
Abstract. In many applications of signal processing,
especially in communications and biomedicine, prepro-
cessing is necessary to remove noise from data recorded
by multiple sensors. Typically, each sensor or electrode
measures the noisy mixture of original source signals. In
this paper a noise reduction technique using independent
component analysis (ICA) and subspace filtering is
presented. In this approach we apply subspace filtering
not to the observed raw data but to a demixed version of
these data obtained by ICA. Finite impulse response
filters are employed whose vectors are parameters
estimated based on signal subspace extraction. ICA
allows us to filter independent components. After the
noise is removed we reconstruct the enhanced indepen-
dent components to obtain clean original signals; i.e., we
project the data to sensor level. Simulations as well as
real application results for EEG-signal noise elimination
are included to show the validity and effectiveness of the
proposed approach.

1 Introduction and problem formulation

In many real-world applications of signal processing,
especially in communications and biomedicine, the
problem of noise cancellation is important (Widrow
and Walach 1996). Noise cancellation is a subject of
wide interest in physical and communication systems.
Several methods have been suggested in the literature for
noise reduction. Signal processing techniques using for
noise elimination include band-pass filtering, the fast
Fourier transform, autocorrelation, autoregressive mod-
eling, adaptive filtering, Kalman filtering, and singular
value decomposition (SVD) (Akay 1996; Arnold et al.
1998; Sadasivan and Dutt 1996; Thakon 1987; Walter

1969; de Weerd and Martens 1978; Widrow and Walach
1996). Recently, the principal component analysis (PCA)
(Callaerts et al. 1988; Laguna et al. 1999; Sadasivan and
Dutt 1996) and independent component analysis (ICA)
(Cichocki and Vorobyov 2000; Lee 1998) approaches
have became very popular for the analysis of biomedical
data e.g., EEG and MEG). One of the main advantages
of these approaches relates to their applicability to
multisensory observations of mixed signals.

In this paper we consider the following linear mixture
model for measured signals

xðtÞ ¼ AsðtÞ þ vðtÞ ; ð1Þ

where t ¼ 0; 1; 2; . . . is discrete time; xðtÞ ¼ ½x1ðtÞ;
x2ðtÞ; . . . ; xnðtÞ�T is an n-dimensional vector of observed
noisy sensor signals; A is an n � m unknown full-rank
mixing matrix; sðtÞ ¼ ½s1ðtÞ; s2ðtÞ; . . . ; smðtÞ�T is an
m-dimensional unknown vector of primary sources;
and vðtÞ is n-dimensional also unknown vector of
additive white (generally, could be colored) Gaussian
noise represented measurement and environmental
noise. Furthermore, we assume that the vector sðtÞ
contains a subset of useful or ‘‘interesting’’ sources with
temporal structure, and ‘‘uninteresting’’ interferences or
‘‘inner’’ noises.

Our objective is to reduce the influence of additive
noise vðtÞ and eliminate ‘‘inner’’ noise. In other words,
our task is to obtain corrected or ‘‘cleaned’’ sensor sig-
nals which contain only useful or ‘‘interesting’’ sources
with temporal structure. By useful or ‘‘interesting’’ sig-
nals we mean short-duration (sparse) signals with
temporal structure such as the evoked potential/event-
related potential (EP/ERP) in biomedical signal analysis
applications (Goldstein and Alrich 1999; Niedermeyer
and de Silva 1999). If these signals are statistically
independent, our second objective is to estimate the
corresponding sources.

We apply model (1) to EEG signal analysis, by de-
scribing all variables in model (1) as follows. Sources are
original sparse signals generated by the brain. Some of
sources can be noise sources. A noisy instantaneous
mixture of original sources is available for measurement.
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Let us emphasize that the problem consists of reduction
of both the ‘‘inner’’ noise and an additive noise based on
only information about observed vector xðtÞ (i.e., a blind
scenario).

Such a formulation of the problem lies outside tradi-
tional noise-cancellation approaches (Haykin 1996;
Widrow and Walach 1996), because the model (1) con-
tains an ‘‘inner’’ noise as well as additive noise. However,
traditional filtering techniques are based on the as-
sumption that the noise is only additive. PCA and SVD
are standard methods used to find and remove a noise
subspace of a signal (Callaerts et al. 1998; Laguna et al.
1999; Sadasivan and Dutt 1996). However, both PCA
and SVD perform well only if: (a) the noise level is small
enough and (b) a signal subspace and a noise subspace
are orthogonal to each other. For practical applications
the orthogonality requirement for signal and noise sub-
spaces is usually not valid. Moreover, ‘‘inner’’ noise
sources in the model influence strongly the real signal-to-
noise ratio (SNR). Moreover, PCA and SVD approaches
are not able to distinguish ‘‘inner’’ and additive noises.
Thus, good estimation of signal subspace is not possible.

