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Abstract: So called automatic guidance systems are becoming more common in agricultural tractors, so 

that a driver does not need to steer the vehicle. The systems are mostly relying on GPS with correction. 

However, these systems usually steer only the tractor itself, despite the fact that the implement is the one 

that has to be run side by side with the previous swath. With towed implements, or trailers, it is not easy 

to keep the position of implement on track if the angle of the steering wheels of a tractor is the only 

resource under control. In this paper, a system with a standard tractor with front steering wheels and an 

active joint in the drawbar of the trailer are both controlled by the automatic guidance system. Besides, 

the positioning is not only based on GPS, but also with a local sensor that detects an edge of the previous 

swath; and this sensor is installed on the trailer. To control this system with two inputs and two outputs 

with nonlinear kinematics, a multivariable controller is needed for trajectory control. In the paper, an 

approach to the trajectory control in case of the tractor-trailer system with nonlinear model predictive 

control (NMPC) is studied. The test results show that the performance is better than with linear model 

predictive control that was tested in earlier study. Tests were done in driving speeds 8, 10 and 12 km/h. 

In a curved path, the tractor following error was typically less than 12 cm and in the implement less than 

8 cm. The constant control cycle is achieved by alternating the prediction horizon length. By that way, 

the best possible solution is always gained at the limits of computation time. 
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1. INTRODUCTION 

So called automatic guidance systems are becoming more 

common in agricultural tractors, so that a driver does not 

need to steer the vehicle. These parallel guidance systems 

definitely improve a precision of the farming, as overlapping 

of the operations is minimized and this reduces amount of 

inputs delivered to the field for instance. Most of the parallel 

guidance systems are relying on GPS positioning with some 

correction signal. Some other systems use only local sensors, 

like ultrasonic rangers, LIDAR, or camera vision to detect the 

position of parallel swath or the tracks of the previous 

operation in the field.  

However, these commercial systems usually steer only the 

tractor itself, despite the fact that the implement is the one 

that has to be run side by side with the previous swath. With 

towed implements, or trailers, it is not easy to keep the 

position of implement on a track if the angle of the steering 

wheels of a tractor is the only resource under control. In a 

curved trajectory the trailer cuts corners and a deviation from 

the target trajectory increases due to kinematics. The other 

common reason why the trailer is not following tracks of the 

tractor is happening in inclined terrain where the trailer slides 

downgrade.  

The objective of the research that is partially presented in this 

paper was to improve the path tracking accuracy of the trailer 

with the help of developed methods. 

This paper presents a control system to guide both the tractor 

and the trailer along the trajectory generated from the 

previous swath. The system combines two sensors systems 

used in commercial parallel guidance systems, both GPS and 

local sensors. Here the GPS positioning device is installed on 

tractor and the local sensor in the trailer, which is seed drill. 

The local sensor detects an edge of the adjacent swath. The 

hypothesis is that a nonlinear model predictive control 

(NMPC) is powerful approach to realize the trajectory 

following.  

 

2. TEST CONFIGURATION 

In this paper, the test configuration consisted of a standard 

tractor and towed trailer. The test configuration was the same 

as reported by Backman et al. (2009). The tractor was a 

Valtra T190, with added ISOBUS Class 3 facilities, and the 

trailer was a Junkkari Maestro 3000 seed drill, also with 

ISOBUS controller. The drawbar of the seed drill was 

modified by an extra controllable joint, which gave an extra 

degree of freedom for controlling the position of the seed 

drill.  

The goal of this case was to control the position of the seed 

drill and to keep it close to the adjacent driving line. 

Especially in the curves, the seed drill does not follow the 

same track as the tractor does and the tractor alone navigation 

system would produce gaps and overlaps.  
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The adjacent driving line was recognised locally by using a 

2D laser scanner. The seed drill had a small plough mounted 

into a following harrow in the rear right corner of the seed 

drill. The plough produced a small furrow, which was 

identified from the field profile measured by the laser 

scanner. The local measurement and the global position 

information were merged with the help of the Extended 

Kalman filter (EKF) and the kinematic model of the system.  

