
Using Crowd-Sourced Viewing Statistics to Save Energy in
Wireless Video Streaming

Mohammad Ashraful Hoque, Matti Siekkinen, Jukka K. Nurminen
Aalto University School of Science, Finland

{mohammad.hoque, matti.siekkinen, jukka.k.nurminen}@aalto.fi

ABSTRACT
Video streaming on smartphones is one of the most popular
but also most energy hungry services today. Using mobile
video services results in two contradictory sources of energy
waste for smartphones: i) energy waste because of exces-
sively aggressive prefetching of content that the user will
not watch because of abandoning the session, and ii) ex-
cessive amount of tail energy, which is energy wasted by
keeping the wireless interface powered on after receiving a
chunk of content; this is caused by prefetching chunks that
are too small. To remedy this, we propose a novel download
scheduling algorithm based on crowd-sourced video viewing
statistics. Our algorithm judiciously evaluates the probabil-
ity of a user interrupting a video viewing in order to perform
the right amount of prefetching. In this way, the algorithm
balances the amount of the two above-mentioned kinds of
energy waste. By simulations, we show that our scheduler
cuts the energy waste to half compared to existing down-
load strategies. We have also developed an Android proto-
type that implements the download scheduler together with
a novel downloader that speeds up the download by exploit-
ing the Fast Start technique. The prototype exhibits the
desired properties of the scheduler, and its faster download-
ing mechanism yields further energy savings of up to 80%
compared to the default Android YouTube app.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]:
Distributed Systems[Distributed Application, Client/Server]

Keywords
Energy Saving; Mobile Multimedia; Tail Energy

1. INTRODUCTION
Energy consumption in modern smartphones has a sig-

nificant impact on user satisfaction. Radio communication
using the device’s wireless network interfaces, such as Wi-Fi,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MobiCom’13, September 30 - October 04 2013, Miami, FL, USA
Copyright 2013 ACM 978-1-4503-1999-7/13/09 ...$15.00.
http://dx.doi.org/10.1145/2500423.2500427.

3G, and LTE, consumes a significantly large fraction of the
total energy. This energy consumption is specifically of con-
cern for services that are frequently used and that generate
a lot of traffic. Mobile video streaming is a prime example
of such services.

Today, mobile video services employ a range of techniques
to deliver content to smartphones. The delivery mechanisms
differ in the rate that the content is transmitted and in the
amount of content prefetched and buffered by the player.
The chosen technique depends on the behaviour of both the
server and the client application [21, 16]. An aggressive
prefetching technique improves user experience of watching
a video but may lead to significant amount of unnecessar-
ily downloaded content if the user abandons watching the
video [11]. As a result, the associated downloading energy
is also wasted. On the other hand, downloading the video
content in small chunks reduces the probability of down-
loading unnecessary content but it is also energy inefficient
because of the so-called tail energy present in mobile wire-
less communication. This energy is consumed as a result of
keeping the radio powered on for a while after receiving or
transmitting the last bit of content.

This paper presents a novel download scheduling algo-
rithm which optimizes the energy consumption while stream-
ing video to a mobile device via a wireless network inter-
face (WNI). The novelty lies in the algorithm leveraging
crowd-sourced video viewing statistics in order to quantify
the probability of a user abandoning the watching of a video.
The algorithm then calculates an energy optimal download
schedule based on these probabilities. Extensive evaluations
of our algorithm show that such statistics help to cut the en-
ergy waste to half compared to the best known alternative
download strategies.

In summary, this paper makes the following contributions.

• We identify the sources of energy inefficiency in mobile
video streaming and demonstrate that current down-
load strategies suffer from these problems. Specifically,
we formulate the problem of energy optimization of
download scheduling in video streaming when users
have a non-zero probability of abandoning the session.

• We design eSchedule, which is a download schedul-
ing algorithm based on crowd-sourced video viewing
statistics and power modeling. We show through sim-
ulations that this algorithm is able to cut the energy
waste to half compared to currently existing other ap-
proaches.

• We present a YouTube-compliant Android prototype
called StreamThrottler, which comprises two compo-
nents: implementation of eSchedule and a novel down-
loader that downloads an individual chunk of content
at the maximum bulk transfer capacity. We evaluate
it on Samsung Galaxy SIII 4G and compare the per-
formance of StreamThrottler to the default Android
YouTube player.

The rest of the paper is structured as follows. The next
section outlines the background to mobile video streaming,
energy consumption and lists the factors that result in en-
ergy being wasted. Section 3 presents our novel download
scheduler, called eSchedule, which we evaluate by applying
simulations, in Section 4. Section 5 describes and evaluates
the Android prototype called StreamThrottler. In Section 6,
we discuss the practical issues associated with the player
buffer, bandwidth fluctuation and audience retention infor-
mation. Finally, we contrast our work with earlier research
in section 7 before concluding the paper.

2. WIRELESS VIDEO STREAMING AND
ENERGY CONSUMPTION

In this section, we discuss the different forms of energy
waste that emerge during streaming video over wireless tech-
nologies. The focus is HTTP-based streaming over TCP be-
cause of its dominant status. We first briefly consider the
different ways that streaming traffic is delivered from the
server to the client and show the resulting energy consump-
tion in each case. Then, we explicitly highlight the sources
of energy waste that motivate us to propose the novel down-
load scheduling scheme described in Section 3.

2.1 Video Streaming using HTTP over TCP
Today HTTP over TCP is by far the most commonly used

protocol suite exploited by streaming services to deliver mo-
bile videos [13]. The streaming services have to accommo-
date bandwidth fluctuation and jitter, which commonly oc-
cur due to the best-effort service of the Internet. To remedy
these, content is prefetched from the streaming server and
stored at the client player’s playback buffer. This buffering
is performed right at the beginning of the streaming session
and, for this reason, it is commonly referred to as Fast Start.

Encoding rate (YouTube Flash player
in browser for HD videos)

Throttling (YouTube Flash
player in browser for LD/

SD videos)

ON-OFF-M (YouTube
native App)

ON-OFF-S
(Dailymotion/Vimeo

native App)

Fast Caching (YouTube
HTML5 player in browser)

zwa/zwp

Video Viewing Time

Fast Start

Figure 1: Typical mobile video streaming strategies with dif-
ferent mobile video services. HD refers to high definition videos
(e.g., 720-1080p). LD and SD refer to low and standard defini-
tion videos respectively (e.g., 240-480p). The height of a rectangle
represents the download rate and the width the download time.

Following the Fast Start buffering, the technique for de-
livering the remaining content varies and depends on the
combination of the service, player implementation, and de-
vice characteristics. From the traffic pattern of YouTube,
Dailymotion and Vimeo players in Samsung Galaxy SIII 4G
(Android Jelly Bean 4.1.2) we identified a number of strate-
gies employed by these video services for constant bit rate
streaming (see Figure 1). YouTube exhibits all the stream-
ing techniques in the Android platform with its combination
of browser and the native players, except ON-OFF-S. The
Dailymotion, and Vimeo applications apply ON-OFF-S.

Figure 1 shows large differences occur in the way the wire-
less interface is utilized, depending on the type of strategy.
Fast Caching simply downloads the whole video in one go
and the wireless interface is efficiently utilized. However,
because users often do not watch the whole video, using this
strategy may lead to a significant amount of content being
unnecessarily downloaded [11].

Encoding rate streaming results from a situation where
the server intends to send initially more data than the client
player is able or willing to buffer. As a consequence, TCP
flow control activates and allows the server to send the rest
of the content at the rate at which the client player consumes
it, i.e. encoding rate. This results in a light but continuous
utilization of the wireless interface.