Recently, it was found that one of the most prom-
ising approaches to the problem of blind noise reduc-
tion is application of ICA (Cichocki and Vorobyov
2000). Recent ICA algorithms are robust with respect
to additive noise, which makes it possible to use them
successfully for model (1). However, ICA cannot
guarantee that some individual independent compo-
nents (ICs) contain only noise and do not contain in-
formation about useful sources, especially in
biomedical applications. Hence, the problem of detec-
tion and filtering of ‘‘useful’’ part of each IC is still
open, and additional tools are needed to solve it. We
will see that for biological signal processing applica-
tions these problems can be solved relatively easy, be-
cause usually we are interested in extraction of sparse
signals, such as the EP’s. Hence, we have some a priori
knowledge about signals which we are looking for at
the stage of IC filtering.

In this paper, we propose a noise reduction technique
for multisensory signals described by model (1). This
formulation is closed to the description of real biomedi-
cal data measurements such as EEG/MEG signals
(Dogandzic and Nehorai 2000). Section 2 concentrates
on the description of our approach to blind noise
reduction using ICA and subspace filtering. In Sect. 3 we
give some details about an algorithm realizing the pro-
posed approach, such as choosing useful ICs and sub-
space filtering. Section 4 presents some simulation results
for artificially generated data to show the validity and
performance of the proposed method. Results for real
EEGs are also given. Section 5 provides the conclusions.

2 Schema of blind noise reduction based
on ICA and subspace filtering

The block diagram illustrating the ICA technique
application for noise and interference reduction is shown
in Fig. 1 (see also Cichocki and Vorobyov 2000). Sensor

signals are processed by a ‘‘ICA demixing system’’ that
is described by the model

yðtÞ ¼WxðtÞ ; ð2Þ

where yðtÞ ¼ ½y1ðtÞ; y2ðtÞ; . . . ; ymðtÞÞT is an m-dimensional
vector of independent components with m 	 n, andW is
a separation matrix.

The outputs of the ‘‘ICA demixing system’’ pass
through the ‘‘switching system’’ which takes the binary
decision f0; 1g. Thus, the signals that corresponds to the
ICs obtained after separation can be passed through
when the corresponding switch is on, or perfectly elim-
inated when the switch is off. The results go through the
‘‘inverse system’’ represented by the inverse of an esti-
mated separation matrix. At the output of the system we
have reconstructed sensor signals x̂xðtÞ ¼ ½x̂x1ðtÞ;
x̂x2ðtÞ; . . . ; x̂xnðtÞ�T.

It should be noted that such a simple approach is
valid under the assumptions that: (a) interferences and
noises are extracted as ICs and can be easily detected
and recognized, and (b) there is no additive noise in the
model (1). The analysis of biomedical signals shows that
such a simple schema is usually not valid (Dogandzic
and Nehorai 2000). There are several reasons for this,
and the most important ones are the following. First,
besides ‘‘inner’’ noise that is biological in nature (e.g.,
from cardiac, smooth, and skeletal muscles, the EEG
recorded using surface electrodes is always buried in
additive noise that is electrical in nature which emanates
from a variety of sources such as instrumentation, re-
cording electrodes, and surrounding power lines. Sec-
ond, a spatially correlated noise between sensors with
unknown covariance should be taken into account.

Thus, separation on W can be biased by noise. A
dependance between noise components also leads to
biased estimation of separation matrix. Note that even if
noise components are independent, after separation we
will not obtain clean signals but estimated signals of the
sources plus the multiplication of the estimated sepa-
ration matrix by the vector of additive noise:

yðtÞ ¼WxðtÞ þWvðtÞ ¼ ŝsðtÞ þWvðtÞ : ð3Þ

If some separated sources are just ‘‘inner’’ noise
components, we have at the output of the separation
system simply the accumulation of two types of noises.
Such ICs could be detected and completely rejected.
However, for ICs which contain a ‘‘useful’’ signal, a

Fig. 1. Block diagram illustrating the independent component anal-
ysis (ICA) method for noise reduction. See text for details
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filtering procedure must be performed to reduce the term
WvðtÞ in (3). Hence, the problem consists now of
recognition of ICs that contain useful (‘‘interesting’’)
signals buried in noise, and filtering them.

Note that this reduction of the initial problem, that
is actually filtering of measured signals (1), has a strong
motivation because ‘‘inner’’ noise signals have equiva-
lent or often higher power than ‘‘interesting’’ signals.
This leads to dramatic decreases in the SNR for the
measured signals. For example, in biomedical applica-
tions the measured signals typically suffer from SNRs
of �10 dB to�20 dB. Traditional filtering techniques
do not perform well for signals with such a low SNR.

The schema illustrating the method for which the
framework has been given above is shown in Fig. 2.
Instead of ‘‘switching system’’ in the schema in Fig. 1,
we incorporate a filter in each channel in Fig. 2 (see
Cichocki and Amari 2002 for alternative models).

3 Algorithm for blind noise reduction based
on ICA and subspace filtering

3.1 ICs extraction

First, we apply ICA to obtain the ICs. Any algorithm
that ensures robust unbiased estimation of the separa-
tion matrix can be employed. Recently, several robust-
to-additive-noise algorithms for unbiased estimation of
separation matrix have been investigated (Choi and
Cichocki 2000; Cruces et al. 2000; Cichocki and Amari
2002). The modification of the algorithm described by
Cruces et al. (2000) (see Appendix A) is used in the
simulations for this paper.

