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Wireless communications are always resource limited. In multiuser wireless systems, all users

compete for resources and can interfere with each other. The conflicting objectives of users make

it highly unlikely for any user to gain more profit without harming other users. The possibility of

exploiting interactions among wireless users was not considered in traditional information-theoretic

studies of the multiuser systems. Therefore, the results obtained from the information-theoretic

perspectives might lead to unstable or even infeasible solutions for multiuser systems when the

selfish nature of the users is taken into account. Indeed, it is reasonable to assume that all users

compete for the maximum achievable benefit at all time. Then, the competition among the users

should be analyzed and regulated to improve the overall performance of the whole multiuser

system.
For a multiuser system, the resource-sharing problem can be investigated from a game-theoretic

perspective. Without coordination among users, the existence of stable outcomes, corresponding

to the so-called Nash Equilibria (NE), can be analyzed. On the other hand, if there is a voluntary

cooperation among users, extra benefits for all users can be gained and optimally distributed among

users. In both the noncooperative and cooperative cases, the efficiency of resource utilization can

be boosted and the system stability can be guaranteed.
Due to the aforementioned advantages, there is an increasing amount of research efforts studying

multiuser wireless systems from the game-theoretic perspective [1—6]. In the literature, game

theory has been exploited in various systems such as code division multiple access (CDMA)

[7,8], orthogonal frequency-division multiplexing (OFDM) systems [9,10], ad hoc [11,121, and

cognitive radio networks [13—151. The purpose of this chapter is to discuss applications of game

theory for designing multiuser strategies in wireless communications. A brief introduction to the

basics of game theory will be given first. Power allocation, beamforming, and precoding problems

will then be discussed. These problems will be formulated as scalar-, vector-, and matrix-valued

games, respectively, and analyzed from a game-theoretic perspective. Both the noncooperative and

cooperative cases will be considered. Performance metrics such as efficiency, fairness, uniqueness of

the solution, and complexity will be compared and discussed. One conclusion of the studies will be

the demonstration of the advantages associated to the cooperative strategies over the noncooperative

ones. The cooperative strategies, however, require coordination among users and, thus, can lead to

an increase of system overhead.

1.1 A Brief Survey: Multiuser Games in Wireless

Communications

Mathematically, an M-player game can be modeled as

P = {, {stli E £2}, {ujIi E (1.1)
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where
= (1,2,...,M} is theset of all players

s, is the strategy of player i
u, is the utility (payoff) for player i as a function of {sj, S2,.. . ,

Depending on whether players collaborate or not, a game can be cooperative or noncooperative.
In the following sections, some basic concepts of noncooperative and cooperative games will be
reviewed, and examples based on simplified wireless systems will be given.

1.1.1 Noncooperative Games and Nash Equilibria
In a noncooperative game, there is no collaboration among users and the existence ofan equilibrium
is the main concern. An equilibrium {s i = 1,.. . , M} is the strategy set composed ofsuch strategies
from which none of the players wants to deviate [16]. The most popular example of an equilibrium
is the Nash equilibrium (NE), which can be mathematically expressed as

u (srE, s9 > u (si’ sNE) Vs’ (1.2)

where
s/’W is the strategy of player i in the NE
5NE are the corresponding strategies of all players but player i in the NE
s/ stands for any possible strategy but s’ for player i

An NE is a stable combination of all users’ strategies such that no player can increase its utility
by deviating from his current strategy given that other players do not deviate as well.-

Generally, there are two typical issues with NE solutions. First, more than one NE may existfor a game, which renders difficulty in predicting the final outcome of the game. Second, an NEcan lead and even usually leads to an inefficient outcome for all the players. In order to show it, the
following two-user two-channel communication system is explored as an example.*

Example 1.1

Assume that there are two users and two communication channels, arid each user has to makea decision about which channel to transmit on. First consider a simplified case: each userhas a fixed power budget and is only allowed to transmit on one channel. Let c1 denote thestrategy that a user transmits on channel 1 and let c2 denote the strategy that a user transmits onchannel 2, respectively. Thus, the players are the two users and the strategy space is {c1,c2}.The information rates of the players are chosen to be their utilities. The combination of users’strategies and corresponding utilities are organized in Table 1.1.
In the table, the utilities of the two users are ordered as (Uj, u2) with U, representing the utilityof user i, and h, and r,1 represent the information rate user i can obtain on channel I with andwithout interference from the other user, respectively (obviously îq < nj). Although it is a simple

two-user game, the uniqueness of NEt depends on the channel conditions (including desiredchannels and interference channels) and the noise power on each channel for each user. Let usassume that the noise power is identical on each channel for each user and study the impact ofchannel conditions on the game. We stress on the three following possible cases:

* The discussion of NE in this chapter is limited to pure strategy NE only.
The abbreviation NE is used for both Nash equilibrium and Nash equilibria.
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Table 1.1 Simplified Two-User

Two-Channel Game

(r11,r1211

• Case i—Symmetric channels. If the desired channels are identical for each user (r,1 =

r,2,Vi € 11,2)), then the game has two NEs, which are s = c1,s2 = c2) and {si =

C2, 52 = c1 1. Note that in this case, the interference channeisdo not have to be identical.

• Case 2—Asymmetric channels and high interference. If channel 1 is better for both users

than channel 2 (r11 > r12, Vi E {1, 2)), and the interference channels are strong for user 1

but weak for user 2 such that < r, 21 > r22, then the game has a unique NE, which

isIs1 C2,s2 C1}.