By throttling the sending rate, the server sends content
to the client at a rate which is lower than the bulk trans-
fer capacity but higher than the stream encoding rate. The
YouTube Flash player in browser always specifies a throt-
tling rate of 1.25 in the HTTP request and the server sends
content at 1.25 times the encoding rate to the client.

The ON-OFF strategies are governed exclusively by the
client players. There are two types: In the first, ON-OFF-
M, the client player establishes a new TCP connection and
makes a new HTTP request for each ON period and closes
the connection after having received a chunk of content. In
the second, ON-OFF-S, the client player uses a persistent
TCP connection and simply stops reading from the TCP
socket during an OFF period. Because the server has more
data to send, TCP flow control messages, i.e. zero window
probes (zwp) from the server and advertisements (zwa) from
client, are exchanged during the OFF period. The YouTube
player in Galaxy SIII buffers 100 s worth of content. When
the buffer drains to 40 s, the player resumes downloading.
Therefore, the duration of an OFF period is 60 s. The Daily-
motion and Vimeo players buffer 20 MB of content. Figure 1
also shows that the players receive content at some throttled
rate after the Fast Start phase using both ON-OFF mecha-
nisms. In a manner similar to ON-OFF-M, GreenTube [16]
also uses multiple TCP connections to download a video. It
uses local viewing history of a user to determine the play-
back buffer size which in turn limits the amount of data to
be downloaded during each connection.

The selection of the described streaming techniques does
not depend on the wireless interface being used for stream-
ing. The selection does not depend on the available band-
width either. The ON-OFF mechanisms and throttling per-
sist as long as the bandwidth is equivalent to the throttling
rate. If the bandwidth is reduced further, the duration of
an ON period increases using either of the ON-OFF mech-
anisms. However, Figure 1 illustrates that the selection de-
pends on the service, player type, and the quality. A detailed
study on how the video streaming services exhibit different
streaming techniques can be found in [14].

ON−OFF−MON−OFF−S Throttling Encoding Fast Fast
0

50

100

150

200

250

300

350
A

v
e
ra

g
e
 C

u
rr

e
n
t
C

o
n
s
u
m

p
ti
o
n
 (

m
A

)

LTE

3G

Wi−Fi

Rate Caching Caching(20%)

Figure 2: Avg. current consumed by Wi-Fi, 3G and LTE inter-
faces during streaming sessions of a 597 s video to Galaxy SIII
4G using different streaming techniques.

2.2 Energy Consumption
With regard to energy consumption, all the wireless net-

work interfaces have a few characteristics in common. All of
them have mechanisms to ensure that the radio is not kept
fully powered on all the time. Consequently, they operate
in different modes, which also map to different power states.
For example, the states in Wi-Fi that employ a power sav-
ing mode (PSM) [3] are receive, transmit, idle, and sleep, of
which the first three modes draw, by an order of magnitude
of one, more power than the fourth mode. In 3G, the modes
correspond to the different channel allocations (CELL DCH,
CELL FACH, CELL PCH and IDLE) [2]. An LTE device
can be either connected or in idle mode and, if DRX is ac-
tivated, the radio is switched on only for a short period,
otherwise it remains in sleep mode during the connected
mode [4].

Another common feature is that transitions from active
to more passive states, i.e. decisions about switching the ra-
dio to sleep mode, are executed based on inactivity timers.
The timer values of 3G and LTE may extend to ten seconds,
whereas Wi-Fi switches the radio into sleep mode after only
two hundred milliseconds. The timers in cellular networks
are not specified in the standards but are set and controlled
by the network operators. The energy consumed by keep-
ing the radio on for the period specified by the inactivity
timer is often called tail energy [10]. This tail energy is the
price to pay for more efficient radio access network resource
consumption and shorter application-level latency especially
when using sporadically communicating applications. Mod-
ern smartphones try to avoid long tail energy by employing
a different standard, namely Fast Dormancy (FD) [5]. The
mobile devices use a shorter inactivity timer of 3-5 s [8]. FD
enables a mobile device to switch directly from CELL DCH
to CELL PCH or to IDLE state.

Using three video streaming services, YouTube, Dailymo-
tion, and Vimeo, we executed several sessions on an Android
phone, the Samsung Galaxy SIII 4G. For each streaming
technique we conducted three sessions, each for a differ-
ent WNI (Wi-Fi/3G/LTE). To understand what the differ-
ent streaming strategies mean from an energy consumption
point of view, we performed power measurements using the
Monsoon Power Monitor [1]. We discovered that the smart-
phone used FD in the 3G network and the value of the inac-
tivity timer was 5 seconds. However, the LTE network did
not support DRX and the inactivity timer was of 10 seconds.

The total current measured during streaming comprises
the idle current, the current draw required by playback and
the current draw generated by the downloading, i.e. wire-
less interface usage. We calculated the playback plus idle
current from the power traces by manually isolating a pe-
riod following completion of the stream download and when
only playback remains. We then computed the downloading
current by subtracting the playback current from the total
current. Figure 2 shows the computed downloading current.
We observed that the playback plus idle current (not shown
in the figure) varied 200-230 mA, which highlights the fact
that the energy spent for downloading only is in most cases
a very significant part of the total energy.

Among the different strategies we examined, it is clear
that encoding rate streaming consumes the most energy be-
cause it keeps the radio active almost all the time. This
is because the inactivity timers do not expire in between
packet receptions. The phone consumes less current than
the encoding rate when the server throttles the bit rate,
because the device finishes downloading a little bit earlier.
ON-OFF-S also leads to larger energy consumption when
used over LTE and 3G because their long inactivity timer
values combined with the TCP flow control traffic keeps the
radio on most of the time. By contrast, ON-OFF-M is much
more energy efficient. Compared to the discussed methods,
Fast Caching draws very little current on average while the
whole video is being watched. In Figure 2, we also present
a case where the user abandons the session after watching
20% of the video, in which case the average current is clearly
higher. The reason being that in the beginning the device
does unnecessary work by downloading content that is never
watched.

2.3 Sources of Energy Waste
Following on from the preceding section, we now identify

the following four different factors that negatively impact
the energy efficiency of a streaming service:

1. Downloading content at a rate lower than the maxi-
mum possible rate: The most energy efficient way to
transmit data at a given moment is to use the full ca-
pacity of the wireless channel. This holds for all the
types of wireless access (Wi-Fi, 3G, LTE). The rea-
son is that the lower the rate, the greater is the time
interval between the packets. Even though these in-
tervals are small, the inactivity timers are active and
the smartphone consumes energy.

2. Auxiliary control traffic during periods when content is
not being received : As we observed with the ON-OFF
strategy using a persistent TCP connection, this kind
of traffic has a major impact on the energy efficiency
because it keeps the client’s radio powered on all the
time in the worst case.

3. Tail energy in non-continuous content reception: The
non-continuous download strategy, such as the ON-
OFF-M, causes tail energy to be spent after the down-
load of each chunk of content. This energy adds up to
a significant amount especially when using 3G or LTE
and if chunks are relatively small.

4. Downloading unnecessary content : In cases where users
always watch the whole video, the most energy efficient
streaming strategy would be Fast Caching because it

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of video

A
u

d
ie

n
c
e
 r

e
te

n
ti
o
n

Figure 3: Audience retention graphs from YouTube videos.

minimizes the amount of time that the radio is kept
powered on. However, since users often interrupt their
viewing before the end of the video clip, such aggres-
sive prefetching leads to unnecessary consumption of
energy to download content that the user will never
watch.

