
Asynchronous Multi-Agent Reinforcement Learning
for Scheduling in Subnetworks

Ashvin Srinivasan∗, Junshan Zhang†, Olav Tirkkonen∗
∗Department of Information and Communications Engineering, Aalto University, Finland

†College of Engineering, University of California, Davis, California, USA
{ashvin.1.srinivasan, olav.tirkkonen}@aalto.fi, jazh@ucdavis.edu

Abstract—We address radio resource scheduling in a network of
multiple in-X subnetworks providing wireless Ultra-Reliable Low-
Latency Communication (URLLC) service. Each subnetwork is
controlled by an agent responsible for scheduling resources to its
devices. Agents rely solely on interference measurements for in-
formation about other agents, with no explicit coordination. Sub-
network mobility and fast-fading effects create a non-stationary
environment, adding to the complexity of the scheduling problem.
This scenario is modeled as a multi-agent Markov Decision
Process (MDP). To address the problem, we propose a Multi-
Agent Deep Reinforcement Learning (MADRL) approach under
URLLC constraints, which integrates Long Short-Term Memory
(LSTM) with the Deep Deterministic Policy Gradient (DDPG)
algorithm to manage non-stationarity and high-dimensional ac-
tion spaces. We apply an asynchronous update strategy, where
one agent is updating at a time. This reduces learning variability,
resolves policy conflicts, and improves the interpretability of the
MADRL approach. Simulation results demonstrate that the asyn-
chronous update mechanism outperforms synchronous updates
and baseline methods, achieving superior reliability, resource
utilization, and explainability.

Index Terms—6G, In-X subnetworks, URLLC, Dynamic Spec-
trum Allocation, Non-Stationary MDP, Multi-agent Reinforce-
ment Learning, Explainable AI

I. INTRODUCTION

Sixth-generation (6G) wireless technology aims to enable the
Industry 4.0 vision of fully wireless factories [1]. In addition
to increased mobility, wireless systems offer significant advan-
tages over traditional cable networks, such as reduced deploy-
ment and maintenance costs [2]. Industry 4.0 requires seamless
connectivity across diverse factory devices, ranging from basic
sensors and actuators to complex industrial robots [3]. These
networks, deployed within entities like machines, robots, or
vehicles, and managed by an umbrella 6G network, are called
in-X subnetworks. To ensure effective automation and control,
in-X subnetworks must deliver reliability and latency compa-
rable to traditional wired setups.

Ensuring Ultra-Reliable Low-Latency Communication
(URLLC) in wireless settings is highly non-trivial.
Subnetworks often need to share spectrum, which makes
the wireless channel unpredictable and prone to interference
from nearby systems [3]. The situation becomes even more
complex when subnetworks are mobile, as is frequently
the case in industrial environments. Studies on URLLC for
industrial wireless systems have highlighted how dynamic
channel conditions and random interference can undermine
communication reliability. In Industry 4.0 scenarios, where

dense deployments of subnetworks are common, fading
channels, overlapping coverage areas, and the absence of
coordination between subnetworks further elevate the risk of
packet failures, making reliable communication even more
difficult to achieve [4], [5].

Reinforcement Learning (RL), and specifically Multi-Agent
Deep Reinforcement Learning (MADRL), has shown promise
in managing resource allocation in Mobile in-X networks [6]–
[9]. In [6], an MADRL approach is proposed for intelligent
radio resource management, utilizing only received signal
strength indicators. In [7], authors address the challenge of
allocating a single channel to each agent using a Double Deep
Q-Network (DDQN). Both works address non-stationarity by
centralized training, where DRL agents learn the transition
functions of the entire factory. In [8], a distributed MADRL
algorithm is considered where agents update their Q-functions
in a sequential manner. The updates prioritize devices with
the most stringent latency requirements, aiming to mitigate the
non-stationarity introduced by concurrent learning across mul-
tiple agents. In our previous work [9], an MADRL approach
is explored where agents are trained independently without
explicit communication but updated synchronously.