• Case 3—Asymmetric channels and low interference. If channel i is better for both users

than channel 2 (r11 > r,2,Vi E {1,2)), and the interference channels are weak such that

>r1,1 > r2, then the game has a unique NE, which is (si = cl,s2 = Cl).

There are some other cases to discuss, which are left to the readers.

There is a special case of NE, which can be shown in the generalized two-user two-channel

game. Assume that the number ofchannels that each user can transmit on is not limited. However,

the power budget on each channel is fixed for each user (power is nontransferable between users

or channels). Then the game can be described as in Table 1.2, where strategy 0 corresponds to

allocating no power on any channel and strategy + C2 corresponds to allocating power on both

channels.
One feature of this game is that there is a unique NE regardless of the channel conditions.

Indeed, given any choice that one player makes, the other player will choose the strategy of using

all the channels, that is, it has a fixed best strategy. Such an NE is recognized as a dominant strategy

equilibrium and can be formally described as

D
j1

(.cD5.) > u1 (s,’,s) Vs ‘V’Si’ Si (1.3)

Table 1.2 Generalized Two-User Two-Channel Game

______

User I

c1 + c
0 c

______

C2

0 1(0,0)

___________

+r12,0)(r12,0) (r11

User2 c1 (0,r21) (i1,21

_____________

(r12,r21) (?ii +r12,21)

C2 (0,r22) (r11,r22

______

___________

(u122) (r11 +r12j2)

c1 + c2 (0, r21 + r22) (i i, I2::L+ r22) 1 (12 r2i + r22) (vii +121 +n)1
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A dominant strategy equilibrium, if exists, is the unique NE in the game. However, the utilities
resulted for the players may not be “dominant.” Consider the same example as in Table 1.2. If

the interference between users are very strong on both channels such that (nl I + r12 < ri i and

r21 + r22 < r22), the strategy set {sl = Cl + C2, s2 = Cl + c2} will be inferior to the strategy set

{sl = Cl,S2 = C2}.

The inefficiency of the NE is due to the fact that there is no cooperation among the players. The

lack of cooperation usually leads to inefficient resource allocation in multiuser systems. We will
next introduce the so-called Nash bargaining (NB) games in multiuser systems in order to improve

the system performance.

1.1.2 Cooperative Games: Nash Bargaining and Other Bargaining
Solutions

To achieve better payoffs, users may resort to cooperation. By sharing some information, players
can determine whether there are potentially extra utilities for everyone if they cooperate. If there are
such extra utilities, players may bargain with each other to decide how to share them. Otherwise,
they come back to the noncooperative state.

For cooperative games, the Nash axiomatic bargaining theory states that, in a convex utility
space, there is a unique point that satisfies four specific axioms and maximizes the Nash function
defined as

F=fl(uj_u) (1.4)
iEt2

where
uC is the utility that user i obtains in the noncooperative case
the point (uC,. . .

, u59 is known as the disagreement point with M being the number of
players

Readers are referred to [171 for details of the four axioms.
Nash axiomatic bargaining focuses on describing the properties of the final solution of a coop

erative game. However, the manner of cooperation based on which the users cooperate to reach
the solution is not specified. Thus, the NB solution in a specific game depends on the manner
of cooperation. For example, wireless users may perform time division multiplexing (TDM) or
frequency division multiplexing (FDM) in a cooperative game.

Example 1.2

Assume that there is one communication channel and two users, and denote the information rate
of user i (user i’s utility) that can be achieved by using the channel exclusively as R1. Now let the
users cooperate by using the channel alternatively in time. User 1 uses a fraction a of the time
and obtains information rate aR1 as its utility, while user 2 uses a fraction 1 — a of the time and
obtains information rate (1 — a)R2 as its utility. There are three following possible cases.

• Case 1. If the disagreement point is (0, 0), then the maximization of the Nash function (1 .4)
satisfies the so-called proportional fairness principle [18].

• Case 2. II the disagreement point is (R, R) and there exists 0 a 1 such that aR1 >

and (1 — a)R2 > R, then the game has an NB solution.
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Table 1.3 The “Fairness”of NB Solution

(R1,R2) Disagreement Point a in NB Solution (%)

(10,10) (3,3) 50

(10,8) (3,2) 52.5

(10,5) (3,1) 55

• Case 3. If the disagreement point is (R, R) and there does not exist 0 a 1 such that
aR1 > R and (1 — a)R2 > R, then the game does not have an NB solution if the TDM
manner of cooperation is assumed.

Case 1 shows that the NB is related to a certain fairness principle, which justifies the necessity
of cooperation among users. Case 2 states that all users should be able to improve their utilities
to achieve a cooperative solution. Case 3 illustrates that the existence of the NB solution is not
guaranteed in a cooperative game under a specific manner of cooperation.

Note that the proportional fairness of the NB solution does not mean that it must be always
fair. In Table 1.3, the parameters in Example 1.2 are given different values and it is shown that the
NB solution sometimes favors the user with better utility in the disagreement point.

One main limitation of the NB approach is that it requires convex utility spaces. In multiuser
wireless systems, information rates are usually chosen as users’ utilities. However, the interference
among the users always renders the utility space (rate region) non-convex. The most popular
approach to transfer the non-convex utility space to a convex one in multiuser wireless communica
tion systems is to use orthogonal signaling such as time division multiple access (TDMA), frequency
division multiple access (FDMA), or both. The efficiency of such methods will be discussed later.

