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Batch Bayesian estimation of parameters

@ State space model with unknown parameters 6 € RY:

~ p(0)
Xo ~ P(Xo | 0)
Xk ~ P(Xk | Xk—1,0)
Yk ~ P(Yk | Xk, 0).

@ The full posterior, in principle, can be computed as

P(Y1.7 | Xo.7,0) p(Xo.7 | €) p(0)
p(y‘l:T) .

@ The marginal posterior of parameters is then

p(Xo.7,0 | Y1.7) =

p(6 | yi.7) = /P(Xo:T,H | y1.7) dXo.7.
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Batch Bayesian estimation of parameters (cont.)

@ Advantages:

e A simple static Bayesian model.
o We can take any numerical method (e.g., MCMC) to attack
the model.

@ Disadvantages:
o We are not utilizing the Markov structure of the model.
e Dimensionality is huge, computationally very challenging.
e Hard to utilize the already developed approximations for
filters and smoothers.
e Requires computation of high-dimensional integral over the
state trajectories.

@ For computational reasons, we will select another, filtering
and smoothing based route.
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Filtering-based Bayesian estimation of parameters

[1/3]

@ Directly approximate the marginal posterior distribution:

PO | y1.7) < p(y1.7 | 6) p(6)

@ The key is the prediction error decomposition:

-
p(y1.7 1 6) =[] P(Yk | Y1:k—1,6)
k=1

@ Luckily, the Bayesian filtering equations allow us to
compute p(Yx | Y1.k—1,0) efficiently.
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Filtering-based Bayesian estimation of parameters

[2/3]

@ Recall that the prediction step of the Bayesian filtering
equations computes

P(Xk | Y1:k—1,6)

@ Using the conditional independence of measurements we
get:

P(Yi, Xk | Y1:k—1,0) = P(Yi | Xk, Y1:k—1,0) P(Xk | Y1:k-1,0)
= P(Yk | Xk, 0) p(Xk | Y1:k—1,6).

@ Integration over xy thus gives

P(Yk | Yi:k—1,0 /P Vi | Xk, 0) p(Xk | Y1:k—1,0) dXk
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Filtering-based Bayesian estimation of parameters
[3/3]

Recursion for marginal likelihood of parameters
The marginal likelihood of parameters is given by

;
p(y1:7 18) = [T P(Yk | Yi:k—1,0)
k=1

where the terms can be solved via the recursion
PO Vrk1:6) = [ PO | X1.6) PO | Ve1,6) i

P(Yk | Y1:k—1,6) /P Vi | Xk, 0) p(Xk | Y1:k—1, @) dXx

(Vk | xka ) (xk | y1:k—179)
P(Yk | Y1:k—1,6)

P(Xk | Yi:k,0) =
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Energy function

@ Once we have the likelihood p(y+.7 | @) we can compute
the posterior via

_ p(yr.7|6)p(6)
PO 1Y17) = T oy 1) p(6) 40

@ The normalization constant in the denominator is irrelevant
and it is often more convenient to work with

p(0 | y1.7) = p(ys.7 | 0) p(0)

@ For numerical reasons it is better to work with the logarithm
of the above unnormalized distribution.

@ The negative logarithm is the energy function:

©7(0) = —logp(y1.7 | 6) — log p(6).
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Energy function (cont.)

@ The posterior distribution can be recovered via

p(6 | y1.7) < exp(—»7(0)).

@ »7(0) is called energy function, because in physics, the
above corresponds to the probability density of a system
with energy ¢7(0).

@ The energy function can be evaluated recursively as

follows:
e Start from o(0) = — log p(0).
o Ateachstep k=1,2,..., T compute the following:

ok(0) = k—1(0) — log p(Y« | Y1:k—1,6)

@ For linear models, we can evaluate the energy function
exactly with help of Kalman filter.

@ In non-linear models we can use Gaussian filters or
particle filters for approximating the energy function.
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Maximum a posteriori approximations

@ The maximum a posteriori (MAP) estimate:

~MAP
0 =argmax[p(6 | yi.7)].

@ Can be equivalently computed as

6" = argmin[7(0)],

@ The maximum likelihood (ML) estimate of the parameter is
a MAP estimate with a formally uniform prior p(8) ~ 1.

@ The minimum (or maximum) can be found by using various
gradient-free or gradient-based optimization methods.