These works, however, have not adequately addressed sev-
eral challenges, including those arising from the non-stationary
environment. In [6], [7], non-stationarity is tackled by as-
suming centralized training, with agents learning the transi-
tion functions of the entire system, which leads to consid-
erable communication overhead. In [8], sequential DQN is
used, with an asynchronous update mechanism for scheduling.
While this helps addressing non-stationarity, the approach
becomes computationally impractical in high-dimensional ac-
tion spaces. In [9], we explored an MADRL framework in
high-dimensional action spaces where agents were updated
simultaneously. Although this method is effective in han-
dling dynamic environments, it increases variability and non-
stationarity, which can result in learning conflicts.

In this paper we specifically focus on the challenges caused
by the mobility of in-X subnetworks managed by autonomous
agents. Each agent functions independently, selecting channels
and scheduling devices. The proposed method is designed to
handle dynamic interference conditions while ensuring efficient
and fair resource allocation under strict URLLC constraints.
The main contributions of this work are as follows: Unlike
our prior work [9], which focused on synchronous updates,
this paper introduces an asynchronous update strategy for

MADRL, where agents learn independently by updating one
at a time. This approach reduces variability in learning and
avoids conflicts in policy updates. Furthermore, we introduce
a framework where a Long Short-Term Memory (LSTM)
network is pretrained to predict Signal-to-Interference-plus-
Noise Ratios (SINRs) before being integrated into the MADRL
framework. This explicit use of LSTM for SINR prediction
enhances both the performance and the interpretability of the
learning process, leaving the task to learn to operate in the
multiagent environment to the RL agents.

The structure of the paper is as follows: Section II outlines
the system model and the objectives of this study. Section III
provides an overview of the MADRL framework employed.
Section IV presents the simulation results, and Section V
concludes the paper.

II. SYSTEM MODEL

We focus on an indoor factory setting consisting of M mobile
subnetworks, where each subnetwork is managed by an access
point (AP) and serves J devices. Without loss of generality,
we concentrate on downlink communication, following the
framework introduced in [9]. The same principles can be
readily extended to the uplink.

The total channel bandwidth is divided into N subchannels,
and transmissions within each subnetwork are orthogonal to
prevent intra-subnetwork interference. Each subnetwork op-
erates in a fully scheduled multiuser communication regime,
where the AP is assumed to have complete knowledge of the
signal-to-interference-plus-noise ratio (SINR) for its devices
across all subchannels. The AP schedules transmissions based
on this information, and communicates scheduling decisions
to its devices through control channels. Any combination of
subchannels can be scheduled to each device.

The subnetworks share the radio spectrum without explicit
coordination, meaning that multiple subnetworks can simul-
taneously use the same subchannels. This results in inter-
subnetwork interference. To address this, an online learning
algorithm is implemented at the APs to minimize the in-
terference price caused by channel collisions. We assume a
slotted channel access system, where all subnetworks adhere
to a unified slotting scheme managed by an umbrella wide-
area network. We assume a service model where in each time
slot, the AP sends new data packets to its devices instead of
retransmitting possibly failed packets [10].

The mobility of sub networks makes the channel gain vary
over time. The channel gain from AP b to device j on
subchannel n at time t is denoted as hnj,b(t). The received
signal at device j served by AP b is:

ynj,b(t) = hnj,b xb +
∑
m ̸=b

hnj,m(t)xmgn,m + zj , (1)

where xb and xm are transmitted symbols with power Pt, and
zj ∼ CN (0, σ2) is Additive White Gaussian Noise (AWGN).

The SINR for device j on subchannel n is:

γn,j(t) =
|hnj,b|2∑

m̸=b |hnj,m(t)|2gn,m + 1
γ0

, (2)

where γ0 = Pt/Wσ2 represents the ratio between the transmit
power and the noise power over subband width W , and gn,m
indicates whether subchannel n is used by AP m.

In each time slot, a fixed number of information bits is
sent to each device, but the number of subchannels used
for transmission can vary. The AP agent solves a scheduling
problem in each slot, determining which channels to allocate
to each device. Let a(b)j denote an N × 1 vector where entry
a
(b)
n,j ∈ {0, 1} indicates whether subchannel n is allocated to

device j. The outcome of the scheduling problem for AP b
is represented by the N × J matrix A(b) consisting of the
columns a

(b)
j . Sub-channel occupancy by AP m is thus given

by gn,m =
∑
j a

(m)
n,j .

