optimal (in some sense that will be specified) complex beamforming weights for sensor measure-
ments of the signal. If such complex beamforming weights are optimized based on the input/output
array data/measurements, the corresponding beamforming is called adaptive to distinguish it from
the conventional beamforming where the beamforming weights do not depend on input/output array
data.

The traditional approach to the design of adaptive beamforming is to maximize the beamformer
output signal-to-interference-plus-noise ratio (SINR) assuming that there is no SOI component in
the beamforming training data [2,3]. Although such SOI-free data assumption may be relevant to
certain radar applications, in typical practical applications, the beamforming training snapshots also
include the SOI [17,18]. In the latter case, the SINR performance of adaptive beamforming can
severely degrade even in the presence of small signal steering vector errors/mismatches, because
the SOI component in the beamformer training data can be mistakenly interpreted by the adaptive
beamforming algorithm as an interferer and, consequently, it can be suppressed rather than being
protected. The steering vector errors are, however, very common in practice and can be caused by
a number of reasons such as signal look direction/pointing errors; array calibration imperfections;
non-linearities in amplifiers, A/D converters, modulators and other hardware; distorted antenna shape;
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504 CHAPTER 12 Adaptive and Robust Beamforming

unknown wavefront distortions/fluctuations; signal fading; near-far wavefront mismodeling; local scat-
tering; and many other effects. The performance degradation of adaptive beamformer can also take
place even when the SOI steering vector is precisely known, but the sample size (the number of
samples at the training stage) is small [18]. One more reason for performance degradation is the
environmental non-stationarities because of the fast variations of the propagation channel and rapid
motion of interfering sources or antenna array [19]. As a result, the environment can significantly
change from the beamforming training stage, at which the adaptive beamforming weights are com-
puted, to the beamforming testing stage, at which the beamforming weights are used. This may
severely limit the training sample size and increase the required frequency of beamforming weights
updates. To protect against the aforementioned imperfections, the robust adaptive beamforming is
considered.

This chapter is dedicated to the review of the main results in the fields of adaptive beamforming and
robust adaptive beamforming. We start by introducing the array data and beamforming models for both
cases on narrowband and wideband signals. Adaptive beamforming techniques are then reviewed includ-
ing the basic principles of adaptive beamforming design, minimum variance distortionless response
adaptive beamforming technique, analysis of optimal SINR, adaptive beamforming technique for gen-
eral rank sources. The general numerical algorithms for solving the adaptive beamforming problem such
as the gradient algorithm, the sample matrix inversion algorithm, and the projection adaptive beamform-
ing algorithm are also reviewed. Finally, the reduced complexity approaches to adaptive beamforming
and some techniques for wideband adaptive beamforming are explained. The motivations for robust
adaptive beamforming then follow. The particular robust adaptive beamforming techniques explained
in this chapter include the diagonally loaded sample matrix inversion beamforming technique, the
robust adaptive beamforming techniques with point and derivative mainbeam constraints, the gener-
alized sidelobe canceler, the adaptive beamforming techniques robust against the correlation between
the SOI and interferences such as spatial and forward-backward smoothing, the adaptive beamform-
ing techniques robust against rapidly moving interferences. A unified principle to minimum variance
distortionless response robust adaptive beamforming design is given and several most popular robust
adaptive beamforming techniques based on this principle are explained including the eigenspace-based
beamforming technique, the worst-case-based and doubly constrained robust adaptive beamforming
techniques, the probabilistically constrained robust adaptive beamforming, and the recently proposed
robust adaptive beamforming that uses as little as possible prior information, and others. Robust adap-
tive beamforming for general-rank source model and robust adaptive wideband beamforming are also
considered.

3.12.2 Data and beamforming models
In this chapter, the discussion is focussed on adaptive and robust adaptive beamforming and is based
on the assumptions of linear antenna geometry consisting of omni-directional antenna elements. Other
considerations, which are not directly related to the adaptive beamforming problem, such as non-linear
multi-dimensional antenna geometries and antenna elements with directional beampattern stay outside
of the scope of this chapter.
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3.12.2 Data and Beamforming Models 505

3.12.2.1 Narrowband case
3.12.2.1.1 Point source
Consider an antenna array with M omni-directional antenna elements see also the introduction to array
processing in this encyclopedia [4]. The narrowband signal received by the antenna array at the time
instant k can be mathematically represented as

x(k) = xs(k) + xi(k) + xn(k), (12.1)

where xs(k), xi(k), and xn(k) denote the M ×1 vectors of the SOI, interference, and noise, respectively.
The interference signal is generated by other than SOI sources that are not of interest (interferers and
possibly a jammer). For simplicity, all these components of the received signal (12.1) are assumed to be
statistically independent to each other. This assumption is fairly practical since the SOI and the signals
from interferers (other objects or users) are typically independent. The case of correlated/coherent
SOI and interference signals, however, can occur in practice, for example, because of the scattering
effect. This case will be considered separately in the chapter as well. The noise is typically isotropic or
diffuse and it can be accurately modeled as spatially white Gaussian noise (i.e., the noise components
are spatially uncorrelated at different antenna elements with the same noise power at each antenna
element). In other words, the M × M covariance matrix of the noise at the antenna array can be
expressed as Rn � E[xn(k)xH

n (k)] = σ 2
n I, where σ 2

n is the noise variance/power at a single antenna
element, I denotes the identity matrix of the same size as the number of antenna elements in the array,
and (·)H and E[·] stand for the Hermitian transpose and mathematical expectation, respectively. As
such, the noise is statistically independent from the SOI and interference signals.

In the case of point source, it is assumed that the SOI xs(k) arrives at the antenna array as a single
plane wave and it can be mathematically represented as

xs(k) = s(k)a(θs), (12.2)

where s(k) is the signal waveform, a(θs) is the M×1 steering vector associated with the SOI, and θs is the
direction-of-arrival (DOA) of the SOI. Although the steering vector a(θs) is expressed only as a function
of the DOA θs, which is the source characteristic in the case of far distant point source, one should keep in
mind that it is in fact also a function of array geometry as well as propagation media characteristics. The
covariance matrix of the SOI for the case of point source can be, therefore, expressed in the form of the
following M × M rank-one matrix: Rs � E[xs(k)xH

s (k)] = E[|s(k)|2a(θs)aH (θs)] = σ 2
s a(θs)aH (θs),

where σ 2
s � E[|s(k)|2] is the SOI power.

The beamformer output is a weighted (with complex weights) linear combination of the signals
received by different antenna elements (see also Figure 1.3 in Chapter 1 of this book [4]) at the time
instant k and it can be mathematically expressed as

y(k) �
M∑

m=1

w∗
m xm(k) = wH x(k), (12.3)

where wm is the complex weight corresponding to the mth antenna element, xm(k) in the signal received
by the mth antenna element at the time instant k, w � [w1, . . . , wM ]T is the M × 1 complex weight
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506 CHAPTER 12 Adaptive and Robust Beamforming

(beamforming) vector of the antenna array, and (·)T and (·)∗ denote the transpose and conjugate,
respectively. The expression (12.3) is in fact a linear spatial filter. The beamforming complex weights
{w∗

m}M
m=1 can be applied to the signals received by the correspondent antenna elements right at these

antenna elements or at the receiver electronics. The weights {w∗
m}M

m=1 must be designed so that the SOI
would be presumed/amplified at the beamformer output, the interference signals would be canceled,
and the noise would be suppressed.

If only the SOI component is present, the beamformer output in the case of point source becomes
y(k) = wH a(θs)s(k). From the latter expression the interpretation of the beamformer in terms of a
special filter becomes intuitive. Indeed, wH a(θs) can be thought as the spatial transfer function from
s(k) at the direction θs to y(k). The magnitude G(θs) � |wH a(θs)| is the gain of the spatial filter towards
the SOI. It is similar to the finite impulse response (FIR) filtering in the temporal domain where instead
of the spatial steering vector a(θs) we have a vector of time-delayed values of the input signal. For more
details see the introduction to array processing in this encyclopedia [4].

Under the assumption that the SOI steering vector a(θs) is known precisely, the optimal beamforming
vector w can be obtained by maximizing the beamformer output signal-to-noise-plus-interference ratio
(SINR) given as

SINR �
E
[|wH xs(k)|2]

E
[|wH

(
xi(k) + xn(k)

) |2] = σ 2
s |wH a|2

wH Ri+nw
, (12.4)

where Ri+n � E[(xi(k) + xn(k))(xi(k) + xn(k))H ] is the M × M interference-plus-noise covariance
matrix.

Because of the fact that Ri+n is unknown in practice, it is typically substituted in (12.4) by the
following data sample covariance matrix

R̂ � 1

K

K∑
k=1

x(k)xH (k), (12.5)

where K is the number of training data samples which also include the desired signal component. Other
estimates of the data covariance matrix than (12.5) can be used [20]. It is worth mentioning here that
since the noise is spatially white Gaussian and uncorrelated with the SOI and interference signals, the
actual data covariance matrix can be found as

R � E[x(k)xH (k)] = ASAH + σ 2
n I, (12.6)

where A � [a(θs), ai1 , . . . , aiL ] is the M × (L + 1) matrix of steering vectors of the SOI and the
interference sources under the assumption that all sources are the point sources, L is the number of
interference sources, S is the (L + 1) × (L + 1) source covariance matrix. The matrix S is diagonal if
the SOI and all interference signals are uncorrelated.

3.12.2.1.2 General-rank source
Typical situations in practice, however, are when the source signal is incoherently scattered (spatially
distributed) [21,22] and/or when it is characterized by fluctuating (randomly distorted) wavefronts
[23,24]. Such situations are very typical, for example, for sonar and wireless communications. Partic-
ularly in sonar, effects of signal propagation through a randomly inhomogeneous underwater channel
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3.12.2 Data and Beamforming Models 507

lead to a substantial perturbation of a regular wakefield in a random way and cause its coherence loss.
The result of such coherence loss is that the SOI may be subject to fast fluctuations that destroy the point
source structure (12.2). In wireless communications, the common situation is the fast fading due to local
scattering in the vicinity of the mobile user. Local scattering also destroys the point source structure
(12.2). In such applications, the SOI can no longer be viewed by the antenna array as a point source and
the source model needs to be modified. Typically, the SOI is modeled as a spatially distributed source
with some central angle and angular spread. The source covariance matrix is, therefore, no longer a
rank-one matrix and, for example, in the incoherently scattered source case can be given as [25]

Rs =
∫ π/2

−π/2
ρ(θ)a(θ)aH (θ)dθ, (12.7)

where ρ(θ) is the normalized angular power density (i.e.,
∫ π/2
−π/2 ρ(θ)dθ = 1). The name “general rank

source” is reflecting the fact that the covariance matrix (12.7) can have any rank from 1 in a degenerate
case to M.

In the case of general-rank SOI, the SINR expression is given as

SINR = wH Rsw
wH Ri+nw

. (12.8)

Since the matrix Ri+n is not known in practice it is substituted by the data sample covariance matrix
(12.5) in practice.

3.12.2.2 Wideband case
In the wideband case, the SOI and/or the interference signals are widely spread in the frequency domain.
As a result, it is not possible to factorize the processing in temporal and spatial parts. Therefore, joint
space-time adaptive processing (STAP) has to be performed. The name STAP stresses on the fact that
the adaptive beamforming in the wideband case is no longer a spatial filtering technique as for the
narrowband case, but rather a joint spatial and temporal filtering. For more details see the chapter on
broadband beamforming in this encyclopedia [26].

