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0 Unscented Transform

© Unscented Kalman Filter (UKF)

Q Gaussian Filter

@ Gauss-Hermite Kalman Filter (GHKF)
© Cubature Kalman Filter (CKF)

@ Summary and Demonstration
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Linearization Based Gaussian Approximation

@ Problem: Determine the mean and covariance of y:
X ~N(u, 0%)
y = sin(x)

@ Linearization based approximation:

asin(u)

y =sin(u) + m

(x—p)+...
which gives

Ely] = E[sin(u) + cos(u)(x — p)] = sin(p)
Covly] ~ E[(sin(u) + cos(u)(x — p) — sin(u))?] = cos®() o>,
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Principle of Unscented Transform [1/3]

@ Form 3 sigma points as follows:

X(O):u
XU) :,Uz"i‘U
x® =pu—o.

@ Let's select some weights W(©) W W®) such that the
original mean and variance can be recovered by

w=3" W x0
i

ol = Z WO (x() — )2,
i
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Principle of Unscented Transform [2/3]

@ We use the same formula for approximating the moments
of y = sin(x) as follows:

p=> W sin(x?)
i

02 =Y WO (sin(x") — n)2.
i
@ For vectors x ~ N(m, P) the generalization of standard
deviation ¢ is the Cholesky factor L = +/P:

P=LL".

@ The sigma points can be formed using columns of L (here
c is a suitable positive constant):

X(O) = m
x0) =m+cL;
x(+) —m —cL;
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Principle of Unscented Transform [3/3]

@ For transformation y = g(x) the approximation is:
— Z w® g(x
i
ry = WO (gx?) - p,) (@(x?) - )"

i
@ It is convenient to define transformed sigma points:
y(f) _ g()((i))
@ Joint moments of x and y = g(x) + q are then
approximated as

“[(ao'+a)] ~Z " ()= ()
% (a0da)]

(:) i _ T (i) (/) T
~ (i) m) (X" —m) (XY —m) (V" — )
2 W <(y 0 ) (0 —m)T (00— )00 - )t 0)
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Unscented Transform [1/3]

The unscented transform approximation to the joint distribution
of xand y = g(x) + q where x ~ N(m,P) and q ~ N(0,Q) is

() ((5) (& <))

where the sub-matrices are formed as follows:
@ Form the sigma points as

X0 =m
X0 _m s VTR [VF]
XU+ =m—vVn+ A [ﬁ}, i=1,...,n

I

i
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Unscented Transform [2/3]

Unscented transform (cont.)

@ Propagate the sigma points through g(-):
YD =gx®), i=o0,...,2n

© The sub-matrices are then given as:
2n ‘
b= Wm0
i=0
2n ; _
Su =3 WD~ py) (V0 - )" +Q

2n
Cu =D W (2D —m) (D — py)".
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Unscented Transform [3/3]

Unscented transform (cont.)

@ \is a scaling parameter defined as A = o? (n + k) — n.
@ « and « determine the spread of the sigma points.
o Weights W™ and W'® are given as follows:

W™ = X/(n+ A)

W = M/(n+A)+(1—a?+§)
W™ = 1/{2(n+\)}, i=1,...,2n
W = 1/{2(n+A)}, i=1,....2n,

@ [ can be used for incorporating prior information on the
(non-Gaussian) distribution of x.
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Linearization/UT Example

4 = 2
2 1
0 = 0
-2 -1
-4 -2
-5 0 5 0 2 4
dy
<x1) NN(<O> <2 _2)> (T;—GXP( y1), %1(0) =x
Xo 0 2 3 dyg 1
T 5, y2(0) = x
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Linearization Approximation

4 2
2 1
0 0
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UT Approximation

2 ¢ 1 00
0 o 0 o
o o
- -1
2 °
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Unscented Kalman Filter (UKF): Derivation [1/4]