Error performance is modeled using a predefined modulation
method and a fixed Forward Error Correction (FEC) scheme
for each subchannel. Repetition coding is applied across mul-
tiple subchannels to enhance reliability. At the receiver, the
signals from the allocated subchannels are Chase combined
before FEC decoding. The effective SINR characterizing the
communication channel between AP b and device j is then

γj =

N∑
n=1

a
(b)
n,jγn,j , (3)

and the finite block length error probability is [11]:

pj,b = Q

(
2qC(γj)− 2k + log2(q)

2q
√
V (γj)

)
, (4)

where Q(.) is the Gaussian q-function, C(γ) = log2(1+ γ) is
AWGN channel capacity, V (γ) = γ 2+γ

(1+γ)2 (log2 e)
2 is channel

dispersion, q is the code block length, k is the number of
information bits, and R = k/q is the code rate.

The resource scheduling problem is formulated as

P1 : min
∑
j,b

pj,b(t) s.t. pj,b(t) ≤ p0, (5)

where p0 is the reliability threshold, often taken to be 10−5 in
URLLC scenarios. This optimization problem is solved using
a reinforcement learning framework, where the asynchronous
update mechanism ensures stability and adaptability in non-
stationary environments.

III. REINFORCEMENT LEARNING FRAMEWORK

We model a non-stationary Markov Decision Process (MDP)
by (S,A, PT (·, t), r(·), η). Here, S represents the state space,
A represents the action space, PT (·, t) denotes the time-varying
state transition probability, r(·) is the reward function, and η
is the discount factor.

At time t, the state of the system is represented as S(t) ∈ S,
and the action taken at that time is A(t) ∈ A. For each of the
N subchannels, the AP can take J + 1 actions—allocating
it to any of the J devices, or leaving it unallocated. The
dimensionality of the action space is thus NJ+1. The transition
probability PT (S(t+1)|S(t),A(t); t) represents the likelihood
of transitioning to the next state S(t+1) given the current state
S(t) and the action A(t). This formulation allows us to model

the dynamic and non-stationary nature of the environment
where interference patterns evolve over time.

A. State Representation with LSTM

An LSTM network is used to improve state representation
by predicting SINR values. The network is pretrained offline
using historical SINR data in a supervised learning setup. By
analyzing a sliding window of tr past observations, the LSTM
learns to predict future SINRs and capture temporal patterns in
their dynamics. During reinforcement learning (RL) training,
the LSTM’s output becomes part of the input state, enabling a
more accurate understanding of the environment. It is worth to
note that the actions taken by an AP influence the SINRs of its
devices indirectly, with these effects appearing after a one-slot
delay rather than immediately [9]. In our framework, the true
state corresponds to the SINRs of devices, which represent the
underlying system dynamics of the network. To address the
one-slot delayed impact of prior actions on interference and
SINRs, the observable state is defined as a tuple comprising
of the LSTM-predicted SINRs and the previous actions taken
by the AP.

S(t) = [Γ̂(t),A(t− 1)], (6)

where Γ̂ ∈ RN×J is the matrix of SINR estimates generated by
the LSTM, and A ∈ {0, 1}N×J represents the action matrix
indicating channel allocations. The integration of LSTM en-
sures more accurate and temporally aware state representations,
stabilizing the training process.

To adapt to environmental dynamics, the LSTM undergoes
periodic hybrid retraining, combining new observations from
exploration with the original training dataset. The specifics of
this are discussed in Sec. IV.

B. Reward and Optimization Objective

As the aim in (5) is to minimize packet loss probability
subject to the reliability constraint, we design a reward function
to penalize high packet loss probabilities, thereby promoting
reliable resource allocation:

r(t) = −
J∑
j=1

log

(
pj,b(t)

p0

)
. (7)

Here p0 is the reliability threshold. This function combines
a barrier-function of interior-point methods with the objective
function of (5).

