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Abstract—We consider fingerprinting-based localization in
highly cluttered multipath environments with non-line-of-sight
conditions, typical of indoor scenarios. Channel state information
(CSI) from multiple Base Stations (BSs) is used to construct
a fingerprint. We investigate the physical geometry of the k
nearest neighbors found by feature distances, as well as possible
enhancements to boost achievable positioning accuracy. We
observe that the performance of Weighted K-Nearest Neighbor
(WKNN) regression depends on the relation between the true
position and its k nearest feature neighbors. Better accuracy is
achieved when the true position is inside the convex hull of the k
nearest neighbors, otherwise localization performance degrades.
Consequently, we devise a neighborhood selection algorithm
to increase the possibility of a point being inside the convex
hull of the k nearest feature neighbors. WKNN localization
is also affected by the weighting function used. To further
improve performance, we consider a general framework to find
the optimum weighting function, utilizing Laguerre polynomials.
We benchmark performance against WKNN with exponential
weight and deep neural network based localization. Simulation
results show that the optimum weighting function with neighbor
selection outperforms the benchmark algorithms.

Index Terms—Channel state information, non-line-of-sight
communication, fingerprint localization, k-nearest-neighbor re-
gression, Laguerre polynomials.

I. INTRODUCTION

Precise localization is a critical feature of modern wireless
networks, owing to a great demand for location-based services
and use cases, most notable Industrial Internet-of-Things (IIoT)
services. In outdoor scenarios mature localization technologies,
such as Global Navigation Satellite System (GNSS), meet
the accuracy demands of most services. For indoor scenarios,
localization performance is degraded, due to satellite signal at-
tenuation, penetration loss and rich reflections. Fifth Generation
New Radio (5G NR) provides enhanced cellular positioning
performance, leveraging advanced beamforming capabilities
and a wide range of standardized techniques [1], [2].

In challenging indoor localization scenarios, fingerprint
localization is a viable technology, with verified performance in
many systems [3], [4]. Fingerprint localization is considered as
the main direct machine learning-based positioning method in
the ongoing 3GPP Rel-18 discussion on Artificial Intelligence
(AI) / Machine Learning (ML) for positioning accuracy
enhancement. Channel State Information (CSI) features are
collected at several known locations to create a database. For
example, Received Signal Strength (RSS), Angle of Arrival
(AoA), Time of Flight (ToF), Power Delay Profile (PDP) and
Channel Impulse Response (CIR) features may be considered.
After creating the database, model training is performed, if

needed. The location can be estimated directly by Weighted
K-Nearest-Neighbor (WKNN) regression, a Support Vector
Machine (SVM), or a Deep Neural Network (DNN) [5], [6].

In particular, the WKNN method is widely applied, because
of its high accuracy, especially when the data set is small, and
due to its low computational cost [7]–[9]. In [8], WKNN shows
better localization results than a deep neural network for a
measured data set. WKNN performance is affected by feature
distance used, e.g. the Euclidean distance, the weight function,
e.g. the inverse distance, and the number of neighbors. In [10],
the author shows that the Sørensen distance outperforms other
distances. In [7], the weight function is modified based on
historical trajectory. In [9], the number of neighbors is adjusted
adaptively. All these studies focus on RSS feature.

CSI can be used for positioning, as it captures rich informa-
tion about multi-path propagation channels. To avoid redundant
information, CSI data may need pre-processing. In [11], AoAs
and ToFs are estimated from CSI to create a database. A
two-step k-Nearest-Neighbor (KNN) localization algorithm is
designed, where a large set of neighbor candidates is found by
ToF and then limited by AoA. In [8], KNN localization based
on dimension reduced CSI features is applied.

In this paper, we study the physical geometry of the set of
k nearest neighbors found by feature distances. The physical
location might be outside of the convex hull of the k nearest
neighbors. In such a case, feature neighbors may not be true
physical neighbors, so the estimated location based on WKNN
is error prone. We consider the spatial covariance matrices from
multiple Base Stations (BSs) as a fingerprint, as they capture
angle information from the point of view of multiple positions.
We apply a log-Euclidean distance to measure fingerprint
dissimilarity, since it is a suitable metric for Hermitian positive-
definite matrices.