Let the number of taps in the time domain be denoted as P. Let also the M array sensors be uniformly
spaced with the inter-element spacing less than or equal to c/2 fu, where fu = fc + Bs/2 is the
maximum frequency of the SOI/maximum passband frequency, fc is the carrier frequency, Bs is the
signal bandwidth, and c is the wave propagation speed. The general case of not necessarily uniform linear
array (ULA) is considered in a specialized chapter on broadband beamforming of this encyclopedia
[26]. The received signal at the mth antenna element goes to a wideband presteering delay filter with
the delay �m . Let the output of the wideband presteering delay filter be sampled with the sampling
frequency fs = 1/τ , where τ in the sampling time and fs is greater than or equal to 2 fu. Then the
M P × 1 stacked snapshot vector containing P delayed presteered data vectors is the data vector x(k).
The beamformer output y(k) is then given by [27]

y(k) = wH x(k) = wT x(k), (12.9)

where w is the real-valued M P × 1 beamformer weight vector, i.e., wM(p−1)+m = wm,p and, thus, wH

is equivalently substituted by wT .
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In the wideband case, the steering vector also depends on frequency and in the case of a ULA is
given as

a( f , θ) = [e j2π f z1 sin (θ)/c, . . . , e j2π f zM sin (θ)/c]T , (12.10)

where zm is the mth antenna element location that for ULA is given as zm = (m − 1)d with d denoting
the inter-element spacing. The overall M P × 1 steering vector can be expressed as

ā( f , θ) = d( f ) ⊗ (B( f )a( f , θ)), (12.11)

where d( f ) � [1, e− j2π f τ , . . . , e− j2π f (P−1)τ ]T , B( f ) � diag
{
e− j2π f �1 , . . . , e− j2π f �M

}
, and ⊗

denotes the Kronecker product. Then the array response to a plane wave with the frequency f and angle
or arrival θ is

H( f , θ) = wT ā( f , θ). (12.12)

The presteering delays are selected so that the SOI arriving from the look direction θ0 appears
coherently at the output of the M presteering filters so that [27]

B( f )a( f , θ0) = 1M , (12.13)

where 1M is the M × 1 vector containing all ones. Then the steering vector towards the look direction
θ0 becomes

ā( f , θ0) = d( f ) ⊗ 1M (12.14)

and the array response towards such signal becomes

H( f , θ0) = wT ā( f , θ0) = wT C0d( f ), (12.15)

where C0 � IP ⊗ 1M .

3.12.3 Adaptive beamforming
3.12.3.1 Basic principles
The signal-to-noise ratio (SNR) gain due to coherent processing of the signal x(k) received at the antenna
array, i.e., due to receive beamforming, is proportional to the quantity |wH a(θs)| in the case of a point
source. Here θs is the presumed SOI DOA. Using the Cauchy-Schwarz inequality, it can be easily found
that |wH a(θs)| ≤ ‖w‖ · ‖a(θs)‖, where equality holds when

w = a(θs). (12.16)

The expression (12.16) is referred to as the conventional nonadaptive beamforming. In the case when
a single point source signal is observed in the background of white Gaussian noise, the conventional
nonadaptive beamformer (12.16) is known to be optimal in the sense that it provides the highest possible
output SNR gain [3]. The idealistic condition of a single point source (no interferences) is, however,
impractical. Moreover, the precise estimate of the SOI steering vector a(θs) is required in (12.16). In
the presence of interferences, (12.16) is no longer optimal and, thus, adaptive beamforming technique
are of interest.
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3.12.3 Adaptive Beamforming 509

The goal of adaptive beamforming as a spatial adaptive filter is to filter out (suppress) the undesired
interference and noise components xi(k) and xn(k) as much as possible, and to detect and obtain as
good as possible approximation/estimation of the desired signal xs(k), the estimate is denoted as x̂s(k).
The beamforming weight vector w is optimized based on the received data x(k) for a number of time
instants k = 1, . . . , K during the training interval. Since the adaptive beamforming problem consists
of optimizing the beamforming weight vector w, the optimization criterion must be defined.

One of the standard in filter design and estimation theory criteria is the mean-square error (MSE).
In the context of adaptive beamforming design, the MSE criterion can be expressed as

MSE � E[|d(k) − wH x(k)|2], (12.17)

where d(k) is the desired signal copy. The corresponding optimization problem is then formulated as
follows:

min
w

E[|d(k) − wH x(k)|2]. (12.18)

The solution of the minimum MSE problem is well known to be the Wiener-Hopf equation, which for
the optimization problem (12.18) becomes

wMSE = (E[x(k)xH (k)])−1E[xH (k)d(k)] = R−1rxd , (12.19)

where R � E[x(k)xH (k)] is the data covariance matrix and rxd � E[xH (k)d(k)] in the correlation
vector between the data vector x and the reference signal d.

The block scheme of the adaptive beamformer based on MSE minimization (12.19) is shown in
Figure 12.1. The adaptive beamformer consists of the “master” and “slave” beamformers. The beam-
forming weights are adjusted at the “master” beamformer based on minimizing the difference between
the desired signal copy and the computed (using the antenna array measurements) output of the adaptive
beamformer. These weights are then passed to the “slave” beamformer for computing the estimate of the
desired signal x̂s. The main limitation of such adaptive beamformer is the necessity to know the desired
signal copy d(k). In Figure 12.1, this necessity is reflected by introducing the generator of desired signal
copy. Although the knowledge of the desired signal copy is common in adaptive filtering, in adaptive
beamforming the SOI is unknown. Thus, the adaptive beamformer based on MSE minimization is
impractical in most of the situations of interest.

The practically appealing criterion for adaptive beamforming design is the SINR (12.4) for the case
of a point source or (12.8) for the case of a general-rank source. Obviously, the SINR does not depend
on re-scaling of the beamforming vector w, that is, if wopt is an optimal weight vector then αwopt is
another optimal weight vector as well. Here α is a scaling factor. Therefore, in the case of point source,
the maximization of the SINR (12.4) is equivalent to the following constrained optimization problem

min
w

wH Ri+nw subject to wH a(θs) = const, (12.20)

where “const” is any constant, for example, const = 1. The optimization problem (12.20) and its
solution are known under the name of minimum variance distortionless response (MVDR) adaptive
beamforming. Here the “minimum variance” stands for the fact that the objective of the optimization
problem (12.20) corresponds to the variance minimization of the signal at the output of the adaptive
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FIGURE 12.1

Adaptive beamforming based on MSE minimization.

beamformer. The term “distortionless response” refers to the constraint of the optimization problem
(12.20), which requires the response of the adaptive beamformer towards the direction of the SOI
steering vector a(θs) to be fixed and undistorted.

The optimization problem (12.20) can be solved in closed-form using the Lagrange multiplier method.
Specifically, the Lagrangian for the problem (12.20) is given as

L(w, λ) = wH Ri+nw + λ(1 − wH a(θs)), (12.21)

where λ is a Lagrange multiplier. The solution of (12.20) is then obtained by finding the gradient of the
Lagrangian (12.21), equating it to zero, and solving the so-obtained equation. This equation is

∇w L(w, λ) = Ri+nw − λa(θs) = 0 (12.22)

and it can be rewritten equivalently as
Ri+nw = λa(θs). (12.23)

Then, the solution of (12.23) can be easily found as

wopt = λ R−1
i+na(θs). (12.24)
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3.12.3 Adaptive Beamforming 511

This is a spatial version of the Wiener-Hopf equation. Compared to (12.19), there is the SOI spatial
signature/steering vector a(θs) in (12.24) instead of the correlation vector rxd . Moreover, there is the
interference-plus-noise covariance matrix Ri+n instead of the data covariance matrix R. The Lagrange
multiplier λ can be easily found by substituting (12.24) in the distortionless response constraint of the
original optimization problem (12.20) and solving the corresponding equation for λ. The result is

λ = 1

aH (θs)R
−1
i+na(θs)

. (12.25)

Finally, substituting (12.25) in (12.24), the closed-form expression for the MVDR beamforming can be
obtained in the following form:

wMVDR = 1

aH (θs)R
−1
i+na(θs)

R−1
i+na(θs). (12.26)

The block scheme of the adaptive beamformer based on SINR maximization is shown in Figure 12.2.
According to this block scheme, the beamforming weights are computed at the adaptive processor, which
implements the estimation of the covariance matrix Ri+n and then computes the beamforming weight
vector according to (12.26). The input data for the adaptive processor are the antenna array measurements
x(k), while the output, which is passed to the antenna elements, is the vector of optimal beamforming
weights w. If the received signal is free of the desired signal component, the sample estimate of the

w

w

w

wN

1

2

3
Σ

xS
^

ADAPTIVE
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FIGURE 12.2

Adaptive beamforming based on SINR maximization.
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512 CHAPTER 12 Adaptive and Robust Beamforming

covariance matrix Ri+n can be obtained based on the expression (12.5). Otherwise, only the sample
estimate of the data covariance matrix R̂ can be found by using (12.5). The latter case when the signal
of interest is present in the data vector x is, however, common in practice.

3.12.3.2 MVDR beamforming with data covariance matrix
Even if the SOI is present in the data vector x(k), but the estimate of the data covariance matrix is
perfect and the steering vector of the SOI a(θs) is known precisely, the resulting beamformer that uses
the data covariance matrix instead of the interference-plus-noise covariance matrix is equivalent to the
MVDR beamformer of (12.26). Indeed, the data covariance matrix in the case of point source can be
represented by explicitly using the interference-plus-noise covariance matrix as

R � E[x(k)xH (k)] = σ 2
s a(θs)aH (θs) + Ri+n. (12.27)

Ignoring the immaterial for the SINR at the output of the adaptive beamformer coefficient
1/aH (θs)R

−1
i+na(θs) in (12.26), using the data covariance matrix (12.27) instead of the interference-plus-

noise covariance matrix, and applying consequently the matrix inversion lemma, it can be shown that

R−1a(θs) =
(

Ri+n + σ 2
s a(θs)aH (θs)

)−1
a(θs) =

(
R−1

i+n − R−1
i+na(θs)aH (θs)R

−1
i+n

1/σ 2
s + aH (θs)R

−1
i+na(θs)

)
a(θs)

= R−1
i+na(θs) − R−1

i+na(θs)aH (θs)R
−1
i+na(θs)

1/σ 2
s + aH (θs)R

−1
i+na(θs)

=
(

1 − aH (θs)R
−1
i+na(θs)

1/σ 2
s + aH (θs)R

−1
i+na(θs)

)
R−1

i+na(θs)

= αR−1
i+na(θs), (12.28)

where the coefficient α � 1
/(

1 + σ 2
s aH (θs)R

−1
i+na(θs)

)
is immaterial for the output SINR of the

adaptive beamformer.

3.12.3.3 Optimal SINR
The optimal output SINR is the maximum SINR obtained by substituting the optimal MVDR beam-
forming vector (12.26) in the SINR expression (12.4). Specifically, the optimal SINR in the case of a
point source is given by

SINRopt =
σ 2

s

(
aH (θs)R

−1
i+na(θs)

)2

aH (θs)R
−1
i+nRi+nR−1

i+na(θs)
= σ 2

s aH (θs)R
−1
i+na(θs). (12.29)

The expression (12.29) is in fact an upper bound for the output SINR, obtained for the case of no
interference.

