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Batch Linear Regression [1/2]

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

t

y

 

 
Measurement

True signal

Consider the linear regression model

yk = θ1 + θ2 tk + εk , k = 1, . . . ,T ,

with εk ∼ N(0, σ2) and θ = (θ1, θ2) ∼ N(m0,P0).
In probabilistic notation this is:

p(yk |θ) = N(yk |Hk θ, σ
2)

p(θ) = N(θ |m0,P0),

where Hk = (1 tk ).
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Batch Linear Regression [2/2]

The Bayesian batch solution by the Bayes’ rule:

p(θ | y1:T ) ∝ p(θ)
∏T

k=1 p(yk |θ)

= N(θ |m0,P0)
∏T

k=1 N(yk |Hk θ, σ
2).

The posterior is Gaussian

p(θ | y1:T ) = N(θ |mT ,PT ).

The mean and covariance are given as

mT =

[
P−1

0 +
1
σ2 HTH

]−1 [ 1
σ2 HTy + P−1

0 m0

]
PT =

[
P−1

0 +
1
σ2 HTH

]−1

,

where Hk = (1 tk ), H = (H1; H2; . . . ; HT ), y = (y1; . . . ; yT ).
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Recursive Linear Regression [1/4]

Assume that we have already computed the posterior
distribution, which is conditioned on the measurements up
to k − 1:

p(θ | y1:k−1) = N(θ |mk−1,Pk−1).

Assume that we get the k th measurement yk . Using the
equations from the previous slide we get

p(θ | y1:k ) ∝ p(yk |θ) p(θ | y1:k−1)

∝ N(θ |mk ,Pk ).

The mean and covariance are given as

mk =

[
P−1

k−1 +
1
σ2 HT

k Hk

]−1 [ 1
σ2 HT

k yk + P−1
k−1mk−1

]
Pk =

[
P−1

k−1 +
1
σ2 HT

k Hk

]−1

.

Simo Särkkä Lecture 2: From Linear Regression to Kalman Filter and Beyond



Recursive Linear Regression [2/4]

By the matrix inversion lemma (or Woodbury identity):

Pk = Pk−1 − Pk−1HT
k

[
HkPk−1HT

k + σ2
]−1

HkPk−1.

Now the equations for the mean and covariance reduce to

Sk = HkPk−1HT
k + σ2

Kk = Pk−1HT
k S−1

k

mk = mk−1 + Kk [yk − Hkmk−1]

Pk = Pk−1 − KkSkKT
k .

Computing these for k = 0, . . . ,T gives exactly the linear
regression solution.
A special case of Kalman filter.
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Recursive Linear Regression [3/4]
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Recursive Linear Regression [3/4]
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Recursive Linear Regression [3/4]
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Recursive Linear Regression [4/4]

Convergence of the recursive solution to the batch solution – on
the last step the solutions are exactly equal:
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Batch vs. Recursive Estimation [1/2]

General batch solution:
Specify the measurement model:

p(y1:T |θ) =
∏

k

p(yk |θ).

Specify the prior distribution p(θ).
Compute posterior distribution by the Bayes’ rule:

p(θ |y1:T ) =
1
Z

p(θ)
∏

k

p(yk |θ).

Compute point estimates, moments, predictive quantities
etc. from the posterior distribution.
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Batch vs. Recursive Estimation [2/2]

General recursive solution:
Specify the measurement likelihood p(yk |θ).
Specify the prior distribution p(θ).
Process measurements y1, . . . ,yT one at a time, starting
from the prior:

p(θ |y1) =
1
Z1

p(y1 |θ)p(θ)

p(θ |y1:2) =
1
Z2

p(y2 |θ)p(θ |y1)

p(θ |y1:3) =
1
Z3

p(y3 |θ)p(θ |y1:2)

...

p(θ |y1:T ) =
1

ZT
p(yT |θ)p(θ |y1:T−1).

The result at the last step is the batch solution.
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Advantages of Recursive Solution

The recursive solution can be considered as the online
learning solution to the Bayesian learning problem.
Batch Bayesian inference is a special case of recursive
Bayesian inference.
The parameter can be modeled to change between the
measurement steps⇒ basis of filtering theory.
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Drift Model for Linear Regression [1/3]

Let assume Gaussian random walk between the
measurements in the linear regression model:

p(yk |θk ) = N(yk |Hk θk , σ
2)

p(θk |θk−1) = N(θk |θk−1,Q)

p(θ0) = N(θ0 |m0,P0).