Wewill not dwell on the details of the algorithm, which
can be found in the original paper. Here we are more
interested to answer the question: is ICA really helpful
and give some reasonable benefits to finding ICs de-
scribing noise or artifacts in comparison to direct analysis
of the originally measured EEG signals? To answer this
question we need to define the measure for estimation of
‘‘usefulness’’ of signals in application to EEG analysis. At
the same time, the answer to this question gives us the
solution to a switching stage (see Fig. 2).

3.2 Detection and classification of ICs

Obviously, there are several possibilities for classification
of signals based on a ‘‘usefulness’’ criterion. For possible
comparison of results we need to consider at least two
different criteria. However, first we have to specify the
sense of ‘‘usefulness’’ in EEG-analysis application.

This is not a trivial problem. However, we always can
be certain that if a signal has no temporal structure or is
independent identically distributed (i.i.d.) it can give us
no information for analysis, except the information that
the signal is unpredictable. Such a signal can be rejected
from the analysis. Further, electrical noise and artifacts
can still have a temporal structure. Hence, we need also
to define a more general measure of randomness. Here
we discuss the Hurst exponent as a measure of ‘‘use-
fulness’’. In Sect. 3.2.3 we give a simulation example for
comparison of original EEG signals and ICs from the
viewpoint of detecting ‘‘useless’’ components.

3.2.1 Detection of i.i.d. and temporally structured com-
ponents using a linear predictor. In many applications
only temporally structured sources are of interest, where
all i.i.d. components should be removed. Let us assume
that the primary source signals are modeled by a stable
autoregressive process as

siðtÞ ¼ essiðtÞ �XN
p¼1

aipsiðt � pÞ ¼ ~ssiðtÞ � AiðzÞsiðtÞ ; ð4Þ

where AiðzÞ ¼
PN

p¼1 aipz�p and ~ssiðtÞ are i.i.d. unknown
innovation processes. In order to estimate the primarily
innovative source signal eiðtÞ 
 ci~ssiðt � diÞ (here di is
some possible delay and ci is some possible scaling
coefficient), we consider a linear predictor (Haykin 1996):

eiðtÞ ¼ yiðtÞ � BiðzÞyiðtÞ ¼ yiðtÞ � bTi yiðtÞ ; ð5Þ

where BiðzÞ ¼
PM

p¼1 bipz�p with M � N , bi ¼ ½bi1; � � � ;
biM �T , and yiðtÞ ¼ ½yiðt � 1Þ; yiðt � 2Þ; � � � ; yiðt � MÞ�T .

Applying the standard gradient descent technique for
minimization of the cost function JðbiÞ ¼ 1

2Efe2i ðkÞg, we
obtain a simple Least-Mean Square (LMS) on-line
learning rule:

biðt þ 1Þ ¼ biðtÞ þ gieiðtÞyiðtÞ ; ð6Þ

where gi > 0 is the learning rate. Instead of the on-line
Least-Mean Square (LMS) algorithm, we can use the
Wiener filter batch estimation (Haykin 1996)

bi ¼ R�1
yiyipi ; ð7Þ

where Ryiyi ¼ Efyiy
T
i g and pi ¼ Efyiyig. It should be

noted that for a white (i.i.d.) signal yi, the cross-
correlation vector pi is equal to zero. Thus, vector bi will
also be zero. This fact enables us to easily detect and
eliminate the i.i.d. signals. In a more general case, the
vector bi represents the temporal structure of the
corresponding signal yi. Hence, classification of temporal
correlated sources is possible on the basis of vector bi.

Fig. 2. Block diagram illustrating the ICA method combined with
higher-order correlation-based filtration for noise reduction

295



The temporal structure of sources can be described
by more general means, for example using an autore-
gressive moving-average process or a hidden Markov
model, which is able to represent high-order temporal
statistics and facilitates expectation maximization
learning rules (Amari 1999; Attias 2000; Cichocki and
Amari 2002). However, we can avoid these details be-
cause the set of signals which we are looking for is not
limited only to temporally uncorrelated signals. The
investigation of a more general measure is more im-
portant than increasing the performance of the method
described above.

3.2.2 Detection and classification of ICs on the basis of the
Hurst exponent. Studying living organisms as complex
nonlinear dynamic systems generating time series is of
increasing interest to biology, and neuroscience in
particular (Hurst et al. 1965; Katz 1988; Turner 1993;
Vorobyov and Shilo 1998). The Hurst exponent H (and
associated fractal dimension D ¼ 2� H ) is one possible
parameter for characterizing a time series (Hurst et al.
1965; Vorobyov and Shilo 1998). Hurst et al. (1965)
developed the rescaled range ðR=SÞ analysis for a time
series yðtÞ, ðt ¼ 0; 1; 2; . . .Þ. Firstly, the range R was
defined as a difference between maximum and minimum
‘‘accumulated’’ values:

RðT Þ ¼ max
1	t	T

fY ðt; T Þg � min
1	t	T

fY ðt; T Þg ; ð8Þ

where

Y ðt; T Þ ¼
XT
t¼1

½ yðtÞ � hyðtÞi� ; ð9Þ

and secondly, the standard deviation S was estimated
from the observed value yðtÞ:

S ¼ 1

T

XT
t¼1

½ yðtÞ � hyðtÞi�2
 !1

2

: ð10Þ

Hurst et al. found that the ratio R=S is very well
described for a large number of phenomena by the
following nonlinear empirical relation:

R
S
¼ ðcT ÞH ; ð11Þ

where T is the number of samples, c is some constant
(typically c ¼ 1

2), and H is the Hurst exponent in the
range from 0 to 1.