For rough estimation of the optimal SINR in the case when there are only a few uncorrelated
interferences and the signal is well separated from them, the interference-plus-noise covariance matrix
can be approximated by a scaled identity matrix with a scaling coefficient representing the aggregate

Author’s personal copy



3.12.3 Adaptive Beamforming 513

power of the interferences and noise denoted as σ 2. Then the upper bound for the optimal SINR
(12.29) is

SINRopt � σ 2
s

σ 2 aH (θs)a(θs) = M
σ 2

s

σ 2 , (12.30)

where for obtaining the last equality, the fact that the squared norm of the steering vector equals to the
number of sensors in the antenna array, i.e., ‖a(θs)‖2 = M , has been used. Thus, roughly, the optimal
SINR is upper bounded by the product of the input SINRs at the individual antenna elements and the
total number of antenna elements in the antenna array.

3.12.3.4 Adaptive beamforming for general-rank source
In the case of general-rank source, the SINR expression (12.8) is the one that has to be used. The
corresponding MVDR-type optimization problem can be then formulated as

min
w

wH Ri+nw subject to wH Rsw = 1. (12.31)

The solution of the optimization problem (12.31) is well known to be the principal eigenvector of the
matrix product R−1

i+nRs, that is mathematically expressed as

wopt = P
[
R−1

i+nRs

]
, (12.32)

where P[·] denotes the operator that computes the principal eigenvector of a matrix. The solution
(12.32) is of a limited practical use because in most applications, the matrix Rs is unknown, and often
no reasonable estimate of it is available. However, if the estimate of Rs is available as well as the estimate
of Ri+n, (12.32) provides a simple solution to the adaptive beamforming problem for the general-rank
source. The solution of (12.32) can be equivalently found as the solution of the characteristic equation
for the matrix R−1

s Ri+n, that is, R−1
s Ri+nw = λw, if the matrix Rs is full-rank invertible. In practice,

however, the rank of the desired source can be smaller than the number of sensors in the antenna array
and the source covariance matrix Rs may not be invertible, while the matrix Ri+n is guaranteed to be
invertible due to the presence of the noise component. Therefore, the solution (12.32) is always preferred
practically.

3.12.3.5 Gradient adaptive beamforming algorithms
The interference-plus-noise and data covariance matrices are unknown in practice. Assuming that there
is a finite number of training snapshots x(k) that do not contain the SOI component and that the SOI
steering vector a(θs) is known precisely, the historically first adaptive beamforming method is the
gradient algorithm developed back in the 1960s of the last century [28]. Similar to the least-mean
square (LMS) adaptive filtering, the gradient adaptive beamforming algorithm can be mathematically
expresed as

w(k + 1) = w(k) + μ
(

a(θs) − x(k)xH (k)w(k)
)

, (12.33)

where w(k) stands for the beamforming weight vector at the kth iteration, i.e., after processing the kth
data snapshot, and μ is the step size of the LMS algorithm. The convergence condition for the gradient
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adaptive beamforming algorithm is similar to that of the LMS convergence condition and is formulated
as follows. The beamforming vector w(k) converges to the MVDR beamforming solution (12.26) if

0 < μ <
2

λmax[Ri+n] , (12.34)

where λmax[·] denotes the maximum eigenvalue of a square matrix. Finding the maximum eigenvalue
required in (12.34) is computationally complex. Hence, using the property that the maximum eigenvalue
of a positive semi-definite square matrix is smaller or equal to the trace of such matrix, (12.34) can be
simplified as

0 < μ <
2

Tr(Ri+n)
, (12.35)

where Tr(·) stands for the trace of a square matrix.
The covariance matrix Ri+n is, however, not known in practice. Thus, the choice of the step size

μ that guarantees the convergence of the algorithm (12.33) is a nontrivial practical issue. Another
main disadvantage of the gradient adaptive beamforming algorithm is that the convergence depends on
eigenvalue spread of the matrix Ri+n and may be very slow. To demonstrate it, the following simulation
example is considered.

A ULA consists of M = 8 omni-directional sensors spaced half-wavelength apart from each other.
A single SOI impinges on the antenna array form the direction θs = 0◦ with SNR = 0 dB, while a
single interference impinges on the antenna array form the direction θi = 30◦ with interference-to-
noise ratio (INR) = 40 dB. The gradient adaptive beamforming algorithm (12.33) is tested for three
different values of the step size: μ1 = 1/50 Tr(Ri+n), μ2 = 1/15 Tr(Ri+n), and μ3 = 1/5 Tr(Ri+n).
The results are shown in Figure 12.3 which demonstrates the convergence of (12.33) for different values
of μ in terms of the output SINR in (dB) versus the number of snapshots, i.e., the number of algorithm
iterations. The optimal SINR (12.29) that provides an absolute upper bound for the output SINR of an
adaptive beamformer is also shown. It can be seen from Figure 12.3 that the convergence is faster for
larger μ, but the variance of the output SINR values distribution is significantly higher compared to the
case of small μ. Moreover, even in the case of fastest convergence, the number of iterations required
for convergence, i.e., the required number of training snapshots is well above 1000 which is too large
number in most practical applications. As an extreme example, in radar field only a single snapshot may
be available.

3.12.3.6 Sample matrix inversion adaptive beamformer
The sample matrix inversion (SMI) adaptive beamformer [29] is obtained by replacing the interference-
plus-noise covariance matrix Ri+n in the MVDR beamformer (12.26) with the sample estimate of the
data covariance matrix (12.5). Then the expression for the corresponding beamformer is given as

wSMI = R̂−1a(θs). (12.36)

Under the assumption shared by all traditional adaptive beamforming techniques that the SOI com-
ponent is not present in the training data, the requirement of the SMI beamformer on the number of
training snapshots is given by the so-called Reed-Mallett-Brennan (RMB) rule [29]. It states that the
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FIGURE 12.3

SINR versus the number of training snapshots (number of iterations) for the gradient adaptive beamforming
algorithm with different choices of the algorithm step size.

mean losses (relative to the optimal SINR) due to the SMI approximation of wMVDR (12.26) do not
exceed 3 dB if

K ≥ 2M . (12.37)

Hence, the SMI beamformer has in general fast convergence rate that is much faster than that of the
gradient adaptive bemforming algorithm.

3.12.3.7 Projection adaptive beamforming methods
Although the RMB rule for the SMI beamformer provides a significantly faster convergence rate com-
pared to the gradient adaptive beamforming algorithm, the number of required training snapshots may
be still quite significant especially for large arrays. The so-called Hung-Turner or projection adaptive
beamformer allows to reduce the number of training snapshots even further [30].

Under the standard for traditional adaptive beamforming techniques assumption that the SOI compo-
nent is not present in the training data and also under the assumption that the noise power is negligible,
the inverse of the data covariance matrix R−1 can be closely approximated by the orthogonal pro-
jection matrix P⊥

A � I − A(AH A)−1AH where the matrix A in the absence of the SOI becomes
A � [ai1 , . . . , aiL ], i.e., it only consists of L interference steering vectors. The interference steering vec-
tors are unknown in practice and, thus, P⊥

A is also unknown. However, under the aforementioned assump-
tions of no SOI and negligible noise power, P⊥

A can be closely approximated by the data-orthogonal
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projection matrix P⊥
X � I − X(XH X)−1XH , where X is the matrix of available training snapshots.

Thus, the following train of approximate equalities holds:

R−1
i+n � P⊥

A � P⊥
X . (12.38)

Replacing R−1
i+n in (12.26) by the data-orthogonal projection matrix as in (12.38), the Hung-Turner

adaptive beamforming algorithm can be written as

wHT = (I − X(XH X)−1XH )a(θs). (12.39)

For this method, a satisfactory performance can be achieved with [30]

K ≥ L. (12.40)

The optimal value of K is [30]
Kopt = √

(M + 1)L − 1 (12.41)

which may be significantly smaller than the value given by the RMB rule for the SMI beamformer
especially for large antenna arrays and for the scenarios with small number of interferences. The
drawback of the projection adaptive beamformer is, however, that the number of interference sources
should be known a priori.

3.12.3.8 Reduced complexity approaches to adaptive beamforming
The Hung-Turner adaptive beamforming algorithm (12.39) is especially efficient when the number of
sensors in the array is much larger than the number of interferences. However, in some applications the
number of sensors in the array, or equivalently, the number of adaptive degrees of freedom (adaptive
beamforming weights) is so large that the computational complexity of the beamformer (12.39) becomes
high. For example, the over-the-horizon radar may consists of hundreds and thousands of antenna
elements [31], while the number of interferences may be relatively few. In such cases, partially adaptive
arrays can be used to reduce the amount of computations [3].

The idea of partially adaptive array is to use nonadaptive (data-independent) preprocessor to reduce
the number of adaptive channels. Mathematically, such nonadaptive preprocessor can be expressed as

y(k) = TH x(k), (12.42)

where T is an M × N (N < M) fixed preprocessing full-rank matrix and y(k) has a reduced dimension
of N × 1 relative to M × 1 for the original data vector x(k). The block scheme of the partially adaptive
beamformer is shown in Figure 12.4 where the M measurements of the antenna array are first prepro-
cessed by multiplying the vector x(k) to the preprocessing matrix T. Then the adaptive beamformer is
applied to the preprocessed vector y(k).

There are two type of preprocessors: subarray preprocessing and beamspace preprocessing. An
example of partially adaptive beamformer with subarray preprocessor is shown in Figure 12.5. In this
example, the matrix T takes a form of

TT = 1√
3

⎡⎣ 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

⎤⎦ . (12.43)
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Block scheme of the partially adaptive beamformer.
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FIGURE 12.5

An example of partially adaptive beamformer based on subarray preprocessing.
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It can be easily seen that TT T = I for (12.43). It is a desired property since the preprocessing may lead
to colored noise if TT T �= I. However, the noise remains spatially white if TT T = I.

The preprocessing of type (12.43) or a general preprocessing that follows (12.42) changes the array
manifold. We say that the element-space of the antenna array is transformed into the beam-space of a
smaller dimension to stress on the fact that the resulting array manifold is changed and, thus, the new
SOI steering vector is

ã(θs) = TH a(θs). (12.44)

The relationship between the element-space and beam-space is also shown in Figure 12.6 for a certain
partially adaptive beamformer based on subarray preprocessing. For an arbitrary preprocessor, the
covariance matrix of the preprocessed data y(k) can be expressed as

Ry � E[y(k)yH (k)] = TH E[x(k)xH (k)]T = TH RT. (12.45)

Substituting the expression (12.6) for the actual data covariance matrix in (12.45), we obtain

Ry = TH ASAH T + σ 2
n TH T = ÃSÃH + Q, (12.46)

where

Ã � TH A, (12.47)

Q � σ 2
n TH T, (12.48)

beam 1 beam 2 beam 3

beamspace

elementspace

1w 2w w3

Σ

FIGURE 12.6

Element-space and beam-space of a partially adaptive beamformer based on subarray preprocessing.
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and the noise covariance matrix for the preprocessed data Q may not be a scaled identity matrix in
general. Thus, while designing the preprocessing matrix the condition

TH T = I (12.49)

has to be ensured.
Existing designs for the preprocessing matrix T that satisfy the condition (12.49) are the discrete

Fourier transform (DFT)-based beamspace preprocessing technique and the spheroidal sequences tech-
nique [3,32,33]. Both techniques consider an angular sector [θmin, θmax] where the SOI is likely to be
located, i.e., θs ∈ [θmin, θmax], and attempt to design a set of vectors that are orthonormal in this sector.
Such orthonormal vectors form the preprocessing matrix T and guarantee that the property (12.49) is
satisfied.

