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Batch Bayesian estimation of parameters

State space model with unknown parameters θ ∈ Rd :

θ ∼ p(θ)
x0 ∼ p(x0 | θ)
xk ∼ p(xk | xk−1,θ)

yk ∼ p(yk | xk ,θ).

The full posterior, in principle, can be computed as

p(x0:T ,θ | y1:T ) =
p(y1:T | x0:T ,θ)p(x0:T | θ)p(θ)

p(y1:T )
.

The marginal posterior of parameters is then

p(θ | y1:T ) =

∫
p(x0:T ,θ | y1:T ) dx0:T .
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Batch Bayesian estimation of parameters (cont.)

Advantages:
A simple static Bayesian model.
We can take any numerical method (e.g., MCMC) to attack
the model.

Disadvantages:
We are not utilizing the Markov structure of the model.
Dimensionality is huge, computationally very challenging.
Hard to utilize the already developed approximations for
filters and smoothers.
Requires computation of high-dimensional integral over the
state trajectories.

For computational reasons, we will select another, filtering
and smoothing based route.
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Filtering-based Bayesian estimation of parameters
[1/3]

Directly approximate the marginal posterior distribution:

p(θ | y1:T ) ∝ p(y1:T | θ)p(θ)

The key is the prediction error decomposition:

p(y1:T | θ) =
T∏

k=1

p(yk | y1:k−1,θ)

Luckily, the Bayesian filtering equations allow us to
compute p(yk | y1:k−1,θ) efficiently.
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Filtering-based Bayesian estimation of parameters
[2/3]

Recall that the prediction step of the Bayesian filtering
equations computes

p(xk | y1:k−1,θ)

Using the conditional independence of measurements we
get:

p(yk ,xk | y1:k−1,θ) = p(yk | xk ,y1:k−1,θ)p(xk | y1:k−1,θ)

= p(yk | xk ,θ)p(xk | y1:k−1,θ).

Integration over xk thus gives

p(yk | y1:k−1,θ) =

∫
p(yk | xk ,θ)p(xk | y1:k−1,θ) dxk
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Filtering-based Bayesian estimation of parameters
[3/3]

Recursion for marginal likelihood of parameters

The marginal likelihood of parameters is given by

p(y1:T | θ) =
T∏

k=1

p(yk | y1:k−1,θ)

where the terms can be solved via the recursion

p(xk | y1:k−1,θ) =

∫
p(xk | xk−1,θ)p(xk−1 | y1:k−1,θ) dxk−1

p(yk | y1:k−1,θ) =

∫
p(yk | xk ,θ)p(xk | y1:k−1,θ) dxk

p(xk | y1:k ,θ) =
p(yk | xk ,θ)p(xk | y1:k−1,θ)

p(yk | y1:k−1,θ)
.
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Energy function

Once we have the likelihood p(y1:T | θ) we can compute
the posterior via

p(θ | y1:T ) =
p(y1:T | θ)p(θ)∫
p(y1:T | θ)p(θ) dθ

The normalization constant in the denominator is irrelevant
and it is often more convenient to work with

p̃(θ | y1:T ) = p(y1:T | θ)p(θ)

For numerical reasons it is better to work with the logarithm
of the above unnormalized distribution.
The negative logarithm is the energy function:

ϕT (θ) = − log p(y1:T | θ)− log p(θ).
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Energy function (cont.)

The posterior distribution can be recovered via

p(θ | y1:T ) ∝ exp(−ϕT (θ)).

ϕT (θ) is called energy function, because in physics, the
above corresponds to the probability density of a system
with energy ϕT (θ).
The energy function can be evaluated recursively as
follows:

Start from ϕ0(θ) = − log p(θ).
At each step k = 1,2, . . . ,T compute the following:

ϕk (θ) = ϕk−1(θ)− log p(yk | y1:k−1,θ)

For linear models, we can evaluate the energy function
exactly with help of Kalman filter.
In non-linear models we can use Gaussian filters or
particle filters for approximating the energy function.
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Maximum a posteriori approximations

The maximum a posteriori (MAP) estimate:

θ̂
MAP

= arg max
θ

[p(θ | y1:T )] .