Because there were two actuators which affected the position 

of the seed drill, the problem was a multivariable control 

problem. Nonlinear Model Predictive Controller (NMPC) is a 

natural way to accomplish these kinds of tasks (Maciejowski 

2002). NMPC was also seen as the best approach to the path 

tracking problems according to previous publications 

(Vougioukas 2007; Lenain et al. 2005).  

2.1 Kinematic model of the tractor-trailer system 

The model of the tractor-trailer system is needed for the 

estimation and the control purposes. The NMPC uses the 

kinematic model to estimate the future in the optimization 

process. The EKF uses the same model to estimate the 

current state of the controlled system.  

In the derivation of the kinematic model, it is assumed that 

the ground is ideal and slipping affects only the front wheels 

sideways. By these assumptions, the kinematic model of the 

tractor is similar to the well-known bicycle model. The 

difference is the added slipping factor. The differential 

equation of the tractor’s kinematic model is:  
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where         is the centre position of the rear axle,   is the 

heading angle,   is the slip ratio,    is the realized steering 

angle,    is the realized vehicle speed and   is the wheelbase 

(Figure 1). The calculation of the realized control values are 

modelled with first order low-pass filter: 
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where    and    are the filter coefficients and the desired 

control values are     and    . 

If it is assumed that trailer does not slide sideways, the 

kinematic behaviour can be modelled with only the angle 

between the trailer and the tractor. The differential equation 

for the freely moving joint can be derived to be: 

   
                                               

           
 ,  (3)  

where   is the angle between the tractor and the trailer,    is 

the realized angle of the controlled joint,   is the distance to 

the seed coulters from the drawbar,   is the length of the 

drawbar and   is the distance to the attachment point from 

the rear axle (Figure 1). The realized control value is 

modelled again with first order low-pass filter: 

                            ,  (4) 

where   is the filter coefficient and    is the desired joint 

angle. Because the derivative of the joint angle is needed in 

the Equation 3, the optimized control value is actually     and 

   is obtained by integrating it.  

There are also auxiliary states for the optimization and the 

estimation process. Because the controlled point of the trailer 

        is at the centre point of the seed coulters, it is 

modelled in the kinematic equations. Also, the position of the 

laser scanner         is in the model. 

 

Figure 1. State variables and parameters of the kinematic 

model 

2.2 Real world disturbances 

Ideally, all the state variables should be measurable and the 

kinematic equations would describe the behaviour of the 

system perfectly. Unfortunately, this is possible only in the 

simulations and in the real world all kinds of disturbances are 

accumulated into measurements.  

The position of the tractor and the trailer as well as the 

realized steering angle and speed are directly measurable. 

However, these measures include disturbances which are not 

pure Gaussian white noise. Even the most accurate non-

military GPS receivers with the correction signal have a 

roaming error of few centimetres. This error cannot be 

filtered out without any external local measurement (Oksanen 

et al. 2005).  

It was assumed that the ground is ideal and slipping affect 

only the front wheels sideways, in the derivation of the 

kinematic model. This is not true in the real world. The 

ground is not flat and homogenous. The tractor-trailer system 

does not follow the kinematic route and especially in the 

curves the difference could be remarkable. That difference is 

tried to correct with the slipping factor. This factor cannot be 

directly measured or beforehand tuned and for that reason it 

must be estimated continuously.  

For bicycle kinematics, slip modelling is reported by (Leinain 

et al. 2006). Modelling of the slip is extremely challenging in 

a case of the agricultural fields, as the properties are largely 

varying. The soil and terrain properties are key factors 

affecting the slip, including slope, soil type and soil moisture. 

Also the parameters varying in tractor-trailer system affect 
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the slip; like weight change, tire pressure, weight distribution, 

amount of additional counterweight installed on the tractor 

and the up/down state of the implement. In practice it is not 

possible to measure all these variables and for this model 

only the front wheel sideway slip is modelled and the rest are 

handled through estimation and feedback control.  