The DFT-based beamspace preprocessing matrix is expressed as

T = [
a(θmin), a(θmin + �θ), . . . , a(θmax − �θ), a(θmax)

]
, (12.50)

where all vectors are DFT orthonormal vectors covering the angular sector [θmin, θmax] with an angular
sampling interval �θ .

The essence of the spheroidal sequence technique [33] to the design of the preprocessing matrix T
(beamspace transformation) [32] is to take the principal eigenvectors of the matrix∫ θmax

θmin

a(θ)aH (θ)dθ (12.51)

as columns of T. Since these columns are the eigenvectors, they will be orthonormal as desired.

3.12.3.9 Wideband adaptive beamforming
One popular approach to wideband beamforming is to decompose the baseband waveforms into narrow-
band frequency components by the means of fast Fourier transform (FFT) [34,35]. Subsequently, the
subbands can be processed independently from each other using narrowband beamforming techniques
as it is shown in Figure 12.7. Then any of the above discussed adaptive beamforming methods can be
used to solve each narrowband beamforming problem. Thus, P adaptive beamforming problems, each
for the beamforming vector of length M, are needed to be solved. The time-domain beamformer output
samples are obtained by applying an inverse FFT (IFFT) of the output samples of the individual narrow-
band beamformers. However, such FFT-based wideband beamforming technique is not optimal, since
correlations between the frequency domain snapshot vectors of different subbands are not taken into
account. Although these correlations can be reduced by increasing the FFT length, the latter requires a
larger training data set [34].

Based on the wideband data and beamforming models introduced in Section 3.12.2.2, another
approach to wideband beamforming that does not require subband decomposition has been devel-
oped [27]. The block scheme of such adaptive beamformer is shown in Figure 12.8. As explained in
Section 3.12.2.2, this beamformer uses a presteering delay front-end consisting of presteering delay
filters to time-align the desired signal components in different sensors. Then the presteering delays are
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Subband processing scheme for wideband adaptive beamforming.

τ τ

τ

τ

τ

τ
w
11

w
12

w
1

w
21

w
22

w2

wN wN wN1 2

Δ

Δ

Δ

1

2

N

Σ

P

P

P

FIGURE 12.8

Block scheme of the presteered wideband adaptive beamformer.

Author’s personal copy



3.12.4 Robust Adaptive Beamforming 521

followed by FIR filters, each of length P. The beamformer output is then the sum of the filtered wave-
forms. The weights of such spatial-temporal filter for the wideband MVDR beamformer are designed
to minimize the output power subject to the distortionless response constraint for the SOI. Multiple
mainbeam constraints are required to protect the SOI in the frequency band of interest. The distor-
tionless response constraint is formulated for the steering vector (12.14) after the SOI components in
different sensors are made identical at the presteering stage. Then the narrowband adaptive beamform-
ing algorithms introduced in this section can be extended relatively straightforwardly for the STAP
shown in Figure 12.8. Moreover, the so-called generalized sidelobe canceler-type of techniques that
will be explained in Section 3.12.4.4 can be straightforwardly used [27]. For more details and designs
for wideband adaptive beamforming see also the specialized chapter on broadband beamforming in this
encyclopedia [26].

3.12.4 Robust adaptive beamforming
3.12.4.1 Motivations
The result (12.28) on the equivalence between the MVDR adaptive beamformer with the interference-
to-noise covariance matrix and the one with the data covariance matrix holds true only under the
conditions that

• there is infinite number of snapshots available at the training stage and the data covariance matrix
can be estimated exactly or at least with high accuracy,

• the SOI steering vector a(θs) is known precisely.

However, these conditions are not satisfied in practice since the data covariance matrix R cannot be
known exactly and its estimate R̂ typically contains the SOI component where the desired signal steering
vector a(θs) may be known imprecisely. The applications where the SOI component is always present in
the training data include mobile communications, passive source location, microphone array speech pro-
cessing, medical imaging, radio astronomy, etc. The inaccuracies in the knowledge of the SOI steering
vector may appear for multiple reasons associated with imperfect knowledge of the source characteris-
tics, propagation media or antenna array itself. For example, even small look direction/signal pointing
errors can lead to significant degradation of the adaptive beamformer performance [36,37]. Similarly,
an imperfect array calibration and distorted antenna shape can also lead to significant degradations [38].
Other common causes of the adaptive beamformer’s performance degradation are the array manifold
mismodeling due to source wavefront distortions resulting from environmental inhomogeneities [39],
nea-far problem [40], source spreading and local scattering [41–43], and so on.

All the aforementioned issues are addressed in the field of robust adaptive beamforming. One of
the earlier excellent reviews of the field is [44]. However, many new techniques and approaches have
been developed since this review. This section aims at revising the most significant robust adaptive
beamforming techniques.
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3.12.4.2 Diagonally loaded SMI beamformer
Even in the ideal case when the SOI steering vector is precisely known, the SOI presence in the training
data may dramatically reduce the convergence rates of adaptive beamforming algorithms as compared
with the SOI-free training data case [18]. This may cause a much more substantial degradation of the
performance of adaptive beamforming techniques in situations of small training sample size compared
to the prediction given, for example, by the RMB rule (12.37) for the SMI adaptive beamformer (12.36).

By adding a regularization term in the objective function of the optimization problem (12.20) that
penalizes the imperfections in the data covariance matrix estimate due to small sample size and other
effects, the problem (12.20) can be reformulated as

min
w

wH R̂w + γ ‖w‖2 subject to wH a(θs) = 1, (12.52)

where γ is some penalty parameter. The solution to the problem (12.52) is given by the well known
diagonally loaded or shortly just loaded SMI (LSMI) beamformer [17,45,46]

wLSMI = R̂−1
DLa(θs), R̂DL � R̂ + γ I, (12.53)

where the empirically-optimal penalty weight γ equals to double the noise power [17]. LSMI beam-
former allows to converge faster than in 2M snapshots suggested by the RMB rule.

LSMI convergence rule: the mean losses (relative to the optimal SINR) due to the LSMI approxima-
tion of wMVDR in (12.26) do not exceed a few dB’s if

K ≥ L. (12.54)

Interestingly, for properly selected γ , the LSMI beamformer is also efficient in the case when the
desired signal steering vector is mismatched. This fact will be explained in details later. However, the
choice of γ is not a trivial problem for the LSMI beamformer. Another important observation is that
the convergence rule for the LSMI beamformer coincides with that of the Hung-Turner beamformer.
Thus, the Hung-Turner beamformer can also be classified as robust against small sample size.

To demonstrate the efficiency of the LSMI beamformer compared to the SMI beamformer, the
following simulation example is considered. A ULA consists of 10 omni-directional sensors spaced
half wavelength apart from each other. The DOA of a single SOI is θs = 0◦ and SNR = 0 dB, while
the DOA of a single interference is θi = 30◦ and INR = 40 dB. Figures 12.9 and 12.10 show the
beampatterns of the SMI and LSMI beamformers, respectively. The number of training snapshots for
the SMI beamformer equals to K = 20 that satisfies the RMB rule (12.37), while the number of training
snapshots for the LSMI beamformer equals only K = 2 that satisfies the LSMI convergence rule (12.54).
It can be seen from the figures that despite the fact that the number of training snapshots for the LSMI
beamformer is 10 times smaller than that for the SMI beamformer, the beampattern corresponding to the
LSMI beamformer has a significantly higher mainlobe and lower sidelobes. The parameter γ for the
LSMI beamformer has been selected as double the noise power.

In addition, Figure 12.11 demonstrates the convergence rate for the SMI beamformer for two cases
when the SOI component is not present in the training snapshots and when it is present. The same
simulation set up as above has been used. It can be seen from this figure that the presence of the SOI
component in the training snapshots significantly slows down the convergence of the SMI beamformer.
The same conclusion is true for the LSMI beamformer with fixed diagonal loading factor γ that is
selected as double the noise power.
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FIGURE 12.9

Beampattern of the SMI beamformer for the number of snapshots K = 2M = 20 that satisfies the RMB rule
(12.37).

3.12.4.3 Look direction mismatch (pointing error) problem
Although the mismatch in the desired signal steering vector can be caused by a number of reasons,
the look direction mismatch (pointing error) has been considered historically first. Even a very slight
look direction mismatch can lead to the effect that is known as the signal cancellation phenomenon.
This phenomenon is schematically demonstrated in Figure 12.12 where the presumed DOA of the SOI
differs from the real DOA by few degrees. The adaptive beamformer misinterprets the desired signal
with an interference and puts the null in the direction of the SOI. The signal cancellation phenomenon
may cause a performance breakdown for adaptive beamformer and, thus, robust adaptive beamforming
techniques become vital.

To stabilize the mainbeam response of adaptive beamformer in the case of pointing error, additional
constraints are required. If all additional constraints are of the same type as the destortionless response
constraint, i.e., linear constraints, the optimization problem can be reformulated as

min
w

wH Rw subject to CH w = f, (12.55)

where C and f are some Q × M and Q × 1 matrix and vector, respectively. Depending on the choice
of C or f , we may have point or derivative mainbeam constraints [27,47].
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FIGURE 12.10

Beampattern of the LSMI beamformer for the number of snapshots K = 2L = 2 that satisfies the LSMI
convergence rule (12.54).

Point mainbeam constraints: In this case, the matrix of constrained directions is given as

C = [a(θs,1), a(θs,2), . . . , a(θs,Q)], (12.56)

where a(θs,q), q = 1, . . . , Q are all taken in the neighborhood of the steering vector in the presumed
direction a(θs) and include the steering vector in the presumed direction as well. Then the vector of
constraints f is

f = [1, 1, . . . , 1]T . (12.57)

The constraint in the optimization problem (12.55) consists of multiple point constraints similar to the
distortionless response constraints, but covers not only the presumed direction, but also the directions
in the neighborhood of the presumed direction. The work principle of the point mainlobe constraint is
demonstrated in Figure 12.13.

The disadvantage of using multiple distortionless response constraints is that additional degrees of
freedom are used by the beamformer in order to satisfy these constraints. Since for an antenna array of
M sensors, the number of degrees of freedom is M, the use of each additional degree of freedom for
satisfying additional distortionless response constraints limits the remaining degrees of freedom that
may be needed for suppressing interference signals.
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FIGURE 12.11

SINR versus the number of training snapshots for the SMI beamformer in the SOI-free scenario and in the
case when SOI is present in the training data.