@ Assume that the filtering distribution of previous step is
Gaussian
P(Xk—1|Y1:k—1) & N(Xp—1 [ Mg_1,Py_1)

@ The joint distribution of x,_1 and xx = f(Xx_1) + gx_1 can
be approximated with UT as Gaussian

Xp_1 m’ P/ P/ >>
Xk_1,X 1) ~N 1) 11 12) )
P17 Xk [¥1:k-1) ([x} | (m;> <(P92>T P,

@ Form the sigma points X() of xx_1 ~ N(my_1,Px_1) and
compute the transformed sigma points as X£() = f(x ().
@ The expected values can now be expressed as:
mj = my_q
mh=>_ W,.('") 20
i
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Unscented Kalman Filter (UKF): Derivation [2/4]

@ The blocks of covariance can be expressed as:

Pl = Pk
T2 = Z W(C) —my_4) (A0 —my)T
22 = Z WO (RO —mp) (R0 — my)T + Q4

@ The prediction mean and covariance of xx are then m;, and
P,,, and thus we get

mk_ZW ) 20

Py = 3" W0 - m,) (80 m, ) 0
i
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Unscented Kalman Filter (UKF): Derivation [3/4]

@ For the joint distribution of x, and yx = h(xx) + r, we
similarly get

~ Xk my P{, Pl
p(xkaylﬁ ‘Y1:k—1) ~N <|:yk:| ’ <m/2/) ; ((P{]/Q)T P/2/2 )
o If x=() are the sigma points of x, ~ N(m,,P, ) and
Y0 = h(x—), we get:
m{ =m,
mg = 3" Wm0
i
P{; =Py
o= 3 WO - m) 90 -

2o = Z WO (IO —mg) (PO - mg)T + Ry

Simo Sarkka Lecture 5: UKF, GF, GHKF and CKF



Unscented Kalman Filter (UKF): Derivation [4/4]

e

x|]y~N@+CB'(y—b),A-CB~'C").

then

@ Thus we get the conditional mean and covariance:

my = m; + P, (P5,) " (yx — mj)
Py =P, — P}, (P3) " (PY)".
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Unscented Kalman Filter (UKF): Algorithm [1/4]

Unscented Kalman filter: Prediction step

@ Form the sigma points:

X[E(i)1 = mk717
X,EIL =Mg_1 +Vn+A [\/ Pk—1]
XM =my g — VA [\/ qu]

i
. i=1,...,n.

© Propagate the sigma points through the dynamic model:

60 — ). i—o,... 2n
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Unscented Kalman Filter (UKF): Algorithm [2/4]

Unscented Kalman filter: Prediction step (cont.)

© Compute the predicted mean and covariance:

2n
m; = Wi 3

P, _ZWC) ) m) (2 —m)T + Quy.
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Unscented Kalman Filter (UKF): Algorithm [3/4]

Unscented Kalman filter: Update step

@ Form the sigma points:

—(0) _ —
X =my,

2O =myg + vt [VPJ

]

X;(i+n):m;—\/n+)\|: P;}, i=1,...,n
i

© Propagate sigma points through the measurement model:

Y —hx D), i=o0,...,2n
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Unscented Kalman Filter (UKF): Algorithm [4/4]

Unscented Kalman filter: Update step (cont.)

© Compute the following:

py = Z wm 0
Sk = Z W PP = ) D8 — )T + Re
i=0

Ck= Z W m, ) (j}/((i) - .Uk)T

my =m, + Kk [y — 1]
Py = P, — Kk Sk KL
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Unscented Kalman Filter (UKF): Advantages

@ No closed form derivatives or expectations needed.

@ Not a local approximation, but based on values on a larger
area.

@ Functions f and h do not need to be differentiable.

@ Theoretically, captures higher order moments of
distribution than linearization — the mean is correct for up
to third order monomials.
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Unscented Kalman Filter (UKF): Disadvantage

@ Not a truly global approximation, based on a small set of
trial points.