 

3. METHODS 

In the recent survey, different existing path tracking methods 

has extensively compared (Snider 2009). The path tracking 

methods were classified to three different groups: the 

geometric approach, the kinematic controller and the optimal 

control. The evolution of the path tracking methods has also 

gone roughly in that order. The NMPC was seen in that 

survey as a next logical step of the evolution.  

In the past research with the same test configuration, a linear 

Model Predictive Controller (MPC) was used (Backman et al. 

2009). As reported in the paper, the performance of that 

controller was not sufficient especially in tight corners. In 

addition, the linearization caused delays to the control 

system.  

Vougioukas et al. (2007) have used Nonlinear Model 

Predictive Tracking (NMPT) to control the steering angle and 

the speed of the vehicle. The criterion was the difference 

between the desired trajectory and the actual predicted 

trajectory. The experiments were done completely in a 

simulator, but still good results were achieved and the 

advantage of this approach was shown. 

Lenain et al. (2005) have used MPC in the real-time control 

of the steering angle of the tractor. The desired steering angle 

was still calculated by a nonlinear control law. MPC was 

used to reject the delays phenomenon of the actual steering 

system.  

3.1 The Nonlinear Model Predictive Controller 

The basic idea of the NMPC is to predict the future and to 

minimise the cost function. The future is predicted with the 

mathematical model of the controlled system. The general 

form of the prediction equations are: 

              
          ,     (5) 

where   is the state vector,   is the control vector,   is the 

measurement vector and    is the time index. The function   

is the state transition function and the function   is the 

measurement function. In this case, the model of the 

controlled system is the combined kinematic and dynamic 

model of the tractor-trailer system as presented in the 

previous section. 

The cost function is a weighted quadratic sum of the state and 

control values. The general form of the cost function is: 

             
 
                    

 
           

   
    ,  (6) 

where   is the length of the prediction horizon,    is the 

reference trajectory and    is the reference control vector.   

and   are positive definite weighting matrices.  In this case, 

the reference control vector is the steady-state controls. At 

certain time step the position of the tractor or the trailer is not 

defined beforehand. Instead, at every time step the closest 

point in the path is searched and the distance and the gradient 

to this point are calculated. These are used as reference 

trajectory in the cost function Equation 6. By this way, the 

cost function in the test configuration is the difference 

between the controlled points and the desired path (Figure 2). 

Because the reference trajectory is not defined beforehand, 

the driving speed can be selected freely and deviation from 

the path does not induce changes in driving speed. 

 

 

Figure 2. The cost function is the calculated area between the 

desired path and the realized trajectory. 

3.2 The state estimation 

The state variables presented in section 2 is summarised in 

Table 1 together with the measurement devices related to 

those.  

Table 1.  State variables 

Symbol Variable Measurement 

        The centre position of the 

tractor rear axle 

RTK-GPS 

  The heading of the tractor RTK-GPS + IMU 

  The slipping factor  

   The realized driving speed wheel sensors 

   The realized steering angle  Potentiometer 

  The angle between the 

tractor and the trailer 

Potentiometer 

   The realized joint control  Potentiometer 

        The centre position of the 

seed coulters 

 

        The centre position of the 

laser scanner 

The distance to the 

adjacent driving line 

 

Most of the state variables are directly measurable. However, 

the measurements are delayed at certain time and the 

measurements include noise. Therefore the current state must 

be estimated with the help of EKF.  
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The estimation procedure follows the standard EKF 

equations. The tricky part is to include the local measurement 

of the laser scanner into the equations. In order to do that, the 

route of the seed drill is recorded. The estimated position of 

the plough and produced furrow can be calculated from the 

estimated position and orientation of the seed drill 

geometrically. The laser scanner measures the lateral distance 

to the adjacent swath by fitting the prototype of the furrow to 

the measured field profile (Backman et al. 2009). The same 

distance can be calculated from the recorded furrow positions 

and the difference of those distances tells how much current 

and past estimations differs laterally at the angle of 

perpendicular to seed drill current heading (Figure 3). To 

correct both estimates, it would require calculating all 

recorded estimates again in every estimation step. Because it 

would require too much computation time, only the current 

estimate is corrected through the EKF. The correction 

equation or measurement residual is: 

                                

                             ,  (7) 

where      is the estimated lateral distance calculated based 

on recorded furrow positions and       is the measured 

lateral distance.  