Derivative mainbeam constraints: In this case, the matrix of constrained directions is given as

C =
[

a(θs),
∂a(θ)

∂θ

∣∣∣∣
θ=θs

, . . . ,
∂ M−1a(θ)

∂θ M−1

∣∣∣∣
θ=θs

]
(12.58)

and the vector of constraints is
f = [1, 0, . . . , 0]T . (12.59)

Here
∂ka(θ)

∂θk

∣∣∣∣
θ=θs

= Dkas, (12.60)

where D is the matrix that depends on the SOI presumed DOA θs and the array geometry.
The solution of the optimization problem can be found in a similar way as the solution of the MVDR

beamformer, and it can be written as

wopt = R−1C(CH R−1C)−1f . (12.61)

Since the data covariance matrix is unknown in practice, its sample estimate has to be used. Then the
SMI version of the beamformer (12.61) is

wSMI = R̂−1C(CH R̂−1C)−1f . (12.62)
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Look direction mismatch (pointing error) problem. The SOI arrives from a different direction than the pre-
sumed direction.
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FIGURE 12.13

Pointing error. Effect of point mainlobe constraints.
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3.12.4.4 Generalized sidelobe canceler
The solution (12.61) can be decomposed into two components, one in the constrained subspace and the
other in the orthogonal subspace to the constrained subspace, as follows [27]:

wopt = (
PC + P⊥

C
)︸ ︷︷ ︸

I

wopt

= C(CH C)−1 CH R−1C
(
CH R−1C

)−1︸ ︷︷ ︸
I

f

+P⊥
C R−1C

(
CH R−1C

)−1f, (12.63)

where PC � C(CH C)−1CH and P⊥
C � I −C(CH C)−1CH are the projection matrix on the constrained

subspace and the orthogonal projection matrix on the constrained subspace, respectively.
The decomposition (12.63) can be written in a general form as

wGSC = wq − Bwa, (12.64)

where
wq � C(CH C)−1f (12.65)

is the so-called quiescent beamforming vector, which is independent of the input/output data of the
antenna array. The matrix B in (12.64) must be selected so that

BH C = 0 (12.66)

and it is called the blocking matrix. The vector wa is the new adaptive weight vector, while wq is non-
adaptive. The beamformer (12.64) is called the generalized sidelobe canceler (GSC). Its block scheme
is shown in Figure 12.14 and it consists of the non-adaptive branch and adaptive branch, in which the
adaptive beamforming vector is applied to the data vector z(k) after the blocking matrix B that blocks
the constrained directions.

The choice of the blocking matrix B in the GSC (12.64) is not unique. In (12.63), for example, the
blocking matrix B � P⊥

C is used. However, in this case, B is not a full-rank matrix. Therefore, it is

++
-

x
Wq

WaB
z

H

H H

FIGURE 12.14

The block scheme of generalized sidelobe canceler.
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more common to select an M × (M − N ) full-rank matrix B. Then, the vectors z(k) � BH x(k) and
wa both have shorter length of (M − N ) × 1 relative to the M × 1 vectors x(k) and wq. Since the non-
adaptive component wq is data independent and has to be pre-computed only once, the GSC reduces the
computational complexity by requiring to compute only the adaptive component wa of a shorter length.
Moreover, the blocking matrix can be interpreted as a spatial filter and designed accordingly, which is a
very fruitful approach especially in non-ideal situations when the assumptions of the plane waves and
identical channels from air into digital processor do not hold [48].

In order to find the adaptive component wa, it can be observed that since the constrained directions
are blocked by the matrix B, it is guaranteed that the SOI cannot be suppressed and, therefore, the
weight vector wa can adapt freely to suppress interferences by minimizing the output GSC power

PGSC = wH
optRwopt = (wq − Bwa)

H R(wq − Bwa)

= wH
q Rwq − wH

q RBwa − wH
a BH Rwq + wH

a BH RBwa. (12.67)

The unconstrained minimization of (12.67) results in the following expression for the adaptive
component of the GSC:

wa,opt = (
BH RB

)−1BH Rwq. (12.68)

Noting that
y(k) � wH

q x(k), z(k) � BH x(k) (12.69)

the following covariance matrix of the data vector z(k) and the correlation vector between z(k) and y(k)

can be introduced:

Rz � E[z(k)zH (k)] = BH E[x(k)xH (k)]B
= BH RB, (12.70)

ryz � E[z(k)y∗(k)] = BH E[x(k)xH (k)]wq

= BH Rwq. (12.71)

Using the notations (12.70) and (12.71), the expression (12.68) can be finally written as

wa,opt = R−1
z ryz (12.72)

which is again the Wiener-Hopf equation for finding optimal wa of a shorter length than w.
The remaining question is how to choice the blocking matrix B, if it is different from the projection

matrix P⊥
C . The blocking matrix B must satisfy the condition (12.66). In addition, it is desired that the

dimension of the data vector at the output of B, i.e., the dimension of the vector z(k), be smaller than
the dimension of the data vector x(k). Thus, the matrix B should be composed by linearly independent
vectors bi so that B = [b1, . . . , bM−N ] and the condition (12.66) becomes

bi ⊥ ck, i = 1, . . . , M − N ; k = 1, . . . , N , (12.73)

where ck is the kth column of the matrix C.
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FIGURE 12.15

The GSC in the case of normal direction and a single distortionless constraint for a particular choice of
blocking matrix.

There are many possible choices of B. For example, for the GSC shown in Figure 12.15, the matrix
C becomes a vector

C = [1, 1, . . . , 1]T , (12.74)

while the blocking matrix B is of the form

BH =

⎡⎢⎢⎢⎣
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 1 −1

⎤⎥⎥⎥⎦ . (12.75)

The corresponding vectors x(k) and z(k) are

x(k) = [x1(k), x2(k), . . . , xM (k)]T , (12.76)

z(k) = [x1(k) − x2(k), x2(k) − x3(k), . . . , xM−1(k) − xM (k)]T (12.77)

and the vector z(k) has a shorter length then the vector x(k) by one element.

3.12.4.5 Correlated (coherent) SOI and interferences: spatial smoothing
Correlation between the SOI and interferences can occur, for example, because of signal multipath
propagation (this effect is shown in Figure 12.16) or because of “smart” jammers [49]. The correlation
between the SOI and interferences leads to a strong signal cancellation effect. It is because the optimal
beamforming vector is obtained by minimizing the array output power subject to the SOI distortionless

Author’s personal copy



530 CHAPTER 12 Adaptive and Robust Beamforming

direct path
("signal")

secondary path
("interference")

source

multichannel
receiver

FIGURE 12.16

Correlated (coherent) signal and interferences occurring because of multipath propagation.

response constraint. If an interference is correlated (coherent) with the SOI, the minimum will be
achieved if the array gain toward the interference is such that the interfering source exactly cancels the
SOI. The distortionless response constraint is of no help in such a situation, since the array output does
not have already the SOI component. As a result, robust techniques which would specifically address
the situation of such correlation have been developed [49,50].

The following example visualizes the destructive effect of coherence (when the SOI and interference
are correlated with the correlation coefficient 1). A ULA with M = 10 omni-directional sensors spaced
half-wavelength apart from each other is assumed. The DOA of a single SOI is θs = 0◦ and SNR = 0 dB,
while the DOA of a single interference is θi = 30◦ and INR = 20 dB. Figure 12.17 depicts the
beampattern of the SMI adaptive beamformer for two cases of no correlation between the SOI and
interference and full coherence between the SOI and interference. It can be seen that in the incoherent
case, the directional pattern of the SMI beamformer has perfect mainlobe, low sidelobes and a deep null
in the direction of the interference. However, in the coherent case, the directional pattern is completely
destroyed.

The main idea of adaptive beamforming techniques robust against the SOI and interferences correla-
tion is a decorrelation of the SOI and interferences by the means of electronic subaperture motion. Such
technique is called spatial smoothing and it is demonstrated in Figure 12.18. On the left, the antenna
array partitioned into subarrays is shown, while on the right, the blocks of the data covariance matrix
that correspond to different subarrays are singled out.

Recall that the snapshot model is

x(k) = s(k)a(θs) + xi(k) + xn(k)

= As(k)︸ ︷︷ ︸
signal + interference

+ xn(k), (12.78)

where s(k) is the vector of the waveforms of the SOI and the interferences.
According to Figure 12.18, the data vector in the pth subarray is

x̃p(k) = ÃDp−1s(k) + x̃n,p(k), (12.79)
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FIGURE 12.17

Directional patterns of SMI beamformer for incoherent and coherent cases.

subarray 1

subarray 2

subarray 3

spatial smoothing

FIGURE 12.18

Decorrelation of the desired signal and interference by the means of electronic subaperture motion. The
array consists of 6 sensors which form 3 subarrays of 4 sensors (on the left). A block of the data covariance
matrix corresponds to each subarray (on the right). There are 3 covariance matrices for 3 subarrays.
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where Ã has a reduced dimension relative to A and for the ULA configuration

D � diag
{

e j ω
c d sin θs , e j ω

c d sin θi2 , . . . , e j ω
c d sin θiL

}
(12.80)

is a diagonal matrix, where θs, θi2 , . . . , θiL are the DOA’s of the SOI and L interferences and d is the
distance between any two adjacent antenna elements in ULA.

Let the number of subarrays be
P = M − J + 1, (12.81)

where J is the subarray dimension, i.e., the number of antenna elements in one subarray. Then the J × J
spatially smoothed covariance matrix can be determined as

R̃ � 1

P

P∑
p=1

R̃p, (12.82)

where
R̃p � E{x̃p(k)x̃H

p (k)} (12.83)

is the covariance matrix for the pth subarray.
Substituting (12.79) in (12.83) and then substituting the result in (12.82), we obtain that

R̃ � 1

P

P∑
p=1

R̃p = 1

P

P∑
p=1

E
[
x̃p(k)x̃H

p (k)
]

= 1

P

P∑
p=1

ÃDp−1 E[s(k)sH (k)]︸ ︷︷ ︸
S

(D∗)p−1ÃH + σ 2
n I

= Ã

⎡⎣ 1

P

P∑
p=1

Dp−1S(D∗)p−1

⎤⎦ ÃH + σ 2
n I

= ÃS̃ÃH + σ 2
n I, (12.84)

where the new notation

S̃ � 1

P

P∑
p=1

Dp−1S(D∗)p−1 (12.85)

is introduced.
Coherence between the SOI and interferences leads to a singular source covariance matrix S. It is

straightforward to see from (12.85) that even in the case of singular S, the matrix S̃ becomes nonsingular
if the number of subarrays is greater then the number of sources, that is,

P > L + 1. (12.86)
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The decorrelation factor between sources i and l due to spatial smoothing can also be found and it is
expressed as [51]

|gil | =
∣∣∣∣ sin{P(ωd/2c)( sin θi − sin θl)}

P sin{(ωd/2c)( sin θi − sin θl)}
∣∣∣∣ . (12.87)

Then the (i, l)th elements of the matrices S and S̃ are given, respectively, as

[S]i,l = σiσlρi,l , [̃S]i,l = σiσlρi,l gi,l , (12.88)

where σ 2
i and σ 2

l are the variances of ith and lth sources, respectively, and ρi,l is the correlation coefficient
between the ith and lth sources.

3.12.4.6 Forward-backward averaging and spatial smoothing
The spatial smoothing source decorrelation method, however, severely reduces the antenna array length
because the number of subarrays must be larger than the number of correlated sources according to
(12.81). Moreover, the spatial smoothing method does not exploit the structure of ULA or, in general, any
array with centro-symmetric geometry, in a full measure. The antenna array length can be enlarged by
the means of the so-called forward-backward (FB) spatial smoothing [52]. It is based on the observation
that for any array with centro-symmetric geometry, we have

Ja(θ) =

⎡⎢⎢⎢⎣
0 · · · 0 0 1
0 · · · 0 1 0
...

...
...

...
...

