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Abstract—We consider a global phase-invariant metric in the
projective unitary group PUn, relevant for universal quantum
computing. We obtain the volume and measure of small metric
ball in PUn and derive the Gilbert-Varshamov and Hamming
bounds in PUn. In addition, we provide upper and lower bounds
for the kissing radius of the codebooks in PUn as a function
of the minimum distance. Using the lower bound of the kissing
radius, we find a tight Hamming bound. Also, we establish bounds
on the distortion-rate function for quantizing a source uniformly
distributed over PUn. As example codebooks in PUn, we consider
the projective Pauli and Clifford groups, as well as the projective
group of diagonal gates in the Clifford hierarchy, and find their
minimum distances. For any code in PUn with given cardinality
we provide a lower bound of covering radius. Also, we provide
expected value of the covering radius of randomly distributed
points on PUn, when cardinality of code is sufficiently large. We
discuss codebooks at various stages of the projective Clifford +
T and projective Clifford + S constructions in PU2, and obtain
their minimum distance, distortion, and covering radius. Finally,
we verify the analytical results by simulation.

Index Terms—Projective Unitary Group, Volume, Kissing Ra-
dius, Hamming bound, and Gilbert-Varshamov bound .

I. INTRODUCTION

In quantum computing, the design of quantum algorithms
can be seen as a decomposition of a unitary matrix using a set
of universal gates. It is well known that the set of Clifford gates
combined with a non-Clifford gate forms a set of universal
gates for quantum computation [1]. Exact decomposition or
approximation of an arbitrary unitary matrix using a set of
universal gates has been addressed in [2]–[4]. In [2], the total
number of single-qubit gates that can be represented by the
Clifford+T gates is calculated. An algorithm for finding a T-
optimal approximation of single-qubit Z-rotations using Clif-
ford+T gates is proposed in [3], which is capable of handling
errors down to 10−15. Approximating an arbitrary single-qubit
gate from the special unitary group using Clifford+T gates, up
to any given error threshold, is proposed in [4].

In quantum computation, the overall phase is irrelevant since
it does not affect the measurable properties of a quantum
system [1]. Hence, the gate approximation should be con-
sidered in the projective unitary group PUn rather than in
the unitary group or the special unitary group. PUn consists
of the equivalence classes of n × n unitary operations that
differ by a global phase [5]. This makes the projective unitary

group fundamental for constructing reliable quantum gates and
enabling universal quantum computation.

A global phase invariant metric, which is suitable for PUn,
is considered in [3], [6]–[8]. In [6], this metric is used for con-
structing the optimal fault-tolerant approximation of arbitrary
gates with a set of discrete universal gates. Using this metric,
the error approximations of universal gates are discussed in
[7]. Furthermore, the T-count and T-depth of any multi-qubit
unitary, which are crucial for optimizing quantum circuits, are
analyzed in [8].

The volume of a small ball is needed for deriving the bounds
on packing and covering problems. The volume of a small
ball in the unitary group, Grassmannian, and Stiefel manifolds
are well understood [9]–[13]. However, PUn remains largely
unexplored in the literature, particularly in terms of volume
analysis and theoretical bounds.

The kissing radius, analogous to the packing radius in
linear codes [14], plays a pivotal role in various applications,
including the optimization of sphere-decoder algorithms [15],
[16]. Also, the kissing radius relates to rate-distortion theory
as it is the smallest possible distance from a codeword to the
border of its Voronoi cell discussed in [17], [18]. Based on the
volume of ball in the Grassmannian manifold, several bounds
are derived for the rate–distortion tradeoff assuming that the
cardinality of codebooks is sufficiently large [12].

Motivated by this, we consider the global phase-invariant
metric in PUn and compute the volume of a small ball.
Using this volume, we derive the Hamming upper and Gilbert-
Varshamov (GV) lower bounds. In addition, we obtain upper
and lower bounds for the kissing radius as a function of the
minimum distance of the codebook in PUn, and establish a
tight Hamming bound. We derive upper and lower bounds
for the distortion rate function. Furthermore, as examples of
codebooks in PUn, we consider the projective Pauli group, the
projective Clifford group, and the group of projective diagonal
gates in the Clifford hierarchy, and determine their minimum
distances. Finally, through the numerical results, we show the
validity of our analyses.

The rest of this paper is organized as follows: Section II
provides preliminaries. We derive the volume of metric balls
for PUn in Section III, and give the Hamming upper and GV
lower bounds. Section IV provides the upper and lower bounds
for the kissing radius as a function of the minimum distance.



Also, we obtain bounds on the distortion-rate function, lower
bound of covering radius and approximated value of covering
radius in PUn. Section VI discusses the simulation results, and
Section VII concludes the paper.

II. PRELIMINARIES

A. The Projective Unitary Group

The projective unitary group PUn is a group of n × n
complex valued matrices which can be represented in the
quotient geometry as Un/U1, where Un denotes the unitary
group. The dimension of PUn is n2 − 1, and the elements are
equivalence classes:

PUn = {αU | U ∈ Un and |α| = 1} , (1)

which can be represented by any unitary matrix U belonging
to the class.