We note that while the first and second problems can be
solved, for example, by alleviating server-side rate limits and
by using non-persistent connections, the third and fourth
problems are in fact contradictory: By downloading larger
chunks to reduce the total amount of tail energy, the prob-
ability of downloading unnecessary content increases. We
examine this tradeoff in the next section and propose an
algorithm which optimally balances this tradeoff.

3. VIDEO STREAMING BASED ON CROWD-
SOURCED VIEWING STATISTICS

3.1 Audience Retention
The fact that users do not always watch entire video clip

transforms finding an energy optimal download schedule from
using the trivial Fast Caching strategy into an optimiza-
tion problem. The solution must strike a balance between
two sources of energy waste: 1) prefetching content in large
chunks in order to minimize the tail energy and 2) limiting
that chunk size in order to reduce the amount of downloaded
content that will never be viewed.

A key question in devising a solution is to estimate at what
point a user will abandon watching the video. We propose to
leverage crowd-sourced video viewing statistics. The under-
lying idea is that video clip specific statistics collected from
all the previous viewing sessions give useful insights about
how a new user will watch the video. It is natural that
the viewing behaviour depends on how interesting and “cap-
turing” or engaging the video clip is and the content type.
We study the potential of using such statistics in download
scheduling to save energy. We show that it helps to save
significant amount of energy compared to strategies that do
not leverage crowd-sourced statistics.

One source of such statistics is YouTube, which main-
tains audience retention data for each video clip [6]. These
statistics are computed based on continuous feedback sent
by the YouTube client applications during video streaming
sessions [23]. Figure 3 shows examples of audience retention
curves for some videos which we extracted from YouTube.

Each curve always starts from one and shows, for a par-
ticular video clip, the fraction of the audience that is still
watching at a given point of time. These examples highlight
the fact that retention highly depends on the video clips:
some retain clear majority of audience until the end while
others lose most of the audience at the very beginning of the
video.

3.2 eSchedule Algorithm
We designed a download scheduler that takes viewing statis-

tics, such as the audience retention plotted in Figure 3, as in-
put. We name it eSchedule. We assume that a mobile device
is able to tell the scheduler at each moment the type of the
network that it uses for data communication. In addition,
it includes parameterized power models of communication
using each different technology (i.e., Wi-Fi, 3G, and LTE
including variants with and without DRX). Using the inter-
rupt probabilities computed from the crowed-sourced view-
ing statistics, the scheduler computes the optimal download
schedule, which is a sequence of variable size chunks that is
estimated to minimize the energy consumption. Intuitively,
if the amount of tail energy is large, e.g. when using 3G,
and the viewing statistics suggest that many users watched
a large fraction of the video, the scheduler will choose to
download the large chunk of content. Conversely, if the
amount of tail energy is small, e.g. when using Wi-Fi, and
the statistics indicate that audience retention has been poor,
the scheduler chooses small chunk sizes. Next, we model this
approach as a stochastic optimization problem.

We divide the video viewing time into n discrete time
steps. Then, we consider the video viewing as a discrete time
stochastic process pi(X), where X takes value one or zero
and describes whether the user watches the video segment
corresponding to the ith time step. The audience retention
Ai (also defined in discrete time steps) describes the joint
probability of watching all the segments from the beginning
till the ith time step, i.e. Ai =

∏i
k=1 pk(X = 1).

The algorithm computes for each schedule an expected
value of energy waste. We define the energy waste as the
total tail energy and energy spent downloading data which
is not watched. We obtain (1) for calculating the expected
value of energy waste when downloading a video chunk cor-
responding to T seconds of content starting from discrete
time step i. In this case, T represents an integer value. In
the equation, btc is TCP bulk transfer capacity, Prx is re-
ceive power, Etail

i (T) is the amount of tail energy for a chunk
carrying T seconds worth of content, and E[Bwaste

i (T)] is
the expected value of content that is downloaded and never
watched because the user interrupts the session.

E[Ewaste
i (T)] = Etail

i (T) +
E[Bwaste

i (T)]

btc
× Prx (1)

Computing the tail energy is straightforward given that
the algorithm knows the power states and inactivity timer
values for each specific radio interface. This tail energy de-
pends on the chunk size because the inactivity timer values
corresponding to a specific radio interface can exceed T . The
tail energy is added for a chunk even if the user interrupts
viewing in the middle of downloading it. When downloading
a chunk containing T seconds worth of content, the expected
value of the unnecessarily downloaded content is calculated
using (2). This equation consists of two parts: the first one
corresponds to the phase during which the chunk is being

simultaneously downloaded and consumed, and the second
one to the phase during which it is only being consumed.

E[Bwaste
i (T)] =

T×rs
btc∑
k=1

pint
i (i + k)

[
btc× k − k × rs

]
+

T∑
k=T×rs

btc
+1

pint
i (i + k)

[
T × rs − k × rs

]
(2)

In the above equation, rs is the encoding rate of the
streaming. We also need the probability of the user in-
terrupting viewing (pint

i). This probability needs to be re-
evaluated each time the next chunk size is chosen by the
scheduler during the streaming session. It is a conditional
probability because it depends on the current viewing posi-
tion and in addition on the audience retention. Therefore,
it does not matter whether the viewing is continuous or not,
since the probability to interrupt viewing is always com-
puted from the current viewing position and it can be the
new location in case of a forward or backward skip by the
user. Thus, the probability for a user to interrupt during
a discrete time step j evaluated at time step i (i.e., user is
currently viewing at position i, j > i) is computed as follows:

pint
i (j) = p(“abandon at j”|“curr. position i”) =

Aj−1pj(X = 0)

Ai

=
Aj−1(1− pj(X = 1))

Ai
=

Aj−1 −Aj

Ai

Each chunk can be of any size ranging from a defined min-
imum to the remaining video duration. Consequently, the
number of all possible schedules grows exponentially as the
video length grows. Even if we limit ourselves to consider-
ing only a certain granularity of chunk sizes, e.g. multiples
of five second, it is infeasible to compute the number of
all possible schedules, even for a video lasting only a few
minutes (e.g., one minute video has more than two million
possible schedules). The problem can be viewed as short-
est path computation in which different sequential chunks
represent different cost hops. The most efficient known al-
gorithms for computing the shortest path scales according
to O(|E|+ |N |log|N |), where |E| is the number of edges and
|N | is the number of nodes. Our scheduling problem requires
a path corresponding to each possible schedule which means
that the number of edges grows exponentially as the video
length extends, and it is infeasible to compute an optimal
solution using exhaustive search. Hence, we use a heuristic,
described in the next section.

3.3 Heuristic
Our approach is to limit the number of consecutive chunks

when choosing the optimal size for the subsequent chunks.
In this way, the algorithm finds a locally optimal schedule,
i.e. it minimizes energy waste for the next chunks to be
considered, but finding a globally optimal schedule is not
guaranteed.

The heuristic we use is the expected value of energy waste
per content download in Joules per second. The expected
value is again calculated as shown in (1) and we obtain (3)
as the heuristic.

Hr =

|S|∑
k=1

(E[Ewaste
i (Tk)])/

|S|∑
k=1

Tk (3)

eSchedule searches for a variable size chunk download sched-
ule S = (T1, T2, T3, . . . , Tn). Each time a new video chunk
download needs to be scheduled, i.e. every time the amount
of content in the playback buffer goes below a minimum
threshold, the algorithm finds such an S that minimizes Hr
and then selects T1 as the next chunk size. The size of S
limits the number of consecutive chunks to consider in each
scheduling decision. According to our tests, which used a
video lasting ten minutes, having more than two consecutive
chunks in the scheduling yields only minor improvements in
overall energy efficiency.