@ Does not work well with nearly singular covariances, i.e.,
with nearly deterministic systems.

@ Requires more computations than EKF or SLF, e.g.,
Cholesky factorizations on every step.

@ The covariance computation is exact only for linear
functions.

@ Can only be applied to models driven by Gaussian noises.
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Gaussian Moment Matching [1/2]

@ Consider the transformation of x into y:

X ~ N(m,P)
y =9(x).

@ Form Gaussian approximation to (x,y) by directly
approximating the integrals:

o = [ 9(x) N(x | m, P) ox
Sy — / (%) — paa) (@(X) — ) N(X| M, P) dIx

Cu = / (x —m) (@(X) — 47)" N(X | m, P) x.
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Gaussian Moment Matching [2/2]

Gaussian moment matching

The moment matching based Gaussian approximation to the
joint distribution of x and the transformed random variable
y = g(x) + q where x ~ N(m, P) and q ~ N(0, Q) is given as

()~ () (et sw)):

pn = [ 9x) N(x| m,P) dx
Sy = / (%) — paa) (@(X) — )™ N(X| M, P) Ox + Q

Cu = / (x—m) (@(x) — s40)T N(X| m, P) 0x.
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Gaussian Filter [1/3]

Gaussian filter prediction

Compute the following Gaussian integrals:

m, = /f(Xk1) N(Xk—1 [Mg_1,Pr_1) dXk_1

Pi = [ (R(1) = my)) (xe1) — i)

X N(Xk—1 | mMy_1,Pr_1) dXk_1 + Qx_1.
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Gaussian Filter [2/3]
Gaussian filter update

@ Compute the following Gaussian integrals:
= [ hxi) O my By) o
Sic— | (hxe) = 1) (n(x) — )T N mic, Py i+ Ry

Ck = /(xk —m;) (h(xk) — )" N(Xg | My, P,) dIx.

@ Then compute the following:

Kk = Ck S’
my =m, + Ky (Yk — 1k)
Py = P, — Kc Sk K.
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Gaussian Filter [3/3]

@ Special case of assumed density filtering (ADF).

@ Multidimensional Gauss-Hermite quadrature = Gauss
Hermite Kalman filter (GHKF).

@ Cubature integration = Cubature Kalman filter (CKF).

@ Monte Carlo integration = Monte Carlo Kalman filter
(MCKEF).

@ Gaussian process / Bayes-Hermite Kalman filter: Form
Gaussian process regression model from set of sample
points and integrate the approximation.

@ Linearization, unscented transform, central differences,
divided differences can be considered as special cases.
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Gauss-Hermite Kalman Filter (GHKF) [1/2]

@ One-dimensional Gauss-Hermite quadrature of order p:

/g x|01dx~ZW’)g 0y,

=1

o ¢ are roots of pth order Hermite polynomial:

Ho(x) =1
Hi(x) =x
Ho(x) = x?
Hy(x) = x® - 3x...

@ The weights are W) = p!/(p? [Hp_1(£1)]?).
@ Exact for polynomials up to order 2p — 1.
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Gauss-Hermite Kalman Filter (GHKF) [2/2]

@ Multidimensional integrals can be approximated as:

[ 90 N(x|m. P) ax

~ [ a(m+ vPe) N(e 0.1y de

:/.../g(m+fpg) N(&110,1) d&y x - - x N(,|0,1) dép
Z W(/1 X W('”)g(m—i— \/ﬁé-(ﬁ ..... I'n)).

.....

@ Needs p” evaluation points.

@ Gauss-Hermite Kalman filter (GHKF) uses this for
evaluation of the Gaussian integrals.

