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EKF Filtering Model

Basic EKF filtering model is of the form:

Xk = f(Xk_1) + qk_1
Yk = h(Xg) + rg

@ X, € R"is the state

@ y, € R™ is the measurement

@ qx_1 ~ N(0,Qk_1) is the Gaussian process noise
@ rx ~ N(0,Ry) is the Gaussian measurement noise
@ f(-) is the dynamic model function

@ h(-) is the measurement model function
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Bayesian Optimal Filtering Equations

@ The EKF model is clearly a special case of probabilistic
state space models with

P(Xk | Xk—1) = N(Xx [f(Xk—1), Qk_1)
P(Yk | Xk) = N(Y« [ h(Xk), Rk)

@ Recall the formal optimal filtering solution:
P(Xk | Y1:k—1) = /p(xk | Xk—1) P(Xk—1 | Y1:6-1) dXg—1
1
P(Xk |Y1:4) = ZP(Vk | Xk) P(Xk | Y1:k—1)

@ No closed form solution for non-linear f and h.

Simo Sarkka Lecture 4: EKF and SLF



The Idea of Extended Kalman Filter

@ In EKF, the non-linear functions are linearized as follows:

f(x) ~ f(m) + Fx(m) (x — m)

h(x) ~ h(m) + Hx(m) (x — m)
where x ~ N(m, P), and Fyx, Hy are the Jacobian matrices
of f, h, respectively.

@ Only the first terms in linearization contribute to the
approximate means of the functions f and h.

@ The second term has zero mean and defines the
approximate covariances of the functions.

@ Let’s take a closer look at transformations of this kind.
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Linear Approximations of Non-Linear Transforms [1/4]

@ Consider the transformation of x into y:
X ~ N(m,P)
y =9(x)
@ The probability density of y is now non-Gaussian:
p(y) = ()| N(g~"(y) |m,P)
@ Taylor series expansion of g on mean m:
g(x) = g(m + 6x) = g(m) + Gx(m) ox
1 ]
+ XI: EéxT G{)(m)oxe; + ...

where ix = x — m.

Simo Sarkka Lecture 4: EKF and SLF



Linear Approximations of Non-Linear Transforms [2/4]

@ First order, that is, linear approximation:

9(x) ~ g(m) + Gx(m) ox

@ Taking expectations on both sides gives approximation of
the mean:

Elg(x)] ~ g(m)
@ For covariance we get the approximation:

Covig(x)] = E [(9(x) ~ Elg(x)]) (9(x) ~ Elg(x)))"
(

~E |(9(x) — g(m)) (g(x) — g(m))"]
~ Gy(m)P G} (m)
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Linear Approximations of Non-Linear Transforms [3/4]

@ In EKF we will need the joint covariance of x and g(x) + q,
where q ~ N(0, Q).
@ Consider the pair of transformations
X ~ N(m,P)
q~ N(0,Q)
Yi=X
y2 = g(x) +Qq.

@ Applying the linear approximation gives

= ( (xi+q>] ~(gm)

g
Cov Kg(x +q>] ~ <Gx(Pm)P Gx(m;afég(nn)l) +Q>
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Linear Approximations of Non-Linear Transforms [4/4]

Linear Approximation of Non-Linear Transform

The linear Gaussian approximation to the joint distribution of x
and y = g(x) + q, where x ~ N(m,P) and q ~ N(0, Q) is

)N () (e &)

where
py = g(m)
S, = Gx(m)PGj(m)+Q
C.=PG)(m).
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Derivation of EKF [1/4]

@ Assume that the filtering distribution of previous step is
Gaussian

P(Xk—1 [ Y1:k-1) = N(Xk—1 | My_1,Px_1)

@ The joint distribution of x,x_1 and xx = f(Xx_1) + qx_1 is
non-Gaussian, but can be approximated linearly as

