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0 What is Bayesian Smoothing?

Q Bayesian Smoothing Equations

© Rauch-Tung-Striebel Smoother

@ Gaussian Approximation Based Smoothing
e Particle Smoothing

@ Summary and Demonstration
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Filtering, Prediction and Smoothing

0 k T
Prediction:
Filtering:
Smoothing:
Measurements Estimate
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Types of Smoothing Problems

@ Fixed-interval smoothing: estimate states on interval [0, T]
given measurements on the same interval.

@ Fixed-point smoothing: estimate state at a fixed point of
time in the past.

@ Fixed-lag smoothing: estimate state at a fixed delay in the
past.

@ Here we shall only consider fixed-interval smoothing, the
others can be quite easily derived from it.

Simo Sarkka Lecture 7: Bayesian, Gaussian and Particle Smoothers



Examples of Smoothing Problems

@ Given all the radar measurements of a rocket (or missile)
trajectory, what was the exact place of launch?

@ Estimate the whole trajectory of a car based on GPS
measurements to calibrate the inertial navigation system
accurately.

@ What was the history of chemical/combustion/other
process given a batch of measurements from it?

@ Remove noise from audio signal by using smoother to
estimate the true audio signal under the noise.

@ Smoothing solution also arises in EM algorithm for
estimating the parameters of a state space model.
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Bayesian Smoothing Algorithms

@ Linear Gaussian models

e Rauch-Tung-Striebel smoother (RTSS).
o Two-filter smoother.

@ Non-linear Gaussian models

e Extended Rauch-Tung-Striebel smoother (ERTSS).

e Unscented Rauch-Tung-Striebel smoother (URTSS).

e Statistically linearized Rauch-Tung-Striebel smoother
(SLRTSS).

e Gaussian Rauch-Tung-Striebel smoothers (GRTSS),
cubature, Gauss-Hermite, Bayes-Hermite, Monte Carlo.

e Two-filter versions of the above.

@ Non-linear non-Gaussian models

e Particle smoothers.
e Rao-Blackwellized particle smoothers.
o Grid based smoothers.
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Problem Formulation

@ Probabilistic state space model:

measurement model: yx ~ p(Yk | Xk)
dynamic model: xx ~ p(Xx | Xx_1)

@ Assume that the filtering distributions p(xx | y1.x) have
already been computed forall k =0,..., T.

@ We want recursive equations of computing the smoothing
distribution for all k < T:

P(Xk |Y1.7)-

@ The recursion will go backwards in time, because on the
last step, the filtering and smoothing distributions coincide:

P(XT | Y1.7).
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Derivation of Formal Smoothing Equations [1/2]

@ The key: due to the Markov properties of state we have:

P(Xk | Xk11,Y1:7) = P(Xk | Xk41, Y1:4)

@ Thus we get:

P(Xk | Xk11,Y1:7) = P(Xk [ X1, Y1:k)
~ P(Xk, Xkt1 | Y1:4)
 p(Xktt [ Yik)
P(Xk+1 | Xk, Y1:k) P(Xk | Y1:5)
P(Xk+1 | Y1:k)
— P(Xkt1 [ Xi) P(Xk | Y1:k)
B P(Xkt1|Y1:k)
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Derivation of Formal Smoothing Equations [2/2]

@ Assuming that the smoothing distribution of the next step
p(Xx11|Y1.7) is available, we get

P(Xk, Xk11 | Y1.7) = P(Xk | Xk11, Y1.7) P(Xk41 | Y1.7)
= P(Xk | Xk4+1,Y1:k) P(Xk+1 | Y1:7)
— P(Xkt1 [ Xk) P(Xk | Y1:6) P(Xk 41 [Y1:7)
P(Xk11|Y1:k)

@ Integrating over X, gives

,O(Xk+1 ‘ Xk) p(Xk+1 ‘ y1:T)
. ) — o(x . dx
p(Xk [y1.7) = P( ky1.k)/{ P(Xer1 | V1K) o
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Bayesian Smoothing Equations

Bayesian Smoothing Equations

The Bayesian smoothing equations consist of prediction step
and backward update step:

P(Xk+1 | Y1:k) = /P(Xk+1 | Xk) P(Xk | Y1:x) dXk

P(Xs1 | Xi) p(X
P(Xk |Y1.7) = P(Xk | V1. k)/ [ k1 | Xie) Pt [V T)} dXpt 1
P(Xk4+1 | Y1:k)