In this paper, we use the following metric [6]:

d(U,V) =

√
1− 1

n
|Tr (UHV)|, (2)

for U,V ∈ PUn, where (.)H denotes the Hermitian conjugate.
This is a metric on PUn, as it does not depend on the overall
phase of the representation U of an element in PUn.

In [1], the relationship between the operator norm
dO(U,V) = maxψ∥(U−V)|ψ⟩∥, where the maxi-
mum is over all pure states |ψ⟩, and the trace distance
Tr
(√

(U−V)H(U−V)
)

for single-qubit rotations is dis-
cussed, particularly in the context of approximating unitary
operators. In determining these distances, the global phase of
a unitary matrix plays a significant role. For example, for both
of these metrics, the distance between U and −U is maximal,
while for (2), their distance is zero, as they come from the
same equivalence class. The phase invariant metric provides a
notable advantage in finding optimal approximations, as it is
invariant under global phase shifts.

B. Packing and Covering Problems

The packing problem is to fit a maximal set of non-
overlapping balls of a given radius into the space. A finite
subset of points in manifold M

C = {C1, . . . ,C|C|} ⊂ M, (3)

is a (|C| , δ)-code, with

δ = min{d(Ci,Cj) : Ci,Cj ∈ C, i ̸= j} (4)

the minimum distance.
The standard Hamming bound is a packing bound that

provides an upper bound for the cardinality of a code given
its minimum distance [13].

In non-Euclidean geometry, the maximum radius of the non-
overlapping balls, known as the kissing radius, may be larger

than half of the minimum distance. The kissing radius of a
code C is defined as

ϱ = sup
BCl

(R)∩BCk
(R)=∅

∀(k,l),k ̸=l

R, (5)

where
BCi(R) = {P ∈ M : d(P,Ci) ≤ R} (6)

is the metric ball of radius r centered on the codeword Ci.
The covering problem is to find the minimum number of

overlapping balls of a given radius, required to cover the entire
space. The GV bound is a covering bound that provides a
lower bound on the cardinality of the code, given its minimum
distance [19].

C. Codebooks in the Projective Unitary Group

In this section, we consider three different codebooks in
PUn: the projective Pauli group, the projective Clifford group,
and the diagonal part of the Clifford Hierarchy. These code-
books play a crucial role in quantum theory [20]–[23]. In the
following, we consider unitary matrices of dimension n = 2m,
with m = 1, 2, ....

1) Projective Pauli Group : The 2× 2 Pauli matrices are:

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.

The n-dimensional Pauli group is then defined as the set

Pn = {±D(a,b),±iD(a,b)} ,

where

D(a,b) = Xa1Zb1 ⊗Xa2Zb2 ⊗ · · · ⊗XamZbm ,

with binary vectors a = [a1, ..., am]
T
,b = [b1, ..., bm]

T .
Moreover, n = 2m-dimensional Heisenberg-Weyl group is

defined as [24]

HWn = {iκD (a,b) |a,b ∈ Fm2 , κ ∈ Z4} , (7)

where

Z2k+1 ≜ {e
2πi

2k
qIn | q = 0, 1, ..., 2k − 1}. (8)

Also, we define

E(a,b) = ia
T bD(a,b) ≡ E(c), (9)

where c = [a,b] ∈ F2m
2 . We shall also use the normalized

versions:
Ẽ(c) =

1√
n
E(c), (10)

which form an orthonormal basis of the n2-dimensional com-
plex vector space of n×n complex matrices. The trace of these
matrices satisfies:

Tr(E(c)) = 0, if c ̸= 0,

so that E(0) = In is only basis matrix with non-vanishing
trace, where In denotes n × n identity matrix. From the
anti-commutation relation, it follows that the elements of the



Heisenberg-Weyl group either commute or anti-commute, and
they are closed under multiplication:

E(c)E(c′) = ±E(c′)E(c) = ±iE(c+ c′).

The projective Pauli group is defined as P̃n = Pn/Z4, where
the center is Z2k+1 given by (8). Note that P̃n has cardinality
n2 = 22m.

2) Projective Clifford Group: The second level of the Clif-
ford hierarchy is the Clifford group which is defined as

Gn = {G ∈ Un | GHPnG ⊂ Pn}. (11)

The group of unitary automorphisms and unitary inner
automorphisms of Pn is Gn and P̃n, respectively and the
unitary outer automorphism group are given by [21], [25]

Gn/P̃n = Sp(2m, 2),

the binary symplectic group. This is the group of all binary
2m× 2m matrices that fulfill:

FΩFT = Ω, where Ω =

[
0m Im
Im 0m

]
.