@ Gradients can be computed by recursive equations called
sensitivity equations or sometimes by using Fisher’s
identity.
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Laplace approximations

@ The MAP estimate corresponds to a Dirac delta function
approximation to the posterior distribution

~MAP
p(0|y17—):5(0_0 ))

@ Ignores the spread of the distribution completely.

@ Idea of Laplace approximation is to form a Gaussian
approximation to the posterior distribution:

p(6 | yr.7) = N(@ |8 [HE" ™)),

where H(éMAP) is the Hessian matrix of the energy
function evaluated at the MAP estimate.

Simo Sarkka Lecture 8: Bayesian Estimation of Parameters



Markov chain Monte Carlo (MCMC)

@ Markov chain Monte Carlo (MCMC) methods are
algorithms for drawing samples from p(€ | y1.7).

@ Based on simulating a Markov chain which has the
distribution p(@ | y1.7) as its stationary distribution.

@ The Metropolis—Hastings (MH) algorithm uses a proposal
density g(6") | 8U~") for suggesting new samples )
given the previous ones 6¢~1).

@ Gibbs’ sampling samples components of the parameters
one at a time from their conditional distributions given the
other parameters.

@ Adaptive MCMC methods are based on adapting the
proposal density () | 60—")) based on past samples.

@ Hamiltonian Monte Carlo (HMC) or hybrid Monte Carlo
(HMC) method simulates a physical system to construct an
efficient proposal distribution.
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Metropolis—Hastings
Metropolis—Hastings

@ Draw the starting point, 8(°) from an arbitrary initial
distribution.
@ Fori=1,2,...,Ndo
@ Sample a candidate point 8% ~ g(6* | 8~ ").
© Evaluate the acceptance probability

(i—1) | o+
R (i—1)y _ 907 67)
aj = min {1,exp(<ﬂT(9 ) —¢1(6%)) qo 16 ) [

© Generate a uniform random variable u ~ U(0, 1) and set

0(,) _ 0*.7 |f u S (&7
0U=1)  otherwise.
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Expectation—maximization (EM) algorithm [1/5]

@ Expectation—maximization (EM) is an algorithm for
computing ML and MAP estimates of parameters when
direct optimization is not feasible.

@ Let g(xo.7) be an arbitrary probability density over the
states, then we have the inequality

|09P(Y1;T ’ 9) Z F[q(xO:T)ve]'
where the functional F is defined as

p(Xo.7,Y1:7 | 0)
dXp. 1.
q(Xo.7) 0T

@ |dea of EM: We can maximize the likelihood by iteratively
maximizing the lower bound F[q(Xo.T), 8].

Flg(Xo.7), 6] = / g(xo.7) log
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Expectation—maximization (EM) algorithm [2/5]

Abstract EM

The maximization of the lower bound can be done by
coordinate ascend as follows:
@ Start from initial guesses q(©), ().
@ Forn=0,1,2,...do the following steps:
@ E-step: Find q("") = argmax, F[q, ].
@ M-step: Find ("1 = argmaxg F[g("t), 4.

@ To implement the EM algorithm we need to be able to do
the maximizations in practice.

@ Fortunately, it can be shown that

g™ (x0.7) = p(Xo.7 | Y1.7,6).
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Expectation—maximization (EM) algorithm [3/5]

@ We now get
Flg" ) (xo.7), 6]
= /P(XO:T | y1.7,0™) log p(Xo.7,Y1.7 | 6) dXo.7
- /p(XO:T | y1:7,0™) log p(Xo.7 | Y1.7,0(") dXo. 7

@ Because the latter term does not depend on 8, maximizing
F[g(""), 6] is equivalent to maximizing

(6,0 = /p(XO:T | y1.7,0™) log p(Xo.7, 1.7 | ) dXo.T-
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Expectation—maximization (EM) algorithm [4/5]

EM algorithm

The EM algorithm consists of the following steps:
@ Start from an initial guess 6(©).
@ Forn=0,1,2,... do the following steps:
@ E-step: compute Q(6,0(").
@ M-step: compute 8(™") = argmaxg Q(6,6").

@ In state space models we have
log p(Xo.7,Y1:7 | )

T T
=logp(xo | 6) + ) _log p(Xk | Xk—_1,6) + > _log p(y« | X, 6).
k=1 k=1
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Expectation—maximization (EM) algorithm [5/5]

@ Thus on E-step we compute

0(6,0") = / p(Xo | 1.7, 6 log p(Xo | 6) dxo

;
+Z/P(Xk7xk—1 | y1.7.60)
pa

x log p(X | Xk—1,0) dxy dXx_4

.
+ Z/P(Xk | y1:7,0'") log (Y | Xk, 6) dX.
k=1

@ In linear models, these terms can be computed from the
RTS smoother results.

