
On The Temporal Parallelisation of The Viterbi
Algorithm

Simo Särkkä
Dept. of Electrical Engineering and Automation

Aalto University
Espoo, Finland

simo.sarkka@aalto.fi

Ángel F. Garcı́a-Fernández
Dept. of Electrical Engineering and Electronics, and ARIES

University of Liverpool, and Universidad Nebrija
Liverpool, UK, and Madrid, Spain

angel.garcia-fernandez@liverpool.ac.uk

Abstract—This paper presents an algorithm to parallelise the
Viterbi algorithm along the temporal dimension to compute the
maximum a posteriori (MAP) trajectory estimate of a hidden
Markov model. We reformulate the MAP estimation problem
as an optimal control problem. The proposed algorithm uses a
parallelisation algorithm developed for optimal control problems
that first performs a backward value function pass and then a
forward trajectory recovery pass. The parallel Viterbi algorithm
then corresponds to a specialised backward optimal control
problem with a forward value function pass and backward MAP-
trajectory recovery pass. The algorithm is empirically tested by
running numerical simulations on a multi-core central processing
unit (CPU) and a graphics processing unit (GPU).

Index Terms—Viterbi algorithm, temporal parallelisation,
maximum a posteriori estimation, hidden Markov model.

I. INTRODUCTION

The Viterbi algorithm is a widely-used algorithm in signal
processing with multiple applications, for example, in convo-
lutional code decoding, target tracking, and speech recognition
[1]–[6]. The Viterbi algorithm can be seen as a general algo-
rithm for finding the maximum a posteriori (MAP) trajectory
estimate in a hidden Markov model (HMM) of the form

xk ∼ p(xk | xk−1), yk ∼ p(yk | xk), (1)

with x0 ∼ p(x0), where xk is the hidden state at time step
k, and yk its observation for k = 1, . . . , T . The state xk is
discrete and belongs to the set {1, . . . , D}, where D is the
number of possible states. The observation yk can belong to
a discrete or a continuous space.

The MAP estimate of the state trajectory x0:T given the
observations y0:T can be computed by

x∗0:T = arg max
x0:T

p(x0)

T∏
k=1

[p(yk | xk) p(xk | xk−1)] . (2)

The classical Viterbi algorithm consists of forward and back-
ward passes. On the forward pass it propagates value of the
joint density in (2) at xk, Wk(xk), given the optimal trajectory
up to the previous time step, from k = 0 to k = T via

Wk(xk) = max
xk−1

{p(yk | xk) p(xk | xk−1)Wk−1(xk−1)} ,

W0(x0) = p(x0).
(3)

The authors would like to thank Academy of Finland for funding.

The MAP trajectory can then be recovered [1], [3] by using a
backward pass starting from

x∗T = arg max
xT

WT (xT), (4)

and proceeding backwards for k = T − 1, . . . , 0 by

x∗k = arg max
xk

[
p(x∗k+1 | xk)Wk(xk)

]
. (5)

Another way to recover the optimal trajectory is to store the
optimal mappings from one time step to the previous time step
and run a backward pass after the forward pass is finished [2].
Yet another formulation of the Viterbi algorithm is to see it
as a max-product algorithm [7], [8]. In that setting, we run
two independent forward and backward passes across time that
are then combined to produce the optimal trajectory. The time
complexity of the Viterbi algorithm in the three forms is O(T).

Two parallel versions of the Viterbi algorithm that achieve
logarithmic time complexity O(log T) were proposed in [9].
These two algorithms are based on parallelising the classical
(path-based) Viterbi and the max-product forms, respectively,
by making a use of parallel scan algorithms, also called all-
prefix-sums algorithms [10]. The max-product based parallel
Viterbi formulation of [9] has the advantage that it is a memory
and time efficient parallel algorithm, while the path-based
formulation has the disadvantage that it requires storing of the
partial paths of the solution which is memory-inefficient. In
this paper the aim is to present a path-based parallel algorithm
corresponding to [2] that does not have this disadvantage.