The isomorphism between the outer automorphisms and the
symplectic group takes the form:

GF
HE(c)GF = ±E(F(c)), (12)

i.e., for each symplectic binary matrix F, there exists a
unitary transform GF which takes the Heisenberg-Weyl el-
ement corresponding to the binary vector c to the element
corresponding to F(c), up to a sign. The sign is determined
by the multiplications in Pn there are 2m binary degrees of
freedom, corresponding to the inner automorphisms. Explicit
details on this can be found in [20]. The identity element
in the automorphism group corresponds to the identity in the
symplectic group:

GI2m = In. (13)

The projective Clifford group is defined as G̃n = Gn/Z8,
where Z8 is according to (8). The cardinality of G̃n is given
by [26] ∣∣∣G̃n∣∣∣ = 2m

2+2m
m∏
i=1

(22i − 1) . (14)

3) Coodebooks from Higher Level of the Clifford Hierarchy:
Projective diagonal part of the Clifford hierarchy:

The diagonal Clifford hierarchy of level k denoted by Dn,k
forms a group and can be generated by the rotations of
Zj [

π
2k
] = exp

(
iπ
2k
Zj
)
, where Zj is the Pauli Z acting on the

jth qubit [27]. In particular, for m-qubit quantum system with
m ≥ k, the following gates construct Dn,k〈

Zi

[ π
2k

]
,Λ1

i1,i2

(
Z
[ π

2k−1

])
, . . . ,Λk−1

i1,...,ik

(
Z[
π

2
]
)〉

,

where Λk(U) denotes the k-controlled U gate, acting on k+1
qubits. Here, i, i1, i2, . . . , ik run over all qubits. For m < k
a similar set of generating gates truncated at m′ = m − 1
control gates construct Dn,k. The projective diagonal part of

the Clifford hierarchy is defined as D̃n,k = Dn,k/Z2k . The
cardinality of D̃n,k is given by [27]

|D̃n,k| =
min(k−1,m−1)∏

j=0

(
2k−j

)( m
j+1) . (15)

Projective Semi-Clifford codebook: The semi-Clifford Cn,k
codebook is defined as a collection of unitary matrices U in
such that it can be expressed as U = GDG, where G ∈ Gn
and D ∈ Dn,k [24]. Similarly, we can define semi-Clifford
projective codebook using the projective Clifford group and the
projective diagonal part of the Clifford hierarchy and denote
it by C̃n,k. In this paper, we are interested in single-qubit
operations. In this case, the cardinality of C̃2,k is given by∣∣∣C̃2,k∣∣∣ = 24

(
3 · 2k−2 − 2

)
(16)

Codebooks of products of 3rd and 4th level Clifford
hierarchy elements: In [2] single-qubit gate operations were
approximated using codebooks of products of Clifford+T-
gates, i.e. products of 3rd level Clifford hierarchy elements. We
define a codebook given by the maximal number l of T-gates in
the codewords. The cardinality of the code considered in [2] is
then 192

(
3 · 2l − 2

)
, where 192 is the cardinality of the single-

qubit Clifford gates. We denote by C̃l2,3 the restriction of this
codebook to the projective unitary group PU2. It follows that
the cardinality of the codebook with at most l T-gates is

|C̃l2,3| = 24
(
3 · 2l − 2

)
. (17)

Motivated by this codebook, we also consider using a similar
codebook with at most l S =

√
T gates, which means that the

codebook consists of products of elements in the 4th level of
the Clifford hierarchy. We denote this codebook by C̃l2,4. Using
a similar argument as in [2], the cardinality of the codebook
becomes

|C̃l2,4| = 24

(
9
(
6l − 1

)
5

+ 1

)
. (18)

III. VOLUME OF PROJECTIVE UNITARY GROUP

In this section, we find the volume of the PUn and using
this volume, we derive a measure of small metric ball in PUn
with respect to the metric given by (2). In addition, we provide
the Hamming upper and GV lower bounds in PUn.

The Euclidean (D− 1)-sphere of radius R in RD is defined
as SD−1 (R) =

{
x ∈ RD

∣∣ ∥x∥2 = R
}

. The volume of
SD−1(R) is given by

VD(R) =
πD/2

Γ
(
D
2 + 1

)RD. (19)

Also, the volume of the unitary group Un is [13]

Vol(Un) =
(2π)

n(n+1)
2∏n

i=1(i− 1)!
. (20)



Theorem 1. The volume of the PUn is

Vol (PUn) =
(2π)

n(n+1)
2

2π
√
n
∏n
i=1(i− 1)!

. (21)

Proof. According to the [5], the volume of a homogeneous
quotient space G/K arising from the free and proper action of
subgroup K on group G is Vol (G) /Vol (K). The volume of
Vol(Un) is given by (20). The subgroup forming the cosets in
(1) is isomorphic to U1, but strictly speaking not isometric. To
find a metric on this subgroup, consider X = eiθIn and X′ =
X + dX where dX = ieiθIn dθ. The infinitesimal distance is
given by

(ds)2U1
= ∥X−X′∥2F = ∥dX∥2F = nd2θ. (22)

Therefore, the subgroup divided away is isometric to a circle
with radius

√
n, and the volume of subgroup K in Un is

Vol(K) =
∫ 2π

0

√
ndθ = 2π

√
n. The statement follows di-

rectly.

