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ABSTRACT

This chapter reviews fundamental protocol engineering aspects and presents resource allocation ap
proachesfor wireless relay networks. Important cooperative diversity protocols and their typical ap
phcations in dy7erent wireless network environments are first described Then performance analysis
and QoS provisioning issuesfor wireless networks using cooperative diversity are discussed. Finally,
resource allocation in wireless relay networks through power allocationfor both single and multi-user
scenarios are presented For the multi-user case, we consider relay power allocation under dfferent
fairness criteria with or without user minimum rate requirements. When users have minimum rate re
qufrements, we develop ajointpower allocation and addmission control algorithm with low-complexity
to circumvent the high complexity ofthe underlyingproblem. Numericalresults are thenpresente4 which
illustrate interesting throughput andfairness tradeoffand demonstrate the efficiency of the proposed
power control and addmission control algorithms.
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INTRODUCTION

Emerging broadband wireless applications in
most wireless networks require increasingly high
throughput and more stringent quality-of-service
(QoS) requirements. In this respect, multiple-
antenna technologies have been recognized as
important solutions for future high-speed wire
less networks (Tarokh ci al, 1998; Tarokh et a!,

1999; Telatar, 1998). Particularly, employment of
multiple antennas at transmitter and/or receiver
sides can provide significant multiplexing and/or
diversity gains (Zheng & Tse, 2003). The net ef
fects ofthese gains are the improvements in terms
of wireless link robustness (i.e., lower bit error
rate (BER)) and network capacity. Unfortunately,
the implementation of multiple antennas in most
modem mobile devices may be challenging due
to their small sizes.

Cooperative diversity has been proposed as an
alternative solution where a virtual antenna array
is formed by distributed wireless nodes each with
one antenna. Cooperative transmission between a
source node and a destination node is performed
with assistance of a number of relay nodes. In
particular, the source and relay nodes collab
oratively transmit information to the destination
node (Laneman eta!, 2004; Laneman & Wornell,
2003; Le & Hossain, 2007; Nabar et a!, 2004;
Nosratinia eta!, 2004; Sendonaris eta!, 2003a, b;
Zhifeng eta!, 2006). It is intuitive that in order to
make cooperative transmission efficient or even
possible, the source node has to carefully choose
one or several “good” relays and first forward its
data to those relays. Then, the source and relays
can coordinate their transmissions in such a way
that maximum multiplexing/diversity gains can
be achieved at the destination node.

Although cooperative diversity is simple in
concept, there are many technical issues to be
resolved for practical implementation. First,
protocol design for cooperative diversity is one
of the important research focuses (Azarian et a!,
2008; Laneman eta!, 2004; Lanernan & Wornell,

2003; Sendonaris ci a!, 2003a, b). Second, it is
worth noting that most practical cooperative
diversity protocols have two phases: in the first
phase, the source node broadcasts its message to
assisting relays; in the second phase, the relays
collaboratively transmit the received information
to the destination. Therefore, cooperative trans
mission may not be always beneficial or even
necessary because direct transmission from the
source to the destination node may already be
successful. Adaptive cooperative protocols, where
nodes cooperate only when necessary and/or they
cooperate using incremental transmissions, usu
ally have significantly better performance than
“straight-forward” protocols (Azarian eta!, 2008;
Dai & Letaief, 2008; Le et a!, 2007; Le & Hos
sam, 2008a; Zhao & Valenti, 2005). In addition,
emerging technology such as network coding
can be employed to design cooperative protocols
(Koetter & Medard, 2003; Li ci a!, 2003; Xiao
ci a!, 2007). Finally, other important issues such
as relay selection, synchronization among relays’
transmissions need to be considered for practical
implementation (Beres & Adve, 2008; Bletsas ci
a!, 2006; Le & Hossain, 2008b; Lin ci a!, 2006;
Ng & Yu, 2007; Tannious & Nosratinia, 2008;
Zhao ci a!, 2007).

While most existing works on cooperative di
versity in the literature focus on design and perfor
mance analysis ofcooperative protocols, resource
allocation for wireless relay networks receives
less attention. However, resource allocation also
has significant impacts on system performance
(Gunduz & Erkip, 2007; Li ci a!, 2007; Liang
ci a!, 2007; Luo ci a!, 2007; Madsen & Zhang,
2005; Yáo ci a!, 2005). In fact, assisting relays
usually have limited radio resources (e.g., band
width and power) and they are shared by several
source-destination pairs. Therefore, a smart radio
resource allocation for wireless relay networks
guarantees both fair access to available relays and
good overallnetwork throughput performance. In
addition, by using a proper relay selection strategy
where each source-destination pair only selects
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one or a small number of good relays, efficient
resource utilization can be achieved with low
implementation complexity. Finally, distributed
resource allocation algorithms are usually required
in wireless relay ad hoc networks because there is
no central controller in such applications.

In this chapter, we attempt to provide a brief
survey on cooperative protocols, key design is
sues and resource allocation problems in wireless
relay networks. In particular, we describe popular
cooperative protocols and their possibleextensions
and enhancements. We also briefly present typi
cal applications ofcooperative communications,
namely formultihopcellularand ad hoc networks,
and broadcasting applications in ad hoc networks.
In addition, we review some existing works on
performance analysis and QoS provisioning issues
for wireless relay networks. Finally, we introduce
a resource allocation framework for single-user
and multi-user relay networks including both
centralized and decentralized power allocation
algorithms.

This chapter is organized as follows. We first
describe fundamentals of cooperative diversity
techniques and protocols. Then, we overview
their typical applications and research issues.
We discuss performance analysis and Q0S provi
sioning issues for wireless relay networks. Then,
resource allocation problems via power al location
for both single- and multi-user relay networks are
presented. Finally, conclusions are stated.

Flrstphase

BRIEF OVERVIEW OF
COOPERATIVE DIVERSITY

Cooperative diversity protocols allow a number
of users to relay signals for one another in such
a way that a diversity gain can be achieved. In
fact, information theoretic capacity of such a
network setting, named a relay channel, has been
investigated a few decades ago (Cover & Gamal,
1979). Deep understanding of MIMO systems
from both information theoretic and practical
system design viewpoints over the past decade
has stimulated and attracted significant research
efforts in cooperative diversity. In this section,
we provide a brief survey on fundamentals of
cooperative diversity.

Consider a source node s communicating to
a destination node d with the help of m relays,
rj, , ..

.,
r,, . Let a be the channel gain between

nodes i and 3, and 1 be the transmission power
ofnode i . The signal is corrupted by additive white
Gaussian noise. For simplicity, throughout this
section, we assume that N is the white Gaussian
noise power measured in the signal bandwidth
at all nodes. We assume that cooperation among
users is performed in phases (i.e., time slots) and
users can be synchronized by a common system
clock. Figure 1 illustrates a general cooperative
diversity protocol where the source broadcasts
its message in the first phase and the relays re
transmit the message in the second phase. In the
following, we describe some popular coopera

on

Second phase

Figure 1. Cooperative protocols

Source

127



Resource Allocation and Q0S Provisioning for Wireless Relay Networks

tive diversity protocols and their corresponding
performances.