In order to arrive at the proposed algorithm, we use the
point of view that MAP trajectory estimation and hence the
Viterbi algorithm can also be seen as an instance of Bellman’s
dynamic programming algorithm [11] for a suitably defined
optimal control problem [12], [13]. In a recent paper [14],
we derived different forms for temporal parallelisation of
Bellman’s dynamic programming for optimal control. In this
paper, the aim is to go back to the optimal control formulation
of the Viterbi algorithm and specialise its parallel solutions
to the trajectory estimation problem, which leads a novel
parallelisation of the Viterbi algorithm. The new algorithm
can be seen as the parallel version of the classical Viterbi with
a backward pass for trajectory recovery using stored optimal
mappings and it has a logarithmic time complexity O(log T).

II. THE VITERBI ALGORITHM AS THE SOLUTION TO AN
OPTIMAL CONTROL PROBLEM

A. MAP trajectory estimation as an optimal control problem

We can write the MAP trajectory estimation problem in (2)
as an instance of Bellman’s solution to an optimal control
problem [2], [12]. Taking the logarithm in (2), the MAP
trajectory estimation problem minimises

C[x0:T] = − log p(x0)−
T∑

k=1

log[p(yk | xk) p(xk | xk−1)].

If we time-reverse the system by defining zn = xT−n, then
the above cost function becomes

C[z0:T] = − log p(zT)−
T∑

n=1

log[p(zn | zn+1) p(yT−n | zn)].

We can then define the following terminal cost and the
incremental costs at each time step:

`T (zT) = − log p(zT),

`n(zn, zn+1) = − log[p(zn | zn+1) p(yT−n | zn)].
(6)

Then, the cost function is

C[z0:T] = `T (zT) +

T∑
n=1

`n(zn, zn+1). (7)

Finally, we can define a dynamic model as

zn = un−1, (8)

which together with (7) defines an optimal control problem
[13], where zn and un are the state and control at time step n.
It should be noted that the control problem is special because
the state at time step n only depends on the control and not
on previous state.

B. Bellman’s solution is the Viterbi algorithm

In this section, we show that the Bellman’s solution to the
control problem defined by (7) and (8) corresponds to the
Viterbi algorithm. The value function V̄n(zn) of the control
problem can be computed with the (backward) recursion

V̄n(zn) = min
un

{
`n(zn, un) + V̄n+1(un)

}
, (9)

starting from V̄T (zT) = `T (zT). The value function V̄n(zn)
is the cost of the trajectory if we make optimal decisions
for the remaining steps up to T starting from state zn. The
minimization in (9) also defines the optimal decision function

ū∗n(zn) = arg min
un

{
`n(zn, un) + V̄n+1(un)

}
, (10)

which can be stored during the backward pass. The optimal
trajectory can then be recovered by starting from z∗0 =
arg min V̄0(z0) and proceeding forward by

z∗n = ū∗n−1(z∗n−1). (11)

This is the approach that will correspond to the novel parallel
formulation that we consider in this paper.

An alternative approach would be to make an additional for-
ward computation pass for the value functions and to combine
the backward and forward value functions by minimizing their
sum. That corresponds to the max-product formulation of the
Viterbi algorithm [7]–[9].

C. Relationship with classical Viterbi

Let us now see how we can recover the classic Viterbi
algorithm in (3)–(5) from the optimal control formulation.
Plugging zn+1 = un into (9) yields

V̄n(zn) = min
zn+1

{
`n(zn, zn+1) + V̄n+1(zn+1)

}
. (12)

Using (6), zk = xT−k, and defining Vk(xk) = V̄T−k(xT−k),
we obtain a forward pass

Vk(xk) = min
xk−1

{
− log[p(yk | xk) p(xk | xk−1)]

+ Vk−1(xk−1)
}
,

u∗k(xk) = arg min
xk−1

{
− log[p(yk | xk) p(xk | xk−1)]

+ Vk−1(xk−1)
}
,

(13)

with V0(x0) = − log p(x0). The trajectory recovery then starts
from x∗T = arg minxT

VT (xT) and it proceeds as

x∗k−1 = u∗k(x∗k). (14)

By defining W = exp(−V) and using the property that p(yk |
xk) does not depend on xk−1, this recursion can be written
as the Viterbi recursions (3)–(5).