With this definition the Hurst exponent of value 0.5
corresponds to a time series that is truly random (e.g.,
Brown noise or Brownian motion). The Hurst expo-
nent of 0 < H < 0:5 exhibits the so-called antipersis-
tent behavior; e.g., white uniformly distributed noise
has H ffi 0:15. At the limit of H ¼ 0, the time series
must change direction every sample. On the other
hand, the Hurst exponent of 0:5 < H < 1 describes a
temporally persistent or trend-reinforcing time series.
At the limit a straight line with nonzero slope will
have the Hurst exponent of 1. It was found by many

researchers that the Hurst exponent H has a value
equal to 0.70–0.76 for many natural, economic, and
human phenomena.

In this paper we propose to apply the Hurst exponent
H to classify and detect the ICs ŷyiðtÞ, i ¼ 1; . . . ;m of
EEG/MEG signals. IC ŷyiðtÞ can be considered as a
random or temporally independent process if H 	 0:6.
Such an IC can be easily eliminated by closing the
closing switche in the corresponding channel (see
Fig. 2). The most interesting or desirable components
have a Hurst exponent in the range H ¼ 0:70� 0:76.
These components can be projected by a pseudo inverse
matrix Wþ. Thus, corrected sensor signals enable us to
localize corresponding ‘‘interesting’’ brain sources.
Furthermore, we have found by extensive computer
experiments that some artifacts, such as those from eye
blinking or heart beats, have a specific value of H . Thus,
they could be automatically identified and removed from
sensor signals on the basis of the value of the Hurst
exponent. For example, heart-beat artifacts are usually
characterized by H ¼ 0:64–0:69, and eye blinking by
H ¼ 0:58–0:64.

For calculating the Hurst exponent we use the re-
current method proposed in Vorobyov and Shilo (1998)
in order to reduce the computation complexity. A
summary of the procedure for calculating the Hurst
exponent is given in Appendix B.

3.2.3 Comparison of original EEG signals and ICs from
the viewpoint of detecting ‘‘useless’’ components. In this
section we summarize some experiment results for real-
world data (i.e., EEG signals) that demonstrate possi-
ble advantages of the application of ICA to the
processing of biomedical signals. The purpose is to
compare original EEG signals and ICs after ICA
application from the viewpoint of detecting ‘‘useless’’
components. Clearly, the performance of this analysis
generally depends on the performance of the ICA
procedure. A modified version of the procedure devel-
oped in Cruces et al. (2000) (see Appendix A) is used for
the extraction of ICs. The observed EEG signals are
shown in Fig. 3. After ICA separates the sensor EEG
signals, we obtain the results shown in the Fig. 4. Analysis
of the values Hi and kbik for the observed sensor signals
and separated signals (ICs) reveal completely different
distributions, which can be seen from the Table 1. It
follows that the identification or detection of random
signals is only possible for ICs obtained after applying
ICA. It is obvious that the third IC should be removed,
and the fifth IC probably corresponds to heart-beat
artifact and should also be removed.Hence, ICA is helpful
for EEG denoising and analysis.

Assume now that we could decompose the signals
from the electrodes, such that we know ICs corre-
sponding to original sources, and reject ICs corre-
sponding to noise sources and artifacts. Then for each
unrejected IC we need to search for event-related signal
corresponding to the original source; i.e. we need to
reduce the influence of additive noise (WvðtÞ in Eq. 3).
We discuss a useful filtering technique to solve this
problem in Sect. 3.3.
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3.3 Subspace-based filtering

For processing the ICs for noise elimination a least-
squares filter can be applied. However, event-related
signals have a special structure that allow us to look for
a low-rank filter instead of ‘‘full-rank’’ methods (Akay
1996; van der Veen et al. 1993; Haykin 1996; Pisarenco
1973; Strobach 1996). We introduce here a filter based
on an approximate dominant eigendecomposition of the
data covariance matrix.

The signals generated by the brain, such as EPs and
ERPs, have a very specific sparse structure. The ICs,
which are indeed estimations of brain-generated signals,
are defined by (3), where WvðtÞ is the noise term. To
obtain an accurate estimation of a sparse signal—such
as a EP or a ERP—contaminated by noise, which is no
more unstructured because of multiplication by matrix
W, we first need to estimate the signal subspace and then
filter the signal with respect to the filter parameters
estimated only based on that subspace. Otherwise, the

parameters estimated based on a whole signal and noise
subspace describe a noise structure as well as a signal
structure, and cannot provide an accurate estimation of
parameters of the signal only. However, sparse signals
are characterized only by few principal components.
Thus, the signal subspace for the ICs (3) is easily sepa-
rated from noise subspace by eigenvalue decomposition
of the covariance matrices of the ICs.