@ In non-Gaussian models we can approximate these using
Gaussian RTS smoothers or particle smoothers.

@ On M-step we maximize Q(6, (") with respect to 6.

Simo Sarkka Lecture 8: Bayesian Estimation of Parameters



State augmentation

@ Consider a model of the form
Xk = f(Xk_1,0) + Qk_1
Yk = h(xk, 0) + rg
@ We can now rewrite the model as
Ok = Ok_1
Xk = f(Xk_1,0k_1) + Ak_1
Yk = h(Xk, 0x) + 1k
@ Redefining the state as X, = (X«, 0x), leads to the
augmented model with without unknown parameters:
Xi = F(Rie—1) + k1
Yk = h(Xg) + ri
@ This is called state augmentation approach.

@ The disadvantage is the severe non-linearity and
singularity of the augmented model.
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Energy function for linear Gaussian models [1/3]

@ Consider the following linear Gaussian model with
unknown parameters 6:

Xk = A(0) Xk_1 + qk—1
Yk = H(6) Xk + 1k

@ Recall that the Kalman filter gives us the Gaussian
predictive distribution

P(Xk | Y1:k—1,6) = N(xx | m, (6), P, (0))
@ Thus we get
P(Yk | Y1:k-1,6)
— [ Nk | H©) e, R(6)) Nixi | mi (6), Py (6)) dxi
= N(yx | H(0) m, (6),H(6) P, (6)H(6) + R(9)).
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Energy function for linear Gaussian models [2/3]

Energy function for linear Gaussian model

The recursion for the energy function is given as

£K(6) = 21(0) + 5109 (27 S4(0)] + 1V (60) S, (0) vk(0),

where the terms v, (0) and S, (@) are given by the Kalman filter
with the parameters fixed to 6:

@ Prediction:

m, (0) = A(6)my_4(0)
P, (0) = A(8) P«_1(0) AT(0) + Q(6).

(continues ...)
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Energy function for linear Gaussian models [3/3]

Energy function for linear Gaussian model (cont.)

(...continues)

@ Update:

(6)
Sk(6) = H(6) P, (6)H'(6) + R(6)
Kk () =P, (0)H'(6)S,(6)
m(0) = m, (6) + Ki(6) vi(6)
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EM algorithm for linear Gaussian models

The expression for Q for the linear Gaussian models can be

written as
1 o
0(6,0) =7 P i
1 T T
= log |27 Py (0)| — F log |27 Q(0)| — 5 log |27 R(6)| Zpk SAme_ [ms_ 1]T
1 { 9 s T
— 5 rq Py (0) |Pg + (Mg — mo(8)) (mg — mo(6)) } T
2T 0 [ ] B— 17- ;Vk [mi]T
-t {o‘ (0) [}: —CAT(8) — A(6)CT + A(0) mAT(e)] } T
C= T Z P% GZ—1 +m; [miq]T
- ;tr{ '(6) [0~ BH(6) - H(6) BT + H(a)zHT(o)]} kj‘
D= lT > Yk Vi

ES
1l
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EM algorithm for linear Gaussian models (cont.)

e If0 € {A H,Q,R,Py,mp}, we can maximize Q analytically
by setting the derivatives to zero.

@ Leads to an iterative algorithm: run RTS smoother,
recompute the estimates, run RTS smoother again,
recompute estimates, and so on.

@ The parameters to be estimated should be identifiable for
the ML/MAP to make sense: for example, we cannot hope
to blindly estimate all the model matrices.

@ EM is only an algorithm for computing ML (or MAP)
estimates.

@ Direct energy function optimization often converges faster
than EM and should be preferred in that sense.

@ If a RTS smoother implementation is available, EM is
sometimes easier to implement.

Simo Sarkka Lecture 8: Bayesian Estimation of Parameters



Gaussian filtering based energy function

approximation

@ Let’s consider parameter estimation in non-linear models
of the form
Xk = f(Xk—1,0) + Ax—1
Yk = h(Xk, 0) +ri

@ We can now approximate the energy function by replacing
Kalman filter with a Gaussian filter.