III. DIRECT TEMPORAL PARALLELISATION OF THE
CONTROL PROBLEM

The solution to the optimal control problem defined in
Section II-A can be parallelised across time in two ways [14].
The first approach obtains the forward and backward value
functions and then combines them. This approach is equivalent
to the max-product approach to the Viterbi algorithm [9]. The
second approach corresponds to a backward value function
pass and a forward trajectory recovery pass, which corresponds
to the new parallel Viterbi algorithm we propose in this paper.

A. All-prefix-sums operation

Parallelisation across the temporal domain is achieved via
the all-prefix sums operation [10]. In general, given the el-
ements a1, . . . , aT and an associative operator ⊗ on them,
which may be a sum or a multiplication, or the combination
of value functions [14], the all-prefix-sum operation computes

s1 = a1,

s2 = a1 ⊗ a2,

. . .

sT = a1 ⊗ a3 ⊗ · · · ⊗ aT .

(15)

The all-prefix-sums operation can be computed in O(log T)
time by making use of parallel scans [10].

B. Conditional value functions and combination rule

Let us now take a look at the parallel solution to the optimal
control problem defined in Section II-A. In optimal control,
the elements ā1, . . . , āT take the form of conditional value
functions, which are defined as follows.

Definition 1: The conditional value function V̄k→i(zk, zi) is
the cost of the optimal trajectory starting from zk and ending
at zi [14]:

V̄k→i(zk, zi) = min
uk:i−1

i−1∑
n=k

`n(zn, un), (16)

subject to the dynamic constraint of the control problem

zn = fn−1(zn−1, un−1) ∀n ∈ {k + 1, ..., i}. (17)

If it is not possible to reach zi from zk with the dynamics
(17), then V̄k→i(zk, zi) =∞.

Two consecutive value functions V̄k→j(zk, zj) and
V̄j→i(zj , zi) can be combined with the associative operator
⊗, which is defined as follows [14]:

V̄k→i(zk, zi) = V̄k→j(zk, zj)⊗ V̄j→i(zj , zi)

= min
zj

{
V̄k→j(zk, zj) + V̄j→i(zj , zi)

}
, (18)

for k < j < i ≤ T .

C. Definition of the elements

The elements of the all-prefix-sums operation that will
enable us to solve the optimal control problem in O(log T)
are defined in the following theorem [14].

Theorem 2: Let the k-th element āk be

āk = V̄k→k+1(zk, zk+1), (19)

for k = 0, . . . , T , where V̄T→T+1(zT , zT+1) , V̄T (zT), then

āk ⊗ āk+1 ⊗ · · · ⊗ āT = V̄k(zk). (20)

where the operator ⊗ is defined in (18).

D. Optimal trajectory recovery

This section reviews Method 1 of trajectory recovery in [14],
as it results in the proposed parallel MAP trajectory estimation
method. First, the optimal control law is obtained in parallel
for all time steps using

ūn(zn) = arg min
un

{
`n(zn, un) + V̄n+1(fn(zn, un))

}
. (21)

The optimal state z∗n+1 at time step n + 1 given the optimal
state z∗n at time step k can then be found by

z∗n+1 = fn(z∗n, un(z∗n)) = f∗n(z∗n). (22)

Starting at time step n = 0, the optimal trajectory can then be
recovered by the composition of these functions

z∗n =
(
f∗n−1 ◦ . . . ◦ f∗1 ◦ f∗0

)
(z∗0). (23)

We can now implement (23) using all-prefix-sums and
parallel scans. The element of the all-prefix-sums algorithm is
the function of the state f∗a (·). Then, the associative operator

for trajectory recovery for two elements a = f∗a (·) and
b = f∗b (·) is the composition of the functions:

a⊗ b , f∗b ◦ f∗a . (24)

IV. IMPROVED TEMPORAL PARALLELISATION OF THE
VITERBI ALGORITHM

In this section we present a more efficient way to paral-
lelise the Viterbi algorithm. In Section III, we presented the
direct parallelisation in terms of its equivalent optimal control
problem, which was written for a general dynamic function
zn = fn−1(zn−1, un−1). In this section, we explain how the
expressions simplify when we use the specific dynamic model
used in the Viterbi algorithm zn = un−1 and also revert the
time back to the original Viterbi direction.