Each AP controlling a subnetwork is modeled as an indepen-
dent RL agent. The objective of each agent is to maximize its
cumulative reward thereby ensuring that the packet loss proba-
bility remains below the predefined threshold. The cumulative
discounted reward over a time horizon T is:

Rac(t) =

T∑
k=t

ηk−tE[r(k)] , (8)

and the optimization objective for each RL agent is to maxi-
mize the cumulative reward:

P2 : max
A(t)

Rac(t), 0 ≤ t ≤ T. (9)

C. Learning Algorithm
To learn scheduling policies, we utilize a modified Deep

Deterministic Policy Gradient (DDPG) algorithm [12], adapted
for high-dimensional discrete action spaces under URLLC
constraints. The DDPG algorithm is designed to find deter-
ministic continuous actions, and it consists of the following
key components:

• Actor Network, which outputs a deterministic policy:

Â = fϕ(S), (10)

where ϕ represents the parameters of the actor network.
The actor network generates the action Â based on the
current state S.

• Critic Network, which evaluates the quality of actions by
estimating the Q-value function for a given policy:

Qπ(S,A) = Eπ

[
T∑
k=t

ηk−tr(k)

∣∣∣∣St = S,At = A

]
,

(11)
where π is the policy being followed, and η is the
discount factor. The critic network, parameterized by θ,
approximates this Q-value function for the given state-
action pair (S,A).

The actor network generates continuous-valued actions which
represent a proposed allocation of resources. To provide con-
crete scheduling decisions, these have to be discretized. To
meet URLLC requirements, there is a minimum requirement
that a packet has to be transmitted to each user. Accord-
ingly, when discretizing the continuous actions, we impose an
URLLC constraint, ensuring that each device is assigned at
least one resource.

For action discretization, we adopt the binary tree search
mechanism of [9], which operates in two steps. In the first
step, we identify a set Z of K candidate initial points
Ak ∈ {0, 1}N×J such that exactly one resource is allocated
to each user. This process begins by sorting the entries of
the continuous action matrix Â and selecting the J largest
values. If the chosen entries fail to create a valid schedule,
ensuring each device is assigned a unique resource, the set
is gradually expanded until K candidate initial points are
generated. Once the initial points are generated, the second step
involves completing each schedule. This is accomplished by
assigning the remaining resources to users in a greedy manner,
prioritizing their closeness to Â, or leaving them unallocated—
if ân,j < 1/2 for all devices j, resource n is left unassigned.
This process results in a set Z containing up to K distinct
matrices, with each matrix representing a potential resource
allocation. Finally, the critic network evaluates the K candidate
schedules and selects the one that maximizes the Q-value,
choosing the schedule as: A = argmax

Ak∈Z
Qθ(S,Ak; t).

D. Target Networks and Updates
The actor and critic networks work together to produce the

discrete action At based on the state input St. The agent
interacts with the environment, receives a reward rt, and moves
to the next state St+1. The transitions are stored in a replay

buffer B, which is continuously updated over time. Random
samples from the buffer are used to train and update the
networks.

To ensure stable training, we maintain target networks fϕ̄
and Qθ̄, which are updated more gradually than the main
networks using soft updates. A batch of samples S ⊂ B is
drawn, and the discounted estimated Q-value is computed by
the target networks as

y(j) = r(j) + ηQθ̄(Sj+1, fϕ̄(Sj+1; t+ 1)), (12)

where θ̄ and ϕ̄ are the parameters of the target critic and actor
networks, respectively. The critic network parameters θ are
then updated by minimizing the loss [12]:

L(θ) =
1

|S|

|S|∑
j=1

[y(j)−Qθ(Sj ,Aj ; t)]
2
, (13)

while the actor network parameters ϕ are updated using the
deterministic policy gradient [12]:

∇ϕfϕ =
1

|S|

|S|∑
j=1

∇AQθ(Sj ,A; t)
∣∣
A=fϕ(Sj)

∇ϕfϕ(Sj). (14)

Finally, the target networks are updated as

θ̄ ← τθ + (1− τ)θ̄, ϕ̄← τϕ+ (1− τ)ϕ̄, (15)

where τ ∈ (0, 1) is the soft update coefficient. The pseudo-code
for the RL framework, presented in Algorithm 1, is adapted
from our previous work [9], with modifications to incorporate
asynchronous updates.