Amplify-and-Forward

In this cooperative protocol, the source broadcasts

message x in the first phase. The message is re
ceived by the destination and relays. Each relay r
amplifies the received signal in the first phase and
transmits to the destination in the second phase.
The destination combines the signals received in
both phases to decode the message. Specifically,
the signal received by relay r in the first phase
(denoted as y ) can be written as

= + z,

where is the channel gain for link s - i; and
z, denotes Gaussian noise at relay ‘i;. Suppose
each relay normalizes the received signal before
transmitting to the destination. Then, the transmit
ted signal can be written as

= g y,.

where g is the amplifying gain which is given
by

Assuming that a maximum-ratio-combiner
(MRC) is used at the destination, the source-
destination capacity of this protocol is given as
(Zhao et a!. 2007)

SNI?”., SNlJ”,
= —log I

-‘- SNflfr’.,,
II? ±

SNIIi’.,

where SNR, = P / N is the signal-to-noise

ratio (SNR) at node j E {s. r i = 1, in) , P
denotes the power at the souse or relay node, N
is the noise power, and a, is the channel gain
of the link s—d.

Another important performance measure that is
extensively used for investigating the performance
ofdifferent cooperative diversity protocols is the
outage probability. In Rayleigh fading channels,
the outage probability ofthe amplify-and-forward
(AF) cooperative protocol can be approximated
as (Zhao et a!, 2007)

“

Pt (sNR.R) = PrIG <Rj -

—1

SNR
(I)

where SNR = P / N and it is assumed that all
nodes transmit at power level P. This outage
probability shows that AF cooperative proto
col achieves diversity order of in + 1 with in
relays.

Decode-and-Forward

Forthe decode-and-forward (DF) cooperative pro
tocol, relay nodes apply some forms ofdetection
and/or decoding before encoding the information
and forwarding it to the destination. Such a co
operative protocol also has two phases (i.e., time
slots). In the first phase, the source broadcasts the
signal to the relays, which subsequently detect
and/or decode it. In the second phase, the relays
transmit re-encoded signals to the destination
using repetition or space-time codes.

For protocols that require relays to fully de
code the received signal in the first phase, the set
of relays, which successfully decode the signal
at the end of the first phase, is only a subset of
all available relays. Let D(s) denote the set of
successfully-decoding relays, which will be called
a decoding set in the following. For repetition-
based coding, the destination receives separate
retransmission from each relay r e D(s) .1-lence.

(2)

(3)

(4)
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2007: Tannious & Nosratinia, 2008; Zhao et a!,
2007). Surprisingly, cooperative protocols based
on using smart relay selection strategies usually

(5) achieve full diversity orderwhile providing higher
throughput than the standard protocols. In fact,
the superior throughput performance of selection
relaying protocols stems from the factthatthey use
radio resources (i.e., power and bandwidth) more
efficiently than the basic cooperative protocols
presented in the previous sections.

Some typical relay selection strategies for
both AF and DF based protocols are presented
next. Consider an AF protocol with one selected
relay, say r. From (4), the capacity of the source-
destination channel with one relay is

It has been shown in (Laneman & Wornell,
2003) that both repetition-based or space-time-
coding- based DF protocols achieve full diver
sity order of rn + 1 in the low rate regime. This
diversity gain has been shown to be achievable
by a distributed linear dispersion codes (Jing &
Hassibi, 2006) and a randomized space-time codes
(Sirkeci-Mergen & Scaglione, 2007b). Although
both AF and repetition-coding-based DF protocols
achieve a full diversity gain, their throughput may
degrade because each transmitting relay takes one
time slot to transrn itto the destination. This limita
tion can be overcome by enhancing cooperative
protocols, namely by using selection/opportunistic
or incremental relaying protocol, which will be
described subsequently.

Consider m relays available to assist transmis
sion from the source to the destination. Instead of
allowing all the relays as in the AF protocol or all
the relays in the decoding set as in the DF protocol
to transmit in the second phase, selection/oppor
tunistic relay protocols choose one “best” relay
to transmit in the second phase (Beres & Adve,
2008; Bletsas eta!, 2006; J ing & Jafarkhan i, 2008:
Le & Hossain, 2008b: Lin et a!, 2006; Ng & Yu,

we can write the signal from relay r received at
the destination d as

= + Z,

where :r denotes the signal transmitted by re
lay node r, a, stands for the channel gain of
the link r,-d, and z, denotes the Gaussian noise
at the destination. If space-time coding is used,
the destination will simultaneously receive the
superimposed signals from all relays E D(s)
Hence, the received signal at the destination in
the second phase can be expressed as

I), = ax, + Zil. (6)

2 2
1 2 SNRa, SNR a,

= —log 1 + SNR,a +
2 2

SNR. a + SNR,a,;d + I

(7)

Therefore, to maximize the capacity, a relay
selection strategy would choose a relay that max
mizes (Zhao et a!, 2007)

2 2

SNR,. a,1
2 2 (8)
+ SNRJ +1

For the DF protocol, there is a set of relays
which successfully decode the signal in the first
phase (i.e., in the decoding set D(s)). If relay
r E D(s) is chosen for transmission in the sec
ond phase, the capacity of the source-destination
channel is

1 2 2
CcDF = -log I +SNRa +SNR?;,.,/

- (9)

Therefore, to maximize the source-destination
capacity, an opportunistic relay selection strategy
would choose a relay in the decoding set that
maximizes

Selection!Opportunistic Relaying
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NR8a8d + SNRad.

In (Beres & Adve, 2008; Zhao eta?, 2007), it
has been shown that relay selection strategies in
(8) and (10) achieve the full diversity order. Note
that these selection metrics require the estimates

of SNR frL$d12 and SNR,ard . In (Bletsas eta?,
2006), two simpler relay selection metrics which
require only channel gains a8, and ard have been
proposed. Specifically, relay selectiop strategies
that choose a relay such that

= arg max fmin fa 2

ad 211

(10) repeat transmission. In fact, direct transmission
from the source to the destination may be suc
cessful if the corresponding channel condition is
not too “bad”. Therefore, it can be more efficient
if relay transmission is invoked only when direct
transmission from the source to the destination
in the first phase fails. One simple incremental
relaying protocol based on using AF principle
which exploits the aforementioned aspect works
as follows (Laneman eta?, 2004). Upon decoding
its received signal at the end• of the first phase,
the destination broadcasts the decoding outcome
to the source and relays. If the destination suc
ceeds in decoding the message in the first phase,
the source and relays do nothing. Otherwise, all
or selected relays amplif their received signals
and transmit to the destination. The destination
combines all the signals and decodes again.