There are several other important results on cooperative games such as Kalai—Smorodinsky
and Egalitarian solutions which also deal only with convex games [19] In the literature, there
are limited research efforts that extend the Nash axiomatic bargaining Kalai—Smorodinsky and
Egalitarian solutions to certain non-convex games [20,21].

1.1.3 Multiuser Systems: Generalized Signal Model and Game Model
In this section, a generalized model for many games played in multiuser systems is given. It
will be specified and investigated in details in subsequent sections. Our focuses are the resource-
sharing games, which are well studied in the literature in wireless communications. The following
assumptions are adopted:

1. Players are the wireless users in a communication system. Codebook at each transmitter
is assumed to be Gaussian codebook, and the achievable information rate between each
transceiver pair is selected as the user’s utility. Players’ strategies depend on specific setups of
the problem.

2. Users have to interact with each other due to the existence of interference among them,
which makes game theory applicable. Interference perceived by a user at its receiver side is
treated as noise. No interference canceling decoding is adopted for neither noncooperative
games nor cooperative games.
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3. The transmission channels of each user are known at both receiver and transmitter sides, that
is, receivers are able to transmit the channel information back to their transmitters without
errors.

Generalized SignalModel
Assume that there are M wireless users in a communication system. We have the following model:

3), = 1-(1Q1S+ ‘Ii E 2 = {1,2,...,M} (1.5)
j,i

where
3)1 is the received symbol (or symbol vector) for user i
S is the information symbol (or symbol vector) to be transmitted for user i

can be the power allocation parameter/beamforming vector/precoding matrix of user i
depending on the setup of the problem

‘Hj is the channel between transmitter of userj and receiver of user i
.N is the additive white Gaussian noise

It is further assumed that F { = I (information symbols are uncorrelated and have unit-
energy) and F {JA’} = c7?I (noise is white with variance u?), where I and (.)H stand for
the identity matrix and the Hermitian transpose, respectively. The dimensions of 34, S, Q,‘7jj,
and iV depend on the specific problem setup, such as the channel fading conditions or number of
antennas at the transceiver pairs. These parameters will be specified later in each example considered.

The corresponding game model for the generalized signal model is as follows:

Generalized Game Model

=
= (1,2,... ,M), {QIi E 2}, (REIi E 2}} (1.6)

where R, is the achievable information rate for user i under the strategy set { QE I i e 2J.
The generalized signal and game models provide a unified structure for many games in wireless

systems. In subsequent sections, the generalized models (1.5) and (1.6) will be specified to investigate
the power allocation, beamforming, precoding games, etc. We start from the most basic games—
power allocation games.

1.2 Power Allocation Games: Competition versus Cooperation
Power allocation games are the most fundamental and well-studied games in wireless communi
cations. Games involving more complex signal-processing techniques can be transferred to power
allocation games, as we will show later. In this section, several power allocation games are studied for
both flat fading and frequency selective fading channels. Both the noncooperative and cooperative
cases are covered.

1.2.1 Power Allocation on Flat Fading Channels
Assume that there are M wireLess users sharing a channel with bandwidth W, which is flat fading
for each user. The channel gain from transmitterj to receiver i is h1, and the power budget for user
I ispj. Then the generalized signal model (1.5) in this case can be specified as follows:
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SignalModelfor the M-User Flat Fading Channel

Yi =h1/1s1+ hjk/sj + n Vi e 2 (1.7)
j:i

Note that the users’ strategies are not shown in the signal model. The strategy is characterized by
the bandwidth iv, occupied by each user. The corresponding game model is as follows.

Game Modelfbr the M-User Flat Fading Channel

F’ = {2 = {1,2,. . .,M},(w,I0 <wi < W),{R1}) (1.8)

Unlike the discrete games in the brief survey, this game is a continuous game. First, consider
the game in the noncooperative case. Similar to the discussion in the preceding section, the result
of the noncooperative game depends on the channel parameters. Following cases summarize some
typical results. The detailed proof is omitted and the readers are referred to [22—24].

• Case 1. If the interference channels h1 are weak, there exists a unique NE in which user i’s
strategy is w, = W, Vi E 2. The utility for user i in this case is

Ri=log2(1+ 2 .2 ) (1.9)

• Case 2. ‘When the interference channels become stronger, there may exist more than one
NE. As the interference keeps increasing, the competitive solution converges to FDM.

It is straightforward to see that the NE in Case 1 is actually a dominant strategy equilibrium. The
intuition behind these two cases is that it is more beneficial for the players to use a larger bandwidth
when the interference from other users is weak. On the other hand, avoiding the interference leads
to a better payoff when the potential interference is very high.

Next, we consider the cooperative case. A simple manner for the users to cooperate is FDM [24].
The assumption of FDM adds additional constraints to the utility set of the game. Practically, the
users should use nonoverlapping frequency bands and w, 1. Equivalently, a user’s strategy
can be defined as the portion of the whole bandwidth that the user obtains. If user i obtains a
fraction a, of W, then R(a,) = (a,W/2) log2(l + h12p1/aWa’2) in the cooperative game case.

In this specific game, the Nash function is

F(a)
= fl (R,(aj — R) (1.10)

where u = [a1,. . . , aM] and Rrc is decided by the disagreement point. The NB solution can be
derived by solving the following optimization problem:

max fl (R,(a,) — R)

s.t. 0< a < 1 Vi (1.11)

= 1 Vi

—
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Table 1.4 Users’ Utilities (R1,R2)in Two-User Flat Fading
Channel Games

Note that the equality in the second constraint follows from the fact that the objective F(a) can
be further increased if a < 1.

