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Particle Filtering: Principle

=

@ Animation: Kalman vs. Particle Filtering:
("]
"]
@ Theideais to form a weighted particle presentation
(x(), w()) of the posterior distribution:

p(x) ~ > wt 5(x — x0).
j

@ Approximates Bayesian optimal filtering equations with
importance sampling.

@ Particle filtering = Sequential importance sampling, with
additional resampling step.
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Monte Carlo Integration

@ In Bayesian inference we often want to compute posterior
expectations of the form

Elg0) |y+.1] = [ 9(0) p(x|y1.7) dx
@ Monte Carlo: draw N independent random samples from

x() ~ p(x|y1.7) and estimate the expectation as

N

Elg0) 1.7l ~ 5 >0 g(x?).
i=1
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Importance Sampling: Basic Version [1/2]

@ In practice, we rarely can directly draw samples from the
distribution p(x | y1.7).

@ Inimportance sampling (IS), we draw samples from an
importance distribution x() ~ 7(x|yy.7) and compute
weights w(’) such that

N
Elg(x) |y+:.7]~ ) # g(x?)

i=1
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Importance Sampling: Basic Version [2/2]

@ Importance sampling is based on the identity
Elg(0) | y1.7] = /g (x| y1.7) dx

@ Thus we can form a Monte Carlo approximation as follows:

(7) ,
Elg(x)|ys.7] ~ sz(,|§1;) g(x")

@ That is, the importance weights can be defined as

a1 p(x" |yq.7)
N 7 (x(|y1.7)
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Importance Sampling: Weight Normalization

@ The problem is that we need to evaluate the normalization
constant of p(x() | yy.7) — often not possible.

@ However, it turns out that we get a valid algorithm if we
define unnormalized importance weights as

W) — p(y1.7| X(i))P(X(i))
7-(()((’) | y1:T)

and then normalize them:
W) W(')m
Zj w
@ The (weight-normalized) importance sampling
approximation is then

N
Elg(x)[yr.7]~ ) w? g(x")

i=1
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Importance Sampling: Algorithm
Importance Sampling

@ Draw N samples from the importance distribution:

xD ~ 7 (x| y1.7), i=1,...,N.

@ Compute the unnormalized weights by

W) — p(y1.7 | ?((f)) p(x")
m(xD]y1.7)

and the normalized weights by
w()

n-__* "
w() — .
Zjli1 w*0)
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Importance Sampling: Properties

@ The approximation to the posterior expectation of g(x) is

Elg(x) |y1.7] = ZW(’ (x).

@ The posterior probability density approximation can be
formally written as

N
p(X | y1:T) & Z W(I) 5(X - x(i))>
i=1
where §(-) is the Dirac delta function.

@ The efficiency depends on the choice of the importance
distribution.
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Sequential Importance Sampling: Idea

@ Sequential Importance Sampling (SIS) is concerned with
models

Xk ~ P(Xk | Xk—1)
Yk ~ P(Yk | Xk)
@ The SIS algorithm uses a weighted set of particles
(W, x?) : i=1,... N} such that

N
Elg(xi) [y1l ~ Y wi'g(x{).
i=1

@ Or equivalently

P(Xk | Y1:k) ZWkI )

where 4(+) is the Dirac delta functlon.
@ Uses importance sampling sequentially.
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Sequential Importance Sampling: Derivation [1/2]

@ Let’s consider the full posterior distribution of states xg.x
given the measurements y ..

@ We get the following recursion for the posterior distribution:

P(Xo:k | Y1:k) o< P(Yk | X0:k5 V1:k—1) P(Xo:k | Y1:k—1)
= P(Yk | Xk) P(Xk | X0:k—1, Y1:k—1) P(X0:k—1 | Y1:k—-1)
= p(Yk | Xk) P(Xk | Xk—1) P(X0:k—1 | Y1:k—1)-

@ We could now construct an importance distribution

xg’)k ~ m(Xo:k | Y1:k) and compute the corresponding

(normalized) importance weights as

() o P(Yk |x5(’))p(xf(’) Ix(k’),1)p(Xé’:)k,1 | Y1:k-1)

7 (x) y1.4)
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Sequential Importance Sampling: Derivation [2/2]

@ Let’s form the importance distribution recursively as
follows:

T(Xo:k | Y1:k) = T(Xk | Xo:k—1, V1:k) T(X0:k—1 | Y1:k—1)

@ Expression for the importance weights can be written as

wl) (yk|x(i)) px (i)|x(i)— ) P(xol)k 11 Y1k-1)
m(Xi) | X0k_1: Y1) TOXGk_y [ Yik1)

‘XW}?) 1

@ Thus the weights satisfy the recursion

(DY (x| %)
. X X, ;
W) o P(Yk [ Xi”) P(X5” [ Xy ” 1) )

a(x1x0 L yik)
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Sequential Importance Sampling: Algorithm
Sequential Importance Sampling

@ Initialization: Draw N samples x(()i) from the prior

X5 ~ p(Xo)

and set w0 =1/N.