The recursion is started from the filtering (and smoothing)
distribution of the last time step p(X7 | y1.7).
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Linear-Gaussian Smoothing Problem

@ Gaussian driven linear model, i.e., Gauss-Markov model:

Xk = Ak_1 X1 + Ok_1
Vi = He Xk + 1y,

@ In probabilistic terms the model is

P(Xk [ Xk—1) = N(Xk | Ak—1 Xk—1, Qx_1)
P(Yk | Xk) = N(Yk | Hk Xk, Rk)-

@ Kalman filter can be used for computing all the Gaussian
filtering distributions:

P(Xk | Y1:k) = N(Xx | My, Pg).
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RTS: Derivation Preliminaries

@ Gaussian probability density

N(x|m,P) = 1 x—m)TP‘1(x—m)>,

1
e (2l
@ Let x and y have the Gaussian densities

p(x) =N(x|m,P),  p(y[x)=N(yHx,R),

@ Then the joint and marginal distributions are

(3) N ((Hmm> ’ (HPP H PPHI-TIT+ n>>

y~NHm HPH™ +R).
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RTS: Derivation Preliminaries (cont.)

@ If the random variables x and y have the joint Gaussian
probability density

() () (e 8)):

@ Then the marginal and conditional densities of x and y are
given as follows:

N( A)

N(b, B)
xyy N(a+CB~'(y—b),A—CB'C")
y|x~Nb+C'A"(x—a),B-C"A'C).
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Derivation of Rauch-Tung-Striebel Smoother [1/4]

@ By the Gaussian distribution computation rules we get

P(Xk, Xk+1 | Y1:k) = P(Xks1 | Xk) P(Xk | Y1:k)
= N(Xk11 | Ak Xk, Q) N(Xx | My, Py)

_ mg . Pk Pk A](-
1 = (Ak mk> ’ P = (Ak Pr AxPcAl +Qy)"
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Derivation of Rauch-Tung-Striebel Smoother [2/4]

@ By conditioning rule of Gaussian distribution we get

P(Xk | Xk1,¥1:7) = P(Xk | Xk11, Y1:k)
= N(xx [ mg, Py),

where

Gk = Pk Al (AxPxA] + Q)"
my = My + G (Xkr1 — AgMy)
P, = P« — G (AkPx Al +Qx)G/.
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Derivation of Rauch-Tung-Striebel Smoother [3/4]

@ The joint distribution of X, and Xx. 1 given all the data is

P(Xk+1, Xk | Y1:7) = P(Xk | Xk11,Y1:7) P(Xk+1 | Y1:7)
= N(Xx | M2, P2) N(X1 |mi+1,Pi+1)

(5] e

where

Mg+ )
m
§= <mk+Gk (mk+1 — Agmy)

Ps ( Pi-H k+1 Gk )
GxPf,; GkP{,1G[+P:
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Derivation of Rauch-Tung-Striebel Smoother [4/4]

@ The marginal mean and covariance are thus given as

mi =my + Gy (mi+1 —Akmk)
§ =Py + Gk (P§,, — AkPc Al — Q) G/.

@ The smoothing distribution is then Gaussian with the above
mean and covariance:

P(Xk |y1:7) = N(Xx | m, P}),
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Rauch-Tung-Striebel Smoother

Rauch-Tung-Striebel Smoother

Backward recursion equations for the smoothed means mj and
covariances Py

m;+1 = A mg

Py.1 =AcPcA] +Qy
Gk = Pk AIZ- [P/:+1]71
mi = my + Gy [mi+1 - m/?+1]
P; =Pk + Gk [P§,1 — P, 411G/,

@ my and Py are the mean and covariance computed by the
Kalman filter.