Simo Sarkka Lecture 5: UKF, GF, GHKF and CKF



Spherical Cubature Integration [1/3]

@ Postulate symmetric integration rule:
/g(g £10,1) d¢ ~ WZg cul),

where the points u() belong to the symmetric set [1] with
generator (1,0,...,0):

1 —1 0
1 0 —1

[1] = o, 10,...1 0|, ]0{,...
0 0 0 0

and W is a weight and c is a parameter yet to be
determined.
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Spherical Cubature Integration [2/3]

@ Due to symmetry, all odd orders integrated exactly.
@ We only need to match the following moments:

/N(ﬁO,I)d§:1
/ﬁN@mn@=1

@ Thus we get the equations

WZ1 = W2n=1
i
WZ[cuj(i)]Z: W2c? =1
i

@ Thus the following rule is exact up to third degree:

[ émI%M—ngw%
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Spherical Cubature Integration [3/3]

@ General Gaussian integral rule:

/g(x) N(x | m,P) dx
— [am+VPe) N |0.n de

2n
1 )
i=1
where
£) — vne, , i=1,....n
—vnei_, , i=n+1,...,2n,

where e; denotes a unit vector to the direction of
coordinate axis /.
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Cubature Kalman Filter (CKF) [1/4]

@ Form the sigma points as:

X0 =my_g+ /P €D i=1,....2n.
© Propagate the sigma points through the dynamic model:
20 —1x"). i=1...2n

© Compute the predicted mean and covariance:

1 S 500
— 1V
il = ?Z K
i=1
2n
P, = lZ( ¢ —m )2 -m)) +Q
k = 2n« k k I\ k k=1-
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Cubature Kalman Filter (CKF) [2/4]

Cubature Kalman filter: Update step

@ Form the sigma points:

X0 —m_ /P i=1,... 2n

© Propagate sigma points through the measurement model:

Y —n M), i=1...2n
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Cubature Kalman Filter (CKF) [3/4]

Cubature Kalman filter: Update step (cont.)
© Compute the following:

Ly = 2n Z y(’)
1 2n
Sk=5- Z(yk” — ) (D — )" + Re
1 2n ) )
Ch =5, > (4 =m) (B — )]
i=1
Kk = C, S’

my = my + K [y — ]
Py = P, — Kk Sk K.
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Cubature Kalman Filter (CKF) [4/4]

@ Cubature Kalman filter (CKF) is a special case of UKF with
a=1,8=0,and x = 0 —the mean weight becomes zero
with these choices.

@ Rule is exact for third order polynomials (multinomials) —
note that third order Gauss-Hermite is exact for fifth order
polynomials.

@ UKF was also originally derived using similar way, but is a
bit more general.

@ Very easy algorithm to implement — quite good choice of
parameters for UKF.
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@ Unscented transform (UT) approximates transformations of
Gaussian variables by propagating sigma points through
the non-linearity.

@ In UT the mean and covariance are approximated as linear
combination of the sigma points.

@ The unscented Kalman filter uses unscented transform for
computing the approximate means and covariance in
non-linear filtering problems.

@ A non-linear transformation can also be approximated with
Gaussian moment matching.

@ Gaussian filter is based on matching the moments with
numerical integration = many kinds of Kalman filters.
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Summary (cont.)

@ Gauss-Hermite Kalman filter (GHKF) uses
multi-dimensional Gauss-Hermite for approximation of
Gaussian filter.

@ Cubature Kalman filter (CKF) uses spherical cubature rule
for approximation of Gaussian filter — but turns out to be
special case of UKF.

@ We can also use Gaussian processes, Monte Carlo or
other methods for approximating the Gaussian integrals.

@ Taylor series, statistical linearization, central differences
and many other methods can be seen as approximations
to Gaussian filter.
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Unscented/Cubature Kalman Filter (UKF/CKEF):

Example

@ Recall the discretized pendulum model

<x,1> < X} o+ X2 1At ) ( 0 >
2] = +
Xk Xg_4 — g sin(x,_;) At Qk—1

n'g

f(xk—1)
Yk = sin(xg) +7k,
——
h(xk)

@ = Matlab demonstration
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