4. PERFORMANCE EVALUATION

4.1 Simulation Setup
We implemented eSchedule in Matlab in order to com-

pare it to the existing alternative approaches. Our col-
leagues helped us to collect audience retention information
from 16 different YouTube videos1. Their durations range
from one to eleven minutes and they had been viewed from
a few hundred to five million times. Average stream encod-
ing rates vary from 160 Kbps to 800 Kbps. The content
includes recordings of illustrated discussions, music perfor-
mances, advertisements, and martial arts exhibitions and
lessons.

We divided the set of videos into short and long ones. The
10 short ones last less than five minutes and the 6 long ones
more than five minutes. We simulated 1000 video streaming
sessions for one user separately for both sets of videos. We
simulate the behaviour of an average user: For each session,
the video is randomly selected from the set and the aban-
doning time of viewing is randomly drawn from a probability
distribution following the audience retention information of
the selected video. For example, if the audience retention
of a given video tells that not a single user abandoned the
viewing during the first ten seconds, the simulations would
also never draw an abandoning time shorter than ten sec-
onds for that video. The video download schedule was com-
puted with each considered algorithm, and the total energy
consumed was calculated for each session.

We compare eSchedule to four other approaches: 1) to
Oracle, which knows the viewing time for each session and
downloads the content corresponding to that duration in one
shot, 2) to downloading whole video at once, 3) to ON-OFF-
M downloading 60-second chunks of content, which roughly
corresponds to default YouTube Android app, and 4) to the
algorithm used by GreenTube [16].

GreenTube resizes the download buffer size based on the
user’s viewing history stored locally in smartphones. It first
computes an expected value of viewing time using this his-
tory. In turn, it finds a buffer size which will minimize the to-
tal energy consumed between the current and the end of the
expected viewing time, also taking into account the power
consumed during download and the tail energy. We imple-
mented this algorithm, including maintaining local viewing
history of the simulated user, on Matlab as well. In this way,

1These statistics are currently available only for the video
owner in YouTube.

100 101 1020

0.2

0.4

0.6

0.8

1

total energy consumed (J)

F
(x

)

 oracle
ON−OFF
eSchedule
GreenTube
whole video

(a) short video over LTE

10−1 100 1010

0.2

0.4

0.6

0.8

1

total energy consumed (J)

F
(x

)

 oracle
ON−OFF
eSchedule
GreenTube
whole video

(b) long video over Wi-Fi

101 1020

0.2

0.4

0.6

0.8

1

total energy consumed (J)

F
(x

)

 oracle
ON−OFF
eSchedule
GreenTube
whole video

(c) long video over LTE

Figure 4: CDF plots of the downloading energy consumption when streaming videos.

WNI tail timers power values datarate
Wi-Fi PSM: 0.2s Prx = 0.78W,

Ptail = 0.435W
10Mbit/s

3G FD: 5s PDCH = 0.78W,
Ptail = 0.78W

6Mbit/s

LTE inactivity: 10s Prx = 1.58W,
Ptail = 1.3W

16Mbit/s

LTE+DRX DRX: 0.75s Prx = 1.58W,
Ptail = 1.3W

16Mbit/s

Table 1: WNI timer configurations and power consumption at
different states of the interface.

we are able to compare our approach of using crowd-sourced
per-video viewing statistics to GreenTube’s approach of us-
ing local viewing statistics.

At the beginning of simulations, GreenTube’s local view-
ing statistics were initialized to null as we considered that to
be as realistic as initializing it with random statistics. They
are updated according to the simulated viewing behaviour
throughout the 1000 viewing sessions. In addition, the lower
threshold of buffer size was reduced to 1 MB in order to al-
low GreenTube to use also small buffer sizes and to make
the comparison fair.

Table 1 summarizes the network and power related pa-
rameters used in simulations. The data rates imply end-
to-end bulk transfer capacity rather than the over-the-air
data rate of wireless access network technologies. Most of
the other parameters were identified during the measure-
ments presented in Section 2.2. Only the DRX timer was
assumed according to a vendor recommendation as the DRX
was not enabled in the commercial network. The power
models used are straightforward in that we assume a fixed
power draw during each different state, namely reception
of data, idle but radio on (tail power), and sleep. We used
power values relative to each idle state of each WNI, namely
3G’s CELL PCH, LTE’s idle, LTE’s DRX sleep, and Wi-Fi’s
PSM sleep modes. Note that for 3G access we assumed Fast
Dormancy as the Galaxy SIII supports. In the case of LTE,
we considered both cases; with and without DRX.

4.2 Energy Consumption
In the first simulation round, we only included videos that

are shorter than five minutes. The results show that down-
loading the entire video in one go is energy efficient in the
case of short videos, especially when the amount of tail en-

ergy is high, such as with LTE (Figure 4(a)). Similarly,
eSchedule responds to short videos by typically choosing
in almost every case to download the whole video in one
go. By contrast, for those videos longer than five minutes,
we observe that downloading the whole video is less attrac-
tive. The performance of the ON-OFF strategy is fairly good
when the tail energy is small, such as in the case of Wi-Fi
(Figure 4(b)). However, when streaming over 3G and LTE,
which exhibit large tail energy, the results are significantly
worse (Figure 4(c)).

We computed the energy consumption overhead by sub-
tracting the energy consumed by Oracle from the energy
consumed by other strategies for each streaming session. We
sum up this overhead for each test case and plot the results in
Figure 5(a). In every configuration, eSchedule achieves over-
all the lowest energy consumption. On average, eSchedule
cuts the energy waste to approximately half when compared
to the next best approach.

The behaviours of the other competing download strate-
gies are intuitive but GreenTube deserves more analysis.
The reason why GreenTube in most cases consumes more
energy than eSchedule is two fold. First, unlike eSchedule,
which leverages “global” video viewing statistics, GreenTube
uses “local” statistics and assumes that a given user will al-
ways watch each video in a similar fashion regardless of the
content, thus, for example, the user will either always watch
just a small fraction of each video or always watch the en-
tire video. The vastly different shapes of audience retention
graphs undermine this assumption.

The second reason is related to the way GreenTube opti-
mizes its buffer size. To illustrate the problem, let us con-
sider two situations: In the first one, the user has always
watched roughly half of the video, and in the second, the
viewing history is evenly distributed. Both cases suggest
that the expected viewing time is half the video and thus
GreenTube will choose the same download strategy. How-
ever, in the latter case, it is much less likely that the ex-
pected value will provide an accurate estimate. The conse-
quence is large especially when the tail energy is significant,
in which case an underestimated viewing time yields a large
penalty (note the logarithmic scale in Figures). By way
of comparison, eSchedule computes the download schedule
based on the expected value of energy wasted and, thus, also
considers the“shape”of the statistics when deciding the next
chunk size.

Wi−Fi 3G LTE DRX Wi−Fi 3G LTE DRX
0

1

2

3

4
x 10

4

e
n

e
rg

y
 o

v
e

rh
e

a
d

 (
J
)

eSchedule

ON−OFF

GreenTube

whole video

video length > 5 minvideo length < 5 min

(a) average user

Wi−Fi 3G LTE DRX Wi−Fi 3G LTE DRX
0

2000

4000

6000

8000

10000

12000

14000

e
n

e
rg

y
 o

v
e

rh
e

a
d

 (
J
)

eSchedule

ON−OFF

GreenTube

whole video

video length < 5 min video length > 5 min

(b) impatient user

Wi−Fi 3G LTE DRX Wi−Fi 3G LTE DRX
0

1

2

3

4

5

6

7

8
x 10

4

e
n

e
rg

y
 o

v
e

rh
e

a
d

 (
J
)

eSchedule

ON−OFF

GreenTube

whole video

video length > 5 minvideo length < 5 min

(c) patient user

Figure 5: Total energy overhead (J) to watch 1000 videos for three kinds of user compared to Oracle.