To improve localization performance, we design neighbor
selection methods to expand the convex hull with a given
number of neighbors. In WKNN localization, we consider a
generalized framework to find the optimum weighting function,
utilizing Laguerre polynomials. The function is parameterized
by a set of parameters obtained by solving an optimization
problem aiming to minimize the mean-squared error over
the data set. We compare Root-Mean-Squared Error (RMSE)
localization performance with a benchmark RSS feature, and
with benchmark methods, i.e., WKNN with exponential weight
function, and DNN.

The remainder of this paper is organized as follows: In
Section II, the system model, and basic concepts are introduced.



In Section III, the convex hull of the k nearest neighbors is
analyzed and the neighbor selection methods are introduced.
In Section IV, the generalized weight function is introduced.
Simulation results are presented and discussed in Section V.
Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a communication system with B Base Stations
(BSs), each BS having M antennas, e.g., a Uniform Linear
Array (ULA). User Equipments (UEs) have one omnidirectional
antenna. We assume that the UE estimates CSI from downlink
reference signals. In an offline phase, the network creates
a database, where the fingerprints are channel covariance
matrices/received powers for a corresponding physical location.
In an online phase, a new fingerprint is measured, and the
network estimates the location based on the new fingerprint
and the data set.

A. Channel State Information Feature

We assume transmissions based on Orthogonal Frequency-
Division Multiplexing (OFDM) with N subcarriers, with a
cyclic prefix larger than the maximum delay spread of the
channels. The channel vector between UE u and BS b over
subcarrier n at time-sample s is hu,b,n,s ∈ CM×1. The channel
coefficients model both path-loss as well as large scale and
small scale multipath fading effects. The covariance CSI feature
of the channel between UE u and BS b is

Ru,b =
1

S N

S−1∑
s=0

N−1∑
n=0

hu,b,n,s hH
u,b,n,s , (1)

where S is the number of time samples and Ru,b ∈ CM×M .
In Ru,b, the effect of small scale fading is averaged which
endows covariance-based features with robustness to small
scaling fading.

For a fixed transmission power, the received power su,b is
proportional to the average channel gain, su,b ∼ Tr (Ru,b).
Note that the channel covariance feature Ru,b is smaller in
size than the CSI feature{hu,b,n,s} where all frequency and
time samples of UE u channels are stacked.

B. Weighted K-Nearest Neighbor Regression

WKNN regression is based on a concept of a local neigh-
borhood. The weight vector is computed based on a feature
distance, using a weighting function such as the inverse distance,
an exponential function or a Gaussian function.

We denote a CSI-feature by fi. Let pi be the corresponding
physical location in the data set, and d(◦, ◦) the distance
measure between two features. To estimate the physical location
corresponding to feature fu, the distances d(fi, fu) to all points
in the data set are computed, and the set Au of the k feature
points nearest to fu are determined, with |Au| = k. The weight
ωu,i of UE i ∈ Au when localizing UE u is

ωu,i =
g
(
d
(
fi, fu

))∑
i∈Au

g
(
d
(
fi, fu

)) , (2)

where function g(d) maps a distance d to a similarity. The
exponential function

gτ (d) = exp(−τ d),

with tuning parameter τ is the mostly common used function.
The location corresponding to feature fu is then estimated as:

p̂u =
∑
i∈Au

ωu,i pu,i, (3)

where pu,i is the location of neighboring point i in Au.

C. Feature Distances

The simplest distance between two matrices M and M
′

is
the Euclidean distance

dEuc

(
M,M

′
)
=
∥∥∥M−M

′
∥∥∥
F
. (4)

The log-Euclidean distance between two covariance matrices
is the Euclidean distance between their matrix logarithms [12]

dlogEuc

(
R,R

′
)
=
∥∥∥log(R)− log

(
R

′
)∥∥∥

F
. (5)

It is a metric in the space of positive definite Hermitian matrices,
which is a geodesic distance, and both rotation, scale, and
inversion invariant [13].

Using the log-Euclidean metric to measure the distance of
covariance features can be equivalently understood as consid-
ering Euclidean distance between log-covariance features. For
a positive-definite Hermitian matrix R, the matrix logarithm
can be calculated through eigenvalue decomposition:

R = UΛUH,

where Λ is a diagonal matrix. Then

log(R) = U diag ([log λ1, . . . , log λM ])UH.