In fact, incremental relaying protocol can be

‘12’
implementeds an extension ofhybrid automatic

“
‘ repeat request (ARQ) protocol (Azarian et a?,

2008; Dai & Letaief, 2008; Le et a?, 2007; Le
& Hossain, 2008a; Zhao & Valenti, 2005). One
possible implementation 0fARQ-based relaying
can be described as follows (Zhao & Valenti,
2005). Initially, the source node encodes b bits
of infonnation into a code-word With length
n symbols. The code-word is broken into M
blocks, each of which has length n / M. The
code can be a simple repetition code, where all
blocks are identical, or the blocks can beobtained
by puncturing a mother code. The protocol starts
by transmitting the first block from the source
node. The destination upon decoding the mes
sage broadcasts the decoding outcome to all
other nodes. If the decoding at the destination
is successful, the source proceeds to transmit a
new message. Otherwise, either all or one se
lected relay in the decoding set (i.e., relays that
successfully decode the message) re-encode the
message and transmit the second block to the
destination. The destination combines all the
received blocks and attempts to decode again.
This procedure continues until the destination

(11)

have been developed.
Note that the relay selection criterion in (11)

chooses a relay with largest channel gains in
both source-relay and relay-destination links.
On the other hand, the relay selection rule in
(12) maximizes the harmonic mean of channel
gains for the source-relay and relay-destination
links. It has been shown in (Bletsas et a?, 2006)
that these relay selection criteria provide the op
timum diversity-multiplexing tradeoff achieved
by the distributed space-time cooperative protocol
(Laneman & Womell, 2003). Other relay selec
tion strategies for orthogonal frequency-division
multiple access (OFDMA)-based wireless cellular
relay networks and ad hoc networks can be found
in (Le & Hossain, 2008b; Ng & Yu, 2007; Tan
nious & Nosratinia, 2008).

Incremental Relaying

Although selection relaying uses radio resources
more efficiently than fixedrelaying, both fixed
and selection relaying protocols have to always
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is successful in decoding the message or all
M blocks are transmitted and the message is
discarde4.

Incremental relaying has both diversity and
ijiroughput advantages because relaying is in
voked only when necessary. In (Laneman et a!,
2004), the authors have shown that incremental
relaying using AF principle as presented above
achieves the full diversity order. In addition, it
can be seen that ARQ-based incremental relay
ing allows many different code designs, where
well-investigated hybrid ARQ protocols can be
adapted to the relaying network setting. Also, a

f combination ofincremental relaying, hybridARQ
and relay selection achieves throughputand energy
improvement compared to the standard protocols
while still having a full diversity gain.

. Other Protocol Enhancements

* There are some otherpossible enhancements ofthe
: aforementioned cooperative protoccls available

in the literature. In particular, network coding can
[ be combined with standard cooperative protocols

to improve throughput performance (Koetter &
Medard, 2003; Li et a!, 2003; Xiao eta!, 2007).
The network coding is based on the idea that the
users involved in cooperative transmissions can
combine their own information with other users’s
information, e.g., by using linear coding (Li eta!,
2003), and transmit the combined information in
an appropriate manner. This is because through
cooperation, users know the messages of their
assisted users. This wouia enhance throughput
performance for each user because a single
transmission transmits both the user’s own mes
sage and the message of an assisted user in the
combined signal.

Other possible enhancements include com
bination of adaptive modulation and coding
into cooperative protocols (Nechiporenko et a!,
2009), employing coding in cooperative protocols
(Hunter & Nosratinia, 2006), adding power and
scheduling considerations for selection ofa group

of active retransmitting nodes (Ko et a!, 2009a,
b). In (Wei eta!, 2006), a detection technique for
wireless networks, where synchronization ofusers
is impossible, has been proposed. This technique
mimics an equalization technique employed in a
frequency-selective fading channel.

Finally, relaying transmission concepts can be
combined with a medium-access-control (MAC)
protocol to improve its throughput performance
(Zhu & Cao, 2005). Specifically, through ex
changing control information (e.g., RTS/CTS
handshake signals), each user can find the optimal
transmission strategy between direct transmission
and relaying transmission through other relays
(i.e., neighboringnodes). By choosing atransmis
sion strategy with higher throughput, the MAC
protocol can achieve better overall throughput
performance.

Further Discussions

Summarizing the aforementioned cooperative
protocols, it is also worth pointing out some
important design issues. First, in principle a
source-destination pair can be assisted by a large
number of relays; however, a small number of
“good” relays would be selected for cooperative
transmission in most practical applications. Se
lecting a small number of relays for cooperation
wouldbepreferredtaking into accountboth design
complexityand overall networkperfonnance. Sec
ond, cooperative transmission may not be always
beneficial especially ifthe source-destination link
is very strong. Therefore, an adaptive cooperative
protocols based on using a right amount of co
operation such as incremental relaying protocols
would perform betterthannon-adaptive protocols
(e.g., AF and DF protocols).

Due to the distributed nature of cooperative
diversity protocols, their employment raises
several practical implementation issues. First,
synchronization among wireless nodes forimple
menting the MRC ordistributed beamforming may
be difficult. In order to resolve this challenge, a
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receiver detector at the destination node must be
able to operate under asynchronous transmissions
from a source and relay nodes (Wei eta!, 2006). In
scenarios where space-time coding is employed,
the underlyingcoding strategy should be designed
to operate in a decentralized manner (Jing & Has
sibi, 2006; Sirkeci-Mergen & Scaglione, 2007b).
Second, efficient allocation ofradio resources to
source and relay nodes in the network should be
performed for optimum network performance.
We will discuss resource allocation issues in more
details in the following sections.

APPLICATIONS AND
IMPLEMENTATION OF
COOPERATIVE DIVERSITY

Cellular Relay Networks

Cooperative diversity can be employed to enhance
throughput and/or improve BER performance
of a multi-hop cellular network (Le & Hossain,
2007). In particular, users can take turn to serve
as relays for one another. Alternatively, a set of
fixed relays can be implemented to assist all the
users in each cell. In (Sendonaris etal, 2003a, b),
a cooperation strategy foratwo-user code division
multiple access (CDMA) cellularwireless network
has been proposed. According to this strategy,
each user has two transmission periods where it
transmits directly to the base station (BS) in the
first period and cooperates with the other user to
transmit in the second period. It has been shown

• that user cooperation indeed increases network
throughput and decreases network sensitivity to
channel variations.

For multihop cellular networks with fixed
relays, transmissions from/to the BS ofdifferent
users with the help of deployed relays can en
hance throughput and BER performances. Since
a small number ofdeployed relays is shared by a
large number of users, a relay selection strategy
should be employed for cooperative transmis

sions between users and the BS. In addition, if
each fixed relay has several transceivers, which
can assist several users simultaneously,

V

power
and bandwidth allocation should be performed
at these relays to optimize the overall network
performance. In general, cooperative transmis
sions between users and the BS can occur in a
multihop fashion (Le & Hossain, 2007). In this
case, ajoint cluster-based routingand cooperative
transmission can be employed as for wireless ad

• hoc networks. This will be presented in the next
subsection.