 

 

Figure 3. Laser scanner measurement estimation 

Also the slipping factor of the front wheel angle cannot be 

directly measured. It is assumed that it stays almost constant 

in state prediction. The difference between predicted and 

measured transition and rotation of the tractor is assumed to 

occur from incorrect slipping factor. However, the position 

and heading measurement includes disturbance, so the EKF 

corrects the slipping factor together with the estimate of 

tractor position and heading. 

3.3 Computational solution to the optimization problem 

Solving the NMPC problem is computationally heavy. 

Usually, the nonlinear problem is transformed into linear one 

and solved with existing linear optimization methods. The 

solution of the linear problem is recursively repeated until the 

solution of the original nonlinear problem is feasible and 

close enough to the optimal one. In other words, the solution 

does not get better in one optimization step. The first control 

values of the solution      are used and the optimization is 

repeated with the updated state estimates.  

In this research, a modified version of the NMPC tool called 

HQP (Huge Quadratic Programming) was used (Franke et al. 

1996). It solves nonlinearly constrained problems with a 

sequential quadratic programming (SQP) algorithm as 

previously described. Convex quadratic sub problems are 

solved with an interior-point method. The original interface 

of the tool is modified in order to fulfil strict time limits. The 

first order derivatives of the discrete-time equations are 

analytically solved and the Jacobian matrix is manually built. 

For real-time purposes, an interrupt feature is added to ensure 

constant control cycle time. In case of the interrupt, control 

values to this time instant that were calculated in previous 

control cycle        are used and the prediction horizon size 

is reduced.  

3.4 Parameters of the controller 

The controller was preliminary tested and tuned in simulation 

environment. The final tuning was performed with real world 

environment and with actual hardware.  

Based on previous publications (Vougioukas 2007), the 

prediction horizon has to be more than 25 steps in order to be 

better than traditional control algorithms. Naturally, the 

amount of steps required depends on the dynamics and on 

selected control cycle time; thus it depends. In this case the 

prediction horizon was set to be 30 steps at maximum and 10 

steps at minimum, while the control cycle time is 100 ms.  

The dimensions of the test equipment (Figure 1) are 

following: 

          
          
          

          
           
            

The physical limitations of the control variables and joint 

angles are: 

                 
                    
                     

               
                  

                  
                  

The standard deviations of the state variables and 

measurements were empirically fitted by filtering recorded 

measurements and manually fine-tuned to get satisfactory 

estimation results. The following standard deviations were 

used in the test drives: 

               
             
                 
                
              
          
                 
                 
                
                

                 

                  

                   
                     
                    
                   
                   
                  

                  

The measurement delays were identified concurrently with 

standard deviation measurements and the following delays 

were found: 
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The weights of the NMPC controller were experimentally 

searched. The following weights were used in test drives: 

           

            

             

        

          

            

                

                  
          

Where          denotes the lateral error of the tractor and 
          denotes the lateral error of the implement. The 

variable    denotes the heading error of the tractor.     , 

     and      are weights for the steady state control 

values.      ,       and       are weights for the 

optimized control values changes. 

 

4. RESULTS AND DISCUSSION 

Several test drives were performed in driving speeds 8, 10 

and 12 km/h in real varying field conditions. With the 

parameters presented in previous section, the following error 

of the tractor was typically less than 12 cm and in the 

implement less than 8 cm (Figure 4 and Figure 5). In the 

reported test drives, the path was curved with 50 meter 

wavelength and 4 meter amplitude. The first driving line was 

manually driven and the automatic steering was started after 

the first headland turning. After that, the automatic steering 

system guided the vehicle for the next four driving lines also 

executing the headland turnings. 

The accuracy is the same order of magnitude as in Lenain et 

al. (2005) and in Backman et al. (2009). However, in the first 

mentioned study the minimized cost was calculated 

differently and only the tractor was controlled. Therefore 

only the accuracies of the tractor were compared. In the latter 

study the accuracy is good only in almost straight paths.  