Can be equivalently computed as

θ̂
MAP

= arg min
θ

[ϕT (θ)] ,

The maximum likelihood (ML) estimate of the parameter is
a MAP estimate with a formally uniform prior p(θ) ∝ 1.
The minimum (or maximum) can be found by using various
gradient-free or gradient-based optimization methods.
Gradients can be computed by recursive equations called
sensitivity equations or sometimes by using Fisher’s
identity.
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Laplace approximations

The MAP estimate corresponds to a Dirac delta function
approximation to the posterior distribution

p(θ | y1:T ) ' δ(θ − θ̂
MAP

),

Ignores the spread of the distribution completely.
Idea of Laplace approximation is to form a Gaussian
approximation to the posterior distribution:

p(θ | y1:T ) ' N(θ | θ̂MAP
, [H(θ̂

MAP
)]−1),

where H(θ̂
MAP

) is the Hessian matrix of the energy
function evaluated at the MAP estimate.
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Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) methods are
algorithms for drawing samples from p(θ | y1:T ).
Based on simulating a Markov chain which has the
distribution p(θ | y1:T ) as its stationary distribution.
The Metropolis–Hastings (MH) algorithm uses a proposal
density q(θ(i) | θ(i−1)) for suggesting new samples θ(i)

given the previous ones θ(i−1).
Gibbs’ sampling samples components of the parameters
one at a time from their conditional distributions given the
other parameters.
Adaptive MCMC methods are based on adapting the
proposal density q(θ(i) | θ(i−1)) based on past samples.
Hamiltonian Monte Carlo (HMC) or hybrid Monte Carlo
(HMC) method simulates a physical system to construct an
efficient proposal distribution.
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Metropolis–Hastings

Metropolis–Hastings

Draw the starting point, θ(0) from an arbitrary initial
distribution.
For i = 1,2, . . . ,N do

1 Sample a candidate point θ∗ ∼ q(θ∗ | θ(i−1)).
2 Evaluate the acceptance probability

αi = min

{
1,exp(ϕT (θ

(i−1))− ϕT (θ
∗))

q(θ(i−1) | θ∗)

q(θ∗ | θ(i−1))

}
.

3 Generate a uniform random variable u ∼ U(0,1) and set

θ(i) =

{
θ∗, if u ≤ αi

θ(i−1), otherwise.
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Expectation–maximization (EM) algorithm [1/5]

Expectation–maximization (EM) is an algorithm for
computing ML and MAP estimates of parameters when
direct optimization is not feasible.
Let q(x0:T ) be an arbitrary probability density over the
states, then we have the inequality

log p(y1:T | θ) ≥ F [q(x0:T ),θ].

where the functional F is defined as

F [q(x0:T ),θ] =

∫
q(x0:T ) log

p(x0:T ,y1:T | θ)
q(x0:T )

dx0:T .

Idea of EM: We can maximize the likelihood by iteratively
maximizing the lower bound F [q(x0:T ),θ].
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Expectation–maximization (EM) algorithm [2/5]

Abstract EM
The maximization of the lower bound can be done by
coordinate ascend as follows:

1 Start from initial guesses q(0), θ(0).
2 For n = 0,1,2, . . . do the following steps:

1 E-step: Find q(n+1) = arg maxq F [q,θ(n)].
2 M-step: Find θ(n+1) = arg maxθ F [q(n+1),θ].

To implement the EM algorithm we need to be able to do
the maximizations in practice.
Fortunately, it can be shown that

q(n+1)(x0:T ) = p(x0:T | y1:T ,θ
(n)).
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Expectation–maximization (EM) algorithm [3/5]

We now get

F [q(n+1)(x0:T ),θ]

=

∫
p(x0:T | y1:T ,θ

(n)) log p(x0:T ,y1:T | θ) dx0:T

−
∫

p(x0:T | y1:T ,θ
(n)) log p(x0:T | y1:T ,θ

(n)) dx0:T .