Let us define the ith unrejected IC as ~yyiðtÞ and in-
troduce an autoregressive (AR) model

~yyiðtÞ ¼ cTi uiðtÞ þ eiðtÞ ; ð12Þ

where ci ¼ ðci1; ci2; . . . ; ciLÞT is an L-dimensional AR
coefficient vector; uiðtÞ ¼ ½~yyiðt � 1Þ; ~yyiðt � 2Þ; . . . ;
~yyiðt � LÞ�T is an L-dimensional vector of prehistory;
and eiðtÞ is white noise with zero mean and r2ei

< 1.
Here L is the window length over which the covariance
matrix is computed. The choice of the order of L for
each IC depends on the shape of a corresponding event-
related signal which we are looking for. However, such
information often is not available a priori. Practically, L
must be large enough, typically, LP20.

The AR coefficient vector ci for ith IC can then be
estimated using Wiener filter

ĉci ¼ �R̂R�1
i r̂ri : ð13Þ

However, to obtain an accurate estimation of the filter
coefficients ĉci we need to find the signal subspace and
estimate ĉci only on this subspace. The estimate of the
filtered IC then can be calculated as

ŷyiðtÞ ¼ ðĉcpci ÞTuiðtÞ ; ð14Þ

where ĉc
pc
i is a Wiener filter (Haykin 1996) parameter

vector estimated based only on the signal subspace. The
details of the ĉc

pc
i calculation are given in Appendix C.

3.4 Summary

Based on the previous sections, we can introduce a blind
noise-reduction algorithm for multisensory signals using
ICA and subspace filtering. The algorithm can be
defined by the following implementation:

1. Estimate the ICs of the set of signals using an ICA
algorithm that is robust to additive noise (see Ap-
pendix A).

Fig. 3. Observed noisy EEG data

Fig. 4. Plots of the ICs for the EEG data

Table 1. The Hurst exponent and norm of vector bi of linear pre-
dictor for each signal shown in Figs. 3 and 4

Signal number (i) Hi max kbiðtÞk

xiðtÞ yiðtÞ xiðtÞ yiðtÞ

1 0.7290 0.7513 0.3657 1.0431
2 0.7117 0.6989 0.3348 0.4245
3 0.6970 0.5418 0.4647 0.0173
4 0.7120 0.7361 0.5257 0.9348
5 0.7232 0.6452 0.5333 0.2197
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2. Test the hypothesis:

H0 : ~yyiðtÞ ¼ ~ssiðtÞ þ niðtÞ ; ð15Þ

H1 : ~yyiðtÞ ¼ niðtÞ þ niðtÞ ; ð16Þ

where ~ssiðtÞ is the target signal of interest in the ith IC,
niðtÞ ¼ wT

i vðtÞ, wiðtÞ is the ith row vector of separation
matrix W, and niðtÞ is the source corresponding to
‘‘inner’’ noise.
From the assumption that additive noise viðtÞ in the
model (1) is Gaussian, it can be inferred that the noise
niðtÞ is also Gaussian. If the ‘‘inner’’ noise is Gauss-
ian, then the testing of hypothesis (15) is reduced to
checking the Gaussianity of a tested signal. For this
simplest case we can estimate the normalized kurtosis

K4fyiðtÞg ¼ Efy4i g
E2fy2i g

� 3 ð17Þ

and compare it with some small–enough threshold c,
j K4fyiðtÞgj 	 c (Cichocki and Vorobyov 2000). If the
‘‘inner’’ noise is not Gaussian, the procedure based on
the Hurst exponent calculation from Sect. 3.2.2 is
applied (see Appendix B).

3. Reject the ICs which satisfy hypothesis H1, and filter
ICs which satisfy hypothesis H0 using the subspace-
filtering procedure described in Sect. 3.3 and Appen-
dix C.

4. Perform inverse projection of ‘‘interesting’’ filtered
ICs ŷyiðtÞ back onto the sensors level by a linear
transformation:

x̂xðtÞ ¼WþðtÞŷyðtÞ ; ð18Þ

whereWþ is a pseudo inverse of separation matrixW
(Wþ ¼W�1 when the number of independent com-
ponents is equal to the number of sensor).
Note that the above algorithm presents the per-

formance of only the most basic schema. Further
improvements may be achieved by ‘‘optimizing’’ the
algorithm using, for example, low-rank adaptive
tracking filtration (van der Veen et al. 1993; Nijima
and Veno 2002; Pisarenco 1973; Raghothanan et al.
2000; Strobach 1996), or a robust prewhitening pro-
cedure for the case of correlated noise (Cichocki and
Amari 2002).

4 Results

We divide this section into two subsections. Section 4.1
discusses the results obtained from the studies per-
formed with known signals, and Sect. 4.2 discusses the
results obtained from the studies on recorded EEG
signals.