The NB solution exists in this game if and only if there exists c >- 0 such that , a, < I and
R’(a1) > where >- denotes “larger than” in element-wise comparison. In other words, the
NB solution exists if and only if all users are able to improve their utilities using FDM.

It may appear contradictory that the previously discussed noncooperative NE solution may
converge to FDM, which is assumed in the cooperative NB game. However, unlike the cooperative
case, the users are driven to FDM in their pursuits of individual benefits when the interference is
high in the noncooperative game. Moreover, generally the partitions of the whole bandwidth are
different for the FDM-based NB and the NE in FDM.

The efficiency of the NB solution depends on the manner ofcooperation assumed. For example,
FDM is highly inefficient in a low-interference multiuser system.

Example 1.3

A comparison between the strategy in which both users choose to use the whole bandwidth
and interfere with each other and the strategy in which the users share the bandwidth using
FDM is listed in Table 1.4. Particularly, assuming a symmetric system in which M = 2, W = 1,

P1 = P2 = o, o’ = 1, hi1 I = 1h221 1, lhi2I 1h21 I = h, the users’ utilities under different
strategy set {WI} are shown in Table 1 .4.

In the table, the noncooperative strategy w1 = w2 = 1 is the dominant strategy equilibrium
when h = 0.1. The FDM-based NB solution does not exist when the interference channels are
very weak (e.g., when (2.0715,2.0715) is the noncooperative NE solution for the case h = 0.1).
The FDM-based cooperative solution becomes comparatively more and more efficient when the
interference channel becomes stronger. For the case when the interference between the users is
strong enough, for example, h = 1, the NB solution of the FDM cooperative game exists under
strategies w1 = w2 = 0.5.

The fundamental reason behind the fact that FDM (and some other manners of cooperation)
can be inefficient is that it reduces the utility space of the game while making it convex and, thus,
limits the solution to belong to oniy a subset of the original utility space. We will introduce a
different manner of cooperation, which enlarges the utility space and produces a “convex hull” in
the subsequent sections.

1.2.2 Power Allocation on Frequency Selective Fading Channels
On frequency selective fading channels or equivalently inter-symbol interference (1ST) channels,
multiple users have to spread their power over frequency bins of the wideband channel. The optimal
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power allocation scheme on a frequency selective fading channel for a single user can be derived
using the well-known water-filling algorithm. However, the competition for resource arises when
there are more than one user in the system.

Assume that there are M users, and the frequency selective fading channel can be decoupled
into N frequency bins, each of which is fiat fading for all users. The signal model (1.5) in this case
can be specified as follows:

SinalModelfor the M-User FrequenL-y Selective Fading Channel

Vie2 (1.12)
ji

where
y1 = [yi (1),.. ,yj (N) I is the received symbol vector for user i on the frequcncy bins 1 to N

s = [s(1),. . . , s,(N)] is the information symbol vector transmitted by user i

= [Pu,. . . ,PurI is the power allocation vector of user i on the N frequency bins
H3 is the N x N diagonal channel matrix with its kth diagonal element hju(k) denoting the

sampled channel gain of the kth frequency bin between transmitter of user j and receiver of
user i

n, is the additive white Gaussian noise for user i

0 denotes the Hadamard product

Note that the assumptions made on su and n in the generalized signal model in Section 1.1.3 are
inherited here.

Power Allocation Game under Spectral Mask Constraints
On frequency selective fading channels, the so-called spectral mask (also known as power spectral
density [PSD] mask) constraints are typically adopted. These constraints can be written as

PiP ViE2 (1.13)

where
piax = [pnax

.

,pC] is the spectral mask for user i
denotes “less than or equal to” in element-wise comparison

In the noncooperative case, the game model corresponding to the signal model under the spectral
mask constraints is as follows:

Game Model (Noncooperative, Spectral Mask) for the M-User Frequency Selective Fading
Channel

P = = {1 2 M} {p,O p, -<
p’) {R,}} (114)

where R1 = log (1 + (1h11(k)12p,k)/(u3(k) + h,, (k)12p3k)) and u, (k)2 is the noise power

for user i on frequency bin k.
It is straightforward to see that this noncooperative game has a dominant strategy equilibrium,

which is p, =
p’. The proof is based on the fact that if one user does not use maximum power
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on all the frequency bins, it can always improve its utility by changing to the strategy of using
maximum power on all the frequency bins. The details of the proof are left •tG the readers.

In the cooperative case the users can cooperate by adopting the jomt TDM/FDM scheme [251
• lit the joint TDM/FDM scheme

:i. All frequency bins are shared among the users in time domain, that is, each frequency bin•
can be used by different users over different time intervals (TDM part).

2. All frequency bins are partitioned and allocated to the users, while only one user is allowed
on any frequency bin at any given time (FDM part).