@ The recursion is started from the last time step T, with
m?- = my and P‘%— =Pr.
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RTS Smoother: Car Tracking Example

The dynamic model of the car tracking model from the first &
third lectures was:

Xk 1 0 At O Xk—1
ve | |01 0 at || yes
X o 0O 0 1 0 Xk—1 + Akt
Yk 00 0 1 V-1
A

where q, is zero mean with a covariance matrix Q:

qé At3/3 0 qé At2)2 0

Q- 0 qs At3/3 0 qs At?/2
a2 0 Q¢ At 0
0 qs At?)2 0 qs At
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Non-Linear Smoothing Problem

@ Non-linear Gaussian state space model:

Xk = f(Xk—1) + Q1
Yk = h(Xg) +r,

@ We want to compute Gaussian approximations to the
smoothing distributions:

P(Xk |y1:7) = N(xx | mg, P}).
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Extended Rauch-Tung-Striebel Smoother Derivation

@ The approximate joint distribution of x, and X1 is

X
P(Xk,Xk+1!Y1:k)=N<[ k] ‘m1,P1>,

where

= (1m)

P, — ( Pk P« FJ(my) ) .
Fx(mg)Px  Fx(my) P Fl(my) + Qg

@ The rest of the derivation is analogous to the linear RTS
smoother.
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Extended Rauch-Tung-Striebel Smoother

Extended Rauch-Tung-Striebel Smoother

The equations for the extended RTS smoother are

m,,; = f(mg)

P, 1 = Fx(my) P« Fy(my) + Q,
G = Py Fy (M) [P 4]
mi = my + Gy [mg,; —m,_ ]
P} = Pk + Gk [P}, — P, 4] Gf,

where the matrix Fx(my) is the Jacobian matrix of f(x)
evaluated at my.
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Statistically Linearized Rauch-Tung-Striebel Smoother

Derivation

@ With statistical linearization we get the approximation
Xk
P(Xk, Xk+1 [ Y1:6) =N ({x ] ‘m1,P1> :
k+1

where

m = (E[;Bfm)

P, — P« E[f(xx) 0x]]"
T <E[f(xk)5x[] E[f(x«) 0x[] P}’ E[f(xk)5X[]T+Qk> '

@ The expectations are taken with respect to filtering
distribution of x.

@ The derivation proceeds as with linear RTS smoother.
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Statistically Linearized Rauch-Tung-Striebel Smoother

Statistically Linearized Rauch-Tung-Striebel Smoother
The equations for the statistically linearized RTS smoother are

my. 4 = E[f(xy)]

P, 1 = E[f(x) 0x{ 1P E[f(x«) 0x{]” + Qi
G = E[f(xx) 6x/]7 [Py, (]
mg = my + Gi Mg, —m, ]
Pf =P« + Gk [P§,; — P, 41G/,

where the expectations are taken with respect to the filtering
distribution xx ~ N(my, Py).

Simo Sarkka Lecture 7: Bayesian, Gaussian and Particle Smoothers



Gaussian Rauch-Tung-Striebel Smoother Derivation

@ With Gaussian moment matching we get the approximation
Xk my Py Dk+1}

Xk, X ) =N — - — ;
bRl R ([XKH] | [mk+1} [D[H Py

where
m, = /f(xk)N(xk | mg, Py) ax
o1 = 1060~ mic 1800 - mi 17
X N(Xk | my, Pk) dxk + Qk

D1 = /[Xk — my] [f(xx) — m/?+1]TN(xk | M, Pic) dXc.
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Gaussian Rauch-Tung-Striebel Smoother

Gaussian Rauch-Tung-Striebel Smoother

The equations for the Gaussian RTS smoother are
m., = /f(xk)N(xk’mkvpk)dxk
ki1 = /[f(xk) —m ] [f(xk) — ml:+1]T
X N(Xk | my, Pk) axy + Qg
Dy.1 — /[Xk — My [f(x) — My, (] "N(Xk | My, P) dixi

Gk = Dy y1 [Pyq] ™
mi = my + G (Mg, ; —m_,)
Pi = Pk-l-Gk(Pi_H = P;JH)G;.
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Cubature Smoother Derivation [1/2]

@ Recall the 3rd order spherical Gaussian integral rule:
[ 900 Nex|m. P) ox
2n

1 .
~ 5p 2 9(m+ VPED),
i=1

where

5(,‘): ﬁe,- , I=1,....n
—v/ne;i_, , i=n+1,...,2n,

where e; denotes a unit vector to the direction of
coordinate axis i.
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Cubature Smoother Derivation [2/2]

@ We get the approximation

Xk my Pk Dk+1:|
Xk, X k) =N -1, - ;
P(Xk, X1 | Y1:) ([XK—H] | [m/ﬂj [DLA P,

where

N = my + /Py é(i)

1o (i)

— I

M1 = 5, > (X
i=1

Pt = 37 Zlf ) —m D) —mi 17+ O

Dk+1:2 Z[X —my] [f(2) —mp 17
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Cubature Rauch-Tung-Striebel Smoother [1/3]

Cubature Rauch-Tung-Striebel Smoother
@ Form the sigma points:

=mg + /P €O, i=1,...,2n,

where the unit sigma points are defined as

5(,‘): ﬁe,- , I=1,....n
—vnei_, , i=n+1,....2n.