4.1 Simulation

In order to get an idea about the effectiveness of the
proposed algorithm, we performed studies with known
signals. The set of observed signals is generated using a
mixing model (1), where the set of sources consists of

three useful signals and two noise signals. The set of
useful signals contains s1ðtÞ – sparse rectangular pulse;
s2ðtÞ – one period of a damped sine wave; and s3ðtÞ – a
long-duration rectangular pulse. One of the noise
sources is generated according to a normal distribution
with variance r2s4 ¼ 2:65, and the other is uniformly
distributed with variance r2s5 ¼ 5:33. The vector of
additive noise vðtÞ is generated according to a normal
distribution. The SNRs of the mixed signals to additive
noise are 7–10 dB. The set of noiseless signals (mixture
of signals s1, s2, s3, and s4ðtÞ ¼ s5ðtÞ ¼ 0, and vðtÞ ¼ 0) is
shown in Fig. 5, and the set of observed signals is shown
in the Fig. 6.

Direct application of subspace-based filters for each
observed signal gives the results shown in Fig. 7. The
characteristics of the filters applied for each individual
channel separately were as follows. The length of the
FIR filters (see Eq. 12) was L ¼ 25. The number of
principal components used for estimation of the filter
coefficients (see Eq. C6) was the same for each individ-
ual channel, and equal q ¼ 5.

Fig. 5. The set of noiseless mixed signals (assumed to be unknown)

Fig. 6. The set of observed noisy signals
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Direct filtering of signals does not allow us to separate
the ‘‘inner’’ noise, since by direct filtration we filter the
measured signals without taking into account the ‘‘inner’’
mixingmodel (1) of the signals.We can see that the results
are rather poor. Generally speaking, the performance
of direct application of subspace-based filtering may
possibly be slightly improved by choosing the parameters
L and q appropriately. However, any filtering techniques
used in practice exploit the assumptions that the noise in
the model is additive and the SNR is high enough. These
assumptions are obviously not valid for the model (1).
The first assumption is not valid because we have ‘‘inner’’
noise in the model (1) as well as additive one. However,
even if ‘‘inner’’ noises can be thought of as several addi-
tive noise components of measured signals, the second
assumption is still important for traditional filtering
techniques. In fact,‘‘inner’’ noise signals have similar or
often higher power than ‘‘interesting’’ signals in biologi-
cal applications, which leads to low SNRs for the
measured signals. Traditional filtering techniques do not
perform well for signals with low SNR, because of
subspace swap effect. The poor results of this simulation
is caused also because the full SNR (SNR calculated with
respect to additive noise as well as ‘‘inner’’ noise) is very
low. The SNR equals �15 dB to� 25 dB, depending on
the channel. The correct estimation of a signal subspace is
not possible for such low SNRs.

Note that the conditions of this simulation are well
motivated from a practical viewpoint. EEGs that a re-
corded using surface electrodes are buried in noise which
is both electrical and biological in nature, and are
characterized by very poor SNRs of less than �20 dB in
the presence of larger electrical interference.

The results of our blind noise-reduction algorithm are
shown in Figs. 8–10. The extracted ICs (signals sepa-
rated from the observed mixed signals) are shown in
Fig. 8. For the third and fourth signals in Fig. 8 the
values of the Hurst exponents are 0.538 and 0.551,
respectively. It means that these separated signals are
noise components and can be removed. For the first and
the second signals we use the subspace-filtering proce-

dure with the same FIR filter characteristics that have
been used in previous examples of direct filtering of
measured signals. These results are shown in Fig. 9.
Finally, we show the reconstructed signals in Fig. 10,
which can be compared with the original noiseless sig-
nals in Fig. 5. It is not difficult to see even visually (it is,
in fact, the purpose for real medical applications) that
performance increased dramatically.

4.2 EEG analysis – noise elimination results

Recently, the model (1) has been discussed as a possible
model for measured EEG signals (Dogandzic and
Nehorai 2000). The ‘‘inner’’ signals are sparse for many
mental states. However, we can measure only the noisy
mixture of these source signals.

Studies similar to the above were performed for
recorded EEG signals as well. We consider the EEG
signals recorded from seven positions on the scalp. Thus,

Fig. 7. Filtered signals without separation Fig. 8. ICs after applying ICA

Fig. 9. Filtered ICs
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the data matrix is seven rows and 2500 columns, since
across the columns are samples taken at 250 Hz for 10 s.
Recordings were made with reference to electrically
linked mastoids A1 and A2. Recording was performed
with a bank of Grass 7P511 amplifiers whose band-pass
analog filters were set at 0.1 Hz to 100 Hz. The EEG
signals were recorded by Zak Keirn at Purdue Univer-
sity and are accessible at http://www.cs.colostate.edu/
�anderson/res/eeg/. The raw recorded EEG signals are
shown in Fig. 11. The electrodes are numbered and
ordered from 1 to 7.

The result of direct application of subspace filtering
to the raw recordered EEG is shown in Fig. 12. For the
first and the second EEG signals the filtration results are
very poor. This may be explained by the corresponding
subspace-based filters not being able to estimate the
signal subspace correctly because of a low SNR. The
ordering of the EEG signals is the same as in Fig. 11.
The characteristics of the subspace filters are the same
for each channel: L ¼ 15 and q ¼ 7. Note that the peak

between the 1080 and 1220 time samples in the third,
fourth and fifth filtered EEG signals correspond to eye
blinking. This peak was not removed by direct applica-
tion of subspace filtering.