The joint TDM/FDM scheme generates a convex utility space for all users to perform NB. Since
the users’ utilities depend only on the lengths of time durations which the users have obtained on
the frequency bins the users’ strategies can be defined in terms of their TDM/FDM coefficients as

=[aI1,...,aN} YiE (1.15)

•where c is the proportion of time that is allocated to user i on frequency bin k.
:! The cooperative game model can be, then, given as follows:

GameModel (Cooperative, SpectralMask)for tbeM-UserFrequencySelectiveFading Channel

P
= { {1,2, M) fc4, > i} {R(cr1))J (116)

where R(u,) = a, log2(1 + Ih,,(k)I2p’/u(k))
The corresponding NB solution can be obtained by solving the following convex optimization

problem

max slog (R() — RNc)
{i} j

s.t. u >— 0 Vi
(1.17)

Rj(a1) > RNC Vt

The objective function in (1.17) is the logarithm of the Nash function. The first two constraints are
the requirements of the joint TDM/FDM, while the third constraint states that the NB solution
exists Wand only if all users can benefit from the joint TDM/FDM—based cooperation.

Power Allocation Game under Total Power Constraints
The games under total power constraints are different and, in fact, more complex for both
noncooperative and cooperative cases. It is because the available pwer for all users is bounded by

• the total power constraints in this case.
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The noncooperative game model under total power constraints for the same signal model (1.12)
can be expressed as follows:

Game Model (Noncooperative, Total Power) for the M-User Frequency Selective Fading
Channel

(1.18)

where
is the maximum power that user i can use in total

R is the same as in (1.14)

Fortunately, this game is a convex game, and, therefore, it has at least one NE [26]. Thus, the
existence of an NE is guaranteed. Practically, iterative water-filling (including sequential water-
filling and parallel water-filling) algorithms work well for finding NE of such games. However,
there is no guarantee that the water-filling algorithms can converge. There are examples in which
both sequential water-filling and parallel water-filling may diverge while searching for an NE of a
simple game with a unique NE [25].

The cooperative case is even more complex. Assume again that the users cooperate accord
ing to the joint TDM/FDM scheme. Then the users’ strategies are composed of both the
TDMIFDM coefficients and the power allocation coefficients on the frequency bins due to the
total power constraints. The cooperative game model under total power constraints in this case is as
follows:

Game Model (Cooperative, Total Power)for the M-User Frequency Selective Failing Channel

(1.19)

where
ct, has the same meaning as in the cooperative game under spectral mask constraints
R,(cr) = aiklog2(1+ hu(k)I2pIk/cr?(k))

The challenge in this problem lies in the fact that the maximization of the Nash function is a
non-convex optimization problem. A water-filling-based algorithm can still be used to search for
the NB solution in the simplified two-user version of this model [27]. The algorithm bargains in
many different convex subspaces of the original utility space and obtains one NB solution in each
subspace. Then the largest of the NB solutions is selected as the final NB solution of the game.
However, the complexity of such an algorithm is high even for the two-user case and the algorithm
cannot be extended to the M-user (M> 2) games.

Similar to the FDM-based cooperative game on the flat fading channel, the joint TDM/FDM—
based cooperation can be inefficient when the interference among users is weak

There are some other models for cooperative power allocation games. For example, in [28], a
cooperative game similar to the game on the frequency selective fading channel with total power
constraints is studied. In [28], neither TDM nor FDM is assumed. Instead, the users maximize the
Nash function iteratively given the strategies of other users. The algorithm is proved to converge,
however, not necessarily to the global optimal point.

I
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Power allocation games are basic, since many complex games can be transformed to equivalent

power allocation games. The power allocation games introduced in this section pave the way to the

higher-level games in the following rwo sections. A power allocation cooperative game under both

spectral mask and total power constraints is considered in [29].

1.3 Beamforming Games on MISO Channels

The games in the preceding section are all games on single-input single-output (SISO) channels.

Note that games involving multiple antennas have also been studied in the literature. The focus

in this section is to investigate the games played on multi-input single-output (MISO) channels

where the users’ strategies are defined as their beamforming vectors.

1.3.1 Beamforming on the MISO Channel: Noncooperative Games

Assume that there are M wireless users in a system, all communication channels are flat fading, and

each user has N antennas at the transmitter side and a single antenna at the receiver side. All users

interfere with each other if they communicate simultaneously, and this setup constitutes an MISO

interference channel. The signal transmission model in this case is as follows [30].

SignalModelfor the Beamforming on M-UserMISO Channel

= hws + hj’wjsj + n, Vi E 2 (1.20)

j#i

where
Yi is the received symbol for user i
s is the information symbol transmitted by user i

w is the beamforming vector of user i

= [h (1),.. . , hj (N) us the N x 1 channel vector between transmitter ofuserj and receiver

of user i
n1 is the additive white Gaussian noise for user i
(.)T stands for transpose

The assumptions made on s, and n in the generalized signal model in Section 1.1.3 are also

inherited here.
First, consider a two-user beamforming game and assume that the number of transmit antennas

is only two (this is a practically important case). Moreover, let all users be subject to the total power

constraint jw2 < P, Vi € Q. The game model in this case can be written as follows:

Game Model (Noncooperative)for the Beamforming on Two- User MISO Channel

r = = {1, 2), fw11 IIwII2 s P}, (R)} (1.21)

where R = log2(1 + w[hjji2/wJhjiI2+u2)), (j} =

It can be shown that this game has a unique NE (which is actually a dominant strategy
equilibrium), and user i’s strategy in the NE is w=h/IjhjI where (.)* denotes complex
conjugate [30]. The proof here is similar to that in the power allocation game on the frequency
selective fading channel with total power constraints in the previous section.
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The same result can be derived in much more general cases, for example, in the cases when

1. The number of users is arbitrary.
2. The number of antennas at each transmitter is arbitrary and can be different for different

users.
3. The power constraints are different for different users.