@ Propagate the sigma points through the dynamic model:

20 12Dy, i=1,...,2n
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Cubature Rauch-Tung-Striebel Smoother [2/3]

Cubature Rauch-Tung-Striebel Smoother (cont.)

© Compute the predicted mean m,_ ,, the predicted
covariance P,_ , and the cross-covariance Dy 1:

m = ZX(I)
. o(i _ T
Pt = on Z 1521 mk+1)(Xl£I4)—1 —m,) +Qk

Dk+1:2 Z(X(I) mk)(X/SI-H ml:+1)T'
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Cubature Rauch-Tung-Striebel Smoother [3/3]

Cubature Rauch-Tung-Striebel Smoother (cont.)

© Compute the gain G, mean mj and covariance Pj as
follows:

G = Dyyt [Pycy] ™
mi = my + Gy (mi+1 - m/:+1)
P =Py + Gy (Pi+1 - PI?+1)G['
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Unscented Rauch-Tung-Striebel Smoother [1/3]

Unscented Rauch-Tung-Striebel Smoother

@ Form the sigma points:

X[EO) = My,
X = my+Vn+ A [\ﬁpk}i

X — my— VA [\/FK} i=1,....n
1

© Propagate the sigma points through the dynamic model:

2D, =Hx™), i=o0,...,2n.
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Unscented Rauch-Tung-Striebel Smoother [2/3]

Unscented Rauch-Tung-Striebel Smoother (cont.)

© Compute predicted mean, covariance and
cross-covariance:

me,= Z W; i Xlglm

P —ZWC) 15421 mk+1)()3/$l1 m;, )7+ Q
i=0

2n
Dirt = > W () —my) (£, —mi )7,
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Unscented Rauch-Tung-Striebel Smoother [3/3]

Unscented Rauch-Tung-Striebel Smoother (cont.)

© Compute gain smoothed mean and smoothed covariance:
as follows:

G = Dyyt [Pycy] ™
mi = my + Gy (mi+1 - m/:+1)
P =Py + Gy (Pi+1 - PI?+1)G['
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Other Gaussian RTS Smoothers

@ Gauss-Hermite RTS smoother is based on
multidimensional Gauss-Hermite integration.

@ Bayes-Hermite or Gaussian Process RTS smoother uses
Gaussian process based quadrature (Bayes-Hermite).

@ Monte Carlo integration based RTS smoothers.
@ Central differences etc.
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Particle Smoothing: Direct SIR

@ The smoothing solution can be obtained from SIR by
storing the whole state histories into the particles.

@ Special care is needed on the resampling step.

@ The smoothed distribution approximation is then of the
form

P(Xk |Y1.7) = ZWTI)‘S X)),

where x(’) is the kth component in x(’)
@ Unfortunately, the approximation is often quite degenerate.
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Particle Smoothing: Backward Simulation [1/2]

@ In backward-simulation particle smoother we simulate
individual trajectories backwards.

@ The simulated samples are drawn from the particle filter
samples.

@ Uses the previous filtering results in smoothing = less
degenerate than the direct SIR smoother.

@ ldea:

e Assume now that we have already simulated X 1.7 from
the smoothing distribution.
e From the Bayesian smoothing equations we get

P(Xk | Xk11,Y1:7) < P(Xk41 | Xk) P(Xk | Y1:k)-
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Particle Smoothing: Backward Simulation [2/2]

Backward simulation particle smoother

Given the weighted set of particles {W(i), XE(/) } representing the
filtering distributions:

@ Choose %7 = x!/) with probability w!".
@ Fork=T-1,...,0:
@ Compute new weights by

Wilker o W p(Ricrr [ X))

@ Choose %, = x{ with probability w, ),

Given S iterations resulting in ig{)T forj=1,...,Sthe
smoothing distribution approximation is