The ICA procedure (A1), (A2) is then applied to the
set of seven recordings shown in Fig. 11. The ICs shown
in Fig. 13 have the following values of the correspond-
ing Hurst exponents: 1: 0.763; 2: 0.785; 3: 0.628; 4: 0.701;
5: 0.778; 6: 0.511; and 7: 0.753. The sixth IC has also
the value of kurtosis equal to 0.01. Thus, this compo-
nent should be rejected as one that has no temporal
structure and does not include any ‘‘interesting’’ infor-
mation. The third IC has a specific value of the Hurst
exponent corresponding to the eyes blinking, and should
also be removed. The numbering of ICs is arbitrary and
does not related to the numbering of recorded EEG
signals.

Note here that ICA actually does not solve the inverse
problem. Scott Makeig at http://www.cnl.salk.edu/
�scott/tutorial/icafaq.html, observes that from the

Fig. 10. Reconstructed sensor signals

Fig. 11. Recorded row EEG signals

Fig. 12. Filtered EEG signals

Fig. 13. ICs after applying ICA
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viewpoint of ICA, ‘‘brain sources’’ are not necessarily
‘‘fMRI hot spots’’ or ‘‘single equivalent dipoles,’’ but
rather ‘‘concurrent electromagnetic activity that is spa-
tially fixed and temporally independent of activity aris-
ing in other spatially fixed sources and summed with it in
the input data.’’ Networks producing such concurrent
activity are defined not by compact spatial distributions
in the brain, but by the covering field measurements they
produce at the scalp sensors. In general, ‘‘sources’’ of
ICA ICs may be (one or more) distributed brain net-
works rather than physically compact active brain
regions. These networks may be functionally linked,
forming a (possibly transient) larger network, or may
simply be activated concurrently in the input data, by
chance as it were. In our simulation the third and sixth
ICs correspond to ‘‘biological noise sources,’’ and can be
easily found by the associated values of the Hurst
exponent.

The first, second, fourth, fifth and seventh ICs are
filtered using the subspace-based filtering technique. The
results are shown in Fig. 14. Here the numbering is also
not related to the numbering of the recordedEEG signals.

After reconstruction of the filtered ICs back to the
sensor level by the inverse operation (18) we obtain the
final results presented in Fig. 15. The numbering here is
the same as the numbering of recorded EEG signals. In
fact, the signals in Fig. 15 are EEG signals with reduced
‘‘inner’’ and additive noise. This results can be compared
with raw recorded EEG signals in Fig. 11 and directly
filtered EEG signals in Fig. 12.

From the above we conclude that the proposed
approach is an effective tool for both artifact classifica-
tion and removing, and electrical noise elimination from
contaminated EEG signals.

5 Conclusions

In this paper, we explored the method for blind noise
reduction in EEG signals using ICA and subspace

filtering. The key point which makes the ICA technique
important and promising for the blind noise-reduction
problem is the ‘‘inner’’ structure of observed signals,
which are nothing but a noisy mixture of some signals
from real sources and the ‘‘inner’’ noise signals. For
detection of ICs containing ‘‘interesting’’ signals (signals
of interest), we apply the procedure that is based on the
Hurst exponent calculation. For filtering of ‘‘interest-
ing’’ ICs after separation of the mixture, we apply the
subspace filtering method. The simulation as well as real
applications of the proposed method demonstrates the
effectiveness of the proposed approach. On the other
hand, direct application of filters to measured signals
does not take into account the special structure of
measured signals and, therefore, does not allow us to
obtain acceptable results of noise reduction. Observed
EEG data can be described using the same mixing model
that has been discussed in the paper. The real applica-
tion shows the effectiveness of the proposed method for
blind noise reduction in EEG data. The proposed
algorithm presents the performance of only the most
basic schema. Further improvements can be achieved by
‘‘optimizing’’ the algorithm using, for example, low-rank
adaptive-tracking filtering or a robust prewhitening
procedure for the case of coherent additive noise.

Appendix A: Summary of the procedure for blind
source extraction in Gaussian noise

Let us explain in more detail what the block ‘‘ICA
demixing system’’ in Fig. 1 makes. The blind source
extraction procedure (Cruces et al. 2000) consists of two
stages. In the first stage we identify the mixture matrix A
that is unknown using following iteration:

ÂAðt þ 1Þ ¼ ÂAðtÞ þ lðtÞ C1;3
x;yS

3
y � ÂAðtÞ

� �
; ðA1Þ

where ÂAðtÞ is estimation of the unknown mixture matrix
A at step t; lðtÞ is a learning-rate parameter;

Fig. 14. Filtered ICs
Fig. 15. Reconstructed EEG signals
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C1;3
x;y ¼ M1;3

x;y � 3M0;2
x;y M

1;1
x;y is the fourth-order cross-cumu-

lant matrix; Mk;l
x;y ¼ Efx � � � � � x|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

k

ðy � � � � � y|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
l

ÞTg; and S3y

is the diagonal matrix of cumulant signs ½S3y �ii ¼
signð½C1;3

x;y �iiÞ.
At the second stage we calculate immediately a sep-

aration matrix WðtÞ based on estimation of mixture
matrix ÂAðtÞ:

WðtÞ ¼ ðÂATðtÞR�1
xx ÂAðtÞÞ

�1
ÂATðtÞR�1

xx ; ðA2Þ

where Rxx ¼ 1
t

Pt
i¼1 xðtÞxTðtÞ is a correlation matrix of

the observations.
As it was shown in Cruces et al. 2000, this algorithm

is robust in the sense that for a additive Gaussian noise
presence in observations, the obtained estimates are as-
ymptotically unbiased. Let us note also that a stability
condition for this algorithm is l < 1

2.