@ Prediction: Draw N new samples xf(i) from importance
distributions

XS(I) ~ 7T(Xk | xg)i;)kf17y1:k)

@ Update: Calculate new weights according to
() 0 POKIXD) pg) %))

Wy pa
%8y
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Sequential Importance Sampling: Degeneracy

@ The problem in SIS is that the algorithm is degenerate

@ It can be shown that the variance of the weights increases
at every step

@ It means that we will always converge to single non-zero
weight w() = 1 and the rest being zero — not very useful
algorithm.

@ Solution: resampling!
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Sequential Importance Resampling: Resampling Step

@ Sequential Importance Resampling (SIR) algorithm adds
the following resampling step to SIS algorithm:

Resampling

o Interpret each weight w,ﬁ") as the probability of obtaining the
sample index i in the set {xﬁ(’) [i=1,...,N}.

e Draw N samples from that discrete distribution and replace the
old sample set with this new one.

o Set all weights to the constant value w{) = 1/N.

@ There are many algorithms for implementing this —
stratified resampling is optimal in terms of variance.
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Sequential Importance Resampling: Effective Number

of Particles

@ A simple way to do resampling is at every step — but every
resampling operation increases variance.

@ We can also resample at, say, every Kth step.

@ In adaptive resampling, we resample when the effective
number of samples is too low (say, N/10):

’
Y <W/((i)>27

@ In theory, biased, but in practice works very well and is
often used.

Neff ~
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Sequential Importance Resampling: Algorithm
Sequential Importance Resampling

@ Draw point xg(") from the importance distribution:

KD ot e =1 N

@ Calculate new weights

i Pk | x) p(xg) | x{) ;)

(i) .
w,’ x W : : i=1,....N,
O @ XD,y

and normalize them to sum to unity.

@ If the effective number of particles is too low, perform
resampling.

Simo Sarkka Lecture 6: Particle Filtering



Sequential Importance Resampling: Bootstrap filter

@ In bootstrap filter we use the dynamic model as the
importance distribution

(k) [ X Yr) = P06 [ %
and resample at every step:

Bootstrap Filter

e Draw point x ) from the dynamic model:

(’Np(xk|x ) i=1,...,N.

o Calculate new weights

w,Ei)ocp(yk|x§(i)), i=1,...,N,

and normalize them to sum to unity.

e Perform resampling.
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Sequential Importance Resampling: Optimal

Importace Distribution

@ The optimal importance distribution is
() | x4y v = PO | X4,y
@ Then the weight update reduces to
wy) o p(yi | X (), i=1,. N,

@ The optimal importance distribution can be used, for
example, when the state space is finite.
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Sequential Importance Resampling: Importace

Distribution via Kalman Filtering

@ We can also form a Gaussian approximation to the optimal
importance distribution:

p(x [ X ye) ~ N | i) BO).

by using a single prediction and update steps of a
Gaussian filter starting from a singular distribution at xE(")_r

@ We can also replace above with the result of a Gaussian
filter N(mf('l)_1 ; Pf(i)_1) started from a random initial mean.

@ A very common way seems to be to use the previous
sample as the mean: N(xg(")_1 , PE(")_1).

@ A particle filter with UKF proposal has been given name

unscented particle filter (UPF) — you can invent new PFs
easily this way.
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Rao-Blackwellized Particle Filter: Idea

@ Rao-Blackwellized particle filtering (RBPF) is concerned
with conditionally Gaussian models:

P(Xk | Xk—1,Uk—1) = N(X | Ak_1(Ux—1) Xk—1, Qk—1(Uk—1))
P(Yk | Xk, Uk) = N(Yk | Hx(uk) X, Re(uk))
p(ux | ux—1) = (any given form),

where

@ X is the state
@ Y is the measurement
@ Uy is an arbitrary latent variable

@ Given the latent variables uy.7 the model is Gaussian.

@ The RBPF uses SIR for the latent variables and computes
the conditionally Gaussian part in closed form with Kalman
filter.
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Rao-Blackwellized Particle Filter: Derivation [1/3]

@ The full posterior at step k can be factored as

P(Uo.k; Xo:k | Y1:k) = P(Xo:k | Yok, Y1:k) P(Uo:k | Y1:k)
@ The first term is Gaussian and computable with Kalman

filter and RTS smoother
@ For the second term we get the following recursion:

P(Uok | Y1:k)

oc P(Yk | Uo:k: Y1:k—1) P(Uo:k | Y1:k—1)

= P(Yk | Yok, V1:k—1) P(Uk | Uo:k—1, Y1:k—1) P(Uo:k—1 | Y1:k—1)
= P(Yk | Yok, V1:k—1) P(Uk | Uk—1) P(Uo:k—1 | Y1:k-1)
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Rao-Blackwellized Particle Filter: Derivation [2/3]

@ Let’s take a look at the terms in

P(Yk | Uo.k; Y1:k—1) P(Uk | Uk—1) P(Uo:k—1 | Y1:k—1)

@ The first term can be computed by running Kalman filter
with fixed ug.x over the measurement sequence.