Again, assume that we already know

p(θk−1 | y1:k−1) = N(θk−1 |mk−1,Pk−1).

The joint distribution of θk and θk−1 is (due to Markovianity
of dynamics!):

p(θk ,θk−1 | y1:k−1) = p(θk |θk−1) p(θk−1 | y1:k−1).
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Drift Model for Linear Regression [2/3]

Integrating over θk−1 gives:

p(θk | y1:k−1) =

∫
p(θk |θk−1) p(θk−1 | y1:k−1) dθk−1.

This equation for Markov processes is called the
Chapman-Kolmogorov equation.
Because the distributions are Gaussian, the result is
Gaussian

p(θk | y1:k−1) = N(θk |m−
k ,P

−
k ),

where

m−
k = mk−1

P−
k = Pk−1 + Q.
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Drift Model for Linear Regression [3/3]

As in the pure recursive estimation, we get

p(θk | y1:k ) ∝ p(yk |θk ) p(θk | y1:k−1)

∝ N(θk |mk ,Pk ).

After applying the matrix inversion lemma, mean and
covariance can be written as

Sk = HkP−
k HT

k + σ2

Kk = P−
k HT

k S−1
k

mk = m−
k + Kk [yk − Hkm−

k ]

Pk = P−
k − KkSkKT

k .

Again, we have derived a special case of the Kalman filter.
The batch version of this solution would be much more
complicated.

Simo Särkkä Lecture 2: From Linear Regression to Kalman Filter and Beyond



State Space Notation

In the previous slide we formulated the model as

p(θk |θk−1) = N(θk |θk−1,Q)

p(yk |θk ) = N(yk |Hk θk , σ
2)

But in Kalman filtering and control theory the vector of
parameters θk is usually called “state” and denoted as xk .
More standard state space notation:

p(xk |xk−1) = N(xk |xk−1,Q)

p(yk |xk ) = N(yk |Hk xk , σ
2)

Or equivalently

xk = xk−1 + qk−1

yk = Hk xk + rk ,

where qk−1 ∼ N(0,Q), rk ∼ N(0, σ2).
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Kalman Filter [1/2]

The canonical Kalman filtering model is

p(xk |xk−1) = N(xk |Ak−1 xk−1,Qk−1)

p(yk |xk ) = N(yk |Hk xk ,Rk ).

More often, this model can be seen in the form

xk = Ak−1 xk−1 + qk−1

yk = Hk xk + rk .

The Kalman filter actually calculates the following
distributions:

p(xk |y1:k−1) = N(xk |m−
k ,P

−
k )

p(xk |y1:k ) = N(xk |mk ,Pk ).
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Kalman Filter [2/2]

Prediction step of the Kalman filter:

m−
k = Ak−1 mk−1

P−
k = Ak−1 Pk−1 AT

k−1 + Qk−1.

Update step of the Kalman filter:

Sk = Hk P−
k HT

k + Rk

Kk = P−
k HT

k S−1
k

mk = m−
k + Kk [yk − Hk m−

k ]

Pk = P−
k − Kk Sk KT

k .

These equations will be derived from the general Bayesian
filtering equations in the next lecture.
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Probabilistic State Space Models [1/2]

Generic non-linear state space models

xk = f(xk−1,qk−1)

yk = h(xk , rk ).

Generic Markov models

xk ∼ p(xk |xk−1)

yk ∼ p(yk |xk ).

Continuous-discrete state space models involving
stochastic differential equations:

dx
dt

= f(x, t) + w(t)

yk ∼ p(yk |x(tk )).
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Probabilistic State Space Models [2/2]

Non-linear state space model with unknown parameters:

xk = f(xk−1,qk−1,θ)

yk = h(xk , rk ,θ).

General Markovian state space model with unknown
parameters:

xk ∼ p(xk |xk−1,θ)

yk ∼ p(yk |xk ,θ).

Parameter estimation will be considered later – for now, we
will attempt to estimate the state.
Why Bayesian filtering and smoothing then?
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Bayesian Filtering, Prediction and Smoothing

In principle, we could just use the (batch) Bayes’ rule

p(x1, . . . ,xT |y1, . . . ,yT )

=
p(y1, . . . ,yT |x1, . . . ,xT ) p(x1, . . . ,xT )

p(y1, . . . ,yT )
,

Curse of computational complexity: complexity grows more
than linearly with number of measurements (typically we
have O(T 3)).
Hence, we concentrate on the following:

Filtering distributions:

p(xk |y1, . . . ,yk ), k = 1, . . . ,T .