Note that NE may be a poor solution for all users, especially when the interference among users
is strong. Thus, cooperation is a better choice for both users if the communication system can
afford the related overhead.

1.3.2 Cooperative Beamforming: Time Sharing, Convex Hull,
and Nash Bargaining

Recall that the NB solutions are only defined for games with convex utility spaces. In the cooperative
power allocation games, FDM or joint TDM/FDM schemes are used to generate convex subspaces
ofthe original utility spaces in order to perform NB. The inefficiency is noticed when the interference
among users is weak, or equivalently, when the convex sub-spaces are quite small compared to the
original utility spaces. Unlike the FDM or join TDM/FDM, here a new manner of cooperation
is introduced in [30], which enlarges the original utility space by generating a convex hull of the
original space to perform bargaining.

Denote the original utility space (rate region) of the two-user game with constraints IwII2
Vi e Q as 7? = {R1,R2}. The convex hull of the game can be obtained by performing time
sharing

= {flR + (1 — /3)R?,/3R + (1 — /3)R) (1.22)

where
(R,R) and (R,R) are two points in 7?

/3 is the time-sharing coefficient

In the first /3 portion of time, both users choose their strategies w, Vi E Q and get payoff/3RJ,
Vi e 2. Then in the remaining 1 — /3 portion of time, the users choose strategies w, Vi e Q and
get payoff (1 — /3)R, ‘v’i E 2. Thus, the overall payoff for user i is i? = ,3RJ + (1 — /3)R, Vi E Q.

It can be proved that 7? is a convex set, which includes 7? as its subset. Therefore, the bargaining
can be performed in a larger space. However, there is a price paid for generating the convex
hull using time sharing. Indeed, the users have to determine their strategies twice along with
the time-sharing coefficient /3 Thus, the number of variables of the NB problem to be solved is
increased.

The model for the two-user cooperative time sharing game is as follows

Game Model (Cooperative, Time Sharing)for the Beamformtng on Two- User MISO Channel

(123)
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Then, the NB solution can be obtained from solving the following optimization problem:

(i? — RNC)

s.t. Bwi ‘ Vi Vl (1.24)

O<f31

R>R

Cooperative solutions on MISO channels have also been studied using other bargaining theories.

For example, Nokieby and Swindlehurst [31] investigate the cooperative bargaining game on the

MISO channel and derive the Kalai—Smorodinsky solution.

1.3.3 Pareto-Optimality: Competition and Cooperation

One property of the NB solution is its Pareto-optimality. However, it is not the only Pareto-optimal

point in the utility space. In fact, all points in the Pareto boundary of the corresponding utility space

are Pareto-optimal. For multiuser games in wireless systems, the points on the Pareto boundary

generally represent efficient allocations of communication resources. For the above studied games

on the two-user MISO channels, an interesting result is that any Pareto-optimal point can be

realized through certain balance of users’ competition and cooperation [32,33]. To explain the
proposition, we start by considering the NE and the zero-forcing (ZF) beamforming strategies.

Recall that the NE for the two-user noncooperative beamforming game is wrE = h/IIhII
[30]. The NE strategy can be viewed as completely competitive and selfish because the user that
uses this strategy aims at maximizing its own payoff only. On the other hand, a user is considered
as altruistic if it adopts the strategy that generates no interference to other users. Such a strategy is
known as the ZF strategy. Note that the ZF strategy for the two-user beamforming game can be
expressed as [32]

11± L.*
h* £jj

= v v E 2, {j} = Q\(i} (1.25)

where fl = I — A(A’A)’A’ is the orthogonal projection onto the orthogonal complement of
the column space of A.

Indeed, if both users choose the ZF strategies, they obtain nonoptimal payoffs for themselves
yet avoid interfering with each other. Thus, the ZF strategies can be considered as completely
cooperative and altruistic strategies. Note that in general, the NE and ZF strategies do not lead to
the Pareto-optimal solutions. However, it is proved that any point on the Pareto-optimal boundary
can be achieved using a certain combination of the NE and the ZF. This combination can be
formally expressed as [32]

Aw + (1 — A1)ww(A,)= V1EQ (1.26)
1Ajw + (1 —

where A is a parameter satisfiing 0 1.



-

18 Game Theory for Wireless Communications and Networking

The detailed proof is omitted here. However, intuitively, one can understand it in the followingway. To achieve global efficiency, each user has to combine its own utilities and all other users’utilities in its objective to be maximized. Considering NB as an example, the NB solution isPareto-optimal in a convex utility space because every user maximizes the Nash function, whichcombines all players’ utilities. In fact, if each user maximizes the weighted Nash function defined as

F
= fl (R1 — RN9’ (1.27)

where y1 > 0, Vi, then any point on the Pareto-optimal boundary can be achieved using theweighted NB by varying j’5. Using the ZF strategy, a user actually aims at maximizing theachievable utility of other users, while using the NE strategy, a user aims at maximizing its ownutility only. Thus, the combination of the ZF and the NE strategies covers the utilities of all playersin the game and can lead to Pareto-optimal solutions.

1.4 Matrix Games: Precoding Games and Others
In the previous sections, we have introduced power allocation games on SISO channels andbeamforming games on MISO channels. Next, we proceed to the games on multiple-input multipleoutput (MIMO) channels. It will be shown that such games can be transformed into powerallocation games under the assumption of orthogonal signaling and, thus, can be solved using theaforementioned methods.