1 0 · · · 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
e j ω

c d sin θ

...

e j ω
c (N−1)d sin θ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
e j ω

c (N−1)d sin θ

...

e j ω
c d sin θ

1

⎤⎥⎥⎥⎦ = e j ω
c (N−1)d sin θ , (12.89)

where J is the exchange matrix.
In application to the covariance matrix for uncorrelated sources, the observation (12.89) leads to the

following interesting result:

JR∗J = J

[
L+1∑
l=1

σ 2
l a(θl)aH (θl)

]∗
J + σ 2

n J2︸︷︷︸
I

=
[

L+1∑
l=1

σ 2
l a∗(θl)aT (θl)

]∗
+ σ 2

n I

=
L+1∑
l=1

σ 2
l a(θl)aH (θl) + σ 2

n I = R (12.90)

that is, the covariance matrix R is the so-called centro-Hermitian matrix, satisfying R = JR∗J.
Using (12.90), the idea of the FB averaging is to decorrelate the coherent/correlated sources by

the means of enforcing the centro-Hermitian property, i.e., by computing the following FB covariance
matrix:

RFB � 1

2

(
R + JR∗J

)
. (12.91)
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Combining the FB averaging with spatial smoothing, it is possible to double the number of subarrays
while keeping the subarray length the same as in the conventional spatial smoothing. Then the covariance
matrix for the FB spatial smoothing is defined as

R̃FB � 1

2P

P∑
p=1

(
R̃p + JR̃∗

pJ
)

. (12.92)

As a result, the same decorrelation factor can be archived by the FB spatial smoothing with the use of
subarrays of a bigger size as the one achieved by the conventional spatial smoothing with subarrays of
a smaller size.

The FB spatial smoothing method can be further generalized by introducing the weights cp

(p = 1, · · · , P) as follows

R̃wFB � 1

2P

P∑
p=1

cp

(
R̃p + JR̃∗

pJ
)

(12.93)

and optimizing these weights to minimize the source decorrelation factor further.
One more simple source decorrelation method, named redundancy averaging [53], is based on the

fact that the true data covariance matrix in a ULA must be a Toeplitz matrix. The sample estimate of
the data covarince matrix is in general not a Toeplitz matrix. However, the Toeplitz structure can be
enforced, for example, by averaging the diagonals of the sample covariance matrix as it is shown in
Figure 12.19. In addition to enforcing the Toeplitz structure, such redundancy averaging also leads to
source decorrelation.

FIGURE 12.19

Redundancy averaging source decorrelation method. All diagonals are averaged and each element in the
same diagonal takes the corresponding average value. It also leads to source decorrelation.
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FIGURE 12.20

Example of rapidly moving interference.

3.12.4.7 Rapidly moving interferences
If the rate/vilosity of interference motion is faster than the rate of adaptation of the adaptive array, the
antenna array may be unable to follow such rapid changes of the interference position. The situation of
fast moving interference is, however, common in a large number of applications [19]. An example of
such situation is shown in Figure 12.20. The nulls of the beampattern are very narrow and even relatively
slow interference motion may lead to the situation when the interference leaks to the output of adaptive
beamformer through a sidelobe that may significantly reduce the output SINR of adaptive beamformer.

The situation of rapidly moving interferences is typically addressed in terms of broadening the
adaptive pattern nulls towards the interfering sources. The main difficulty here is that the DOAs of
interfering sources are unknown. However, the null width even towards interfering sources with unknown
DOAs can be increased by replacing the sample covariance matrix with the modified covariance matrix
of the form [19,54]

R̂tap = R̂ � T, (12.94)

where � stands for element-wise Hadamard product of matrices and the matrix T is a positive semi-
definite matrix that is called a taper matrix. The choice of tapper is not unique. In the most popular
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tapper proposed in [54], the (i, l)th element of the taper matrix T is given by

[T]i,l = sin (|i − l|�)

|i − l|� , (12.95)

where � defines the required null width.
Broadening the adaptive pattern nulls can also be archived by the means of enforcing the so-called

data-dependent derivative constraints [55]. The resulting covariance matrix takes the form

R̂ddc = R̂ + ξDR̂D, (12.96)

where D is the known diagonal matrix of sensor coordinates and the parameter ξ defines the tradeoff
between null depth and width. It has been shown that the null broadening method based on (12.96) can
be also interpreted in terms of the covariance tapering method of (12.94) (see [55]).

3.12.4.8 Unified principle to MVDR robust adaptive beamforming design
As we have seen earlier, the SMI beamformer is not robust to an imperfect knowledge of the SOI
steering vector. Different robust adaptive beamforming techniques which use different specific notions
of robustness such as robustness against small sample size, pointing error, coherence between the SOI
and interferences, and rapid interference motion have been revised. Each of these notions of robustness is
very specific. For example, the point or derivative mainbeam constraint-based beamforming technique is
very useful for overcoming pointing error problem, but it does not help in the general case of mismatched
SOI wavefront and finite sample size when the SOI is present in the antenna array measurements.

The general meaning of robustness for any robust adaptive beamforming technique can be, how-
ever, defined as the ability of such technique to compute the beamforming vector so that the SINR
is maximized despite possibly imperfect and incomplete knowledge of required prior information.
More specifically, the aforementioned signal cancellation effect for the SMI beamformer occurs in
the situation when the SOI steering vector is misinterpreted with any of the interference steering
vectors of their linear combinations. Thus, if with incomplete and/or imperfect prior information, a
robust adaptive beamforming technique is able to estimate the SOI steering vector so that the esti-
mate does not converge to any of the interferences and their linear combinations, such technique is
called robust. Using this notion of robustness, the unified principle to robust adaptive beamforming
design based on MVDR beamformer can be formulated as follows. Use the standard SMI beamformer
(12.36) in tandem with SOI steering vector estimation performed based on some possibly incom-
plete and inaccurate prior information. The difference between different MVDR robust adaptive beam-
forming techniques can be then shown to boil down to the differences in the assumed prior informa-
tion, the specific notions of robustness, and the corresponding steering vector estimation techniques
used.

Hereafter, the imperfectly known presumed SOI steering vector is denoted as p, while a stands
for the actual SOI steering vector that is different from p, i.e., a �= p. The estimate of the actual SOI
steering vector is denoted as â. In the techniques that follow, the estimate â is found by using different
prior information and based on different principles. Other than that, all the techniques are based on the
aforementioned unified principle.
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Many modern robust adaptive beamforming techniques are based on convex optimization theory
[16,56,57]. Most of such robust beamformers cannot be expressed in closed-form, i.e., cannot be written
in terms of the covariance matrix inversion or eigenvalue decomposition. However, the complexity of
solving optimization problems that correspond to such beamforming techniques is comparable to the
complexity of matrix inversion. Thus, there is no significant difference in terms of computational
complexity between the so-called closed-form solutions and numerical solutions of convex problems.

3.12.4.9 Eigenspace-based beamformer
Using the a priori knowledge of the presumed SOI steering vector p, the eigenspace-based beamformer
computes and uses the projection of p onto the sample signal-plus-interference subspace as a corrected
estimate of the actual SOI steering vector. The eigendecomposition of (12.5) yields

R̂ = E�EH + G�GH , (12.97)

where the M × (L + 1) matrix E and M × (M − L − 1) matrix G contain the signal-plus-interference
subspace eigenvectors of R̂ and the noise subspace eigenvectors, respectively, while the (L + 1) ×
(L + 1) matrix � and (M − L − 1) × (M − L − 1) matrix � contain the eigenvalues corresponding to
E and G, respectively, and as before L stands for the number of interfering signals.

The estimate of the actual SOI steering vector is found as

â = EEH p, (12.98)

where EEH is the projection matrix to the desired signal-plus-interference subspace. Then the
eigenspace-based beamformer is obtained by substituting the so-obtained estimate of the steering vector
to the SMI beamformer (12.36), and it can be expressed as [58]

weig = R̂−1â = R̂−1EEH p = E�−1EH p, (12.99)

where the fact that

R̂−1EEH = (E�EH + G�GH )−1EEH = E�−1EH (12.100)

has been used for obtaining the last equality and GH E = 0 because G and E are orthogonal (see the
decomposition (12.97)).

Summarizing, the essence of the eigenspace-based beamforming technique is to project the presumed
SOI steering vector onto the measured signal-plus-interference subspace prior to processing in order to
reduce the signal wavefront mismatch. Then, the estimate of the actual SOI steering vector is plugged to
the standard SMI beamformer. The interference rejection part remains unchanged for this beamformer
as compared to the SMI beamformer. The prior information used is the presumed steering vector p
and the number of interfering sources L. The notion of robustness is the projection of the presumed
steering vector to the signal-plus-interference subspace. It is, however, well known that at low SNR, the
eigenspace-based beamformer suffers from a high probability of subspace swap and incorrect estimation
of the signal-plus-interference subspace dimension [59].
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3.12.4.10 Worst-case-based robust adaptive beamforming
This approach is based on explicitly modeling of the actual SOI steering vector a as a sum of the
presumed steering vector and a deterministic norm bounded mismatch vector δ, that is,

a � p + δ, ‖δ‖ ≤ ε, (12.101)

where ε is some a priori known bound. Thus, the worst-case-based robust adaptive beamformer uses the
prior information about the presumed steering vector and the information that the mismatch vector is
norm bounded [60]. An ellipsoidal uncertainty region can also be considered instead of the mentioned
in (12.101) spherical uncertainty [61]. However, a more sophisticated prior information has to be
available in the case of ellipsoidal uncertainty. Assuming spherical uncertainty for δ, i.e., introducing
the uncertainty set

A(δ) � {a = p + δ | ‖δ‖ ≤ ε} (12.102)

the worst-case-based robust adaptive beamforming aims at solving the following optimization
problem [60]

min
w

wH R̂w subject to min
â∈A(δ)

|wH â| ≥ 1. (12.103)

The optimization problem (12.103) is equivalent to the following second-order cone (SOC) pro-
gramming problem [60]

min
w

wH R̂w subject to wH p ≥ ε‖w‖ + 1, (12.104)

which can be solved efficiently using standard numerical optimization methods with complexity com-
parable to the complexity of matrix inversion.

The worst-case-based robust adaptive beamforming technique (12.103) can be equivalently inter-
preted as the standard SMI beamformer used in tandem with the SOI steering vector estimate obtained
by solving the following covariance fitting problem [62]

min
σ 2,â

σ 2 subject to R̂ − σ 2ââH ≥ 0 for any â satisfying ‖δ‖ ≤ ε. (12.105)

Summarizing, the prior information used in the worst-case-based robust adaptive beamforming tech-
niques is the presumed steering vector and the value ε, which may be difficult to obtain in practice.
The notion of robustness is the uncertainty region for the presumed steering vector. The robustness
to the rapidly moving interference sources can also be added to the worst-case-based robust adaptive
beamforming [63].