Cluster-Based Wireless
Ad Hoc Networks

In wireless ad hoc networks, a source may want to
communicate with a destination that is far away.
Hence, a routing protocol is needed to deliver
data in a multihop fashion. A traditional routing
protocol typically finds a set of wireless links
from the source to the destination to establish a
multihop route for end-to-end data delivery. Using
cooperative diversity, the multihop route can be
formed by a set ofcooperative and robust abstract
“links” instead ofsimple wireless links (Scaglione
et al, 2006). In fact, cooperative diversity can be
jointly used with a hierarchical routing to enhance
end-to-end performance (Hong et a!, 2002).

For
V
hierarchical routing in wireless ad hoc

networks, wireless nodes in the network form
clusters each ofwhich is a set ofwireless nodes in
aneighborhood(Morgenshtem & Bolcskei, 2007).
Each clusterhas one clusterhead.Aclustermimics
acell inwireless cellularnetworkwherethe cluster
head functions similarly to a BS. A hierarchical
routing protocol typically finds a set of clusters
between the source andthe destination. Then, end-
to-end routing ofinformation is performed within
and between clusters independently. Cooperative
diversity can be used for inter-cluster routing as
shown in figure 2. V

In this cluster-based cooperative routing, a
set ofwireless nodes between any two neighbor-
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ing clusters is chosen by cluster heads to serve
as gateway nodes. The gateway nodes are the
relay nodes that assist transmission between two
clusters. Therefore, any cooperative protocols
presented in the previous sections can be used for
inter-cluster transmission. Note that this network
architecture can also be used in infrastructure-
based wireless mesh networks where mesh rout
ers serving a number of mesh clients can serve
as cluster heads. In (Le & Hossain, 2008a), an
analytical model has been developed to quantif’
performance ofthe aforementioned cluster-based
cooperative routing where incremental relaying is
employed for inter-cluster transmission.

Cooperative Broadcast in
Wireless Ad Hoc Networks

Cooperative diversity can be exploited to enhance
broadcastperformance in wireless ad hoc networks
(Maric & Yates, 2004; Scaglione & Hong, 2003;
Sirkeci-Mergen et al, 2006; Sirkeci-Mergen &
Scaglione, 2007a, b). In bi’oadcast applications,
a message is required to be transmitted from
a source to all other nodes in the network. By
using cooperative diversity, performance im
provement in terms of energy consumption or
message delivery probability can be achieved by
exploiting the fact that each node in the network
can collect signals from several simultaneously
transmitting nodes. As a special case, cooperative
broadcast can be performed in different levels as
follows (Sirkeci-Mergen et al, 2006). Each node
in the network accumulates signals transmitted

from other nodes until it achieves high enough
SNR to decode the message. After successfully
decoding the message, a node broadcasts it into
the network. Therefore, by using a smart detec
tion technique, each node can combine signals
transmitted from different nodes to enhance the
broadcast performance.

PERFORMANCE ANALYSIS
AND QOS PROVISIONING FOR
WIRELESS RELAY NETWORKS

There is a large body of literature on performance
analysis and QoS provisioning for wireless relay
networks. In this section, we attempt to review
some important research problems and issues
along these lines. In fact, there are two important
research directions pursued in the literature. The
first direction focuses on analyzing perfonnances
of cooperative diversity protocols. Performance
measures under consideration include ergodic,
outage capacity, bit/symbol error rate (B/SER),
throughput and packet/frame delay. The second
direction concentrates on Q0S provisioning,
resource allocation and protocol engineering for
particularcooperative protocols and applications.
In fact, solution approaches for the underlying
problems in this direction usually rely on some
results in the first direction.

Here, we review some research issues and
results for the aforementioned directions. Note
that we have discussed ergodic and outage capac
ity for several important cooperative diversity

Figure 2. Cluster-based cooperative transmission
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protocols in the previous sections. In addition,
resource allocation for wireless relay networks
plays an important role in improving the network
performance; therefore, we will treat this topic in
more detail in the next section. Regarding B/SER
performance analysis of cooperative diversity
protocols, there exists many publications which
considerdifferentprotocols, network settings, e.g.,
multi-branch, multihop relay networks, (Boyer
et a!, 2004; Ribeiro et a!, 2005). In general, the
BERofa particular cooperative diversity protocol
is lower-bounded by the corresponding outage
probability.

Exact analysis of B/SER for cooperative di
versity protocols (e.g., AF and DF protocols) is
usually cumbersome. However, there are some
existing works, which consider approximated B!
SER analysis-for these protocols, e.g., (Ribeiro et
a!, 2005). In particular, the approximated analysis
in (Ribeiro eta!, 2005) gives closed-form expres
sions of SER for the AF cooperative protocol,
which is quite accurate in the high SNR regime.
Specifically, consider a scenario where there are
m relays helping a source-destination pair. Let
78d’ 7sr’ be the average received SNR for
the source-destination, source-relay i, relay i
-destination links, respectively. The SER of the
AF cooperative protocol can be approximated as
(Ribeiro et a!, 2005)

‘‘ 7sr

where C(m, K) is a constant depending on the
number of reLays m, modulation scheme, and
specular factor K of the Ricean fading channel.
The SER in (13) shows that the AF cooperative
protocol achieves the full diversity order. Deriva
tion of SER for the DF protocol can be found in
(Boyer et a!, 2Q04).

Regarding Q0S provisioning issues, many
wireless applications have delay constraints to
guarantee minimum Q0S performance besides a

common minimum B/SER requirement. In addi
tion, data traffic may be bursty which is usually
queued in data buffers upon arriving from the
higher layers. Therefore, the total packet delay
may consist of queueing and transmission delay
components (Cerutti eta!, 2008). Ofcourse, when
data is not buffered, the total packet delay is simply
the transmission delay (Narasiinhan, 2008). For
cooperative diversity protocols that involve sev
eral block transmissions for each data packet such
as incremental relay protocols, the total packet
delay can be controlled by smartly regulating the
average number of transmissions. This is similar
to controlling the numberoftransmission attempts
in a classical truncated ARQ protocol (Le et a!,
2007). In general, a cross-layer model should be
developed to harmonize and optimize the network
performance while meeting delay constraints (Le
& Hossain, 2008a).

For emerging applications in multihop wire
less networks (e.g., wireless mesh and sensor
networks), network/protocol design should be
performed to optimizenetwork or QoS perfor
mance measures of interest. In (Le & Hossain,
2008b), optimal cross-layer algorithms have been
developed to perform joint relay selection, power
allocation, and routing to optimize different per
formance measures includingpowerminimization
and rate utility maximization in a general multi-
hop wireless network. In (Khandani et a!, 2007;
Madan et a!, 2009), centralized and distributed
cooperative routing protocols have been proposed
to minimize the energy consumption. Finally,
relay-selection and power allocation strategies
have been proposed to maximize lifetime of a
wireless sensor network using theAF cooperative
diversity protocol in (Huang et a!, 2008). These
are just few examples where network protocol
design and QoS provisioning problems for the cor
responding appl ications are considered. In general,
these design problems depend on the specifics of
underlying applications which may require very
diverse solution approaches to resolve.