@ The approximate energy function recursion becomes

ok(0) ~ ok—1(0) + % log [27 Sk (6)| + %vl(e) S, (0) vk(6),

where the terms v,(0) and S,(0) are given by a Gaussian
filter with the parameters fixed to 6.
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Gaussian smoothing based EM algorithm

The approximation to Q function can now be written as
Q(6,6™)

=
~ —% log |27 Po(8)| — glog 27 Q(6)| — > log |27 R(6)]

B {P?(e) [P§ -+ (m§ — mo(6)) (m§ — mo(6))] }
)
— 237t {@(0) E [(x — Hx11,0)) (xk — (xk1.0))" | 1]}
k=1

tr {R"(0) E | (v — h(xc. 0)) (v — h(xc. 0))" | y1.7] } .

>
I

|
N —
[~

1

where the expectations can be computed using the Gaussian
RTS smoother results.
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Particle filtering approximation of energy function [1/3]

@ In the particle filtering approach we can consider generic
models of the form

p(6)
Xo ~ P(Xo | 0)
Xk ~ P(Xk | Xk—1,6)
Yk ~ P(Yk | Xk, 0),

@ Using particle filter results, we can form an importance
sampling approximation as follows:

P(Yk | Y1:k-1,6 Z w v,

where
o POk | X, 0)p(xi) | x{),,6)
a1 % yrg)

and W,E’z1 are the previous particle filter weights.
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Particle filtering approximation of energy function [2/3]

SIR based energy function approximation

@ Draw samples x( ) from the importance distributions

xg)Nw(xk]xE(i)_1,y1:k), i=1,...,N.

© Compute the following weights

S0 _ p(Y« | x(k’),(?) p(x | x{ ;. 0)

K
( |Xk 1 Y1:k)

and compute the estimate of p(y« | Y1.k_1,6) as

P(Yk | Y1:k-1,0 Z W(')1 Vk
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Particle filtering approximation of energy function [3/3]

SIR based energy function approximation (cont.)

© Compute the normalized weights as

) w2, 9

Q If the effective number of particles is too low, perform
resampling.

The approximation of the marginal likelihood of the parameters
is:
p(y1.7 | 0) = [ [ P(Yk | Y1:k-1,6),
k

and the corresponding energy function approximation is

»7(0) ~ —log p(6 Zlogpykmk 1,0).
k=1
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Particle Markov chain Monte Carlo (PMCMC)

@ The particle filter based energy function approximation can
now be used in Metropolis—Hastings based MCMC
algorithm.

@ With finite N, the likelihood is only an approximation and
thus we would expect the algorithm to be an approximation
only.

@ Surprisingly, it turns out that this algorithm is an exact
MCMC algorithm also with finite N.

@ The resulting algorithm is called particle Markov chain
Monte Carlo (PMCMC) method.

@ Computing ML and MAP estimates via the particle filter
approximation is problematic, because resampling causes
discontinuities to the likelihood approximation.
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Particle smoothing based EM algorithm

@ Recall that on E-step of EM algorithm we need to compute
Q(0,0'") = 11(6,6™) + 12(6,6™) + 13(6,6™),

where

h(6,60) / p(Xo | V1.7, 6™ log p(Xo | ) dxo

.
12(6,6M) = Z/P(Xkaxk1 | y1.7,6)
k=1

x log p(Xk | Xk—1,0) dXx dXx_1

)
5(0.0) =3 [ plxe | y1.7.07) Iog p(Yi | Xe.0) ax
k=1

@ ltis also possible to use particle smoothers to approximate
the required expectations.
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Particle smoothing based EM algorithm (cont.)

@ For example, by using backward simulation smoother, we
can approximate the expectations as

S
1 0
h(0,00) ~ S{z_:logp(xo )
T-1 1 S
Y logp(k), | %, )
k=0 i=1
T
/3(9,0(”’)%2 > " log p(yx | X7, 6).

k=1 /1

(6,00 ~

(I) |
n
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@ The marginal posterior distribution of parameters can be
computed from the results of Bayesian filter.

@ Given the marginal posterior, we can e.g. use optimization
methods to compute MAP estimates or sample from the
posterior using MCMC methods.

@ Expectation—maximization (EM) algorithm can also be
used for iterative computation of ML or MAP estimates
using Bayesian smoother results.

@ The parameter posterior for linear Gaussian models can be
evaluated with Kalman filter.

@ The expectations required for implementing EM algorithm
for linear Gaussian models can be evaluated with RTS
smoother.

@ For non-linear/non-Gaussian models the parameter
posterior and EM-algorithm can be approximated with
Gaussian filters/smoothers and particle filters/smoothers.
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