 

Figure 4. The box-and-whiskers plot of the following error of 

the tractor in curved path. The box presents the lower 

and upper quartiles, the band inside the box is the 

median and the whiskers are the minimum and maximum 

values. 

 

Figure 5. The box-and-whiskers plot of the following error of 

the trailer in curved path. The crosses are values that are 

considered to be outliers. 

With the used navigation computer, which was powered with 

Core 2 Duo E8600 processor and 2GB memory, the 

prediction horizon was changing from 10 time steps to 30 

time steps using 100 ms control cycle (Figure 6). Especially 

in the headland, the prediction horizon reduces to the 

minimal. The desired path is not feasible in the headland and 

the optimal solution is harder to calculate.  

The path in the headland was calculated by the theorem of 

Dubins (1957). The theorem states that the time-optimal path 

between any locations can be calculated by using arcs with 

constant curvature. Between the arcs, the curvature changes 

instantaneously and because of the dynamic constraints the 

path is not feasible. 

 

Figure 6. The evolution of the prediction horizon in a typical 

path. The path included a headland turning at the time 

between 160 and 180. 

However, despite the fact that prediction horizon must be 

reduced, the control cycle time is still constant. That was not 

the case in Backman et al. (2009), where linear model was 

used and linearization made only when necessary. Also, 

Vougioukas mentioned in the conclusions of his study 

(Vougioukas 2007) that the prediction horizon is important 

parameter because it affects both the solution time and also 

the tracking quality remarkably. Real-time control was not 

achieved in that study. 
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In process control, even if the process in nonlinear,  linear 

approximate MPC works often well enough due to the fact 

that the process is run around certain constant setpoints. In 

robotics and in control of vehicles, clearly better performance 

can be reached with NMPC algorithms due to the fact that a 

system is operated in whole workspace. This is also the case 

here. NMPC is well behaving solution for multivariable 

control. However, it is computationally quite heavy. In order 

to work well, it requires feasible path, which can be a bit 

difficult to assure in all situations. The reliability has to be 

tested and management of fault situations has to be carefully 

planned beforehand. In order to cope with all situations, the 

accurate NMPC has to be backed up with simpler reliable 

control law which is used when NMPC fails for some reason. 

 

5. CONCLUSIONS 

The objective of the research was to improve the tracking 

accuracy of the trailer. It has already reported (Backman et al. 

2009) that the accuracy of the linear Model Predictive 

Control (MPC) together with trailer control is better than 

traditional tractor-alone navigation algorithm or separate 

controllers for tractor and trailer. In this paper, it is presented 

that Nonlinear Model Predictive Control (NMPC) work 

better than linear MPC in curved paths. It is also presented 

that by alternating the prediction horizon length, the 

computation time can be regulated to assure strict time limits. 

The alternating prediction horizon length is not reported in 

other references that the author has found. Traditionally, the 

prediction horizon is one variable that is fixed in the tuning 

phase. The prediction horizon length is trade-off between 

computation time and tracking accuracy. To get the best 

performance, it must be as long as can be calculated in one 

control cycle time. By alternating it on-line, an optimal 

horizon size can be achieved. 

The calculation of the cost (criteria) is implemented in this 

study in different way than in other references; the target 

position is not specified beforehand. The target position and 

target velocity are not coupled as in the case of fixed 

reference trajectory. By this way, the driving speed can be 

selected freely and deviation from the path does not induce 

changes in driving speed. 

The problem with NMPC is that the tuning is case-specific. If 

the vehicle has different kind of kinematic model, the 

implementation has to be evaluated carefully again, even in 

principle it should work. For each case, the state estimation 

and control has to be retuned. It is difficult to invent proper a 

generic ‘rules of thumb’ for implementing NMPC. The 

weighs in the quadric criteria have to be find out and tested 

experimentally in order to reach ‘right’ driving response and 

sufficient accuracy in trajectory following.  

The current and further developed control algorithms are 

tested experimentally with real, full scale machines in the 

ongoing Agromassi- research project. 
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