10
−2

10
−1

10
0

0.2

0.4

0.6

0.8

1

fraction of data wasted

F
(x

)

ON−OFF

eSchedule

GreenTube

whole video

Figure 6: ON-OFF spends extra energy for
less data waste when streaming long videos
over LTE.

10
−2

10
−1

10
0

0.2

0.4

0.6

0.8

1

fraction of data wasted

F
(x

)

ON−OFF

eSchedule

GreenTube

whole video

Figure 7: eSchedule and ON-OFF download
least unnecessary data when streaming over
Wi-Fi.

10
−2

10
−1

10
0

0.2

0.4

0.6

0.8

1

fraction of data wasted

F
(x

)

Wi−Fi

3G

LTE

LTE+DRX

Figure 8: The smaller the tail energy, the
less unnecessary content is downloaded when
using eSchedule.

4.3 User Bias
To understand the resulting energy consumption when the

user deviates from the average behaviour, we also simulated
two different user types which we term impatient and pa-
tient. The impatient user always abandons watching a par-
ticular video before the median user did according to the
audience retention, while the patient user always continues
to watch at least as long as the median user did. We again
randomly draw the viewing time from the probability distri-
bution following the audience retention but this time only
from the first or second part of it for the impatient and pa-
tient users, respectively, the boundary being the time where
50% of users had abandoned the session.

The overall results are shown in Figure 5(b) and 5(c).
First thing to notice with respect to the “impatient” user
behaviour is that downloading the whole video is a poor
strategy if the video is relatively long. GreenTube does a
better job with the long videos because the user behaviour is
consistently biased in which case local viewing history helps.
eSchedule performs roughly similarly with it when viewing
long videos but better with the short videos. Users that
continue viewing longer than the median user are most pe-
nalized by the default ON-OFF strategy because of the tail
energy associated with each chunk. Downloading the whole
video is a good strategy in this case. Again, eSchedule and
GreenTube perform similarly with long videos but eSchedule
does a better job with the short ones. We discuss in Section

6 how eSchedule can be extended to adapt to this kind of
situations to provide even better performance.

4.4 Data Waste
A download schedule that minimizes energy consumption

does not always minimize unnecessary content download.
The reason is the tail energy. Indeed, the larger the tail
energy, the more favorable an aggressive buffering will gen-
erally be from the energy consumption perspective. Yet,
limiting the amount of unnecessarily downloaded data is im-
portant for some mobile network users who have a quota in
their data plan. It is equally important, too, for ISPs, who
need to provision networks based on traffic volumes.

We computed the amount of content downloaded but not
watched for all the simulated scenarios. Figures 6 and 7
plot the data waste for the scenarios where videos longer
than five minutes are streamed over LTE both without and
with DRX. These figures illustrate the role of the amount of
tail energy. The results demonstrate that downloading the
whole video in one go leads to a lot of data waste: half of the
sessions download roughly 40% of the content unnecessarily.
Using GreenTube also leads to considerable amount of data
waste: half of the sessions download approximately 30% of
the content unnecessarily. Compared to these two, the data
waste generated by eSchedule is on average much more rea-
sonable: approximately 10% when streaming over LTE and
only about 3% when DRX is enabled for half of the sessions.
Figure 8 confirms that the amount of content unnecessar-

Algorithm 1 StreamThrottler

bytes = 0, brate = 0, bwidth = 0, faststart = 40;
contentlength = 0, videodownloaded = false
audret = get audience retention()
while videodownloaded == false do

pos = get playback pos()
if (bitrate == 0) then chunksize = 5
else

chunksize = eSchedule(radio, brate, bwidth, pos, audret)
consdown = chunksize/faststart

for i = 1→ consdown do
shortchunk = calculatechunk(chunksize)
request = formatrequest(bytes, contentlength)
response=download(shortchunk,bitrate,request)
bytes+ = process(response)
if (brate == 0) then

contentlength = process(response)
brate = process(response)
bwidth = process(response)

if (bytes == contentlength) then
videodownloaded = true

sleep(chunksize− 5)

ily downloaded by eSchedule depends on the size of the tail
energy: the smaller it is, the smaller is also the expected
data waste. It should be noted that neither GreenTube nor
eSchedule were configured to specifically limit data waste in
these simulations. In both solutions, it is possible to fur-
ther limit the data waste by spending extra energy. In case
of eSchedule, this can be achieved by specifying an upper
limit for the estimated amount of unnecessarily downloaded
content, i.e. the algorithm would reject all schedules where
E[Bwaste

i (T)] exceeds that limit in (2).

5. StreamThrottler: Android App
In order to show that eSchedule works also in practice,

we designed and implemented a YouTube client for Android
and experimented with it. This client comprises two compo-
nents: the eSchedule and a downloader. We next describe
both of these in turn before presenting the results obtained
from testing the application.

5.1 eSchedule Implementation
We implemented eSchedule according to the description

in Section 3. Since audience retention information is cur-
rently available only to the video owner, we used previously
collected data. In addition, the algorithm requires as in-
puts the encoding rate of the stream, the download rate,
and the wireless interface being used and their respective
power models. The downloader finds the encoding rate by
parsing the first few hundred bytes of the video header. It
also measures the rates and determines the interface being
used.

eSchedule also takes the current position of playback as in-
put. If the user does not watch the stream continuously but
instead jumps forward or backward while streaming, eSched-
ule simply computes the next chunk size taking into account
the audience retention data when starting from the new po-
sition.

We implemented power consumption models for Wi-Fi,
3G, and LTE in the same way as we did for the Matlab
evaluation (Section 3) because there are no open APIs in a
mobile device to obtain information about the states of the
3G/LTE RRC protocols. We implemented the 3G power

model knowing that both the testing device, Galaxy SIII,
and our commercial HSPA network support Fast Dormancy
having a 5 second inactivity timer. In the case of LTE, we
also used a commercial network and found the RRC inac-
tivity timer to be 10 seconds, which is commonly used.

5.2 Downloader
In order to start a new streaming session, StreamThrot-

tler’s downloader retrieves the YouTube HTTP video down-
load URL and the duration of the video from the server,
in the same way as a default player does. It then down-
loads video content from the server in chunks whose sizes
are determined by the eSchedule.

The download rate and stream encoding rate are typically
unknown beforehand. Therefore, the downloader uses an
initial chunk of 5 seconds during which it measures the en-
coding and download rates and, in turn, lets eSchedule make
the first scheduling decision. If the decision is to download
more than 5 seconds worth of video as the first chunk, the
downloader makes immediately another HTTP request and
continues downloading the content after the first five sec-
onds chunk has completely arrived. We use five seconds as
the minimum chunk size.