A. Specialisation of the parallel solution to Viterbi
For the initialisation of the elements, see Theorem 2, we

need to evaluate

V̄k→k+1(zk, zk+1) = min
un

`n(zn, un), zn+1 = un. (25)

With the Viterbi dynamic model this expression simplifies to

V̄k→k+1(zk, zk+1) = `k(zk, zk+1). (26)

If we reverse the time and use (6), we get that the initialization
in terms of the Viterbi states reduces to
ak = Vk→k−1(xk, xk−1) = − log[p(yk | xk) p(xk | xk−1)],

a0 = V0→−1(x0, x−1) = − log p(x0).
(27)

Therefore, we can see that we do not need to solve an
optimisation problem to initialise the elements, which saves
computational time. Once the elements are initialised, we
can apply the parallel scan algorithm to compute the value
functions, using Theorem 2. The associative combination rule
(18) still remains in the same form

Vk→i(xk, xi) = Vk→j(xk, xj)⊗ Vj→i(xj , xi)

= min
xj

{Vk→j(xk, xj) + Vj→i(xj , xi)} , (28)

but now the parallel scan should be run forward (instead of
backwards) as we now have

a0 ⊗ a1 ⊗ · · · ⊗ ak = Vk(xk). (29)

The initialization of the function for trajectory recovery,
using the optimal control, which is given by (22), becomes

f̄∗k (xk) = arg min
xk−1

{
− log[p(yk | xk) p(xk | xk−1)]

+ Vk−1(xk−1)
}
.

Once we have initialised the functions for optimal trajectory
recovery, we can use their composition to recover the optimal
trajectory using parallel scans, see (23). However, now the
parallel scan for the function decomposition should be done
backwards in time because we have

x∗k = (f̄∗k+1 ◦ · · · ◦ f̄∗T−1 ◦ f̄∗T)(x∗T), (30)

where x∗T = arg minxT
VT (xT).

B. Memory usage and hybrid algorithm

It is relevant to note that the Viterbi algorithm requires the
storage of a D × 1 vector Wk(xk) at each time step k. Each
step of the algorithm requires the combination of two D × 1
vectors and a D ×D matrix, see (3) and (13).

In contrast, the value function pass of the parallel version
requires storing conditional value functions, each stored in a
D ×D matrix, and the combination rule requires processing
two D×D matrices. Therefore, it has higher storage require-
ments, which may not be available for systems with large D.
However, the function combination pass of the parallel version
only requires combination of two D× 1 vectors and therefore
has much lower memory requirements.

In this setting, one option is to use a hybrid algorithm where
we run the (sequential) Viterbi algorithm forward, and then
recover the optimal trajectory backwards using parallel scans.
With this approach the memory requirements remain moderate
while the trajectory recovery pass is still computed in parallel.

V. EXPERIMENTAL RESULTS

A. Gilbert–Elliot channel model experiment

In this experiment we test the proposed algorithm using the
Gilbert–Elliot (GE) model which was used to evaluate the per-
formance of the max-product-based parallel Viterbi algorithm
in [9]. The GE model is a classic model for correction of error
bursts in communications channels. The state of the system is
encoded as the values xk ∈ {1, 2, 3, 4} and the measurements
take values yk ∈ {1, 2}. For details of the model, see [6],
[9]. Example measurements, state sequences, and the result of
Viterbi algorithm applied to the model are shown in Fig. 1.
All the tested Viterbi algorithms produce essentially the same
estimation result which is the one shown in the figure.

0 20 40 60 80 100
Time step

1

2

M
e

a
s
u

re
m

e
n

t
y

k

Measurements

0 20 40 60 80 100
Time step

1

2

3

4

S
ta

te
 x

k

True states

Estimates

Fig. 1. Illustration of Gilbert–Elliot experiment. Left: simulated measurement
sequence. Right: simulated state sequence and the Viterbi estimates.

We tested the following algorithms on a multi-core CPU
and a graphics processing unit (GPU):
• Sequential FW/BW: A sequential Viterbi algorithm (the

variant storing the optimal mappings).
• Seq/par. FW/BW: A hybrid algorithm discussed in Sec-

tion IV-B which uses the sequential forward pass in
combination with parallel backward pass.

• Parallel FW/BW: A parallel Viterbi algorithm which uses
parallel forward and backward passes as described in
Section IV-A.