Because the latter term does not depend on θ, maximizing
F [q(n+1),θ] is equivalent to maximizing

Q(θ,θ(n)) =

∫
p(x0:T | y1:T ,θ

(n)) log p(x0:T ,y1:T | θ) dx0:T .
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Expectation–maximization (EM) algorithm [4/5]

EM algorithm

The EM algorithm consists of the following steps:
1 Start from an initial guess θ(0).
2 For n = 0,1,2, . . . do the following steps:

1 E-step: compute Q(θ,θ(n)).
2 M-step: compute θ(n+1) = arg maxθQ(θ,θ(n)).

In state space models we have

log p(x0:T ,y1:T | θ)

= log p(x0 | θ) +
T∑

k=1

log p(xk | xk−1,θ) +
T∑

k=1

log p(yk | xk ,θ).
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Expectation–maximization (EM) algorithm [5/5]

Thus on E-step we compute

Q(θ,θ(n)) =

∫
p(x0 | y1:T ,θ

(n)) log p(x0 | θ) dx0

+
T∑

k=1

∫
p(xk ,xk−1 | y1:T ,θ

(n))

× log p(xk | xk−1,θ) dxk dxk−1

+
T∑

k=1

∫
p(xk | y1:T ,θ

(n)) log p(yk | xk ,θ) dxk .

In linear models, these terms can be computed from the
RTS smoother results.
In non-Gaussian models we can approximate these using
Gaussian RTS smoothers or particle smoothers.
On M-step we maximize Q(θ,θ(n)) with respect to θ.
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State augmentation

Consider a model of the form
xk = f(xk−1,θ) + qk−1

yk = h(xk ,θ) + rk

We can now rewrite the model as
θk = θk−1

xk = f(xk−1,θk−1) + qk−1

yk = h(xk ,θk ) + rk

Redefining the state as x̃k = (xk ,θk ), leads to the
augmented model with without unknown parameters:

x̃k = f̃(x̃k−1) + q̃k−1

yk = h(x̃k ) + rk

This is called state augmentation approach.
The disadvantage is the severe non-linearity and
singularity of the augmented model.

Simo Särkkä Lecture 8: Bayesian Estimation of Parameters



Energy function for linear Gaussian models [1/3]

Consider the following linear Gaussian model with
unknown parameters θ:

xk = A(θ)xk−1 + qk−1

yk = H(θ)xk + rk

Recall that the Kalman filter gives us the Gaussian
predictive distribution

p(xk | y1:k−1,θ) = N(xk | m−k (θ),P
−
k (θ))

Thus we get

p(yk | y1:k−1,θ)

=

∫
N(yk | H(θ)xk ,R(θ)) N(xk | m−k (θ),P

−
k (θ)) dxk

= N(yk | H(θ)m−k (θ),H(θ)P−k (θ)HT(θ) + R(θ)).
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Energy function for linear Gaussian models [2/3]

Energy function for linear Gaussian model

The recursion for the energy function is given as

ϕk (θ) = ϕk−1(θ) +
1
2

log |2π Sk (θ)|+
1
2

vT
k (θ)S−1

k (θ)vk (θ),

where the terms vk (θ) and Sk (θ) are given by the Kalman filter
with the parameters fixed to θ:

Prediction:

m−k (θ) = A(θ)mk−1(θ)

P−k (θ) = A(θ)Pk−1(θ)AT(θ) + Q(θ).

(continues . . . )
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Energy function for linear Gaussian models [3/3]

Energy function for linear Gaussian model (cont.)