3.12.4.11 Relationship between the worst-case-based and the LSMI
adaptive beamformers

Note that the constraint in the optimization problem (12.103) must be satisfied with equality at optimality.
Indeed, if the constraint is not satisfied with equality, then the minimum of the objective function in
(12.103) is achieved when κ � minâ∈A(δ) |wH â| > 1. However, by replacing w with w/

√
κ , the

objective function of (12.103) can be decreased by the factor of κ > 1, whereas the constraint in
(12.103) will be still satisfied. This contradicts the original statement that the objective function is
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minimized when κ > 1. Therefore, the minimum of the objective function is achieved at κ = 1, and
the inequality constraint in (12.103) is equivalent to the equality constraint. This also means that wH â
is real-valued and positive. Using these facts, the problem (12.103) can be rewritten as

min
w

wH R̂w subject to (wH p − 1)2 = ε2wH w. (12.106)

The solution to (12.106) can be found by using the method Lagrange multipliers, i.e., by optimizing
the following Lagrangian:

L(w, λ) = wH R̂w + λ(ε2wH w − (wH p − 1)2), (12.107)

where λ is a Lagrange multiplier. Taking the gradient of (12.107) and equating it to zero, it can be
found that

w = −λ(R̂ + λε2I − λppH )−1p. (12.108)

Furthermore, applying the matrix inversion lemma to (12.108), the beamforming vector can be
expressed as [60]

w = λ

λpH (R̂ + λε2I)−1p − 1
(R̂ + λε2I)−1p, (12.109)

which is the LSMI beamformer with adaptive diagonal loading factor. The expression (12.109) cannot
be used practically since the optimal value of λ has to be first found. The numerical algorithms designed
in [61] are particularly based on finding λ numerically, while the general SOC programming is used in
[60]. The complexity of both type of methods is, however, the same and is comparable to the matrix
inversion as in SMI and LSMI beamformers.

3.12.4.12 Doubly constrained robust adaptive beamforming
The doubly constrained robust adaptive beamforming [64] is similar to the worst-case-based one
(12.103) (equivalently (12.105)), but it exposes also an additional constraint to the norm of the steering
vector estimate, that is, ‖â‖2 = M . Then the corresponding optimization problem for finding â is

min
σ 2,â

σ 2 subject to R̂ − σ 2ââH ≥ 0,

for any â satisfying ‖δ‖ ≤ ε, ‖â‖2 = M . (12.110)

This method uses the same prior information as the worst-case-based robust adaptive beamforming
method and obviously fits under the aforementioned unified framework. Although the spherical uncer-
tainty region is considered in [64], it can be relatively straightforwardly extended to the ellipsoidal
uncertainty region [65]. Clearly, the notion of robustness for this method is the same as for the worst-
case-based one. Due to the constraint ‖â‖2 = M , the doubly constrained robust adaptive beamforming
provides a better estimate of the SOI than the worst-case-based robust adaptive beamforming. It can be
important in the applications where such estimate is needed.
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3.12.4.13 Probabilistically constrained robust adaptive beamforming
Another approach to robust adaptive beamforming is based on the assumption that the mismatch vector
δ is random. Then the problem has to be formulated in probabilistic terms in contrast to the deterministic
terms used in the worst-case-based design. Specifically, the probabilistically constrained robust adaptive
beamforming problem is formulated as [66]

min
w

wH R̂w subject to Pr{|wH a| ≥ 1} ≥ p0, (12.111)

where Pr{·} denotes probability and p0 is preselected probability value. In this case, the prior information
is the presumed steering vector p as before, but since the steering vector mismatch is assumed to be
random, the other prior information is the distribution type and the distribution variance of δ as well as
the non-outage probability p0 for the distortionless response constraint. In two cases when δ is Gaussian
distributed and the distribution of δ is unknown and assumed to be the worst possible, it has been shown
that the problem (12.111) can be closely approximated by the following problem [66]:

min
w

wH R̂w subject to ε̃‖Q1/2
δ w‖ ≤ wH p − 1, (12.112)

where Qδ is the covariance matrix of the random mismatch vector δ and ε̃ = √− ln (1 − p0) if δ is
Gaussian distributed and ε̃ = 1/

√
1 − p0 if the distribution of δ is unknown. Thus, the latter problem

boils down mathematically to the same form as the worst-case-based robust adaptive beamforming
problem and can also be considered as a part of the earlier explained unified framework. However, the
prior information required for the probabilistically constrained robust adaptive beamforming may be
easier to obtain than that for the worst-case-based approach since it is typically easier to estimate the
statistics of the mismatch distribution reliably, while p0 has a clear physical meaning. The non-outage
probability p0 for the distortionless response constraint is the specific notion of robustness used in this
approach.

3.12.4.14 Sequential quadratic programming-based robust
adaptive beamforming

The title of this approach refers to the optimization technique used, but its essence is significantly
different from the above approaches that are based on the same aforementioned unified principle to
robust MVDR beamforming design. According to this approach the estimate of the actual steering
vector a is found so that the beamformer output power is maximized while the convergence of the
estimate â to any interference steering vector is prohibited [67]. The rationale behind maximization
of the beamformer output power is the following. In the steering vector mismatched case, the solution
(12.36) can be re-written as a function of unknown δ, that is, w(δ) = αR̂−1(p + δ). Using w(δ), the
beamformer output power can be also written as a function of the mismatch δ as

P(δ) = 1

(p + δ)H R̂−1(p + δ)
. (12.113)

Thus, the estimate of δ or, equivalently, the estimate of a that maximizes (12.113) will be the best
estimate of the actual steering vector a under the constraints that the norm of â equals

√
M and â does
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not converge to any of the interference steering vectors. The latter is guaranteed in this method by
requiring that

P⊥(p + δ̂) = P⊥â = 0, (12.114)

where P⊥ � I − UUH , U � [u1, u2, . . . , uT ], ul , l = 1, . . . , T are the T dominant eigenvectors of the
matrix C �

∫
�

d(θ)dH (θ)dθ, d(θ) is the steering vector associated with direction θ and having the

structure defined by the antenna geometry, � is the angular sector in which the SOI is located, δ̂ and â
stand for the estimates of the steering vector mismatch and the actual SOI steering vector, respectively.
The optimization problem for finding the estimate â can be written as [67]

min
â

âH R̂−1â

subject to P⊥â = 0, ‖â‖2 = M, (12.115)

âH C̃â ≤ pH Cp,

where C̃ �
∫
�̃

d(θ)dH (θ)dθ and the sector �̃ is the complement of the sector �. The last constraint in
(12.115) limits the noise power collected in �̃.

Since the optimization problem (12.115) is non-convex and difficult to solve, it is modified so
that the orthogonal component of δ (here δ is decomposed to colinear and orthogonal components) is
estimated iteratively as shown in Figure 12.21, while at each iteration the following quadratic (convex)
optimization problem is solved

min
δ̂⊥

(p + δ̂⊥)H R̂−1(p + δ̂⊥)

subject to P⊥(p + δ̂⊥) = 0,

‖p + δ̂⊥‖2 ≤ M, (12.116)

pH δ̂⊥ = 0, ‖â‖2 = M,

âH C̃â ≤ pH Cp,

where δ̂⊥ is the component of δ̂ that is orthogonal to p and the orthogonality between δ̂ and p is
imposed by adding the constraint pH δ̂⊥ = 0. Because the quadratic programming problem (12.116)
has to be solved sequentially, the corresponding method is called the sequential quadratic programming
(SQP)-based robust adaptive beamforming.

It can be seen that the prior information used in this approach is the presumed steering vector and the
angular sector � in which the desired signal is located. Note that if the constraint (12.114) is replaced
by the constraint ‖δ‖ ≤ ε, the convergence to an interference steering vector is also be avoided, but
the problem then becomes equivalent to the worst-case-based robust adaptive beamforming (see [64]).
This technique can be simplified for more structured uncertainties, for example, when it is known
that the array is partially calibrated [68]. However, the amount of required prior information about the
uncertainty then increases.

3.12.4.15 Eigenvalue beamforming using multi-rank MVDR beamformer
If the desired signal and interference steering vectors lie in known signal subspaces and the rank of the
signal correlation matrix is known, the eigenvalue beamforming using multi-rank MVDR beamformer
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FIGURE 12.21

Convergence trajectory of the iterative robust adaptive beamforming algorithm.

can be efficient [69]. The multi-rank beamformer matrix is computed as

W = R̂−1�(�H R̂−1�)−1Q, (12.117)

where Q is a data dependent left-orthogonal matrix, i.e., QH Q = I, and � is the matrix with the
columns that span the linear subspace in which the SOI lies. For example, for resolving a signal with
a rank-one covariance matrix and an unknown but fixed DOA, the columns of Q should be selected as
the dominant eigenvectors of the mismatch covariance matrix, i.e.,

Rδ = (�H R−1�)−1. (12.118)

If it is assumed that the signal lies in a known subspace, but the DOA is unknown and unfixed (randomly
changes from snapshot to snapshot), it is the subdominant eigenvectors of the mismatch covariance
matrix that should be used as the columns of the matrix Q.

The prior information required for this beamforming technique is the linear subspace in which the
desired signal lies and the rank of the desired signal covariance matrix. The main disadvantages are that
a very specific modeling of the covariance matrix is used and the signal subspace has to be known.

3.12.4.16 Robust adaptive beamforming based on steering vector
estimation with as little as possible prior information

The essence of robustness can be practically viewed as an ability of adaptive beamformer to achieve
acceptably high output SINR despite imprecise and perhaps very limited prior information. This beam-
forming technique aims at fulfilling such most general notion of robustness. Assume that the SOI lies
in the known angular sector � = [θmin, θmax] that is distinguishable from general locations of the
interfering signals. The estimate â can be forced not to converge to any vector with DOAs within the
complement of � including the interference steering vectors and their linear combinations by the means
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of the following constraint [70,71]:
âH C̃â ≤ �0, (12.119)

where �0 is a uniquely selected value for a given angular sector �, that is,

�0 � max
θ∈�

dH (θ)C̃d(θ). (12.120)

It is worth stressing that no restrictions/assumptions on the structure of the interferences are needed.
Moreover, the interferences do not need to have the same structure as the SOI.

In order to illustrate how the quadratic constraint (12.119) works, let us consider the following
example. Consider ULA of 10 omni-directional antenna elements spaced half wavelength apart from
each other. Let the range of the SOI angular locations be � = [0◦, 10◦]. Figure 12.22 depicts the values
of the quadratic term dH (θ)C̃d(θ) for different angles. The rectangular bar in the figure marks the
directions within the angular sector �. It can be observed from this figure that the term dH (θ)C̃d(θ)

takes the smallest values within the angular sector � and increases outside of the sector. Therefore, if �0
is selected to be equal to the maximum value of the term dH (θ)C̃d(θ) within the angular sector �, the
constraint (12.119) guarantees that the estimate of the desired signal steering vector does not converge to
any of the interference steering vectors and their linear combinations. The equality dH (θ)C̃d(θ) = �0
must occur at one of the edges of �. However, the value of the quadratic term might be smaller than
�0 at the other edge of �. Therefore, a possibly larger sector �a ≥ � has to be defined, at which the
equality d(θ)H C̃d(θ) = �0 holds at both edges.

Although for computing the matrix C̃, the presumed knowledge of the antenna array geometry is
used, an inaccurate information about the antenna array geometry is sufficient. It further stresses on the
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FIGURE 12.22

Values of the term dH (θ)C̃d(θ) in the constraint (12.119) for different angles.
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robustness of such beamforming design to the imperfect prior information [71]. Taking into account the
normalization constraint and the constraint (12.119), the problem of estimating the SOI steering vector
based on the knowledge of the sector � can be formulated as the following optimization problem:

min
â

âH R̂−1â

subject to ‖â‖2 = M, (12.121)

âH C̃â ≤ �0.