The measure of the metric ball in the manifold M, consid-
ering the Frobenius norm, is defined as

µF (B(R)) =
Vol (B(R))

Vol(M)
, (23)

where Vol (B(R)) is the volume of the ball with radius R in
the manifold. For the measure of the metric ball in PUn we
have

Corollary 1. As R → 0, the measure of a metric ball B(R)
in PUn with respect to the global phase invariant metric (2)
is

µd(B(R)) = cnR
D(1 +O(R2)) (24)

where cn = (2π)−
(n−1)

2 n
n2

2

Γ(n2−1
2 +1)

∏n
i=1(i − 1)!, and D = n2 − 1 is

the dimension of PUn.

Proof. The measure of metric ball in PUn with respect to the
metric (2) can be written as

Fd (R) = Pr{d ≤ R} = Pr

{
dF√
2n

≤ R

}
= µF

(
B
(√

2nR
))

, (25)

where dF denotes the Frobenius distance. The volume of a
small ball can be well approximated by the volume of a ball
of equal radius in the tangent space [13] as

Vol (B(R)) = VD(R)
(
1 +O(R2)

)
. (26)

Substituting (26) and (21) in (23) and considering (25) com-
pletes the proof.

IV. MINIMUM-DISTANCE BOUNDS ON PUn
The GV and Hamming bounds provide lower and upper

bounds on the cardinality of a codebook in the manifold [9]. In
the following, we provide these bounds for PUn. There exists
a codebook C in PUn with cardinality |C| and the minimum
distance δ with respect to the metric (2) such that

1

µd(B(δ))
≤ |C|. (27)

Also, for any (|C| , δ)-codebook in PUn

|C| ≤ 1

µd(B( δ2 ))
. (28)

The Hamming bound is a packing bound, literally bounding
the number of codewords surrounded by B( δ2 ))-balls that can
be packed into the manifold.

The Gilbert-Varhamov bound arises from a covering argu-
ment. If |C| balls B(δ) do not cover the manifold, there is room
to add one more point which is at least at distance δ from all
other points.

The Hamming bound can be enhanced by analyzing the
kissing radius.

A. Kissing Radius Bounds of Projective Unitary Group

In this section, we derive upper and lower bounds for the
kissing radius ϱ as a function of the minimum distance of a
code in PUn with respect to the global phase-invariant metric.
Moreover, we establish a tight Hamming bound in this context,
using the density ∆(C) of a code. For a code with cardinality
K and kissing radius ϱ, the density is [13]:

∆(C) = Kµd(B(ϱ)) .

Lemma 1. Let U,V ∈ PUn, and define W = UHV.
Considering the metric (2), the geodesics midpoint between
U and V is given by

M = UΩ
√
LΩH , (29)

where W = ΩLΩH with L = diag
(
ejθ1 , ..., ejθn

)
.

Proof. Since PUn is a Lie group, its geodesic can be described
using its Lie algebra pu(n). As discussed in [28], the Lie
algebra of PUn is pu(n) ∼= u(n)/{iaI}, where u(n) is the
Lie algebra of Un. The geodesic curve in PUn is given by

γ(t) = Uet(A+iaI) = UetA
′
, 0 ≤ t ≤ 1

where A,A′ ∈ u(n) is a skew-Hermitian matrix such that
γ(0) = U,γ(1) = V = UeA

′
. The geodesics midpoint is

given by γ(1/2) which can be written in the form of M given
in (29). Using (2), it follows that d (U,M) = d (V,M).

The kissing radius of a given code is hard to determine since
it depends on the minimum distance of the code and principal
angles between codewords [29]. The following theorem pro-
vides lower and upper bounds for the kissing radius of a code
in PUn with the help of Lemma 1. For the finding the upper



and lower bound of kissing radius, we have to find the upper
and lower bound of following expression: let

ϱ =

√√√√1− 1

n

∣∣∣ n∑
j=1

e
iθj
2

∣∣∣ given that n(1− δ2) =
∣∣∣ n∑
j=1

eiθj
∣∣∣,

(30)
where n = 2m, m = 1, 2, 3, · · · . Let ϱ̄ be an upper bound and
ϱ be a lower bound on the kissing radius ϱ. Then, the following
theorem gives bounds for the kissing radius:

Theorem 2. For any code (|C| , δ) ∈ PUn, the kissing radius
ϱ is bounded as

ϱ ≤ ϱ ≤ ϱ̄,

where ϱ =

√
1−

√
1− δ2

2 and ϱ̄ =

√
1−

√
1+(1−δ2)2

2 . The
corresponding bounds on codebook density are

|C|µd(B(ϱ)) ≤ ∆(C) ≤ min{1, |C|µd(B(ϱ̄))}, . (31)

Proof. According to (30), we consider optimizing the kissing
radius given the minimum distance. First we calculate upper
bound of kissing radius in the PUn. We can see that∣∣∣ n∑

j=1

eiθj
∣∣∣2 = n+ 2

∑
1≤i<j≤n

cos(θi − θj),

and ∣∣∣ n∑
j=1

e
iθj
2

∣∣∣2 = n+ 2
∑

1≤i<j≤n

cos
(θi − θj

2

)
= n+ 2

∑
1≤i<j≤n

√
cos(θi − θj) + 1

2
.