IV. SIMULATION RESULTS

To test the performance of the proposed DRL framework,
we simulate a factory environment of size 20 × 20 meters.
The setup includes three subnetworks, each acting as an RL
agent. Each subnetwork contains one access point (AP) located
at its center and three devices within a radius of 1 meter.
The subnetworks move inside the factory along straight paths,
changing directions at random when meeting a wall. The
simulation parameters are summarized in Table I. We use
PyTorch as the deep learning framework.

The channel coefficient between AP m and device j on for
subchannel n is modeled as:

hnj,m =
√
βnj,m ξ

n
j,m , (16)

where ξnj,m represents small-scale fading. With dj,m the dis-
tance between the AP and device, distance-dependent path loss
is βnj,m = 10−ρ(dj,m)/10.

We apply the Indoor-Factory path loss model (InF:SL)
of [13]. The path loss ρ(d) in dBs is defined as the larger of the
line-of-sight (LoS) and non-line-of-sight (NLoS) alternatives:

PLLoS(d) = 31.84 + 21.50 log10(d) + 19 log10(fc),

PLNLoS(d) = 33 + 25.5 log10(d) + 20 log10(fc),

where fc is the carrier frequency, and d is the propagation
distance in meters.

Algorithm 1 Asynchronous Multi-Agent(MA) DDPG Algo-
rithm

1: For each agent k, create the critic network Qθk and actor
network fϕk

, initializing their parameters as θk and ϕk
randomly.

2: Set up the target critic network Qθ̄k and target actor
network fϕ̄k

, initializing their parameters θ̄k and ϕ̄k iden-
tically to their corresponding networks.

3: Set θ̄k ← θk, ϕ̄k ← ϕk.
4: Initialize replay buffer Bk for each agent k.
5: Set the initial state S

(0)
k randomly for each agent k.

6: for epoch = 1 to Emax do
7: if epoch ̸= 1 then
8: Set state S

(T)
k as the final state from the previous

epoch for all agents.
9: end if

10: for t = 1 to T do
11: Select agent kt = (t mod K) + 1, where K is the

total number of agents.
12: Select candidate continuous action Âkt =

fϕkt
(S

(t)
kt
) + Nkt(t), where Nk is a random

process for action exploration.
13: Select discrete action A

(t)
kt

from Âkt [9].
14: Execute action A

(t)
kt

, observe reward r
(t)
kt

and new
state S

(t+1)
kt

from the environment.
15: Store transition (S

(t)
kt
,A

(t)
kt
, r

(t)
kt
,S

(t+1)
kt

) in buffer Bkt .
16: Sample a random mini-batch S ⊂ Bkt .
17: Compute target ykt(j) using (12).
18: Update the critic network Qθkt

and actor network
fϕkt

as per (13) and (14).
19: Update the target networks as per (15).
20: end for
21: end for

The intra-subnetwork communication channels are assumed
to remain constant during the simulation, with a Rician small-
scale fading coefficient. However, the inter-subnetwork chan-
nels are dynamic due to the movement of the subnetworks.
The small-scale fading of these channels is modeled using the
Jakes model [14], given by:

ξ(t) =
1√
L

L∑
l=1

cle
i(2πflt+ψl) .

Here, L denotes the total number of multipath components,
cl specifies the gain of each path, fl corresponds to the
Doppler frequency, and ψl ∈ (0, 2π) represents the phase shift
associated with each component.

The wireless channels (16) thus change due to mobility in
two ways. First, the distances change, thus slowly changing the
distance-dependent path loss. Second, the small scale fading
coefficients change rapidly, with considerable change when
the subnetworks move a distance corresponding to a carrier
wavelength.