Prediction distributions:

p(xk+n |y1, . . . ,yk ), k = 1, . . . ,T , n = 1,2, . . . ,

Smoothing distributions:

p(xk |y1, . . . ,yT ), k = 1, . . . ,T .

Simo Särkkä Lecture 2: From Linear Regression to Kalman Filter and Beyond



Bayesian Filtering, Prediction and Smoothing (cont.)

Measurements Estimate

0 Tk

Prediction:

Filtering:

Smoothing:
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Filtering Algorithms

Kalman filter is the classical optimal filter for
linear-Gaussian models.
Extended Kalman filter (EKF) is linearization based
extension of Kalman filter to non-linear models.
Unscented Kalman filter (UKF) is sigma-point
transformation based extension of Kalman filter.
Gauss-Hermite and Cubature Kalman filters (GHKF/CKF)
are numerical integration based extensions of Kalman filter.
Particle filter forms a Monte Carlo representation (particle
set) to the distribution of the state estimate.
Grid based filters approximate the probability distributions
on a finite grid.
Mixture Gaussian approximations are used, for example, in
multiple model Kalman filters and Rao-Blackwellized
Particle filters.
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Smoothing Algorithms

Rauch-Tung-Striebel (RTS) smoother is the closed form
smoother for linear Gaussian models.
Extended, statistically linearized and unscented RTS
smoothers are the approximate nonlinear smoothers
corresponding to EKF, SLF and UKF.
Gaussian RTS smoothers: cubature RTS smoother,
Gauss-Hermite RTS smoothers and various others
Particle smoothing is based on approximating the
smoothing solutions via Monte Carlo.
Rao-Blackwellized particle smoother is a combination of
particle smoothing and RTS smoothing.
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Demonstration

Batch and recursive linear regression.
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Linear and Linear in Parameters Models

Basic linear regression model with noise εk :

yk = a0 + a1 sk + εk , k = 1, . . . ,N.

Define matrix Hk = (1 sk ) and state x = (a0 a1)T :

yk = Hk x + ek , k = 1, . . . ,N.

For notation sake we can also define xk = x such that
xk = xk−1:

xk = xk−1

yk = Hk xk + ek .

Thus we have a linear Gaussian state space model,
solvable with the basic Kalman filter.
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Linear and Linear in Parameters Models (cont.)

More general linear regression models:

yk = a0 + a1 sk ,1 + · · ·+ ad sk ,d + εk , k = 1, . . . ,N.

Defining matrix Hk = (1 sk ,1 · · · sk ,d ) and state
xk = x = (a0 a1 · · · ad )T gives linear Gaussian state
space model:

xk = xk−1

yk = Hk xk + εk .

Linear in parameters models:

yk = a0 + a1 f1(sk ) + · · ·+ ad fd (sk ) + εk .

Definitions Hk = (1 f1(sk ) · · · fd (sk )) and
xk = x = (a0 a1 · · · ad )T again give linear Gaussian state
space model.
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Non-Linear and Neural Network Models

Non-linearity in measurements models arises in
generalized linear models, e.g.

yk = g−1(a0 + a1 sk ) + εk .

The measurement model is now non-linear and if we
define x = (a0 a1)T and h(x) = g−1(x1 + x2 sk ) we get
non-linear Gaussian state space model:

xk = xk−1

yk = h(xk ) + εk .

Neural network models such as multi-layer perceptron
(MLP) models can be also transformed into the above
form.
Instead of basic Kalman filter we need extended Kalman
filter or unscented Kalman filter to cope with the
non-linearity.
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Adaptive Filtering Models

In digital signal processing, a commonly used signal model
is the autoregressive model

yk = w1 yk−1 + · · ·+ wd yk−d + εk ,

In adaptive filtering the weights wi are estimated from data.
If we define matrix Hk = (yk−1 · · · yk−d ) and state as
xk = (w1 · · · wd )T , we get linear Gaussian state space
model:

xk = xk−1

yk = Hk xk + εk .

The estimation problem can be solved with Kalman filter.
The LMS algorithm can be interpreted as approximate
version of this Kalman filter.
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Adaptive Filtering Models (cont.)