1
+— (13)
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Assuming that white Gaussian noise powers
measured in the signal bandwidth at all the relays
and the destination are equal to N and the source
transmission power P are fixed. The optimal relay
power in the high SNR regime can be found as
(Zhao eta!, 2007)

2

Pa Pa

where [.] denotes the projection operation on
the interval [0, F”] ,and ). is chosen suchthat the
total relay power is satisfied. Optimal relay power
allocation for DF protocol is more involving and
depends on the decoding strategy employed at the
relays. In (Li eta!, 2007), optimal relay solutions
have been derived for some special cases.

Multi-User Resource Allocation

In this section, we present a resource allocation
framework foramulti-userwireless relay network.
More details can be found in (Phan et a!, 2008;
Phan eta!, 2009a, b, c).

System Models

Consider a multi-user relay network in which
M source nodes 8, transmit data to their cor
responding destination nodes c11, i e {i, . . .M}.
There are also L relay nodes 7,, j E {i, ...,
which are employed to assist transmissions from
source to destination nodes. The set ofrelay nodes
assisting the transmission of the source node 8,

is denoted by R (8,). The set of source nodes
using the relay node is denoted by S

(i),

(15) i.e., S(i) = {s, i E R(8j}. Therefore, one
particular relay node can forward data for several
user&. We assume thattheAF cooperative scheme

(16) is used for re-transmission. Moreover, orthogo
nal transmissions are assumed for simultaneous

Rasource Aliocation and QoS Provisioning for Wireless Relay Networks

!RESOURCE ALLOCATION
FOR COOPERATIVEI WIRELESS NE1WORKS

SjngleUser Resource Allocation

There are quite a few existing works considering
resource allocation for single-user cooperative

wireless networks (Gunduz & Erkip, 2007; Li
::et a!, 2007; Liang et a!, 2007; Luo et a!, 2007;

Madsen & Zhang, 2005; Yao et a!, 2005). For
the single-user setting, there iS only one source
communicating to only one destination with the
help of one or several relays. Since the capacity

• ofa general relay channel is still an open problem,
I only some upper and lower capacity bounds are

• derived in the literature. In (Madsen & Zhang,
2005), lower and upper capacity bounds for
different cooperation strategies including time
division relaying and compress-and-forwardhave
been derived. Optimal power allocation schemes

: that aimed it maximizing these capacity bounds
have also been adopted. In (Liang et a!, 2007),
the. capacity bounds for parallel relay channels
with degraded sub-channels have been derived
and optimized through power allocation.

For the practicalAF and DF protocols, optimal
power allocation methods aiming at maximizing
the SNR have been developed in (Li et a!, 2007;
Zhao et a!, 2007). Using the SNR expression of

L. the AF protocol with m relays (4), the problem
of SNR maximizatioti under total and individual

• relay power constraints can be written as

(17)

SNR8la2 +
SNR SNRfrL,

2

i1 SNRaIa
2

SNR,ardI +1

(14)

m
subject to:P 4

:
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transmissions among different users by using dif
ferent channels, e.g., different frequency bands,
and time division multiplexing is employed by the
AF cooperative scheme for each user. Then, the
transmission from a source to a destination node
can be described as follows. In the first phase,
each source node & transmits data to its chosen
relays in the set R (se) . In the second phase, each
relay node amplifies and forwards its received
signal to d1. The corresponding system model is
shown in Fig. 3.

The investigated system model is quite gen
eral and it covers a large number of applications
in different network settings. For example, the
-model can be applied to cellularwireless networks
using relays for uplink with one destination (BS)
or downlink with one source (BS) and many
destinations. It can also be directly applied to
multi-hop wireless networks such as sensor/ad
hoc or wireless mesh networks. Moreover, in our
model, each source can be assisted by one, sev
eral, or all available relays. The presented model,
therefore, captures most relay models considered
in the literature.

Let .F denote the powertransmitted by source
node s; F denotes the power transmitted by
relay node e R (se) for assisting the source
node s, and ar and ad denote the channel
gains for links s r; and - d1, respectively. The
channel gains could include the effects of path
loss, shadowing and fading. To keep the model in
this section general, we assume that the variances
of additive circularly symmetric white Gaussian
noise (AWGN) at the relay , and atthe destination
node d1 are Nr Nd , respectively. We consider
the case when ihe source-to-relay link is (much)
better than the source-to-destination link, which
would be an outcome ofa typical relay selection
strategyemployedby each source node.Assuming
that MRC is employed at the destination node d,
the SNR ofthe combined signal at the destination

node d, can be written as2

—) a1±

where

- (18)

N NdN N
‘ ‘ +

a 2P ‘ “i a 21a 2P a 12
$ S s

It can be verified that the SNR ‘y. for user iS

concave increasingwithrespectto .F, r E R (si)
Moreovei the rate of user s whicl is defined as

= log(1 + ‘y,) is also concave increasing.

Formulations of Power
Allocation Problem

In general, resource allocation in wireless networks
should take into account fairness among users.
An attempt to maximize the sum of rates of all
the users would generally degrade performance
of the worst user(s) significantly. To balance
fairness and throughput performance for all the
users, we consider two different optimization
criteria for power allocation. The first criterion
aims at maximizing the minimum rate among all

Figure 3. Multi-user wireless relay network

0

C Source 0 Relay A
14
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I
users. In essence, this criteria tries to make rates
of all users as equal as possible. For the second
criterion, users are given different weights and
power allocation is performed to maximize the

: weighted sum of rates for all users. In the latter
case, user(s) in unfavorable conditions could be

• allocated large weights to prevent severe degra
dation of their performance. Another possible
application for this optimization criterion is to
perform Q0S differentiation where users ofhigher
service priority can be allocated larger weights. In
both optimization criteria, we impose constraints
on the total maximum power that each relay can
use to assist the corresponding users.

A. Max-Mm Rate Fairness Based Power Al
location

We first consider the power allocation problem
under max-mm rate fairness for the users. Math
ematically, it can be formulated as (Phan et a!,
2009c)

max mm R.
{1O}

subject to: P P, j = 1,..., L (20)
sEs(?)J

where R. is the rate of user 8. and pm is the
I I

maximum power of relay r. The left-hand side
of(20) is the total power that relay , allocates to
its assisted users which is constrained to be less
than its maximum power budget. This constraint
is required to avoid overloading the relays in the
network.