Xp_
P(Xk—1, Xk, |Y1:k—1) =N <[ )k(k1] ‘m’,P’) ;

where
my_4
m =
<f(mk1)>
p_ < Pi1 Pi—1 Fx(my_1) > ‘
Fr(Mk_1)Pr—1  Fx(Mmy_1)Px_1 FI(Mk_1) + Qx_
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Derivation of EKF [2/4]

@ Recall that if x and y have the joint Gaussian probability

e

y ~ N(b,B)

then

@ Thus, the approximate predicted distribution of X, given
Yi.k—1 is Gaussian with moments

m; = f(my_4)
P, = Fx(my_1)Px_1 FL(my_1) + Qx4
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Derivation of EKF [3/4]

@ The joint distribution of xx and yx = h(xx) + r is also
non-Gaussian, but by linear approximation we get

X
P(Xk, Yk | Y1:k—1) =N ([ k} )m”, P") :
Yk

where
()
h(m,)
P’ — < P; P; HI(m;) >
Hx(m ) Py Hx(my) P Hy(my) + Ry
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@ Recall that if
()~ (6) (& 3)

x|]y~N@+CB'(y—b),A-CB~'C").

then

@ Thus we get
P(Xk | Yk; Y1:k—1) = N(Xx [ Mg, Pg),

where
my = m; + P, Hy(Hx P, Hx + R) ' [yx — h(m})]
Py = P, — P, Hy (Hx P, Hy + Ri) "' Hy Py
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EKF Equations
Extended Kalman filter

@ Prediction:

m, = f(my_+)
Py = Fx(my_1) Pe_1 Fy(my_1) + Q1.

@ Update:
Vi =Yk —h(m,)
Sk = Hx(m, ) P, Hi(m,) + R«
Ki = P, Hy(m,) S,
mg=m, + Ky vi
Py = P, — K Sk KF.
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EKF Example [1/2]

@ Pendulum with mass m = 1, pole
length L = 1 and random force w(t):

d’a

w2 =9 sin(a) + w(t).

@ In state space form:

it (aafat) = (g snter) * (wtn)

@ Assume that we measure the
X-position:

Yk = sin(a(tk)) + rk,
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EKF Example [2/2]

@ If we define state as x = («, da/dt), by Euler integration
with time step At we get

()bt ()
Xj; Xji_q — g sin(x,_,) At Qic_+
f(Xic—1)
;

Yk = sin(Xy ) +rk,
——
h(xk)

@ The required Jacobian matrices are:

1 At

Fx(x) = (—g cos(x\) At 1 > : H,(x) = (cos(x") 0)
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Advantages of EKF

@ Almost same as basic Kalman filter, easy to use.

@ Intuitive, engineering way of constructing the
approximations.

@ Works very well in practical estimation problems.
@ Computationally efficient.
@ Theoretical stability results well available.
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Limitations of EKF

@ Does not work in considerable non-linearities.
@ Only Gaussian noise processes are allowed.

@ Measurement model and dynamic model functions need to
be differentiable.

@ Computation and programming of Jacobian matrices can
be quite error prone.
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The Idea of Statistically Linearized Filter

@ In SLF, the non-linear functions are statistically linearized
as follows:

f(X) ~ b+ Af (X - m)
h(x) ~ by, + Ap (X —m)
where x ~ N(m, P).
@ The parameters by, As and by, A, are chosen to minimize
the mean squared errors of the form
MSE;(by, Ar) = E[||f(x) — by — Af 6x|[?]
MSEp(bp, Ap) = E[||h(X) — by, — Ay 6x]|?]
where X = x — m.
@ Describing functions of the non-linearities with Gaussian

input.
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Statistical Linearization of Non-Linear Transforms [1/4]

@ Again, consider the transformations
X ~ N(m,P)
y = 9(x).
@ Form linear approximation to the transformation:
g(x) ~ b + Aox,

where /X = X — m.