During the pretraining phase, the LSTM network takes ten
SINR observations, Γ(t− 10), . . . ,Γ(t− 1), as inputs and
predicts the next SINR value, Γ̂(t), as its output for a given
time slot t. The LSTM network consists of a hidden layer
with 256 neurons. In the RL online learning phase, the state
input to these networks at time t follows the structure defined
in (6). The pretrained LSTM network is periodically updated
after every 10 epochs to incorporate the latest environmental
dynamics. Each actor and critic network consists of two hidden
layers with 512 and 256 neurons, respectively. The activation
function used in the hidden layers is ReLU(·), while the output
layer of the actor network employs a Sigmoid(·) activation
function. The networks are trained using the Adam optimizer,
with learning rates set to αϕ = 10−4 for the actor and
αθ = 10−4 for the critic. A mini-batch size of 128 is utilized
for training. The target networks are updated with a soft
update parameter τ = 0.005. The discount factor is defined
as η = 0.985, and the training process runs for Emax = 1000
epochs. A custom-built Python program is used to simulate
the network elements, including their mobility and commu-
nication channels. The reinforcement learning framework is
implemented using PyTorch to train the agents and evaluate
their performance.

Figure 1 demonstrates the convergence behavior of the
LSTM network during the offline training, with the mean
squared error loss plotted on a logarithmic scale. The sig-
nificant initial reduction in loss reflects the network’s rapid
adaptation to the data, with subsequent stabilization indicating
effective learning. Figure 2 compares the predicted and actual
SINR values on unseen data, illustrating the LSTM network’s
ability to accurately track the temporal patterns of SINR caused
by small-scale fading. This highlights the model’s robustness
and predictive capabilities, showcasing its utility for SINR
prediction in the reinforcement learning framework.

Figure 3 illustrates the reward dynamics during the online
learning phase for the asynchronous update mechanism under

TABLE I: Simulation parameters
Parameter Value
Carrier frequency fc [GHz] 1.3
Subnetwork velocity [km/h] 40
Deployment area [m2] 20 × 20
Number of subnetworks, M 3
Bandwidth 18 MHz
Minimum distance between subnetwork centers [m] 2
Transmit power Pt 20 dBm
Number of devices per subnetwork, J 3
Data symbols per subchannel 500
Rx noise figure [dB] 10
Number of subchannels, N 10
Modulation QPSK
Code rate, R 0.4
Target network update τ 0.005
Packet loss probability target, p0 10−5

Radius of subnetworks [m] 1
Minimum distance between devices in sub-network [m] 0.2
Information packet size [bits] 400
Hidden layer neurons (actor, critic) [512, 256]
Discount factor η 0.985
Batch Size 128
Activation functions ReLU, Sigmoid
Learning rate (actor, critic) 10−4

Fig. 1: Training performance: MSE loss on a log scale vs. epoch
showing convergence.

Fig. 2: Predicted vs. ground truth SINR on unseen test data, showing
the LSTM model’s generalization.

the URLLC constraint. The plot demonstrates steady reward
improvement across the subnetworks, with convergence to
a similar performance level. This indicates the effectiveness
of the proposed multi-agent DRL framework in achieving
robust learning in the non-stationary environment. While asyn-
chronous updates may incur increased training time due to
sequential agent updates, this is offset by improved stability,
reduced learning conflicts, and better convergence—crucial for
URLLC scenarios where reliability is prioritized over training
speed.

Figure 4 shows the CDFs of error probabilities for vari-
ous update strategies, highlighting the performance of asyn-
chronous and synchronous updates, both with and without
URLLC constraints. The asynchronous update with URLLC
constraints achieves the best performance, significantly out-
performing all other strategies, including the synchronous

Fig. 3: Comparison of reward behaviors for the three sub-networks in
one scenario.

Fig. 4: Error probabilities Cumulative Distribution Function of differ-
ent strategies.

update with URLLC constraints, the asynchronous update
without URLLC constraints, and the synchronous update with-
out URLLC constraints. This underscores the importance of
URLLC constraints in guaranteeing resource allocation for
every user, as strategies without these constraints exhibit
relatively poor performance. Furthermore, the asynchronous
update is inherently more stable than the synchronous update,
as it avoids the uncertainty introduced by simultaneous agent
updates. The proposed asynchronous mechanism with URLLC
constraints outperforms the strategy from [9], where LSTM
is integrated into the DRL agents in a synchronous MADRL
setting—an approach that itself outperformed the Centralized
Training with Distributed Execution(CTDE) framework—as
well as the myopic greedy baseline. In the greedy approach,
each AP chooses the scheduling strategy that provides the

largest SINR to its worst user, given the current SINRs of
its devices, i.e., solves max

A
min
j

γT
j aj , where γj is the vector

of SINRs of device j, and aj represents its allocation vector.