Appendix B: Hurst exponent recurrent calculation

The recurrent method for calculation of the Hurst
exponent (Vorobyov and Shilo 1998) can be written in
the form that follows. It follows from (11) that

Hðt þ 1Þ ¼
log10

Rðtþ1Þ
Sðtþ1Þ

� �
log10

tþ1
2


 � ; ðB1Þ

where the range

Rðt þ 1Þ ¼ Ymaxðt þ 1Þ � Yminðt þ 1Þ ðB2Þ

is recursively defined as a difference between maximum
and minimum ‘‘accumulated’’ values

Ymaxðtþ1Þ¼ Y ðtþ1Þ; Y ðtþ1ÞYmaxðtÞ;
Ymaxðtþ1Þ; Y ðtþ1Þ	 YmaxðtÞ ,

�
ðB3Þ

Yminðtþ1Þ¼ Y ðtþ1Þ; Y ðtþ1Þ< YminðtÞ;
Yminðtþ1Þ; Y ðtþ1Þ� YminðtÞ .

�
ðB4Þ

Here Y ðt þ 1Þ defined in (9) is recursively computed as

Y ðt þ 1Þ ¼ Y ðtÞ þ t
t þ 1

ðyðt þ 1Þ � hyðtÞiÞ ; ðB5Þ

and hyðtÞi is averaging of the process yðtÞ:

hyðtÞi ¼ t � 1

t
hyðt � 1Þi þ 1

t
yðtÞ : ðB6Þ

The standard deviation SðtÞ (10) is recursively
computed according to the following obvious equations:

Sðt þ 1Þ ¼ D
1
2ðt þ 1Þ;

Dðt þ 1Þ ¼ t
t þ 1

DðtÞ þ t2

ðt þ 1Þ3
ðyðt þ 1Þ � hyðtÞiÞ2 :

ðB7Þ

The initial conditions are Ymaxð0Þ ¼ Yminð0Þ ¼ yð0Þ and
Hð0Þ ¼ Dð0Þ ¼ Y ð0Þ ¼ 0.

Appendix C: Calculation of âapci in (14)

The autocorrelation matrix R̂Ri in the Wiener filter (13) is

R̂Ri ¼

r̂r~yyi~yyið0Þ r̂r~yyi~yyið�1Þ . . . r̂r~yyi~yyið�L � 1Þ
r̂r~yyi~yyið1Þ r̂r~yyi~yyið0Þ . . . r̂r~yyi~yyið�LÞ

..

. ..
. . .

. ..
.

r̂r~yyi~yyiðL � 1Þ r̂r~yyi~yyiðL � 2Þ . . . r̂r~yyi~yyið0Þ

0BBBB@
1CCCCA :

ðC1Þ

Hence, R̂Ri is L � L positive definite Hermitian matrix
with components estimated based on IC ~yyi according to

r̂r~yyi~yyiðkÞ

¼
1
N

PN�1�k
t¼1 ~yyiðtÞ~yyiðt þ kÞ; for k ¼ 0; 1; :::; L;

r̂r�~yyi~yyið�kÞ; for k ¼ �L þ 1;�L þ 2; . . .� 1 :

(
ðC2Þ

The L � 1 autocorrelation lag vector r̂ri in the Wiener
filter (13) is

r̂ri ¼

r̂r~yyi~yyið1Þ
r̂r~yyi~yyið2Þ

..

.

r̂r~yyi~yyiðLÞ

0BBBB@
1CCCCA : ðC3Þ

The eigenvalue decomposition of autocorrelation matrix
R̂Ri can be given as

R̂Ri ¼
XL

j¼1
kjuju

T
j ; ðC4Þ

where kj are the eigenvalues of the matrix R̂Ri and ui are
the eigenvectors correspondent to eigenvalues. Eigen-
values kj are real and positive, and eigenvectors are
orthonormal because R̂Ri is positive definite. Hence, we
can write the Wiener filter (13) in the form

ĉci ¼ �
XL

j¼1

1

kj
uju

T
j ri : ðC5Þ

However, depending on the eigenvalues k1Pk2P � � �
PkgPkgþ1P � � �PkL, we can use only the first q
dominant principal components with the largest eigen-
values:

ĉc
pc
i ¼ �

Xq

j¼1

1

kj
uju

T
j ri : ðC6Þ

Hence, (C6) uses only q eigenvectors that belong to the
signal subspace. Often q can be easily defined from the
distribution of eigenvalues, but some knowledge about
shapes of event-related brain signals also can give
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additional information for choosing q. For example,
q ¼ 2 is enough for the representation of sine wave
signals.
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