1.4.1 Precoding Games on the MIMO Channels
Consider an M-user communication system based on OFDM. The signal transmission model canbe written as follows [34,35].

SignalModelfor the Precoding on M-User MIMO Channel

y, = H1F1s1+H1Fjsj + n1 Vi E 2 (1.28)
ji

where
y is the received symbol block for user i
s is the information symbol block transmitted by user i
F, is the precoding matrix of user i

is the N x N channel matrix between transmitter of userj and receiver of user in, is the additive white Gaussian noise for user i

Note that the assumptions made on s, and is, in the generalized signal model are inherited here.In an OFDM system, cyclic prefixes (CP) are used to cancel the 1ST and decouple the widebandfrequency selective fading channel into a number of flat fading frequency bins. The channel matrixH1, can be diagonalized as H11 = WD,W” due to the CP insertion, where W is the N x Ndiscrete Fourier transform (DFT) matrix and D1 is the diagonal sampled channel matrix betweentransmitter of userj and receiver of user i.
The transmitters in the system are subject to both total power and spectral mask constraints,that is,
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1. Totalpower constraints: Tr (FF’) NP,, “Ii E Q, where Tr(.) stands for the trace operator
and Pi is the maximum available power for the transmission of a signal symbol.

2. Spectral mask constraints: E(I[W”FsE]kl2)= [wFlFiFwjkk € c,Vk E
{1,.. . ,N}, where E{) stands for the expectation andp X(k) is the maximum power that
user i can allocate on frequency bin k.

Let , be the strategy space of user i subject to the above constraints, then the noncooperative
game model of this signal model can be written as follows:

Game Model (Noncooperative)for the Precoding on M-UserMIMO Channel

r = {c (1,2,...,M},{F,1F1E ),{R1}} (1.29)

where R = (1/N) log2 (II + FH’R1HuFiI) is the information rate of user i with R =

g21 + H1FF7FI representing the noise plus interference for user i.
The above game is a matrix game. However, it is proposed that this game can be transformed

into a power allocation game due to the CP insertion. Practically, it is proved that the NE of the
precoding game can be achieved using the following precoding strategies [34]:

F = W/diag(p) Vi e 2 (1.30)

where diag(a) is a square diagonal matrix with its kth diagonal elements as [alk and p, can be found
by solving the following power allocation game.

Game Model (Noncooperative) for the Precoding on M-User MIMO ChanneL Equivalent
Power Allocation Game

= NP}{R)} (1.31)

where p = p(1),. . . ,p(N)] is the spectral mask vector. The expressions for Ri’s can
also be simplified. However, we skip it here for the sake of brevity.

The equivalent game (1.31) is similar to the noncooperative power allocation game on the fre
quency selective fading channel (1.18). One difference is that this game considers both spectral mask
and total power constraints. However, the water-filling-based algorithms are still applicable [35].

In what follows, for the cooperative case of the precoding game, only spectral mask constraints
are considered for simplicity because the total power constraints will render the problem non-convex
[36,37]. Adopting again the joint TDM/FDM scheme as the manner of cooperation among users,
it can be observed that the diagonal structure as in (1.30) also applies to the cooperative case, and
thus, the cooperative precoding game can be transformed to a cooperative power allocation game,
which can be written as follows:

Game Model (Cooperative) for the Precoding on M-User MIMO ChanneL Equivalent Power
Allocation Game

r

= { 2 = { 1,2,. . . , M}, pi - p,O 1, 1 }, {R1}} (1.32)
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where ct = [a(1),. . .,c1(N)] is the TDMIFDM coefficient vector of user i as defined
in (1.15).

The above game is similar to the cooperative power allocation game on the frequency selective
fading channel (1.16). The difference is that this game is not a two-player game and the algorithm
used for solving the two-player game cannot be extended to the multiuser case. This equivalent
cooperative game can be solved in a distributed manner using a dual decomposition—based algorithm
[37]. A non-convex game with both spectral mask and total power constraints is considered in [29].

1.4.2 Other Matrix Games

Besides the precoding games, some other matrix games have also been studied [38,39]. Specifically,
games can be played on MIMO channels with the strategies defined as the users’ signal covari
ance matrices subject to total power constraints [38]. For the noncooperative case, the MIMO
water-filling algorithm based on singular value decomposition of the channel matrices and signal
covariance matrices is adopted to obtain the NE of the game [38]. It is noticed that the algorithm,
which works well practically, is not guaranteed to converge. Note here the similarity with the
noncooperative power allocation game on the frequency selective fading channel under total power
constraints. For the cooperative case, the gradient projection method is proposed for finding the NB
solution of the game. However, the convergence can be only guaranteed to a local optimal point.

A game can also be played to allocate communication resources among the secondary users in an
MIMO cognitive radio system [39]. The constraints can be set on each user’s total power and the
maximum interference that it can generate. It is observed that this matrix game can be transformed
to a power allocation game while the interference constraints can be transformed to the rotations of
the channel matrices. Moreover, the NE solution for the covariance matrices adopts the diagonal
structure similar to (1.30). Again the MIMO water-filling-based algorithm can be used to derive
the NE with the original channel matrices substituted by the rotated channel matrices.

1.5 Further Discussions

1.5.1 Efficiency and Fairness

The efficiency of the NE and NB solutions has been mentioned and compared many times in
preceding sections. The examples lead to the conclusion that the FDM or joint TDM/FDM—based
NB solutions are efficient when the potential interference among users is strong and vice versa. We
have two supplementary remarks here.