In general, the power allocation obtained
according to the problem (1 9)-(20) can result
in a loss in network throughput because the ob
jective function (19) specifically improves the
performance of the worst user(s) that in turn can
decrease the overall system throughput. Therefore,
this criterion is applicable for networks in which
all users are of(almost) equal importance. This is

the case, for example, when wireless users pay the
same subscription fees, and thus, demand similar
level of QoS. It can be seen that the set of linear
inequality constraints with positive variables in
the optimization problem (19)-(20) is compact
and nonempty. Hence, the problem (19)-(20) is
always feasible. Moreover, since the objective
function mm R1 is an increasing function of
allocated powrs, the inequality constraints (20)
should be met with equality at optimality. Intro
ducing a new variable T, we can equivalently
rewrite the optimization problem (19)-(20) in a
standard form as

max T
{PO,TO}

subject to: T—R1 O,i=1,...,M (22)

(23)
8ESfrJ

It can be verified that the optimization problem
(21 )-(23) is convex. Thus, its optimal solution can

(19) be obtained using standard convex optimization
algorithms (Boyd & Vandenberghe, 2004). In the
following, we describe a different formulation for
the power allocation problem, which achieves
better throughput performance.

B. Weighted-Sum of Rates Fairness Based
Power Allocation
As discussed before, max-mm rate fairness based
power allocation tends to improve performance
of the worst user at the cost of overall network
throughput degradation. Maximization of the
weighted-sum ofrates can potentially achieve cer
tain fairness for different users by allocating large
weights to users in unfavorable channel conditions
while maintaining good network performance in
general. Let w. denote the weightallocated to user
8. Then, the weighted-sum ofrates fairness based
power allocation problem can be mathematically
posed as (Phan eta!, 2009c)

Resource Allocation and Q0S Provisioning for Wireless Relay Networks
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max wR.
{lO} i=1

subject to: > P, Prrnax, j = 1,..., L. (25)

As in the optimization problem (19)-(20), it
can be seen that the constraints (25) in the problem
(24)-(25) must be met with equality at optimal ity.
Otherwise, the allocated powers can be increased
to improve the objective function, and thus, it
contradicts with the optimality assumption. In
addition, it can be verified that this optimization
problem is convex; therefore, its optimal solution
can be obtained by any standard convex optimiza
tion algorithms

We would like to note that power allocation
schemes based on other fairness criteria can also
be considered For instance, the proportional fair
ness criterion can be adopted In terms ofsystem-
wide performance metric such as the network
throughput, the latter criterion can ensure more
fairness than the weighted-sum of rates, while
achieving better performance than the max-mm
fairness (Kelly et at, 1998). It can be shown that
the objective function to be maximized in the
proportional fairness based power allocation

scheme is 11M1R1
. Consequently, this objective

function can be re-formulated as convex function
using the log-function.

Distributed Implementation
for Power Allocation

To reduce communication overhead and to imple
ment online power allocation for the multi-user
relay network we now develop a distributed
algorithm for solving the optimization problem
(24)-(25) and show that such a solution con
verges to the optimal solution. The algorithm is
developed based on the dual decomposition ap
proach in convex optimization (Bertsekas, 1999).
Applications of this optimization technique for
distributed routing, reverse engineering ofMAC,

and transmission control protocols can be found
in (Chiang et al, 2007; Kelly et a!, 1998; Xiao
et a!, 2004);

In dual decomposition method, the original
problem is separated into independent subprob
lems that are coordinated by a higher-level master
dual problem. Now, we first write the Lagrangian
function by relaxing the total power constraints
for the relays as follows

L ( y, p) = w.R.
-

P -P
1=1 j1 SES(T)

‘ ‘

(26)

The correspondingdual function ofthe Lagran
gian can be written as

(‘4=max L(¾P).
{s >o}

Since the original optimization is convex,
strong duality holds, and the solution of the un
derlying optimization problem can be obtained
from that of the corresponding dual problem as
follows

mir\ g(’4. (28){i,oj

(24)

where %= [p1,p2, ‘1Ll’ 1L, 0, 3 = 1, ,L
are the Lagrange multipliers corresponding to the
L linear constraints on the relay powers.

Using the fact that

21 s,ES(i)
‘

t1 i,ER(s,)

the Lagrangian in (26) can be rewritten as

1=1 1ER(8)

(27)
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it can be seen that the dual function in (27)
8nbefoundbyS0lViflg M separate subproblems
corresponding to M different users as follows

max L.( ¾ P’) = wi?. —

{p8i r,ER(8j
2

where L1(¾ Ic’) corresponds to the i th compo
nent of the Larangian. Let L (4 be. the optimal
value of L1 (¾ P’) obtained by solving the

: problem (29), then the dual problem in (28) can
be rewritten as

g(14_EL*(14+Eppma3c (30)
i=1

Adistributed powerallocation algorithm can be
developed by iteratively and sequentially solving
the problems (29) and (30). This algorithm is also
known in optimization theory as a primal-dual
algorithm. The Lagrange multiplier p, 0 rep
resents the pricing coefficient for each unit power
at relay i. Therefore, can be seen as the
price that user s must pay for using P at each

• relay
‘ E R(sj. In particular, the optimization

problem (29) can be interpreted as follows. The
[ user s. tries to maximize its rate minus the total

price that it has to pay given the price coefficients
[ at relays. The weight w1 can be seen as a gain

coefficient for each unit rate for user 8.
The details of the ditributed power alloca

tion algorithm are as follows. The master dual
. problem is solved in a distributed fashion at each

relay. Specifically, each relay. r, first broadcasts
I: its initial “price” value, i.e., Lagrange multiplier

p, . These price values are used by the receivers to
compute the optimal power levels that the relays
should allocate to thatparticularuser. The optimal
powers are fed back to the relays, which then
updatesthenextvaluesofthe p., j=1 ,L.

This procedure is repeated until the so-obtained
solution converges to the optimal one.

Note that the dual function g(4 is differen
tiable. Therefore, the master dual problem (28) can
be solved by using the gradient descent method.
The dual decomposition presented in (29) allows
each user 8 , for the given p ,to fmd the optimal
allocated power r; E R(s) as follows:

I’O4 =argmax{w1R,— >pPi}(31)Opt 2

which is unique due to the strict concavity.
Due to the fact that the solution ofthe problem

(31) is unique, the dual function g(4 in the master
problem (28) is differentiable, which allows us
to use the following iterative gradient method to
update the dual variables

IL (t + i)={. (t)_<[ima

—

(i4))J]

(32)

where t is the iteration index, [.] denotes projec
tion onto the feasible setofnon-negative numbers,
and is the sufficiently small positive step size.
The dual variables (t) will converge to the dual
optimal % as t —p co , and the primal variable
P (Yt))f will also converge to the primal
optimal variable P,.’ (!.4 ) . Updating i-i, (t)2 opt

via (32) can be interpreted as follows. The relay
r, updates its price depending on the requested
power levels from its users. The price is increased
when the total requested power from users is larger
than its maximum limit. Otherwise, the price is
decreased. Finally, we summarize the distributed
power allocation algorithm as follows.