• Parallel MP: A max-product-based Viterbi algorithm
proposed in [9] (implemented in log-domain).

The CPU was a AMD EPYC 7643 48-core processor with
512GB of memory, and GPU was a NVIDIA A100-SXM GPU
with 80GB of memory. The algorithms were implemented
using TensorFlow.

10
2

10
3

10
4

10
5

10
6

Number of steps

10
-4

10
-2

10
0

10
2

R
u

n
 t

im
e

 [
s
]

Sequential FW/BW

Seq/par. FW/BW

Parallel FW/BW

Parallel MP

10
2

10
3

10
4

10
5

10
6

Number of steps

10
-2

10
0

10
2

R
u

n
 t

im
e

 [
s
]

Sequential FW/BW

Seq/par. FW/BW

Parallel FW/BW

Parallel MP

Fig. 2. Results of the experiment on the Gilbert–Elliot model. The CPU
results are shown on top and the GPU results are at the bottom figure.

Fig. 2 shows the results of the experiment, where we ran
the algorithms with increasing number of time steps 102–
106 (repeated 10 times each). It can be seen that both of the
parallel methods are significantly faster than the sequential and
hybrid algorithms. In this case the max-product algorithm is
slightly faster than the proposed forward-backward algorithm
although in the CPU the order of the methods varies. The
hybrid algorithm is consistently faster than the pure sequential
algorithm both on CPU and GPU.

B. Text correction experiment

As the second experiment we consider automatic correction
of errors in natural text. This experiment has a significantly
higher number of states than the GE model in the previous
section. The text excerpts are from the textbook [6] and
they have been stripped and converted to only contain 26
alphabetical characters and the space symbol. We used the
body text from the preface and Chapters 1–10 as the training
data for estimation of the transition probabilities for 1st, 2nd,
and 3rd order Markov models of the text. We then added 10%
of independent random errors, each consisting in replacing a
character with a random character, to the texts of the Chapters
11–17 and Appendix. The data is illustrated in Fig. 3.

The whole training data had the length of 68 197 characters
and the test data 64 620 characters. The number of states in
the 1st order Markov model was 27, in the 2nd order Markov
model 272 = 729, and in the 3rd order Markov model 273 =
19 683. Therefore the performance of the methods is heavily
affected by their scaling with the number of states.

Table I shows the results of running the methods listed in
Section V-A over the whole test set. The times were computed
as the means from 10 runs although the run times were quite

Train data:
the aim of this book is to give a concise introduction to
non linear kalman filtering and smoothing particle filter
ing and smoothing and to the related parameter ...
Test data without errors:
although in many filtering problems gaussian approximatio
ns work well sometimes the filtering distributions can be
for example multi modal or some of the state ...

Test data with errors:
altfoughzin mmny filteving projlems gauhsyan approximatbo
ns work well smmetimeb tpe bilzering jistrirutions can be
fovxexamplllmulti modal or eome om the statc ...

Fig. 3. The data used in the text correction experiment. We estimated the
transition probabilities of 1st, 2nd, and 3rd order Markov models from the
training data (top). We then added 10% of random errors to the test text
(middle) which resulted in the corrupted text (below). The Viterbi algorithm
was then used to correct the errors.

TABLE I
RESULTS OF THE TEXT CORRECTION EXPERIMENT.

CPU GPU
Method \ Order 1st 2nd 3rd 1st 2nd 3rd

Sequential FW/BW 1.9s 38.8s - 16.9s 22.9s 1.6e3s
Seq/par. FW/BW 1.3s 36.4s - 8.8s 15.3s 1.5e3s
Parallel FW/BW 2.5s - - 0.07s - -

Parallel MP 4.7s - - 0.08s - -

consistent over the runs. With the 1st order model (with 27
states), the speed differences of the methods are quite small
on CPU, but on GPU the parallel methods are two orders
of magnitude faster than the sequential ones. Furthermore,
on the CPU the hybrid algorithm is slightly faster than the
pure sequential method whereas on GPU the hybrid algorithm
is almost two times faster than the sequential one. On CPU
the parallel forward-backward method is faster than the max-
product based parallel method. On GPU this is also the case,
but the difference is much smaller.