(. . . continues)

Update:

vk (θ) = yk − H(θ)m−k (θ)

Sk (θ) = H(θ)P−k (θ)HT(θ) + R(θ)

Kk (θ) = P−k (θ)HT(θ)S−1
k (θ)

mk (θ) = m−k (θ) + Kk (θ)vk (θ)

Pk (θ) = P−k (θ)− Kk (θ)Sk (θ)KT
k (θ).
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EM algorithm for linear Gaussian models

The expression for Q for the linear Gaussian models can be
written as

Q(θ,θ(n))

= −
1
2

log |2π P0(θ)| −
T
2

log |2πQ(θ)| −
T
2

log |2πR(θ)|

−
1
2

tr

{
P−1

0 (θ)
[
Ps

0 + (ms
0 −m0(θ)) (ms

0 −m0(θ))
T
]}

−
T
2

tr

{
Q−1(θ)

[
Σ− C AT(θ)− A(θ)CT + A(θ)ΦAT(θ)

]}

−
T
2

tr

{
R−1(θ)

[
D− B HT(θ)− H(θ)BT + H(θ)ΣHT(θ)

]}
,

Σ =
1
T

T∑
k=1

Ps
k + ms

k [ms
k ]

T

Φ =
1
T

T∑
k=1

Ps
k−1 + ms

k−1 [m
s
k−1]

T

B =
1
T

T∑
k=1

yk [ms
k ]

T

C =
1
T

T∑
k=1

Ps
k GT

k−1 + ms
k [ms

k−1]
T

D =
1
T

T∑
k=1

yk yT
k .
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EM algorithm for linear Gaussian models (cont.)

If θ ∈ {A,H,Q,R,P0,m0}, we can maximize Q analytically
by setting the derivatives to zero.
Leads to an iterative algorithm: run RTS smoother,
recompute the estimates, run RTS smoother again,
recompute estimates, and so on.
The parameters to be estimated should be identifiable for
the ML/MAP to make sense: for example, we cannot hope
to blindly estimate all the model matrices.
EM is only an algorithm for computing ML (or MAP)
estimates.
Direct energy function optimization often converges faster
than EM and should be preferred in that sense.
If a RTS smoother implementation is available, EM is
sometimes easier to implement.
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Gaussian filtering based energy function
approximation

Let’s consider parameter estimation in non-linear models
of the form

xk = f(xk−1,θ) + qk−1

yk = h(xk ,θ) + rk

We can now approximate the energy function by replacing
Kalman filter with a Gaussian filter.
The approximate energy function recursion becomes

ϕk (θ) ' ϕk−1(θ) +
1
2

log |2π Sk (θ)|+
1
2

vT
k (θ)S−1

k (θ)vk (θ),

where the terms vk (θ) and Sk (θ) are given by a Gaussian
filter with the parameters fixed to θ.
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Gaussian smoothing based EM algorithm

The approximation to Q function can now be written as

Q(θ,θ(n))

' −1
2

log |2π P0(θ)| −
T
2

log |2πQ(θ)| − T
2

log |2πR(θ)|

− 1
2

tr

{
P−1

0 (θ)
[
Ps

0 + (ms
0 −m0(θ)) (ms

0 −m0(θ))
T
]}

− 1
2

T∑
k=1

tr
{

Q−1(θ) E
[
(xk − f(xk−1,θ)) (xk − f(xk−1,θ))

T | y1:T

]}

− 1
2

T∑
k=1

tr
{

R−1(θ) E
[
(yk − h(xk ,θ)) (yk − h(xk ,θ))

T | y1:T

]}
,

where the expectations can be computed using the Gaussian
RTS smoother results.
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Particle filtering approximation of energy function [1/3]

In the particle filtering approach we can consider generic
models of the form

θ ∼ p(θ)
x0 ∼ p(x0 | θ)
xk ∼ p(xk | xk−1,θ)

yk ∼ p(yk | xk ,θ),

Using particle filter results, we can form an importance
sampling approximation as follows:

p(yk | y1:k−1,θ) ≈
∑

i

w (i)
k−1 v (i)

k ,

where

v (i)
k =

p(yk | x
(i)
k ,θ)p(x(i)

k | x
(i)
k−1,θ)

π(x(i)
k | x

(i)
k−1,y1:k )

and w (i)
k−1 are the previous particle filter weights.
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Particle filtering approximation of energy function [2/3]

SIR based energy function approximation

1 Draw samples x(i)
k from the importance distributions

x(i)
k ∼ π(xk | x

(i)
k−1,y1:k ), i = 1, . . . ,N.