1 L
pP(X1.7|Y1.7) ~ 3 25("17 _ ng:)T)_
J
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Particle Smoothing: Reweighting [1/2]

@ The reweighting particle smoother is based on computing

new weights ,QFHT for the SIR filter particles such that:
(i)

P(Xk+1 | Y1.7) = Z W/El_,)_1|7-5(xk+1 — X q):
i
@ Recall the smoothing equation

,O(Xk+1 ‘Xk)p(Xk_H ‘y1:T):|
. ) = ox _ dx
pP(Xk [y1.7) = P( ky1.k)/[ P(Xer1 | V1K) o

@ We use SIR filter samples to form approximations (see
booklet for details) as follows:

P(Xk+1 | Xk) P(Xk+1 | Y1:7) d Z w® X/!L | Xk)
x -
P(Xic+1 | Y1:4) T oDy

P(Xkt1 | Y1:4) = ZWk (X1 | X))
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Particle Smoothing: Reweighting [2/2]

Reweighting Particle Smoother

|

Given the weighted set of particles {W(’), Xy )} representing the
filtering distribution, we can form approximations to the
marginal smoothing distributions as follows:

@ Start by setting WT|T = W-(,-) fori=1,...,n.

@ Foreachk=T —1,...,0do the foIIowmg:
o Compute new importance weights by

wd
p(xk 1 |xk )
Wk|TO(Z k+1|T W) +(, :
|5 e 1))

At each step k the marginal smoothing distribution can be
approximated as

P(Xk |y1.7) = ZWk|T 5(xk —x\).
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Rao-Blackwellized Particle Smoothing: Direct SIR

@ Recall the Rao-Blackwellized particle filtering model:

Uy ~ P(Uk | Ux—1)
Xk = A(Uk—1)Xk—1 +dk,  dxk ~N(0,Q)
Yk = H(ug) x¢ + 1, r« ~ N(0,R)

@ The direct SIR based Rao-Blackwellized particle smoother:

@ During filtering store the whole sampled state and Kalman
filter histories to the particles.

@ At the smoothing step, apply Rauch-Tung-Striebel
smoothers to each of the Kalman filter histories.

@ The smoothing distribution approximation:
N - - - .
PXk, Uk [Y1:7) = ) w 6(uy — uf)) N(xi [ my @, Py,
i=1

@ Also has the degeneracy problem.
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Rao-Blackwellized Particle Smoothing: Other Types

@ The RB backward-sampling smoother can be implemented
in many ways:

e Sample both the components backwards (leads to a pure
sample representation).

e Sample the latent variables only — requires quite
complicated backward Kalman filtering computations.

e Kim’s approximation: just use the plain backward-sampling
to the latent variable marginal.

@ The RB reweighting particle smoothing is not possible
exactly, but can be approximated using the above ideas.
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@ Bayesian smoothing is used for computing estimates of
state trajectories given the measurements on the whole
trajectory.

@ Rauch-Tung-Striebel (RTS) smoother is the closed form
smoother for linear Gaussian models.

@ Extended, statistically linearized and unscented RTS
smoothers are the approximate nonlinear smoothers
corresponding to EKF, SLF and UKF.

@ Gaussian RTS smoothers: cubature RTS smoother,
Gauss-Hermite RTS smoothers and various others

@ Particle smoothing can be done by storing the whole state
histories in SIR algorithm.

@ Rao-Blackwellized particle smoother is a combination of
particle smoothing and RTS smoothing.
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Matlab Demo: Pendulum [1/2]

@ Pendulum model:

<x,1> < X}y +x2_, At > < 0 >
2] =2 o cin(y] +
Xic Xi_1 — g sin(x,_q) At k-1

f(Xk—1)
Vi = sin(x}) +k,
——
h(xk)

@ The required Jacobian matrix for ERTSS:

1 At
Ful(x) = (—g cos(x') At 1 )
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Matlab Demo: Pendulum [2/2]

@ The required expected value for SLRTSS is

my + mo At
E[f(x)] = (mz g sin(r1n1) e;p(—Pﬁ/Q) At)

@ And the cross term:

E[f(x) (x - m)T] = ("” ‘”2) ,

Co1 Co2
where
C11 = Piy + At Py
Ci2 = Pia + At Py
C21 = P12 — g At cos(my) P11 exp(—P11/2)
Coo = Poy — g At cos(m1) P12 exp(—P11/2)
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