ResourCe Allocation and QoS Provisioning for Wireless Relay Networks
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Distributed Power Allocation Algorithm to determine which users to be admitted into the
network. Then, power can be allocated to admittedParameters: the receiver ofeach user estimates! users in order to ensure that each admitted user

collects its weight coefficient w. and chan- achieves the required Q0S performance.
nel gains of its transmitter-relay and relay- Specifically, consider a resource allocation
receiver links, problem that aims at minimizing the total relay

Initialization: set t=O, each relay j initializes power. In addition, each user has a minimum rate
p, (0) equal to some nonnegative value requirement. For the above described wireless
and broadcasts this value, systems with multiple users and multiple relays,

the problem of minimizing the total relay power
given a minimum rate constraint for each user

Iterations: can be posed as

1. Thereceiverofuser s, solves its problem (31) mm P8’ (33)and then broadcasts the solution P ) j1

to its relays. °

subject to: R. R”, i = 1,...,M (34)2. Each relay i receives the requested power
levels and updates it prices with the gradient E F” 1’,”, j = 1,..., L (35)iteration (32) using the information received
from its assisted users. Then, it broadcasts
the new value (t + 1). where $“ denotes the minimum rate require-

3. Set t = t + 1 and go to step 1 until satisfy- ment for user s.
ing a predetermined stopping criterion. Mathematically, there are instances in which

the optimization problem (33)-(35) becomes infea
The convergence proofofthe general primal- sible.A practical implication ofthe infeasibility is

dual algorithm can be found in (Bertsekas, 1999). that it is impossible to serve all M users at their
This algorithm only requires message exchange desired QoS requirements. In QoS-supported
between relays and their assisted receivers. There- systems, some users can be dropped or the rate
fore, it can be easily implemented in a distributed targets can be relaxed as a consequence. We in-
manner with low overhead. vestigate the former scenario and try to maximize

the number of users that can be admitted at their
Joint Admission Control minimum rate requirements.
and Power Allocation Thejoint admission control and poweralloca

tion problem can be mathematically posed as a
Here, we consider a scenario in which users have two-stage optimization problem (Matskani et a!,
minimum rate requirements. This scenario is 2007; Matskani et a!, 2008). All possible sets of
important for real-time/multimedia applications, admitted users S,S1,... with possibly maximal
which require certain minimum rates to maintain cardinality (which can be only one or several
Q0S performance. Because network radio resourc- sets) are found in the first admission control
es may be limited (e.g., limited source and/or relay stage, while the optimal set of admitted users
power), supporting all users with their minimum Sk is the one among the sets S0,S1,..., whichrequired rates may not be feasible. Therefore, an requires minimum transmit power in the secondadmission control mechanism should be employed power allocation stage. Once the candidate set of
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admitted users has been determined, the power
allocation problem can be shown to be a convex
programming problem. However, the admission
control problem is combinatorially hard, which
introduces high complexity for practical imple- subject to:mentation. Therefore, a low-complexity solution
approach for thejointadmissiori control andpower
allocation problem is highly desirable.

A. Reformulation of Admission Control and
Power Allocation Problem
Thejoint admission control and power allocation
problem can be equivalentlywrittenas a one-stage
optimization problem that enables us to develop a
low-complexity algorithm to solve theunderlying
problem. Toward this end, let x1, i = 1,..., M de
note an indicatorvariableforuser s where x. = 1

}. ifuser i isadmittedand x = 0 ,otherwise. Given
. these variables, the underlying problem can be

rewritten as (Phan et a!, 2009b)

• M
max x

{sE{O,1}, P O} j

subject to: R i = 1,..., M

P
8

Notethat the constraints (37) are autOmatically
satisfied for the users that are not admitted. The
indicator variables help to representthe admission
control problem in a more compact form. How
ever, the combinatorial nature of the admission
control problem still remains due to the binary
variables x1.

Following the conversion steps similar to
those used in (Matskani et a!, 2008), the joint
admission control and power allocation problem
can be converted to the following one-stage op
timization problem

£E—(1—)E E i
1=1 8.Er.) ‘

(39)

constraints (37) ,(38) (40)

where is a constant chosen to satis1’ the fol
lowing relation

I <•< (41)

The problem (39)-(40) is acompactmathemati
cal formulation of the joint optimal admission
control and power allocation problem. The proof
of the equivalence of the one-stage optimization
problem and the original two-stage optimization
problem can be found in (Matskani eta!, 2008).
Moreover, the one-stage optimization problem is
always feasible since in the worst case no users(36) areadmitted,i.e., z. =0,Vi=1,...,M.

(37) B. Low-Complexity Algorithm
Although the original optimization problem

38
(39)-(40) is NP-hard, its relaxation for which( x1,i = 1,...,M are relaxedto be continuous, can
be shownto beaconvexprogrammingproblem. In
the following, we propose a reduced-complexity
heuristic algorithm to performjointadmission con
trol and powerallocation. The following heuristic
algorithm can be used to solve (39)-(40).

Joint Admission Control and
Power Allocation Algorithm

1. SetS:={511i=1,...,M}.
2. Solve convex problem (9)-(40) for the

sources in S with x1 being relaxed to be
continuous in the interval [0, l] Denote
the resulting power allocation values as
P8’j=1,M
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3. For each s, E S, verify whether

R:R,vs3Es.

a. If this is the case, then stop and P,,’
are power allocation solutions.

b. Otherwise, remove the user s. with
largest gap to its target 1?,”, i.e.,
s.=argmin {R_ir”<o}

I s,ES i

from set S and go to Step 2.

It can be seen that after each iteration, either the
setofadmitted users andthe corresponding power
allocation levels are determined or one user is
removed from the list of the most likely admit
ted users. Since there are M initial users, the
complexity is bounded above by that of solving
M convex optimization problems with different
dimensions, where the dimension ofthe problem
depends on the iteration. It is worth mentioning
that the proposed reduced càmplexity algorithm
always returns one solution.

Note that the objective function for the con
sidered above joint admission control and power
allocation problem was the minimization of the
total relay power. However, the principle used to
construct the above algorithm can be employed
to develop similar algorithms for other objective
functions aswéll (e.g., maxmin, weight-sum-rate
functions). Due to space constraints, we do not
consider these problems here.

Numerical Results for Multi-
User Resource Allocation

Consider a wireless relay network as in Fig. 3
with ten users and three relays distributed in a
two-dimensional region 14 x 14 where network
sizes are measured with respect to some reference
distance. The relays are fixed at coordinates (10,7),
(10,10), and (10,12). The source and destination
nodes are deployed randomly in the area inside
theboxarea [(0, 0),(7, 14)] and [(12, 0),(14, 14)]
respectively. In our simulations, each user is as
sisted by two relays. The noise power is taken to

be equal to N0 = i0. All users and relays are
assumed to have the same minimum rate mm

and maximum transmit power P,.