In time varying autoregressive models (TVAR) models the
weights are time-varying:

yk = w1,k yk−1 + · · ·+ wd ,k yk−d + εk ,

Typical model for the time dependence of weights:

wi,k = wi,k−1 + qk−1,i , qk−1,i ∼ N(0, σ2), i = 1, . . . ,d .

Can be written as linear Gaussian state space model with
process noise qk−1 = (qk−1,1 · · · qk−1,d )T :

xk = xk−1 + qk−1

yk = Hk xk + εk .

More general (TV)ARMA models can be handled similarly.
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Dynamic Model for a Car [1/3]

g1(t)

g2(t)

The dynamics of the car in 2d
(x1, x2) are given by the Newton’s
law:

g(t) = m a(t),

where a(t) is the acceleration, m is
the mass of the car, and g(t) is a
vector of (unknown) forces acting
the car.

We shall now model g(t)/m as a 2-dimensional white
noise process:

d2x1/dt2 = w1(t)

d2x2/dt2 = w2(t).
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Dynamic Model for a Car [2/3]

If we define x3(t) = dx1/dt , x4(t) = dx2/dt , then the model
can be written as a first order system of differential
equations:

d
dt


x1
x2
x3
x4

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

F


x1
x2
x3
x4

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

L

(
w1
w2

)
.

In shorter matrix form:

dx
dt

= F x + L w.
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Dynamic Model for a Car [3/3]

If the state of the car is measured (sampled) with sampling
period ∆t it suffices to consider the state of the car only at
the time instances t ∈ {0,∆t ,2∆t , . . .}.
The dynamic model can be discretized, which leads to the
linear difference equation model

xk = A xk−1 + qk−1,

where xk = x(tk ), A is the transition matrix and qk is a
discrete-time Gaussian noise process.
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Measurement Model for a Car

(y1, y2)

Assume that the position of the car
(x1, x2) is measured and the
measurements are corrupted by
Gaussian measurement noise
e1,k ,e2,k :

y1,k = x1,k + e1,k

y2,k = x2,k + e2,k .

The measurement model can be now written as

yk = H xk + ek , H =

(
1 0 0 0
0 1 0 0

)
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Model for Car Tracking

The dynamic and measurement models of the car now
form a linear Gaussian filtering model:

xk = A xk−1 + qk−1

yk = H xk + rk ,

where qk−1 ∼ N(0,Q) and rk ∼ N(0,R).
The posterior distribution is Gaussian

p(xk |y1, . . . ,yk ) = N(xk |mk ,Pk ).

The mean mk and covariance Pk of the posterior
distribution can be computed by the Kalman filter.
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Re-Entry Vehicle Model [1/3]
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Gravitation law:

F = m a(t) = −G m M r(t)
|r(t)|3

.

If we also model the friction and uncertainties:

a(t) = −G M r(t)
|r(t)|3

− D(r(t)) |v(t)|v(t) + w(t).
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Re-Entry Vehicle Model [2/3]

If we define x = (x1 x2
dx1
dt

dx2
dt )T , the model is of the form

dx
dt

= f(x) + L w(t).

where f(·) is non-linear.
The radar measurement:

r =
√

(x1 − xr )2 + (x2 − yr )2 + er

θ = tan−1
(

x2 − yr

x1 − xr

)
+ eθ,

where er ∼ N(0, σ2
r ) and eθ ∼ N(0, σ2

θ ).
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Re-Entry Vehicle Model [3/3]

By suitable numerical integration scheme the model can be
approximately written as discrete-time state space model:

xk = f(xk−1,qk−1)

yk = h(xk , rk ),

where yk is the vector of measurements, and
qk−1 ∼ N(0,Q) and rk ∼ N(0,R).
The tracking of the space vehicle can be now implemented
by, e.g., extended Kalman filter (EKF), unscented Kalman
filter (UKF) or particle filter.
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Summary

Linear regression problem can be solved as batch problem
or recursively – the latter solution is a special case of
Kalman filter.
A generic Bayesian estimation problem can also be solved
as batch problem or recursively.
If we let the linear regression parameter change between
the measurements, we get a simple linear state space
model – again solvable with Kalman filtering model.
By generalizing this idea and the solution we get the
Kalman filter algorithm.
By further generalizing to non-Gaussian models results in
generic probabilistic state space models.
Bayesian filtering and smoothing methods solve Bayesian
inference problems on state space models recursively.
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