First, the above conclusion is based on the assumption that the noise power is fixed for all users.
Actually the efficiency of the FDM and joint TDM/FDM-based NB solutions depends on the
interference to noise ratio (INR). If the interference power dominates the noise power, the FDM
and joint TDM/FDM—based cooperations are efficient. Otherwise, they are inefficient because the
FDM and joint TDM/FDM schemes cannot decrease the noise PSD.

Secondly, the efficiency of the FDM or joint TDM/FDM—based NB solutions is not equivalent
to the efficiency of the NB solution. Indeed, the NB solution depends on the manner ofcooperation
assumed. For the same multiuser wireless system, different manners of cooperation can generate
different NB solutions. For example, time sharing (recall the cooperative beamforming game on
the MISO channel) can achieve better efficiency than joint TDM/FDM at the price of increasing
the number of parameters in the corresponding optimization problem.
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As for the fairness, it has been mentioned that the NB solution is related to the so-called
proportional fairness. However, our previous example also shows that the NB solution favors
the user with better utility in the disagreement point. On the other hand, NE are considered as
completely selfish strategies. However, NE are not necessarily unfair. The fairness of NE, if any,
depends on the system setup (wireless users’ desired channels, interference channels, and the noise
power). For example, in a symmetric system, an NE will be completely fair for all users. However,
unlike the NB solution, NE may not be unique, and the discussion on fairness would be obviously
meaningless in this case.

1.5.2 Uniqueness and Complexity

It is well known that in a convex utility space only one point maximizes the Nash function, while
there may be multiple NE regardless of the convexity of the utility space. However, it is more
accurate to conclude that the NB solution is unique if it exists. In fact, the NB solution may not
exist even in a convex utility space. Again, the existence of the NB solution depends on the specific
manner of cooperation and the problem setup. If all users are able to benefit from cooperation,
there is a unique NB solution in the corresponding cooperative game. A detailed study can be
found in [40,411. The condition for the uniqueness of NE is much more complex, and we refer
the readers to the references of noncooperative games in preceding sections.

Therefore, one difficulty in finding NE is related to the fact that it may not be unique, which
adds to the complexity of the game. In many cases, the algorithms designed for finding NE are
not guaranteed to converge. However, for NB, determining the manner of cooperation, which
renders the corresponding utility space convex and as large as possible contributes to the main
complexity.

1.5.3 Implementation: Centralized versus Distributed Structure
An NE solution has an advantage over the NB solution in developing distributed implementations.
It is because in an NE each player only considers its own utility, which usually requires local
information only. However, to find the NB solution, all users need to cooperate with each other
and information exchange is inevitable. For example, in the joint TDM/FDM—based cooperation
scheme, the TDM/FDM coefficients of all users need to be collected and broadcasted to the
users. Thus, a completely distributed algorithm is not possible for most cooperative bargaining
games. However, a distributed structure with a coordinator is still possible for cooperative games.
Two examples are developed in [37,42]. In these examples, the original bargaining problems are
decoupled into two-level problems. Then in the corresponding two-level structure, the higher level
problem is solved by the coordinator using the information collected from all users, while the lower
level problems are solved in parallel by individual users using local information and the broadcasted
information from the coordinator. Note that the coordinator may be selected from one of the users
or performed by the users in a round-robin manner.

1.6 Open Issues
1.6.1 On the User Number -

Currently two-user games have been extensively studied in the literature. Generalizations to the
multjuser cases, however, are still open problems. Algorithms for two-user games are not always
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applicable for multiuser cases. For example, the algorithm used in [24] in order to find the

NB solution cannot be extended for solving the problem with the number of players M > 2.

However, this problem exists only in cooperative games. For most noncooperative games, the

water-filling-based solutions are applicable to both two-user and multiuser games.

1.6.2 On the Constraints

This applies mostly to the cooperative games due to the requirement of convex utility spaces for the

NB. As mentioned before, maximization of the Nash function can be a non-convex optimization

problem under certain constraints. One example is the cooperative power allocation game with

total power constraints. Moreover, many games in the literature deal with other power-related

constraints. Games that incorporate multiple constraints related to different practical requirements

are still open for research.

1.6.3 On the Strategies

Most of the works on applications of game theory in wireless communications consider pure

strategies only. Mixed strategies are seldom studied in multiuser wireless systems. Thus, the

investigation of noncooperative and cooperative games based on mixed strategies remains an open
problem. Moreover, players of the games introduced in this chapter have their strategies defined

on a single target, for example, power. In a multiuser system, however, power allocation is usually
not the only issue that needs to be solved to optimize the performance of the system. Admission

control, scheduling, and others may also need to be taken into account. Thus, the users may have

joint strategies defined on power, scheduling, and/or other parameters. In many applications, such

games are still yet to be investigated.

1.7 Conclusion
This chapter reviews the applications of game theory for the multiuser wireless systems. Different

games on different channels are considered, for both noncooperative and cooperative cases. The

power allocation games are reviewed in details. These power allocation games construct the basis

for higher-level beamforming and precoding games. The focuses of the discussion are on the

comparison between noncooperative and cooperative games, as well as on games under different

constraints. A number of similarities and differences between different games are emphasized and

different performance metrics for cooperative and noncooperative games are analyzed. Throughout

this chapter, we show that game theory is a powerful tool for solving many different problems in

the multiuser wireless communications.
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