For a positive semi-definite matrix, a practical approach is to
find the matrix logarithm of the M ′ largest eigenvalues, with
λm′ > 0 for m′ = 1, . . . ,M ′.

III. CONVEX HULL OF FEATURE NEIGHBORS

WKNN estimates the location as a linear combination of
coordinates of feature neighbors, as in (3). The estimated
location is always in the convex hull of the k nearest neighbors.
It is important to understand how the feature neighbors in the
feature domain are mapped to physical neighbors in the physical
domain.

A. Convex Hull Ratio

For this, we investigate whether the true location of a point
is in the convex hull of its feature neighbors or not. This can
be done by solving a feasibility problem:

pu −
∑
i∈Au

αi pu,i = 0, (6a)

αi ≥ 0, i = 1, . . . , k, (6b)∑
i∈Au

αi = 1. (6c)



Location pu is in the convex hull of its feature neighbors, if the
above problem has a solution. Note that this counts boundary
points as being in the convex hull. We solve problem (6) for a
data set of U points, and count the number of points in the
convex hull of their feature neighbors, denoted by UI. Then,
we define the convex-hull ratio as:

η =
UI

U
. (7)

This ratio provides a fundamental bound on WKNN localization.
If a point is outside the convex hull of its feature neighbors,
no weighting function can provide accurate localization.

B. Illustrative Example

To understand the performance of WKNN from the per-
spective of the convex hull ratio, we conduct a simulation
experiment. An indoor scenario where 4 BSs with 20 m inter-
site-distance are located at the corners of a hall, and 2000
UEs are located on a grid with 0.4 m spacing. Channels
are generated using the Quasi Deterministic Radio Channel
Generator (QuaDRiGa) simulator [14].

We consider two kinds of CSI-features—covariance and
power features as benchmarks. We study the convex-hull
ratio performance of log-scale covariance matrix and power
constructed from one BS and four BSs. Feature neighbors
are found by the Euclidean distance of power, log-power,
covariance and log-covariance features.

Figure 1 shows the convex-hull ratio versus the number of
feature neighbors k. The covariance and log-covariance has a
higher convex-hull ratio than the power and log-power, and
the log-scale features show higher convex-hull ratio compared
to the linear-scale features. Extending the feature by including
more BSs improves the convex-hull ratio, as shown by the
convex-hull ratio of four BSs compared to one BSs with log-
covariance and log-power feature. The results indicate that the
covariance features outperform power features with a wide
margin, and similarly log-scale features outperform linear scale
features. For this simulated scenario, when k = 5, the best
performing log-scale covariance feature has 20% of the points
outside of the convex hull of feature neighbors, indicating that
even with a perfect data driven weighting method, WKNN
would result in 20% of the data points erroneously localized.

Figure 2 shows the Cumulative Distribution Function (CDF)
of localization error for the points inside and outside the convex
hull, based on log-scale benchmark features from four BSs
with WKNN using exponential weight function (τ = 1).

The higher the number of neighbors, the higher the convex-
hull ratio. The analysis above motivates us to consider a
neighbor selection process to improve the convex-hull ratio.

C. Neighbor Selection Method

We devise a neighbor selection method to increase the
convex-hull ratio without changing the number of neighbors k,
including a neighbor addition rule and a deletion rule.
• Neighbor selection method (NSM) 1: We construct a set
|Au| of k neighbors for user u, where no three physical
locations are near to be on a line, since any point on the
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Fig. 1: The convex-hull ratio as a function of the number of
neighbors for different CSI features.
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Fig. 2: Cumulative distribution function of localization error
for WKNN with exponential weight function based on log-
covariance matrices and log-power feature.

line segment is a convex combination of two end points.
The set |Au| is constructed iteratively, each time adding
one point.

• NSM 2: To expand the convex hull we create a set of k+1-
nearest neighbors. Then calculate the averaged pairwise
Euclidean distance of the physical location within each
subset of k neighbors and select the one giving the largest
pairwise distance.

• NSM 1&2: The set of k + 1 nearest neighbors is created
satisfying NSM 1.

All neighbor selection methods increase convex-hull ratio, as
shown in Figure 3. The feature is log-covariance. Figure 4
depicts the selected neighbor coordinates applying rules. The
convex hull is expanded after neighbors selection method 2.