2 Compute the following weights

v (i)
k =

p(yk | x
(i)
k ,θ)p(x(i)

k | x
(i)
k−1,θ)

π(x(i)
k | x

(i)
k−1,y1:k )

and compute the estimate of p(yk | y1:k−1,θ) as

p̂(yk | y1:k−1,θ) =
∑

i

w (i)
k−1 v (i)

k
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Particle filtering approximation of energy function [3/3]

SIR based energy function approximation (cont.)
3 Compute the normalized weights as

w (i)
k ∝ w (i)

k−1 v (i)
k

4 If the effective number of particles is too low, perform
resampling.

The approximation of the marginal likelihood of the parameters
is:

p(y1:T | θ) ≈
∏

k

p̂(yk | y1:k−1,θ),

and the corresponding energy function approximation is

ϕT (θ) ≈ − log p(θ)−
T∑

k=1

log p̂(yk | y1:k−1,θ).
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Particle Markov chain Monte Carlo (PMCMC)

The particle filter based energy function approximation can
now be used in Metropolis–Hastings based MCMC
algorithm.
With finite N, the likelihood is only an approximation and
thus we would expect the algorithm to be an approximation
only.
Surprisingly, it turns out that this algorithm is an exact
MCMC algorithm also with finite N.
The resulting algorithm is called particle Markov chain
Monte Carlo (PMCMC) method.
Computing ML and MAP estimates via the particle filter
approximation is problematic, because resampling causes
discontinuities to the likelihood approximation.
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Particle smoothing based EM algorithm

Recall that on E-step of EM algorithm we need to compute

Q(θ,θ(n)) = I1(θ,θ(n)) + I2(θ,θ(n)) + I3(θ,θ(n)),

where

I1(θ,θ(n)) =

∫
p(x0 | y1:T ,θ

(n)) log p(x0 | θ) dx0

I2(θ,θ(n)) =
T∑

k=1

∫
p(xk ,xk−1 | y1:T ,θ

(n))

× log p(xk | xk−1,θ) dxk dxk−1

I3(θ,θ(n)) =
T∑

k=1

∫
p(xk | y1:T ,θ

(n)) log p(yk | xk ,θ) dxk .

It is also possible to use particle smoothers to approximate
the required expectations.

Simo Särkkä Lecture 8: Bayesian Estimation of Parameters



Particle smoothing based EM algorithm (cont.)

For example, by using backward simulation smoother, we
can approximate the expectations as

I1(θ,θ(n)) ≈ 1
S

S∑
i=1

log p(x̃(i)
0 | θ)

I2(θ,θ(n)) ≈
T−1∑
k=0

1
S

S∑
i=1

log p(x̃(i)
k+1 | x̃

(i)
k ,θ)

I3(θ,θ(n)) ≈
T∑

k=1

1
S

S∑
i=1

log p(yk | x̃
(i)
k ,θ).
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Summary

The marginal posterior distribution of parameters can be
computed from the results of Bayesian filter.
Given the marginal posterior, we can e.g. use optimization
methods to compute MAP estimates or sample from the
posterior using MCMC methods.
Expectation–maximization (EM) algorithm can also be
used for iterative computation of ML or MAP estimates
using Bayesian smoother results.
The parameter posterior for linear Gaussian models can be
evaluated with Kalman filter.
The expectations required for implementing EM algorithm
for linear Gaussian models can be evaluated with RTS
smoother.
For non-linear/non-Gaussian models the parameter
posterior and EM-algorithm can be approximated with
Gaussian filters/smoothers and particle filters/smoothers.
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