@ Instead of using the Taylor series approximation, we
minimize the mean squared error:

MSE(b, A) = E[(g(x) — b — Aox)"(g(x) — b — A6x)]
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Statistical Linearization of Non-Linear Transforms [2/4]

@ Expanding the MSE expression gives:

MSE(b,A) = E[g"(x) g(x) — 29" (x)b — 29 (x) A 6x
+b"b —2b" Adx+ox" AT A 6x]
—_— e N———

=0 tr{APAT}

@ Derivatives are:
OMSE(b, A
aé’) = —2E[g(x)] +2b
WS';S"\) _ _2E[g(x)ox"] + 2AP
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Statistical Linearization of Non-Linear Transforms [3/4]

@ Setting derivatives with respect to b and A zero gives

b = E[g(x)]
A =E[g(x)ox']P".

@ Thus we get the approximations

Efg(x)] ~ E[g(x)
Covg(x)] ~ E[g(x) 5] P~ E[g(x) sx"]".

@ The mean is exact, but the covariance is approximation.
@ The expectations have to be calculated in closed form!
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Statistical Linearization of Non-Linear Transforms [4/4]

Statistical linearization

The statistically linearized Gaussian approximation to the joint
distribution of x and y = g(x) + q where x ~ N(m, P) and
q ~ N(0,Q) is given as

)~ ((5) et s2)

ps = E[g(x)]
Ss=E[g(x)sx"|P~" E[g(x)0x']" + Q
Cs = E[g(x)ox™]".

where
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Statistically Linearized Filter [1/3]

@ The statistically linearized filter (SLF) can be derived in the
same manner as EKF.

@ Statistical linearization is used instead of Taylor series
based linearization.

@ Requires closed form computation of the following
expectations for arbitrary x ~ N(m, P):

E[f(x)]
E[f(x) ox]
E[h(x)]
E[h(x) 6],

where ix = x — m.
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Statistically Linearized Filter [2/3]

@ Prediction (expectations w.r.t. X,_1 ~ N(my_1,Px_1)):

my = E[f(Xk_1)]
P = E[f(xk_1) oxf_{]P, 'y E[f(Xk_1)0x}_4]" + Qx_1,

@ Update (expectations w.r.t. X, ~ N(m,,P,)):

Vi = Yk — E[h(xk)]

Sk = E[h(xk) ox£] (P, )" E[h(xx) xi]" + R«
Kk = E[h(xx) ox}]" S,

mg =m,_ + Ky vk

Py = P, — Kk Sk K.
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Statistically Linearized Filter [3/3]

@ If the function g(x) is differentiable, we have
E[g(x) (x — m)'] = E[Gx(X)] P,

where Gy (x) is the Jacobian of g(x), and x ~ N(m,P).

@ In practice, we can use the following property for
computation of the expectation of the Jacobian:

@ The resulting filter resembles EKF very closely.

@ Related to replacing Taylor series with Fourier-Hermite
series in the approximation.
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Statistically Linearized Filter: Example [1/2]

@ Recall the discretized pendulum model

<x,1>:< X3+ x2_ 1At >+< 0 >
Xi Xg_q —gsin(x{_4) At Qk—1
f(Xk_1)
]

Yk = sin(Xy ) +rk,
——
h(xk)

@ If x ~ N(m, P), by brute-force calculation we get

my + mp At
E[f(x)] = <m2 _g sin(,1n1) exzp(—PH/Z) At)

E[h(x)] = sin(my) exp(—P11/2)
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Statistically Linearized Filter: Example [2/2]

@ The required cross-correlation for prediction step is

Elf(x) (x — m)T C11 C12) ’
L) ( )] <021 Co2
where

C11 = Piy + At Py
Ci2 = Pi2 + At Py
C21 = P1p — g At cos(my) P11 exp(—P11/2)
Co2 = P — g At cos(my) Pr2 exp(—P11/2)

@ The required term for update step is
T, _ (cos(my) Pyy exp(—P11/2)
E[h(X) (X N m) ] o <COS(m1) P12 exp(—P11/2)
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Advantages of SLF

@ Global approximation, linearization is based on a range of
function values.