Numerical Results for Power Allocation

We show that by proper weight setting, the
weighted-sum ofrates maximization based power
allocation scheme provides the flexibility required
to support users with differentiated services. Par
ticularly, we suppose that users 1 and 2 have higher
priority than the others, and set the corresponding
weights as = = 5, w3 = 1 in the
optimization problem (24)-(25). Fig. 4 displays
the resulting rate of the high-priority users? For
reference, we also include in Fig. 4the correspond
ing results obtained by equal power allocation
(EPA) and by weighted-sum of rates maximiza
tion with equal weight coefficients. It can be seen
that over the wide range ofthe relay power limits,
the weighted-sum of rates maximization scheme
outperforms the EPA. Without much surprise, the
performance of the EPA scheme is quite close to
that of the weighted-sum of rates maximization
with equalweight coefficients. On the other hand,
the weighted-sum of rates maximization with
unequal weight coefficients provides noticeable
rate enhancement to the high-priority users as
compared to the other schemes, especially when
the relays have severe power limitation, e.g., a rate
gain of about 0.2 b/sfHz when Fm’ = 10. This
figure indicates that the performiince difference
between differentalgorithms gets smaller for larger
relay power limits. In other words, this reveals an
interesting property thatwhen the relays have more
(or unlimited) available power, different (relay)
powerallocation strategies have much less impact
on the user rate performance, which is limited by
the source transmit power in this case.

Fig. 5 shows the network throughput for the
aforementioned power allocation schemes. In the
max-mm rate fairness based power allocation
scheme, there is a significant loss in the network
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throughput since the objective is to improve the
performance ofthe worst users. This confirms that
achieving max-mm fairness among users results
in a performance loss for the whole system. The
weighted-sum of rates fairness based scheme
results in maximum throughput. Moreover, the
rate gain of the weighted-sum of rates scheme

over the EPA scheme is about 1.8 b/s/Hz over
the range of the relay power limits. This gain
comes at the cost of more complexity in system
implementation to optimize the power levcls. The
weighted-sum ofrates based scheme with unequal
weights achieves slightly worse performance as
compared to its counterpart with equal weights
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Figure 4. Rate ofhigh priority users versus P
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Figure 6. Evolution of Iorice ‘values andpowers allocated at each relay
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while providing better performance for the high
priority users, i.e., users 1 and 2 in Fig. 4.

Figs. 6 and 7 show the evolution of different
parameters in the proposed distributed imple
mentation of the power allocation scheme for
one particular channel realization. Specifically,

100

Fig. 6 shows the evolution of the price values
p., j = 1,2,3 and the powers at the relays, while
Fig. 7 displays the rate for each of the ten users
and sum rates ofall users. The update parameter

was set to 0.00 1 in this example. With such a
choice of the update parameter, we can see that

Figure 7. Evolution ofdata ratefor each user and user sum rate
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CONCLUSION

Table 1. Results with P = 1,
fling time in seconds)

esource Allocation and Q0S Provisioning for Wireless Relay Networks

In this chapter, we have presented a survey of
cooperative diversity and discussed important
resource allocation problems in wireless relay
networks. Specifically, we have described fun
damental cooperative protocols and pointed out

prnax
= 10 (Run

r

ter about 50 updates, the algorithm converges
the optimal solution obtained by solving the
prnposed optimization problem in the central
Ied manner.

i-Numerical Results for Joint Admission
Oontrol and Power Allocation

Wealso investigatetheperformanceoftheproposed
joint admission control and power allocation algo
iithmwith 1 = 1 and P, IO.Itisassumed

. that the channel gain is due to the path loss only
and the locations of the source and destination

mm mmnodes are fixed. Different values of ‘y /
have been used. For reference, we also consider
the optimal admissioncontrol and powerallocation
scheme using exhaustive search over all feasible
user subsets. Afeasible user subset contains the
maximum possible numberofusers and is selected
as the optimum user subset ifit requires the small
esttransmit power. The simulation parameters and
the performance results for the optimal admission
control and power allocation scheme, and the
proposed heuristic scheme are recorded in the
columns “optimum allocation” and “proposed
algorithm” in Table I, respectively.

Note that the running time is measured in sec
onds. It can be seen that the proposed algorithm
determines exactly the optimal numberofadmitted
users in all cases. The transmit power required
by our proposed algorithm is just marginally
larger than that required by the optimal admission
control and power allocation based on exhaus
tive search. However, the running time for the
proposed algorithm is dramatically smaller than
that required by the optimal one. This makes the
proposed approach attractive for practical imple
mentation. As expected, when -yr” increases, a
smaller number of users is admitted with a fixed
amount of power. For example, nine users and
four users are admitted with SNR 12 dB
and 14 dB, respectively.

Optimum Proposed
Allocation Algorithm

0 TITD 12 dB/4.0746 hIs/Hz 12 dB/4.0746 b/s/Hz.ivn irate

#usersserved 9 9

Users served 1,2,3,4,6,7, 8, 1,2,3, 4,6,7,8,
9,10 9,10

Transmit power 20.36 19 20.4446

Running time 18.72 5.39

SNR Irate 13 dB/4.3891 b/s/Hz 13 dBI4.3891 b/s/Hz

# users served 6 6

Users served 1,2,7,8,9, 10 1,2,7,8,9, 10

Transmit power 22.953 1 23.0342

Usersserved 2,3,7,8,9,10 -

Transmit power 23.7717 -

Running time 458.07 9.60

SNR /rate 14 dB/4.7070 b/s/Hz 14 dB/4.7070 b/s/Hz

#usersserved 4 4

Usersserved 7,8,9,10 7,8,9,10

Transmit power 25.6046 25.6 195

Running time 850.28 11.78

SNR Irate 15 dB/5.0278 b/s/Hz 15 dB/5.0278 b/s/Hz

# users served 2 2

Users served 8,10 8, 10

Transmit power 7.53 10 7.5320

Running time 930.11 12.92

SNR/rate 16d8/5.3509b/s/Hz I6dB/53509b/s/Hz

#usersserved 1 1

Usersserved 8 8 -

Transmit power 9.8002 9.8025

Runningtime 931.11 13.15
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some recent enhanced protocols available in the
literature. Typical applications of cooperative
diversity in multihop cellular networks, cluster-
based wireless ad hoc networks and broadcasting
in ad hoc networks have been introduced. We have
also presented the overview on resource alloca
tion problems for single and multi-user wireless
relay networks. For the multi-user case, we have
investigated optimal relay power allocation and
admission control problems with fairness con
sideration using centralized and distributed ap
proaches. Simulation results are shown to confirm
the theoretical developments.
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ENDNOTES

The term user refers to a source-destination
pair in this context.

2 We consider the case where source-relay
links are much better than the source-des
tination link. This would be an outcome of
a typical relay selection strategy employed
by each source node.
We observe that users I and 2 have indistin
guishable performance, so only one curve
for each scheme is plotted.