(32)

For 0 ≤ x ≤ 1, we know
√
x ≥ x. From this, it follows that

n+ 2
∑

1≤i<j≤n

√
cos(θi − θj) + 1

2

≥ n+ 2
∑

1≤i<j≤n

(
cos(θi − θj) + 1

2

)

=

n2 +
∣∣∣ n∑
j=1

eiθj
∣∣∣2

2
=
n2 + n2(1− δ2)2

2

From (32), we have an inequality∣∣∣ n∑
j=1

e
iθj
2

∣∣∣ ≥√n2 + n2(1− δ2)2

2
.

Hence upper bound of kissing radius is:

ϱ ≤

√
1−

√
1 + (1− δ2)2

2
.

For lower bound, we need to find max
∣∣∣ n∑
j=1

e
iθj
2

∣∣∣ such that

n(1− δ2) =
∣∣∣ n∑
j=1

eiθj
∣∣∣.

For max
∣∣∣ n∑
j=1

e
iθj
2

∣∣∣ the triangle inequality states that∣∣∣∣∣∣
n∑
j=1

e
iθj
2

∣∣∣∣∣∣ ≤
n∑
j=1

∣∣∣e iθj
2

∣∣∣ = n,

with equality if and only if all the vectors e
iθj
2 are aligned,

i.e., their arguments θj
2 differ by a multiple of 2π. Similarly,

the constraint
∣∣∣∑n

j=1 e
iθj

∣∣∣ = n(1−δ2) implies that the vectors
eiθj are not fully aligned unless δ = 0.

To maintain the constraint, we split the n angles into two
groups. We assume n

2 − k, θj would be same θ in one group
and n

2 + k, θj would be same ϕ in other group. These angles
satisfy the constraint

n(1− δ2) =

∣∣∣∣∣∣
n∑
j=1

eiθj

∣∣∣∣∣∣ =
∣∣∣(n

2
− k
)
ei(θ−ϕ) +

(n
2
+ k
)∣∣∣

i.e.,(
n(1− δ2)

)2
=

2n2

4
+ 2k2 + 2

(
n2

4
− k2

)
cos(θ − ϕ)

1

2
(
n2

4 − k2
) ((n(1− δ2)

)2 − 2n2

4
− 2k2

)
= cos(θ − ϕ).

So we have

−1 ≤
(
n(1− δ2)

)2 − 2n2

4 − 2k2

2
(
n2

4 − k2
) ≤ 1

if and only if k = 0. Without loss of generality we set

θ1 = θ2 = · · · = θn
2
= θ and θn

2 +1 = θn
2 +2 = · · · = θn = ϕ.

It follows that n(1 − δ2) =
∣∣∣ n∑
j=1

eiθj
∣∣∣ = ∣∣∣n2 eiθ + n

2 e
iϕ
∣∣∣, i.e.,

4(1− δ2)2 = 2 + 2 cos (θ − ϕ). This implies that

cos (θ − ϕ) = 2(1− δ2)2 − 1.

Let us now examine,∣∣∣ n∑
j=1

e
iθj
2

∣∣∣2 =
∣∣∣n
2
ei

θ
2 +

n

2
ei

ϕ
2

∣∣∣2
=
n2

4

(
2 + 2

√
cos(θ − ϕ) + 1

2

)

=
n2

4

(
4− 2δ2)

)
.

So,
∣∣∣ n∑
j=1

e
iθj
2

∣∣∣ = n
√
1− δ2

2 . Thus, we obtain the lower bound

for the kissing radius:

ϱ ≥

√
1−

√
1− δ2

2
.



One of the central problems in coding theory is determining
the maximum size of a codebook for a given minimum
distance. Using the normalized volume of the metric ball
µd(B(r)), as given in Corollary 1, and applying Theorem 2, we
obtain the following refined version of the Hamming bound:

Corollary 2. For any (|C| , δ)-code in PUn, we have

|C| ≤ 1

µd(B(ϱ))
, (33)

where ϱ is given in Theorem 2.

Proof. From (31), |C|µd(B(ϱ)) ≤ ∆(C) ≤ 1, and we have
δ
2 ≤ ϱ. It implies that

|C| ≤ 1

µd(B(ϱ))
≤ 1

µd(B( δ2 ))
.

B. Minimum Distances of the Projective Unitary Codebooks

The minimum distance of quantum codebooks plays a piv-
otal role in facilitating both error correction and error detection
[30]–[32]. Here, we find the minimum distance of the example
codebooks in PUn.

Lemma 2. For any n×n matrix M and an orthonormal basis
{B(n)} for the vector space MC(n), we have∑

n

Tr
(
MHB(n)HMB(n)

)
= |Tr (M)|2 .