Our traffic and power measurements in Section 2.2 suggest
that the streaming services control the rate of download after
the Fast Start phase, and that these methods lead to energy
waste for the streaming clients. We want StreamThrottler
to avoid this problem in a case where eSchedule decides to
download a chunk of a size that exceeds the amount down-
loaded during the Fast Start phase. Therefore, we apply a
maneuver to bypass the server’s rate control mechanism by
exploiting Fast Start. What happens is that a single TCP
connection is used to download only the amount of content
that the server delivers in the Fast Start phase, during which
no rate limit is applied. After that phase, the connection is
closed and another one is established. A new HTTP request
for the subsequent range of content is sent over the new
TCP connection and again the amount of content equivalent
to the Fast Start phase will be downloaded without a rate
limit. This behaviour continues iteratively until the amount
of content equivalent to the complete chunk has been down-
loaded. In this way the downloader can download content
at the maximum end-to-end bandwidth and can reduce the
active usage time of wireless interfaces significantly. The
pseudo code of the downloader is shown in Algorithm 1.

5.3 Dealing with Wireless Latency
eSchedule may decide to download a video in multiple

chunks either when the WNI has small tail energy or when
the audience retention shows little probability of viewing the
whole content. Downloading content in chunks may increase
the chance of letting the playback buffer run dry in between
chunks. This probability is higher for a smartphone com-
pared to a device connected to the fixed network because
the mobile device spends some time accessing the wireless
channel before beginning to download a chunk. This latency
is not significant for Wi-Fi and LTE access. However, when
using 3G access such a delay may be up to 3 seconds because
of transitioning from IDLE or CELL PCH to CELL DCH
state [19]. Therefore, it is practical to let the client to down-
load the next chunk before the playback buffer is completely
empty. StreamThrottler also does this by downloading the
new chunk 5 seconds in advance. We considered this five
second value based on the analysis present in [27].

1 2
0

50

100

150

200

Seq. Number of Chunk

C
h
u
n
k
 S

iz
e
 (

S
e
c
)

Wi−Fi

3G

LTE

(a) 198 s

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

Seq. Number of Chunk

C
h
u
n
k
 S

iz
e
 (

S
e
c
)

Wi−Fi
3G
LTE

(b) 399 s

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

Seq. Number of Chunk

Bu
lk

 T
ra

ns
fe

r C
ap

ac
ity

 (M
bi

t/s
)

Wi−Fi
3G
LTE

(c) Bulk transfer capacity (399 s)

Figure 9: Chunk sizes in seconds chosen by eSchedule and the downloading rates calculated by the downloader.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

fraction of video watched (%)

e
n
e
rg

y
 w

a
s
te

 c
o
m

p
a
re

d
 t
o
 o

ra
c
le

 (
J
)

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

a
u
d
ie

n
c
e
 r

e
te

n
ti
o
n

StreamThrottler

YouTube App

Fast Caching

ON−OFF−M

audience retention

(a) Wi-Fi

0 0.2 0.4 0.6 0.8 1
0

100

fraction of video watched (%)

en
er

gy
 w

as
te

 c
om

pa
re

d
to

 o
ra

cl
e

(J
)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

au
di

en
ce

 r
et

en
tio

n
(b) 3G

0 0.2 0.4 0.6 0.8 1
0

100

fraction of video watched (%)

 e
ne

rg
y

w
as

te
 c

om
pa

re
d

to
 o

ra
cl

e
(J

)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

au
di

en
ce

 re
te

nt
io

n

(c) LTE

Figure 10: Estimated energy waste compared to Oracle while streaming the 198s video using Galaxy SIII.

5.4 Testing and measurements
In this setup, the Wi-Fi access point was connected to

the 100 Mbit/s university network and the smartphone had
unlimited access to the cellular networks. We streamed two
YouTube videos, a short (198s) and a long (399s) one, on
Samsung Galaxy SIII 4G using (i) StreamThrottler, (ii) the
default YouTube app, (iii) Fast Caching and (iv) an ON-
OFF-M download strategy without throttling which down-
loads 65 s equivalent chunk after every 60 seconds. Both
videos are of 360p quality. We compare these four test cases
by measuring the current drawn by the smartphone using the
Monsoon Power Monitor [1]. Again, as we did in Section 2.2,
we subtracted the manually identified playback current from
the total current consumption because of different apps and
in order to compare only the current drawn by downloading.

Figure 9 shows the chunk sizes and downloading rates
determined by the StreamThrottler. To illustrate the key
differences in the download strategies and mechanisms, we
compute the energy waste for each streaming session as a
function of time. This waste is computed by subtracting
the energy consumption estimate calculated for Oracle as a
function of time from the cumulative energy consumption
measured for above mentioned four techniques. The Oracle
strategy downloads the right amount of content in each case.
We assume that Oracle would on the average draw the same

amount of current while downloading content and achieve
the same average download rate than StreamThrottler.

The results for the short video and the corresponding au-
dience retention for that video are plotted in Figure 10.
The corresponding chunk sizes chosen by eSchedule are il-
lustrated in Figure 9(a). What stands out first is the strik-
ing difference in overall cumulative energy consumption be-
tween StreamThrottler and the default app. This difference
is mainly due to the low download rate resulting from server
throttling and tail energy, in turn, due to multiple chunks
(see Section 2.3), especially when streaming over 3G and
LTE. Therefore, the difference becomes smaller when ON-
OFF-M without throttling is used.

The second noticeable feature is that StreamThrottler,
which uses eSchedule, adapts the download strategy to the
audience retention and the characteristics of wireless net-
work. When streaming over 3G and LTE, eSchedule chooses
to download the whole video in one shot. The reason is
the large amount of tail energy and relatively strong audi-
ence retention. Therefore, ON-OFF-M (without throttling)
causes more energy waste than StreamThrottler resulting
from more tail energy. As for streaming over Wi-Fi, eSched-
ule chooses to split the download into two chunks because
the penalty arising from tail energy is clearly smaller. A
careful observation reveals that the chunk sizes are chosen
in such a manner that the first one is sufficient to cover

0 0.2 0.4 0.6 0.8 1
0

10

fraction of video watched (%)

e
n

e
rg

y
 w

a
s
te

 c
o

m
p

a
re

d
 t

o
 o

ra
c
le

 (
J
)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

a
u

d
ie

n
c
e

 r
e

te
n

ti
o

n

StreamThrottler

YouTube App

Fast Caching

ON−OFF−M

audience retention

(a) Wi-Fi

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

fraction of video watched (%)

en
er

gy
 w

as
te

 c
om

pa
re

d
to

 o
ra

cl
e

(J
)

0 0.2 0.4 0.6 0.8 1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

au
di

en
ce

 r
et

en
tio

n

(b) 3G

0 0.2 0.4 0.6 0.8 1
0

100

200

300

fraction of video watched (%)

en
er

gy
 w

as
te

 c
om

pa
re

d
to

 o
ra

cl
e

(J
)

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

au
di

en
ce

 re
te

nt
io

n

(c) LTE

Figure 11: Estimated energy waste compared to Oracle while streaming the 399s video using Galaxy SIII 4G.

viewing until the end of the first drop in the audience re-
tention (first 30% of the video). The second chunk then
covers the rest of the video during which almost no viewer
interrupted their viewing – this is is visible as an almost flat
retention curve. In this way, eSchedule does not risk a hefty
energy waste caused by potential abandonment during the
first 30%.

Similar results for the long video are plotted in Figure
11 and the corresponding chunk sizes eSchedule chose are
shown in Figure 9(b). The viewing statistics suggest that
users are continuously abandoning the viewing but the rate
of abandonment is decreasing as the viewing progresses. For
this reason, when streaming over Wi-Fi, eSchedule chooses
chunks that are of increasing size while the viewing pro-
gresses. The much larger tail energy of 3G and LTE causes
eSchedule to choose larger chunk sizes, as occurs with the
short video, but this time the video is split into three chunks
because the probability of a user abandoning the video is
much higher than in the case of the short video. On the
contrary, ON-OFF-M uses more chunks and causes more
energy waste using 3G and LTE. At a first glance, it would
seem that Fast Caching performs better. However, from the
audience retention graph we can see that the video loses
around 50% of its viewers during the first 35% of total du-
ration and during that time there is more energy waste than
the StreamThrottler.