@ The second term is just the dynamic model.
@ The third term is the posterior from the previous step.
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Rao-Blackwellized Particle Filter: Derivation [3/3]

@ We can form the importance distribution recursively:

m(Uo:k | Y1:k) = T(Uk | Uo:k—1, Y1:k) T(Ug:k—1 | Y1:k—1)

@ We then get the following recursion for the weights:

0 . (YK [US) 1. V1. k— e [ul )
Wy (/) Wi
m(ug” | l-‘o k—1:Y1:k)

@ Given the marginal posterior for ug.x we can recover the
Gaussian part xg., with Kalman filter and RTS smoother.

@ The optimal importance distribution takes the form

P(Uk | Y1k uE,’;)k_1) oc p(Yk | Uk, U(()’;);<_1)P(Uk | U(()';)k_pytkq)
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Rao-Blackwellized Particle Filter: Algorithm [1/3]

Rao-Blackwellized Particle Filter

@ Perform Kalman filter predictions for each of the Kalman
filter means and covariances in the particles i =1,..., N

conditional on the previously drawn latent variable values

UE(I)1

m, " = A1 (uf )mY
P/:(’) = Akf1(u5<l)—1) Pf(')_1 A/Z—1(u§<l 1)+ Qi 1(u§() 1)
@ Draw new latent variables ug) for each particle in
i=1,..., N from the corresponding importance

distributions _
Uf(’) (U | u()k 15 Y1 k)-
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Rao-Blackwellized Particle Filter: Algorithm [2/3]

Rao-Blackwellized Particle Filter (cont.)
@ Calculate new weights as follows:

() o Wi, P(Vk!uo;(,\hk 1) e [uf) )
Wi

(Uk |U0k 1 Y1:k)

)

where the likelihood term is the marginal measurement
likelihood of the Kalman filter:

(Vi | UGk Y1k 1)
(g ) . O M) 4 R,

@ Then normalize the weights to sum to unity.
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Rao-Blackwellized Particle Filter: Algorithm [3/3]

Rao-Blackwellized Particle Filter (cont.)

@ Perform Kalman filter updates for each of the particles
conditional on the drawn latent variables ug(’)

Vg(l = Yk — Hg(u (I)) m,

S = Hi(ul) Py ‘”HT( )+ ()
K =P, " H(u)) s,

m{) — m ) KOy

Py =P K s K.

o If the effective number of particles is too low, perform
resampling.
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Rao-Blackwellized Particle Filter: Properties

@ The Rao-Blackwellized particle filter produces a set of
weighted samples {W,E’), uf(’), mf(’), Pf(’) ci=1,...,N}
@ The expectation of a function g(-) can be approximated as

N
Elg(xk i) [yia] ~ 3w / g(xk, u) N(xe | m{?, PO) ax,.
i=1

@ Approximation of the filtering distribution is
N . . . .
P Ui | Y1) = Y wy 8(uk — u) N(xye [ m{), P{).
i=1

@ ltis possible to do approximate Rao-Blackwellization by
replacing the Kalman filter with a Gaussian filter.
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Rao-Blackwellization of Static Parameters

@ Rao-Blackwellization can sometimes be used in models of
the form

Xk ~ P(Xk | Xk—1,U)
Vi ~ P(Yk | Xk, u)
u-~ p(u)v

where vector u contains the unknown static parameters.
@ Possible if the posterior distribution of parameters u

depends only on some sufficient statistics Tk:
Tk = Tk(X1:4,Y1:4)

@ We also need to have a recursion rule for the sufficient
statistics.

@ Can be extended to time-varying parameters.
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Particle Filter: Advantages

@ No restrictions in model — can be applied to non-Gaussian
models, hierarchical models etc.

@ Global approximation.

@ Approaches the exact solution, when the number of
samples goes to infinity.

@ In its basic form, very easy to implement.

@ Superset of other filtering methods — Kalman filter is a
Rao-Blackwellized particle filter with one particle.
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Particle Filter: Disadvantages

@ Computational requirements much higher than of the
Kalman filters.

@ Problems with nearly noise-free models, especially with
accurate dynamic models.

@ Good importance distributions and efficient
Rao-Blackwellized filters quite tricky to implement.

@ Very hard to find programming errors (i.e., to debug).

Simo Sarkka Lecture 6: Particle Filtering



@ Particle filters use weighted set of samples (particles) for
approximating the filtering distributions.

@ Sequential importance resampling (SIR) is the general
framework and bootstrap filter is a simple special case of it.

@ EKF, UKF and other Gaussian filters can be used for
forming good importance distributions.

@ In Rao-Blackwellized particle filters a part of the state is
sampled and part is integrated in closed form with Kalman
filter.

Simo Sarkka Lecture 6: Particle Filtering



Particle Filter: Demo

@ The discretized pendulum model:

()= (e oy an)  (ac)
2] =\ 2 _ 4ain(x] +
Xk X1 — g sin(x,_4) At k1

N~

f(xk—1)
Yk = sin(x}) +ry,
——

h(xx)

@ = Matlab demonstration

Simo Sarkka Lecture 6: Particle Filtering



	Principle of Particle Filter
	Monte Carlo Integration and Importance Sampling
	Sequential Importance Sampling and Resampling
	Rao-Blackwellized Particle Filter
	Particle Filter Properties
	Summary and Demonstration