Proof. This follows directly from the completeness of the
basis. The linear mapping from MC(n) to itself, given by
the sum of the outer products of the basis elements with
themselves, is the identity. Explicitly, this means∑

n

b
(n)∗
i,j b

(n)
k,l = δi,kδj,l,

where b
(n)
i,j are the matrix elements of B(n), and δi,k is the

Kronecker delta function.

Lemma 3. The inner products of the transformed Heisenberg-
Weyl matrices with themselves take the values

Tr
(
GH

F Ẽ(c)GFẼ(c)
)
=

{
±1 if F(c) + c = 0 mod 2,

0 otherwise.

Proof. This follows from (12), and the definition (9) of the
Heisenberg-Weyl matrices. From these we see that the matrix
within the trace is E(F(c) + c)/n, up to an integer power of
i. The trace is non-vanishing only if this E is proportional to
identity. This occurs if and only if F(c) + c = 0 mod 2, and
according to (9) the integer power of i determining the sign
±1.

Proposition 1. The minimum distances of P̃n and G̃n consid-
ering the global phase invariant metric are

δp = 1 , δc =

√
1− 1√

2
, (34)

respectively.

Proof. As P̃n is a group under multiplication, let UHV =

W = e
2πi

2k
qD(a,b) ∈ P̃n, i.e., d(U,V) = d(I,W). Then

|Tr
(
IHW

)
| = |e

2πi

2k
q Tr (D(a,b)|. We have

|e
2πi

2k
q Tr (D(a,b)| =

{
n, a = b

0 otherwise
(35)

From (2) and (35), the distance of any two codewords in P̃n
is zero or 1. Hence, δp = 1.

For finding δc, first we observe that

|Tr(GF)| ≤
√∑

c

∣∣∣Tr(GH
F Ẽ(c)GFẼ(c)

) ∣∣∣. (36)

This follows from Lemma 2, as the matrices Ẽ(c) form an
orthonormal basis in MC(n), and from the triangle inequality.
Using Lemma 3, a term in the sum over c contributes a factor
of 1 if F(c) + c = 0 mod 2. The sum is over all binary 2m-
vectors, so the result is given by the number of vectors in the
null space of F+ I2m, which evaluates to

n0 = 22m−rank(F+I2m).

For F = I2m, we have n0 = n2, corresponding to GF = In.
Otherwise, for GF ̸= In, rank(F+I2m) ≥ 1, so n0 ≤ 22m−1.
From the above inequality, we find |Tr(GF)| ≤ n√

2
. Since the

bound depends only on |GF|, considering the center of G̃n
does not change the result. Using the equation (2) the minimum
global phase invariant distance between two matrices in the G̃n
is

δ2c ≥
(
1− 2n

n
√
2

)
.

Hence δc =
√
1− 1√

2
.

Proposition 2. The minimum distance of D̃n,k with respect
to (2) is

δd =

√
1− cos

(
ψk
2

)
, where ψk =

2π

2k
.

Proof. As D̃n,k is a group under multiplication, let UHV =
W ∈ D̃n,k, i.e., d(U,V) = d(I,W). Then, using a similar
approach as in [33], we can find the minimum distance. Basi-
cally, in an m-qubit system, setting W = I⊗(m−1) ⊗Zm

[
π
2k

]
in d (I,W) results in the minimum distance.

In general, determining the minimum distances of the semi-
Clifford, C̃l2,3, and C̃l2,4 codebooks is nontrivial; hence, we
employ numerical simulations to estimate their minimum dis-
tances.



V. BOUNDS ON CODEBOOK DISTORTION

In universal quantum computation, the goal is to approxi-
mate a given unitary gate by the closest element of a universal
gate set. With a finite computational codebook, this inevitably
leads to distortion—the executed circuit is only an approxima-
tion of the desired circuit. Accordingly, the average distortion,
or the largest distortion may be of more interest for quantum
computation than the minimum distances of the codebooks.

A. Distortion-Rate function in PUn
The quantization problem of approximating the target using

the codebook of available circuits, is directly related to rate-
distortion theory. The distortion rate function is defined as [12]

D∗(K) = inf
C:|C|=K

D(C), (37)

where
D(C) = E

[
min
P∈C

d2(P,Q)

]
, (38)

where C in PUn with cardinality |C| = K. Here, Q is an
arbitrary point in the space.

Based on the volume of PUn given in Corollary 1, the
distortion–rate tradeoff is characterized by establishing lower
and upper bounds on the distortion–rate function. For a code-
book C with sufficiently large cardinality K, the distortion–rate
function over the PUn, with global phase invariant distance,
can be bounded as

D

D + 2
(cnK)

− 2
D ≤ D∗(K) ≤

2Γ
(

2
D

)
D

(cnK)
− 2

D
(
1 + o(1)

)
,

(39)
where D = n2 − 1 and cn given in Corollary 1. This is an
extension of the results in [12] for Grassmannian manifold to
PUn.