Compared to the other MVDR robust adaptive beamforming methods, which require the knowledge of
the presumed steering vector and, thus, the knowledge of the presumed antenna array geometry and
propagation media and source characteristics, only imprecise knowledge of the antenna array geometry
and approximate knowledge of the angular sector � are needed for the robust adaptive beamformer
(12.121).

As cooperated to the SQP-based beamformer (12.116), where the constraint P⊥â = 0 enforces the
estimated steering vector to be a linear combination of T dominant eigenvectors U � [u1, u2, . . . , uT ],
the steering vector in (12.121) is not restricted by such linear combination requirement, while the
convergence to any of the interference steering vectors and their linear combinations is avoided by the
means of the constraint (12.119). As a result, the beamformer (12.121) has more degrees of freedom
compared to the SQP-based beamformer. Thus, it is expected that it outperform the latter one. Finally,
due to the non-convex equality constraint, the problem (12.121) is non-convex and NP-hard in general.
The efficient polynomial-time solution to this problem is developed in [71] based on the semi-definite
programming relaxation theory [57,72,73].

3.12.4.17 Comparison by simulation
To compare a number of aforementioned MVDR robust adaptive beamforming methods based on the
unified approach, the following example is considered. A ULA of 10 omni-directional sensors with
the inter-element spacing of half wavelength is used. Additive noise in antenna elements is modeled as
spatially and temporally independent complex Gaussian noise with zero mean and unit variance. Two
interfering sources are assumed to impinge on the antenna array from the directions 30◦ and 50◦, while
the presumed direction towards the SOI is assumed to be 3◦. The INR equals 30 dB and the desired
signal is always present in the training data.

The robust adaptive beamforming (12.121) is compared with the eigenspace-based, the worst-case-
based, the SQP-based, and the LSMI robust adaptive beamforming techniques. For the beamformer
(12.121) and the SQP-based one, the angular sector of interest � is assumed to be � = [θp−5◦, θp+5◦],
where θp is the presumed DOA of the SOI. The difference between the presumed and actual positions of
each antenna element is modeled as a uniform random variable distributed in the interval [−0.05, 0.05]
measured in wavelength. In addition to the antenna element displacements, the signal steering vector
is distorted by wave propagation effects in an inhomogeneous medium. Independent-increment phase
distortions are accumulated by the components of the presumed steering vector. It is assumed that the
phase increments remain fixed in each simulation run.

Figure 12.23 depict the output SINR performance of the aforementioned robust adaptive beamform-
ing techniques tested versus the SNR for fixed training data size K = 30. As it can be observed from
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Output SINR versus SNR for training data size of K = 30 and INR = 30 dB for the case of perturbations in
antenna array geometry.

the figures, the beamformer (12.121) has a better performance even if there is an error in the knowledge
of the antenna array geometry.

3.12.4.18 Robust adaptive beamforming for the general-rank signal model
Robust adaptive beamforming techniques for general-rank signal model address the situation when the
desired signal covariance matrix Rs is not known precisely as well as the sample estimate of the data
covariance matrix (12.5) is inaccurate because of small sample size.

In order to provide robustness against the norm-bounded mismatches ‖�1‖ ≤ ε and
‖�2‖ ≤ γ (where ε and γ are some preselected bounds) in the SOI and data sample covariance
matrices, respectively, the following worst-case-based robust adaptive beamformer has been derived
[74,75]

w = P{(R̂ + γ I)−1(Rs − εI)}. (12.122)

Although it is a simple closed-form solution, it is overly conservative due to the fact that the negatively
diagonally loaded signal covariance matrix Rs−εI can be indefinite. A less conservative robust adaptive
beamforming problem formulation, which enforces the matrix Rs +�1 to be positive semi-definite has
been considered in [76]. Defining Rs = QH Q, which is for example the Cholesky decomposition, the
corresponding robust adaptive beamforming problem for a norm bounded-mismatch ‖�‖ ≤ η (where
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η is some value found based on the bound value ε) to the matrix Q is given as [76]

min
w

max‖�2‖≤γ
wH (R̂ + �2)w

subject to min‖�‖≤η
wH (Q+�)H (Q+�)w≥1. (12.123)

If the mismatch of the signal covariance matrix is small enough, the optimization problem (12.123) can
be equivalently recast as

min
w

wH (R̂ + γ I)w subject to ‖Qw‖ − η‖w‖ ≥ 1. (12.124)

Due to the non-convex (difference-of-convex functions (DC)) constraint, the problem (12.124) is non-
convex. Although the DC programming problems are believed to be NP-hard in general, the problem
(12.124) is shown to have very efficient polynomial-time solution [77].

3.12.4.19 Wideband robust adaptive beamforming
In the wideband case (see Figure 12.8), the SOI components at different frequencies are typically not
perfectly phased-aligned by the presteering delays because of multiple practical imperfections. The
reasons for imperfections are accentually the same as in the narrowband case with an addition of more
error sources such as the presteering delay quantization effects. Therefore, there are errors that can be
modeled in terms of the phase error vector δ( f ) that is the function of the frequency f. Then the actual
components of the SOI arriving from DOA θs after the presteering delay filter are [78]

B( f )a( f , θs) = e jπ f ς1M + δ( f ), ∀ f ∈ [ fl, fu] (12.125)

instead of (12.13) in the case of no mismatch. Here ς is a common time delay at each of the M sensors
and fl is the minimum frequency of the SOI.

Defining the mismatch set that contains all possible phase error vectors at the frequency f as
Aε( f ) � {δ( f ) ∈ C

M |‖δ( f )‖ ≤ ε( f )}, the wideband robust adaptive beamforming problem can
be written as

min
δ( f )∈Aε( f )

|H( f , θs)| ≥ 1 ∀ f ∈ [ fl, fu]. (12.126)

Using (12.15) and (12.125), the array response towards DOA θs can be written as [78]

H( f , θs) = e jπ f ςwT C0d( f ) + wT Q( f )δ( f ), (12.127)

where Q( f ) � d( f ) ⊗ IM is M P × M matrix.
Using the triangular and then Cauchy-Schwarz inequalities, the magnitude of the lower bound for

the array responde (12.127) can be found as

|H( f , θs)| = |e jπ f ς wT C0d( f ) + wT Q( f )δ( f )|
≥ |wT C0d( f )| − |wT Q( f )δ( f )|
≥ |wT C0d( f )| − ε( f )‖QT ( f )w‖. (12.128)
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Finally, using the lower bound (12.128) for the constraint |H( f , θs)| ≥ 1 in (12.126) and imposing a
linear phase constraint on each of the M FIR filters of the array processor Figure 12.8, the optimization
problem (12.126) can be reformulated as the following output power minimization problem:

min
w

wT Rw

subject to |wT C0d( f )| − ε( f )‖QT ( f )w‖ ≥ 1, f ∈ [ fl, fu],
wm,l = wm,P−l+1, ∀m ∈ Z

M
1 , l ∈ Z

Pc−1
1 ,

(12.129)

where R is the covariance matrix of the stacked snapshot vectors, Pc = (P + 1)/2, and Z
j
i denotes

the ring of integers from i to j. The last constraint in the optimization problem (12.129) ensures the
linear phase at each of the M FIR filters and it provides additional robustness against presteering errors
[78]. The problem (12.129) is non-convex, but it can be reformulated to a convex problem that can be
solved efficiently [78]. The disadvantage is, however, that the constraint on the magnitude of the array
response is strengthened by using the triangular and Cauchy-Schwarz inequalities (see (12.128)). More
sophisticated wideband robust adaptive beamforming designs can be also found in [79,80].

3.12.4.20 Summary
The applicability of different robust adaptive beamforming techniques is mainly defined by the corre-
sponding notions of robustness used for designing a particular method and by the required prior infor-
mation needed to run a method. A majority of the existing robust adaptive beamforming techniques such
as the above mentioned techniques as eigenspace-based, worst-case-based, doubly constrained, prob-
abilistically constrained techniques as well as the eigenvalue beamforming using multi-rank MVDR
beamformer and their various modifications require the knowledge of the presumed steering vector.
In turn, the availability of this knowledge implies that the source and propagation media characteris-
tics as well as antenna geometry are known with a certain accuracy. Each method also requires some
additional information. For example, the eigenspace-based beamformer needs to know the number of
interferences, which may be a challenging practical problem. The worst-case-based and the doubly
constrained beamforming techniques need to know the upper-bound to the norm of the steering vector
mismatch, which is fortunately irrelevant to specific causes of mismatch and which is practically easy
to guess or estimate in a particular application. It is important that the performance of these methods
is not very sensitive to the over- or under-estimation of upper-bound to the norm of the steering vector
mismatch that makes these approaches practically attractive and widely applicable. The probabilisti-
cally constrained robust adaptive beamforming enables to quantify the upper-bound to the norm of
the steering vector mismatch in terms of the variance of the steering vector estimation and the prac-
tically tolerable outage probability that the distortionless response constraint is satisfied. This may be
an advantage in a number of applications especially when the variance of the steering vector/channel
estimation is already the existing information that does not require any additional efforts to obtain.
However, the least restrictive in terms of the required prior information is the robust adaptive beam-
forming technique based on steering vector estimation with as little as possible prior information. It
does not need the information about the presumed steering vector, but only needs a very approximate
knowledge of the array geometry, which is easy to have even in such challenging applications as sonar.
Similarly, it does not need any nearly accurate estimates of the source characteristics, but rather needs
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only the very approximate knowledge of a sector where the source of interest is located. In this respect,
the latter technique can be most appropriately called “robust.” Moreover, it outperforms other existing
technique in terms of the beamformer output SINR. However, the complexity of the latter technique
is equivalent to the complexity of solving SDP problem that may be higher than the complexity of
matrix inversion, i.e., the complexity of SMI and LSMI beamformers, and nearly the complexity of the
worst-case-based and other aforementioned beamforming techniques. Finally, the notion of robustness
used by the robust adaptive beamforming technique based on steering vector estimation with as little as
possible prior information is the most general that makes its applicability essentially unlimited (limited
only by the source model as the source is assumed to be narrowband). The extension of this technique
to the wideband case is the topic of future promising research.

The field of robust adaptive beamforming is an actively developing research field which is strongly
connected to the progress in optimization theory. While the notion of robustness used in [71] is the most
general as mentioned above, new methods have been actively developing within the other approaches to
robust adaptive beamforming design with more specific notions of robustness. As an example, within the
worst-case-based approach, it has been recently noticed in [81] that although the above described worst-
case-based beamforming designs can be formulated as 1D covariance fitting problems (as explained in
this section), these beamformers lead to inherently non-optimum results in the presence of interferers.
To mitigate the detrimental effect of interferers, the 1D covariance fitting approach is extended to
multi-dimensional (MD) covariance fitting in [81].

The adaptive and robust beamforming problem is originated from array processing, but it has found
a number of very fruitful applications in other actively developing fields which successfully applied
the ideas and designs developed first in array processing framework. To mention just a few of such
applications we refer the reader to such wireless communication problems as downlink beamforming
in cellular wireless networks [82], code-division multiple-access (CDMA) multiuser detection [83–
85], linear receiver design for multi-access space-time codded systems [86,87], multicast beamforming
[15,88], secondary multicast beamforming for spectrum sharing in cognitive radio systems [16], relay
network beamforming [89], etc. For more details on such applications see [90] and other sections of the
Encyclopedia.
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