V. CONCLUSION

This paper proposes an asynchronous multi-agent deep rein-
forcement learning framework for radio resource scheduling
in mobile in-X subnetworks requiring URLLC services. By
updating one agent at a time and predicting SINRs using a
pretrained LSTM, the framework reduces learning variability,
avoids policy conflicts, and adapts to dynamic interference
without inter-agent coordination. Simulation results show that
the asynchronous approach outperforms synchronous updates
in reliability, resource efficiency, and interpretability. While
current experiments use three subnetworks for tractability, the
decentralized design supports scalability, and future work could
assess performance under varying URLLC constraints and
larger multi-agent settings.

ACKNOWLEDGEMENT

This work was funded in part by Business Finland under the
project ”Extreme Machine Type Communications for 6G” and
by the Research Council of Finland (grant 345109). We also
acknowledge the Aalto Scientific Computing for the resources.

REFERENCES

[1] M. A. Uusitalo & al., “6g vision, value, use cases and technologies from
european 6g flagship project hexa-x,” IEEE Access, vol. 9, pp. 160 004–
160 020, 2021.

[2] A. M. Ramly, N. F. Abdullah, and R. Nordin, “Cross-layer design and
performance analysis for ultra-reliable factory of the future based on 5g
mobile networks,” IEEE Access, vol. 9, pp. 68 161–68 175, 2021.

[3] G. Berardinelli & al., “Extreme communication in 6G: Vision and
challenges for ‘in-x’ subnetworks,” IEEE Open Journal of the Commu-
nications Society, vol. 2, pp. 2516–2535, 2021.

[4] Hamidi-Sepehr & al., “5G URLLC: Evolution of high-performance
wireless networking for industrial automation,” IEEE Communications
Standards Magazine, vol. 5, no. 2, pp. 132–140, 2021.

[5] Nasrallah, Ahmed & al., “Ultra-low latency (ULL) networks: The IEEE
TSN and IETF detnet standards and related 5G ULL research,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 1, pp. 88–145, 2019.

[6] Du, Xiao & al., “Multi-agent reinforcement learning for dynamic re-
source management in 6G in-X subnetworks,” IEEE Transactions on
Wireless Communications, vol. 22, no. 3, pp. 1900–1914, 2023.

[7] R. Adeogun and G. Berardinelli, “Distributed channel allocation for
mobile 6G subnetworks via multi-agent deep Q-learning,” in IEEE
Wireless Communications and Networking Conference (WCNC), 2023,
pp. 1–6.

[8] Robaglia, Benoı̂t-Marie & al., “Seqdqn: Multi-agent deep reinforcement
learning for uplink urllc with strict deadlines,” in 2023 Joint European
Conference on Networks and Communications & 6G Summit (EuCNC/6G
Summit), 2023, pp. 623–628.

[9] A. Srinivasan, U. Singh, and O. Tirkkonen, “Multi-agent reinforcement
learning approach scheduling for in-x subnetworks,” in 2024 IEEE 100th
Vehicular Technology Conference (VTC2024-Fall), 2024, pp. 1–7.

[10] Khosravirad, Saeed R. & al., “Communications survival strategies for
industrial wireless control,” IEEE Network, vol. 36, no. 2, pp. 66–72,
2022.

[11] X. Zhang, Q. Zhu, and H. V. Poor, “Non-asymptotic performance
for finite blocklength coding over Nakagami-m channels,” in IEEE
International Conference on Communications (ICC), pp. 1–6.

[12] T.P. Lillicrap & al., “Continuous control with deep reinforcement learn-
ing.” in ICLR, 2016.

[13] 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz,”
Tech. Rep. TR 38.901, V16.1.0, Dec. 2019.

[14] William C. Jakes, Ed., Microwave Mobile Communications. John Wiley
& Sons, 1975.