As discussed in [12], for a code (K, δ) in PUn the distortion
is upper bounded as

D(C) ≤
(
δ2

4
− 1

)
Kµd(B(δ/2)) + 1 . (40)

Note that in a flat space, the packing radius is δ
2 . However,

in a non-flat geometry δ
2 ≤ ϱ ≤ δ. Therefore, for any code

(|C| , δ) ∈ PUn and using the lower bound of the kissing
radius, we can have a tighter upper bound on the distortion
than (40). Hence using (40) and Propositions 1 and 2, we can
obtain distortion upper bounds for codebooks P̃n, G̃n and D̃n,k,
C̃2,k, C̃l2,3 and C̃l2,4.

B. Covering radius

The worst-case disotrtion is governed by the covering radius
of the codebook in PUn. With C = {P1, . . . ,PK} a codebook
of K points over PUn. The covering radius ρ is

ρ = max
U∈PUn

min
1≤Pi≤K

d(Pi, U) (41)

and it is thus the square root of the maximum distortion. A
lower bound for the covering radius follows directly from a
covering argument.

Fig. 1: Theoretical and simulation results comparison of the
measure of the ball in PU2, given by Corollary 1.

As PUn is a compact manifold, each open cover of PUn
has a finite sub-cover. Consider a ball Bρ(Pi) centered at
each codeword Pi ∈ C. By definition of the covering radius
we have PUn ⊆

⋃K
i=1Bρ(Pi). This implies that Vol(M) ≤

KVol(B(ρ)), i.e., Kµd(B(ρ)) ≥ 1. Using Corollary 1, a lower
bound of the covering radius is

ρ ≥
(

1

cnK

)1/D

. (42)

The expected value of the covering radius of a random
codebook consisting of K points selected uniformly at random
from the Grassmannian manifold can be found in [34], while a
general proof for the expected value of the covering radius of
random codebooks on compact manifolds is provided in [35].

From these works, we find the expected value of the covering
radius of a random codebook on PUn with a sufficiently large
cardinality K as follows: Let CK = {P1, . . . ,PK} be a set
of K points selected independently and uniformly at random
from PUn with respect to the measure µd. Then

lim
K→∞

E (ρ)

(
K

logK

) 1
D

=

(
Vol(PUn)

VD(1)

) 1
D

. (43)

The covering radius can be approximated as

ρ ≈
(
Vol(PUn)

VD(1)
logK

K

) 1
D

. (44)

VI. SIMULATION RESULTS

In this section, we verify the correctness of our analyses in
PUn using numerical results. First, in Fig. 1, we consider the
measure of the ball in PUn given by Corollary 1. This figure
illustrates the small ball volume in PUn for n = 2 in terms
of the global phase invariant metric. The simulation results
are obtained by averaging over 108 unitary matrices generated
uniformly at random with the Haar measure, following [36].
Note that due to the quotient structure, this also provides the
Haar measure in PUn. The simulations results for small values
of the distance matches with the theoretical evaluation.



Fig. 2: The upper bound ϱ̄ and lower bound ϱ of kissing radius
in PU4. These bounds are compared to simulated midpoints
between two randomly generated codewords

Fig. 3: Hamming bound (28) compared with tight Hamming
bound (2) in PU4.

The upper and lower bounds on the kissing radius in PUn
provide geometric insight into the local packing density of
codebooks. By comparing these bounds, we can analyze how
tightly the unitary space is covered without overlap, thereby as-
sessing the efficiency and optimality of the constructed projec-
tive codebooks. Fig. 2, for n = 4 and 500000 unitary matrices,
illustrates the kissing radius bounds provided in Theorem 2.
The bounds are compared to simulated midpoints between two
randomly generated codewords. It is also compared with the
estimate δ

2 , corresponding to the classical packing radius in flat
geometry.

In Fig. 3, for n = 4 we compare the Hamming bound and
the tight Hamming bound by kissing radius in terms of rate of
codebook and square of minimum distance. We find that the
kissing radius analysis is relevant only for small codebooks.

In Fig. 4, we compare minimum distances of codebooks in
PUn with the Hamming (28) and GV (27) bounds for the
corresponding cardinality. The Hamming bound of provides
a strict upper on minimum distance. The GV bound, in turn
shows that there exists at least one codebook in PUn whose

(a) Minimum distance of P̃n, and GV (27) and Hamming (28) bounds
in n = 2m dimensions.

(b) Minimum distance of G̃n, and GV (27) and Hamming (28) bounds
in n = 2m dimensions.

(c) Minimum distance of D̃n,3, and GV (27) and Hamming (28)
bounds in n = 2m dimensions.

Fig. 4: Comparison of minimum distances and theoretical
bounds for different code families.