@ Often more accurate and more robust than EKF.

@ No differentiability or continuity requirements for
measurement and dynamic models.

@ Jacobian matrices do not need to be computed.
@ Often computationally efficient.
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Limitations of SLF

@ Works only with Gaussian noise terms.

@ Expected values of the non-linear functions have to be
computed in closed form.

@ Computation of expected values is hard and error prone.

@ If the expected values cannot be computed in closed form,
there is not much we can do.
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Fourier-Hermite Series [1/3]

@ We can generalize statistical linearization to higher order
polynomial approximations:

g(x) ~ b+ Adsx+0x"CoxX + ...

where X ~ N(m,P) and 6x = x — m.
@ We could then find the coefficients by minimizing

MSE4(b,A,C,...) = E[||g(x) —b — Adx — X' Cox —...|[|%]

@ Possible, but calculations will be quite tedious.
@ A better idea is to use Hilbert space theory.
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Fourier-Hermite Series [2/3]

@ Let’s define an inner product for scalar functions g and f as

follows:
(t.) = [ x)9(0) N(x | m. P) ax
= E[f(x) g(x)],
@ Form the Hilbert space of functions by defining the norm
gl = (g, 9)-

@ There exists a polynomial basis of the Hilbert space — the
polynomials are multivariate Hermite polynomials

,,,,, ap](xi m,P) = ’Ll[au,...,ap](l-i1 (x —m)),
where L is a matrix such that P = LLT and

8”
Hiay.....a (%) = (=1)° eXIO(HXIIZ/Z)m exp(—|[x|[?/2).

T
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Fourier-Hermite Series [3/3]

@ We can expand a function g(x) into a Fourier-Hermite
series as follows:

g(x) = Z Z E[g [a1 ..... ak](X; m, P)]

ayk](x; m,P).

.....

@ The error criterion can be expressed also as follows:
MSEg = E[llg(x) — §o()IF] = > [lgi(X) — &7 (%)I|x
i

where
§°(x) =b — Adx — 6x"Cox —... (up to order p)

@ But the Hilbert space theory tells us that the optimal g°(x)
is given by truncating the Fourier—Hermite series to order
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Idea of Fourier-Hermite Kalman Filter

@ Fourier-Hermite Kalman filter (FHKF) is like the statistically
linearized filter, but uses a higher order series expansion

@ In practice, we can express the series in terms of
expectations of derivatives by using:

E[g(x) H[a1,...,ak](x? m, P)]

n k
d*g(x) ]
= E|l————1 L
Z |:aXb1 .. axbk rg bm,am

by, b=1

@ The expectations of derivatives can be computed
analytically by differentiating the following w.r.t. to mean m:

g(m, P)—E[g(x]—/g N(x |m. P) dx
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Properties of Fourier-Hermite Kalman Filter

@ Global approximation, based on a range of function values.
@ No differentiability or continuity requirements.
@ Exact up to an arbitrary polynomials of order p.

@ The expected values of the non-linearities needed in
closed form.

@ Analytical derivatives are needed in computing the series
coefficients.

@ Works only in Gaussian noise case.

Simo Sarkka Lecture 4: EKF and SLF



@ EKF, SLF and FHKF can be applied to filtering models of
the form

Xk = f(Xk—1) + Ak—1
Yk = h(Xk) + 1y,

@ EKF is based on Taylor series expansions of f and h.

e Advantages: Simple, intuitive, computationally efficient
e Disadvantages: Local approximation, differentiability
requirements, only for Gaussian noises.
@ SLF is based on statistical linearization:
e Advantages: Global approximation, no differentiability
requirements, computationally efficient
e Disadvantages: Closed form computation of expectations,
only for Gaussian noises.
@ FHKF is a generalization of SLF into higher order
polynomials approximations.
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