With the 2nd order model with 729 states is no longer
computable due to excessive memory use and the amount
of computations needed on the forward pass of the parallel
algorithm (cf. Sec. IV-B). However, the sequential and hybrid
methods are still applicable and their performance is quite
much equal on CPU. On GPU the hybrid algorithm is signifi-
cantly faster. The 3rd order model takes an excessive amount
of time on CPU and therefore we could only run sequential and
hybrid methods on GPU for it. In this case the performances
of the sequential and hybrid methods are quite much equal.

For completeness, we also show the results for the 1st
order Markov model with increasing amount of test data. The
results are shown in Fig. 4. The results confirm the conclusions
drawn from Table I. However, it can be seen that the forward-
backward method only starts to be faster than the max-product
method with larger numbers of steps and with smaller numbers
of steps the max-product method is slightly faster.

VI. CONCLUSION AND DISCUSSION

We have presented a new method to parallelise the Viterbi
algorithm in temporal direction. The method was derived
via reformulating the Viterbi algorithm as an instance of an

10
2

10
3

10
4

Number of steps

10
-2

10
0

R
u
n
 t
im

e
 [
s
]

Sequential FW/BW

Seq/par. FW/BW

Parallel FW/BW

Parallel MP

10
2

10
3

10
4

Number of steps

10
-2

10
0

10
2

R
u
n
 t
im

e
 [
s
]

Sequential FW/BW

Seq/par. FW/BW

Parallel FW/BW

Parallel MP

Fig. 4. Results for text experiment with 1st order Markov model (27 states).
The CPU results are on top and the GPU results at the bottom.

optimal control problem and parallelising it with a method
adapted from [14]. The proposed method was experimentally
tested on multi-core CPU and GPU, and the result show that
it is competitive with and even better than the previously
proposed max-product based parallelisation method [9]. The
results also show that a hybrid algorithm combining sequential
forward pass with parallel backward pass of the proposed
method can outperform the sequential method in large state
spaces where the fully parallel methods are not applicable.

REFERENCES

[1] A. J. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Transactions on Information
Theory, vol. 13, no. 2, 1967.

[2] R. E. Larson and J. Peschon, “A dynamic programming approach to
trajectory estimation,” IEEE Transactions on Automatic Control, vol. 11,
no. 3, pp. 537–540, 1966.

[3] G. D. Forney, “The Viterbi algorithm,” Proceedings of the IEEE, vol. 61,
no. 3, pp. 268–278, March 1973.

[4] T. Yamada, S. Nakamura, and K. Shikano, “Distant-talking speech
recognition based on a 3-D Viterbi search using a microphone array,”
IEEE Trans. Speech and Audio Processing, vol. 10, no. 2, pp. 48–56,
2002.

[5] Y. You and T. J. Oechtering, “Hidden Markov model based data-driven
calibration of non-dispersive infrared gas sensor,” in 28th European
Signal Processing Conference, 2021, pp. 1717–1721.

[6] S. Särkkä and L. Svensson, Bayesian Filtering and Smoothing, 2nd ed.
Cambridge University Press, 2023.

[7] H. Wymeersch, Iterative Receiver Design. Cam. Univ. Press, 2007.
[8] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles

and Techniques. The MIT Press, 2009.
[9] S. Hassan, S. Särkkä, and A. F. Garcı́a-Fernández, “Temporal paral-

lelization of inference in hidden Markov models,” IEEE Transactions
on Signal Processing, vol. 69, pp. 4875–4887, 2021.

[10] G. E. Blelloch, “Scans as primitive parallel operations,” IEEE Transac-
tions on Computers, vol. 38, no. 11, pp. 1526–1538, 1989.

[11] R. Bellman, Dynamic Programming. Princeton University Press, 1957.
[12] J. Omura, “On the Viterbi decoding algorithm,” IEEE transactions on

information theory, vol. 15, no. 1, pp. 177–179, 1969.
[13] F. L. Lewis and V. L. Syrmos, Optimal Control, 2nd ed. Wiley, 1995.
[14] S. Särkkä and A. F. Garcı́a-Fernández, “Temporal parallelization of

dynamic programming and linear quadratic control,” IEEE Transactions
on Automatic Control, vol. 68, pp. 851–866, 2023.