Fig. 5: Minimum distances of C̃l2,3 , C̃l2,4 and C̃2,k and com-
parison with GV (27) and Hamming (28) bounds in PU2.

minimum distance is larger than the GV. As shown Fig. 4a, the
minimum distance of Pauli matrices P̃n lie between these two
bounds. The Pauli matrices are optimal due to their otrhoplectic
structure. They outperform the general guarantee of the GV
bound. In comparison, the Clifford groups of Fig. 4b, and the
diagonal Clifford hierarcy of Fig. 4c are farther from optimum.
For m = 1 and m = 2, the Clifford groups outperform the GV-
bound. The diagonal Clifford hierarchy is systematically worse
than the bound. Packing all the codewords in diagonal matrices
compromizes the minimum distance.

In Fig. 5, minimum distances of codebooks of pructs of
higher order Clifford hierarchy elements are shown. C̃l2,3 codes
for l = 0 to 15 stages of T-gates and C̃l2,4 codes for
l = 0 to 6 stages of S-gates in PU2 are considered. The
results are compared to the GV and Hamming bounds. The
minimum distances are obtained numerically by generating
the codebooks and calculated their minimum distances. For
small l, C̃l2,3 outperform the GV bound, while C̃l2,4 is slightly
worse than this bound. For larger l, the minimum distances
generically follow almost a similar slope as the bounds, with
certain values of l being considerably better than some other.

Fig. 6 compares the distortion of the C̃l2,3, C̃l2,4, and semi-
Clifford codebooks with the lower and upper bounds of the
minimum distortion (39) in PU2. For the semi-Clifford code-
book, we considered diagonal parts from levels k = 2, ..., 7.
Here, we considered the quantization distortion of 500000
random unitary matrices for getting the results. As the figure
illustrates, the semi-Clifford codebook exhibits a flooring be-
havior. After k = 4, the average distortion is only slightly
improved when k increases. The reason is in the structure
of the semi-Clifford hierarchy—with increasing k, there is
a increasingly fine codebook of diagonal matrices. The off-
diagonal directions, however, are simply given by the Clifford
group, they are not getting richer with increasing l. In contrast
the codebooks C̃l2,3 and C̃l2,4 consisting of products of higher
level clifford hierarchy elements, exhibit performance very

Fig. 6: Comparison of distortion of codebooks C̃l2,3, C̃l2,4, and
codebooks C̃2,k with the corresponding bounds (27) and (28)
in PU2.

close to the bounds. The upper bound on the optimal distortion
is given by the average distortion of random codebooks. Thus
we observe that for small l, the C̃l2,3 and C̃l2,4 are better than a
typical random codebook, and for large l, they are as good as
a typical random codebook.

As the distortion performance of C̃l2,3 and C̃l2,4 is roughly
equal, given the cardinality, the choice of using one rather than
the other should be governed by implementation issues.

The covering radius quantifies the worst-case approximation
error between any unitary in PU2 and its nearest codebook
element, thus indicating how uniformly the codebook covers
the unitary group space. In Fig. 7 we compare the covering
radius of codebooks C̃l2,3 for l = 0 to 15 stages of T-gates and
C̃l2,4 for l = 0 to 6 stages of S-gates with the theoretical lower
bound (42) and the approximated covering radius (44). To
find the covering radius of the of these codebooks, we generate
500000 unitary matrices then find the covering radius using
(41). A smaller value of ρ(C) indicates denser coverage and
a more uniform sampling of PU2. For small l, the covering
radius is close to the lower bound. It is interesting to note
that for all considered values of l, the covering radius of
these systematic codebooks are better than the approximate
value (44), which is valid for random codebooks.

VII. CONCLUSION

In this paper, we considered quantum computation as a
coding theoretical problem on the space PUn of n × n-
dimensional projective unitary matrices. We first calculated the
volume of PUn. Using this volume, we found the measure of
small balls in PUn with respect to the global phase invariant
metric, and established the GV lower and Hamming upper
bounds for codebooks in PUn. In addition, we provided the
upper and lower bounds for the kissing radius of codes in PUn,
which quantifies the maximum radius of non-overlapping met-
ric balls. Based on normalized volumes of metric balls around



Fig. 7: Comparison of the covering radius between codebooks
C̃l2,3 and C̃l2,4, along with the lower bound (42) and approxi-
mated of the covering radius (44) in PU2.

the kissing radius, we established bounds on the density of
codes in PUn. Using the bound on code density, we provided
an improved Hamming bound. Furthermore, we derived lower
and upper bounds of the distortion-rate function over PUn,
and provided a lower bound and an approximation for the
covering radius. As examples of codebooks in PUn, relevant
for quantum computation, We considered the projective Pauli
group, the projective Clifford group, and the projective di-
agonal part of the Clifford hierarchy group, and found their
minimum distances. As examples of larger cardinality code-
books, we considered single-qubit computational codebooks.
In addition to higher Clifford-hierarchy level semi-Clifford
circuits, we considered codebooks consisting of products of
a finite number of 3rd level and 4th level Clifford hierarchy
elements. The comparison of numerical performance results to
bounds show that increasing the hierarchy level alone does not
improve performance much. In contrast, products of multiple
higher hierarchy level elements leads to performance which
is comparable, and even slightly better than that of random
codebooks.
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