We also measured the computational overhead of eSched-
ule. To do that, we measured the current consumption
of the phone running StreamThrottler and computed the
download schedules using eSchedule against those selecting
chunk sizes from hardcoded values. No actual downloading
took place. We chose to use the long video over Wi-Fi as
the test case because that requires more frequent scheduling
decisions than the other ones. The measured average extra
power draw caused by eSchedule computation was less than
15 mW which is negligible compared to the total power draw
including playback and download power.

6. PRACTICALITIES
A relevant question concerning the sources of energy inef-

ficiency is why video service providers do not use encoding
rate streaming or throttle the transmission rate. The an-
swer cannot be network congestion because that is not an
application level problem and it is handled by TCP. One

conclusion might be the concern about “bandwidth waste”,
i.e. the bandwidth used to deliver content to users which
is never consumed because of abandoning the session before
the end. eSchedule would eliminate such concern because
this download scheduler uses users’ viewing statistics. Fur-
thermore, eSchedule could be tuned to emphasize the im-
portance of the bandwidth waste by setting an upper limit
to a chunk size, as we discussed in Section 4.

Chunk size also can be limited when the device does not
have enough memory to accommodate the content being
downloaded. In that case, the device must spend extra en-
ergy. Although, a significant amount of YouTube videos
are less than 10 minutes long [12], the size a 10 minutes
long HD video (2 Mbps) can be 150 MB. However, modern
smartphones have few hundred megabytes to two gigabytes
of phone memory. If this memory is full then content can
be downloaded to the SD card.

The design of eSchedule assumes that the amount of avail-
able bandwidth is greater than the encoding rate. However,
the inverse is possible. If such situation is of persistent type,
the content cannot be downloaded in time and the session
is interrupted and eventually abandoned. In that case, any
download schedule keeps the radio continuously on because a
chunk download cannot finish before the next one should al-
ready be started. Dynamic Adaptive Streaming over HTTP
(DASH) [24] is a good solution to cope with transient band-
width fluctuations. This is because DASH allows to switch
to a lower bit rate upon bandwidth degradation and it is
possible to integrate eSchedule to a DASH client. In case of
quality switch, a new chunk size calculation is triggered.

Concerning the audience retention information, we as-
sume that other video services also collect crowd-sourced
video viewing statistics in a similar manner to YouTube, but
this data might be available only to the owner of the video
in question. We can think of two ways to make such data
available to eSchedule in the future. First, the video ser-
vice provider opens up access to this data through an API.
Should this data be deemed sensitive, however, the other
option is for the video services to implement eSchedule in
their own players, which then requests the viewing statistics
from the server using some secure API only when playing a
video. Yet another solution is to let the servers to do the
scheduling.

In case a user behaves in a consistently biased way, at
least for some time, it is possible to make eSchedule adapt
to it. We can maintain a measure of user bias with respect
to the average user by comparing the expected viewing time
of a video computed from the audience retention data to
the actual viewing time. This local bias measure could be
used to adjust the interrupt probabilities when calculating
the download schedule.

7. RELATED WORK
Energy consumption for multimedia streaming in mobile

devices has been studied for the last decade. Most earlier
studies have focused on streaming over Wi-Fi. A few recent
papers consider energy consumption while streaming over
cellular access network. The proposed solutions work from
different vantage points and on different layers of the Inter-
net protocol stack. In the following, we discuss the most
important parts of that body of work and compare it to our
work in this paper.

Anand et al. proposed adapting Wi-Fi power manage-
ment in response to access patterns and application hints
on data access [7]. Bagchi et al. [9] also presented a solution
for streaming over Wi-Fi, one in which a player maintains a
fixed playback buffer size and requests data from the server
when the buffer status touches a low buffer watermark. The
alternative is that the player plays from the playback buffer
and ceases downloading. This solution is similar to the ON-
OFF-S mechanism discussed in Section 2. Two other similar
approaches [28, 25] modify TCP window-size of IP packets
to trigger the TCP flow control mechanism artificially, which
eventually generates bursty traffic when the TCP window-
size is modified to a higher value. These solutions save en-
ergy by forcing the Wi-Fi into sleep mode, which means
they avoid any potential auxiliary traffic such as TCP con-
trol packets, and, at the same time, the application layer
keeps messages alive. However, these solutions do not ad-
dress the problem of users abandoning the viewing of the
video.

Several kinds of optimization techniques exist to reduce
energy while communicating over 3G. For example, Radio-
Jockey mines program execution in order to optimize the
use of Fast Dormancy in 3G communication and in that
way reduces energy consumption [8]. However, it does not
actually target streaming; instead it focuses on background
apps. ARO [18] and TOP [20] have similar objectives but
they require active participation from application develop-
ers. Bartendr saves energy by prefetching streaming content
when the signal strength is good [22]. It is in fact a comple-
mentary mechanism that could be integrated into eSchedule.

Some work has looked at scheduling of mobile traffic based
on the power consumption characteristics of wireless radios.
For example, CoolSpots propose to schedule low bit rate
video transmission over Bluetooth and higher bit rate video
over Wi-Fi [17]. Such a solution is orthogonal to what we
propose in this paper. If eSchedule is used with a down-
loader that fetches each chunk of video over a separate TCP
connection, such as StreamThrottler, CoolSpots could com-
plement the system to save more energy by downloading
chunks over Bluetooth when deemed beneficial.

There are also many papers studying measurement and
characterization that touch on the subject of our work. For
instance, 3G energy consumption was studied in [10] and

LTE power characteristics in [15]. Trestian et al. specifically
studied streaming and energy consumption in [26].

The closest one to our work is GreenTube [16] was recently
proposed as a solution to optimize energy consumption while
streaming YouTube videos to Android phones. The down-
load scheduling part of GreenTube has two important differ-
ences to eSchedule: First, it is based on users’ local viewing
history rather than global per-video statistics that we pro-
pose to use in this work. Second, the use of expected value
of viewing time as the sole input to scheduler may lead to
a significant energy waste if tail energy is large (see Section
3).

8. CONCLUSION
We highlighted a number of sources of energy inefficiency

in wireless video streaming two of which are contradictory,
namely tail energy spent because of downloading content in
chunks and energy spent in prefetching content that the user
will never watch. Consequently, we designed a novel down-
load scheduling algorithm, eSchedule, which uses crowd-
sourced video viewing statistics and wireless communication
power models to predict user behaviour and optimize the
tradeoff between these two sources of energy waste. Evalu-
ation results show that eSchedule cuts the energy waste to
half compared to the next best alternatives. We also imple-
mented an Android prototype called StreamThrottler which
implements eSchedule and a chunk-based YouTube down-
loader that speeds up the downloads by exploiting Fast Start
technique. Experiment results confirm that the prototype
exhibits the desired properties of eSchedule and, further-
more, saves up to 80% of overall energy.

Our future work includes integrating eSchedule into DASH
and considering other additional input for the scheduler,
such as signal strength indicators and events indicating net-
work activity of other apps in order to leverage the opportu-
nity of simultaneous transfers to further amortize tail energy.
Another extension of this work is to take into account the
user’s local viewing history, in addition to the crowd-sourced
viewing statistics per video as described earlier. In this way,
we could add a personalization component to the download
scheduling in order to further enhance the prediction of user
behaviour.

9. ACKNOWLEDGEMENTS
This work was supported by the Academy of Finland:

grant number 253860 and FIGS. We would also like to thank
the anonymous reviewers, and our shepherd, Dina Papagian-
naki, for their feedback.

10. REFERENCES
[1] Power Monitor, www.msoon.com.

[2] 3GPP TS 25.331, Radio Resource Control (RRC);
Protocol specification, May 1999.

[3] IEEE 802.11, Wireless LAN Medium Access Control
and Physical Layer Specification, 1999.

[4] 3GPP TS 36.331, E-UTRA; Radio Resource Control
(RRC) Protocol Specification, May 2008.

[5] Fast Dormancy best practices, GSM association,
network efficiency task force, 2010.

[6] Audience retention,http:
//support.google.com/youtube/bin/static.py?hl=
en&topic=1715158&guide=1714169&page=guide.cs.

[7] Anand, M., Nightingale, E. B., and Flinn, J.
Self-tuning wireless network power management. In
Proceedings of the 9th annual international conference
on Mobile computing and networking (2003),
MobiCom ’03, ACM, pp. 176–189.

[8] Athivarapu, P. K., Bhagwan, R., Guha, S.,
Navda, V., Ramjee, R., Arora, D.,
Padmanabhan, V. N., and Varghese, G.
RadioJockey: mining program execution to optimize
cellular radio usage. In Proceedings of the 18th annual
international conference on Mobile computing and
networking (New York, NY, USA, 2012), Mobicom
’12, ACM, pp. 101–112.

[9] Bagchi, S. A fuzzy algorithm for dynamically
adaptive multimedia streaming. ACM Trans.
Multimedia Comput. Commun. Appl. 7 (2011),
11:1–11:26.

[10] Balasubramanian, N., Balasubramanian, A.,
and Venkataramani, A. Energy consumption in
mobile phones: a measurement study and implications
for network applications. In Proceedings of the 9th
ACM SIGCOMM conference on Internet measurement
conference (New York, NY, USA, 2009), IMC ’09,
ACM, pp. 280–293.

[11] Finamore, A., Mellia, M., Munafò, M. M.,
Torres, R., and Rao, S. G. Youtube everywhere:
impact of device and infrastructure synergies on user
experience. In Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement
conference (New York, NY, USA, 2011), IMC ’11,
ACM, pp. 345–360.

[12] Gill, P., Arlitt, M., Li, Z., and Mahanti, A.
Youtube traffic characterization: a view from the
edge. In Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement (New York, NY,
USA, 2007), IMC ’07, ACM, pp. 15–28.

[13] Guo, L., Tan, E., Chen, S., Xiao, Z., Spatscheck,
O., and Zhang, X. Delving into internet streaming
media delivery: a quality and resource utilization
perspective. In Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement (New
York, NY, USA, 2006), IMC ’06, ACM, pp. 217–230.

[14] Hoque, M. A., Siekkinen, M., and Nurminen,
J. K. Dissecting mobile video services: An energy
consumption perspective. In 14th IEEE International
Symposium on a World of Wireless, Mobile and
Multimedia Networks(WoWMoM) (2013), WoWMoM
’13, IEEE.

[15] Huang, J., Qian, F., Gerber, A., Mao, Z. M.,
Sen, S., and Spatscheck, O. A close examination of
performance and power characteristics of 4G LTE
networks. In Proceedings of the 10th international
conference on Mobile systems, applications, and
services (New York, NY, USA, 2012), MobiSys ’12,
ACM, pp. 225–238.

[16] Li, X., Dong, M., Ma, Z., and Fernandes, F.
GreenTube: Power Optimization for Mobile Video
Streaming via Dynamic Cache Management. In
Proceedings of the ACM Multimedia (New York, NY,
USA, 2012), acmmm’12, ACM.

[17] Pering, T., Agarwal, Y., Gupta, R., and Want,
R. CoolSpots: reducing the power consumption of
wireless mobile devices with multiple radio interfaces.

In Proceedings of MobiSys 2006 (New York, NY, USA,
2006), ACM, pp. 220–232.

[18] Qian, F., Wang, Z., Gerber, A., Mao, Z., Sen, S.,
and Spatscheck, O. Profiling resource usage for
mobile applications: a cross-layer approach. In
Proceedings of the 9th international conference on
Mobile systems, applications, and services (New York,
NY, USA, 2011), MobiSys ’11, ACM, pp. 321–334.

[19] Qian, F., Wang, Z., Gerber, A., Mao, Z. M., Sen,
S., and Spatscheck, O. Characterizing radio
resource allocation for 3G networks. In Proceedings of
the 10th ACM SIGCOMM conference on Internet
measurement (New York, NY, USA, 2010), IMC ’10,
ACM, pp. 137–150.

[20] Qian, F., Wang, Z., Gerber, A., Mao, Z. M., Sen,
S., and Spatscheck, O. TOP: Tail Optimization
Protocol For Cellular Radio Resource Allocation. In
Proceedings of the The 18th IEEE International
Conference on Network Protocols (Washington, DC,
USA, 2010), ICNP ’10, IEEE Computer Society,
pp. 285–294.

[21] Rao, A., Legout, A., Lim, Y.-s., Towsley, D.,
Barakat, C., and Dabbous, W. Network
characteristics of video streaming traffic. In
Proceedings of the Seventh COnference on emerging
Networking EXperiments and Technologies (New York,
NY, USA, 2011), CoNEXT ’11, ACM, pp. 25:1–25:12.

[22] Schulman, A., Navda, V., Ramjee, R., Spring,
N., Deshpande, P., Grunewald, C., Jain, K., and
Padmanabhan, V. N. Bartendr: a practical approach
to energy-aware cellular data scheduling. In
Proceedings of the sixteenth annual international
conference on Mobile computing and networking (New
York, NY, USA, 2010), MobiCom ’10, ACM,
pp. 85–96.

[23] Siekkinen, M., Hoque, M., K. Nurminen, J., and
Aalto, M. Streaming over 3g and lte: How to save
smartphone energy in radio access network-friendly
way. In Proceedings of the 5th ACM Workshop on
Mobile Video (2013), MoVid’13, ACM, pp. 13–18.

[24] Stockhammer, T. Dynamic adaptive streaming over
HTTP –: standards and design principles. In
Proceedings of the second annual ACM conference on
Multimedia systems (New York, NY, USA, 2011),
MMSys ’11, ACM, pp. 133–144.

[25] Tan, E., Guo, L., Chen, S., and Zhang, X.
PSM-Throttling: Minimizing energy consumption for
bulk data communications in WLANs. In Proceedings
of International Conference on Network Protocols,
2007 (2007), IEEE, pp. 123–132.

[26] Trestian, R., Moldovan, A.-N., Ormond, O., and
Muntean, G.-M. Energy consumption analysis of
video streaming to android mobile devices. In Network
Operations and Management Symposium (NOMS),
2012 IEEE (april 2012), pp. 444 –452.

[27] Wang, B., Kurose, J., Shenoy, P., and Towsley,
D. Multimedia streaming via TCP: An analytic
performance study. ACM Trans. Multimedia Comput.
Commun. Appl. 4, 2 (May 2008), 16:1–16:22.

[28] Yan, H., Krishnan, R., Watterson, S. A.,
Lowenthal, D. K., Li, K., and Peterson, L. L.
Client-centered energy and delay analysis for TCP
downloads. In IWQOS (2004), IEEE, pp. 255–264.