IV. LEARNING THE WEIGHT FUNCTION

In WKNN regression, the exponential weight function gτ (d)
with one fixed parameter τ is commonly used. We generalize
this to a parameterized weight functions, given as

gτ,a(d) = e−dτ (a0L0(d) + . . .+ amLm(d)) , (8)



Algorithm 1 Neighbor Selection Method 1
1: Find neighbor locations pu,1, . . . ,pu,U sorted by feature distance,

i.e., d(fu, f1) < . . . < d(fu, fU ).
2: Set Au ← ∅, and l← 0.
3: while |Au| < k do
4: l← l + 1
5: if |Au| < 2 then
6: Au ← Au ∪ pu,l

7: else
8: if pu,l is not on the line with any two points in Au then
9: Au ← Au ∪ pu,l

10: end if
11: end if
12: end while
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Fig. 3: Convex-hull ratio as a function of the number k of
nearest neighbors for different neighbor selection methods. The
log-covariance feature is used with 4 BSs.

where the tuning parameters are τ and a = [a0, . . . , am]T, and
Lm is mth-degree Laguerre polynomial, given as

Lm(x) =

m∑
n=0

(−1)n

n!

(
m

n

)
xn.

Note that the exponential weight function is a special case of
the generalized weight function. The Laguerre polynomials
with an exponential kernel are a natural orthogonal basis for
functions taking values on the positive real line R+ [15].

We optimize parameters based on the data set, considering
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Fig. 4: Examples of selection of k = 5 neighbors. Neighbor
coordinates shown for different neighbor selection methods.

the sum of squared localization errors as a cost function, i.e.,

C(τ,a) =

U∑
u=1

cu(τ,a), (9)

where cu(τ,a) denotes the squared localization error for point
u, given as

cu(τ,a) =

∥∥∥∥∥pu −
∑k
i=1 gτ,a(du,i)pu,i∑k
i=1 gτ,a(du,i)

∥∥∥∥∥
2

2

. (10)

The true position for point u is pu = [xu, yu]
T, and corre-

spondingly the neighbor positions are pu,i. The cost function
can be re-written as

cu(τ,a) =

∥∥∥∥pu − Eu(τ)
T MT

u a

eu(τ)T MT
u a

∥∥∥∥2
2

, (11)

where

Mu =

L0(du,1) . . . L0(du,k)
...

. . .
...

Lm(du,1) . . . Lm(du,k)

 ∈ R(m+1)×k,

the coordinates of the k nearest neighbors are arranged as:

Pu =

[
x1, . . . , xk
y1, . . . , yk

]T
∈ Rk×2,

while the feature distances to the k neighbors are

du = [du,1, . . . , du,k]
T ∈ Rk×1,

the exponential weight vector is eu(τ) = e−τ du , and the
matrix

Eu(τ) = diag (eu(τ)) Pu ∈ Rk×2.

When the feature distance is 0, we set the weight function
to gτ,a(0) = 1. This results in the constraint 1Ta = 1. The
optimization problem then becomes

min
τ,a

C(τ,a), subject to 1Ta = 1.

This is a non-convex optimization problem. We obtain the
optimization parameters by the gradient projection algorithm.
The gradient with respect to a is1:

∂cu
∂a

= −2 MEp

eTMTa
+ 4

pTETMTaMe

(eTMTa)2

+2
MEETMTa

(eTMTa)2
− 2

aTMEETMTaMe

(eTMTa)3
, (12)

and the gradient with respect to τ is:

∂cu
∂τ

= −2pT(∇τE)TMTa

eTMTa
+ 4

(∇τe)TMTapTETMTa

(eTMTa)2

+
aTME(∇τE)TMTa + aTM(∇τE)ETMTa

(eTMTa)2

−2aTMEETMTa(∇τe)TMTa

(eTMTa)3
, (13)

1The subscript u for the matrices is ignored, and the parameter τ is removed
from E(τ) and e(τ) in the gradient computations for simplicity.



where ∇τe = −diag(d)e(τ), and ∇τE = −diag(d)E(τ).
Thus the gradients of the cost function are

∂C

∂a
=

U∑
u=1

∂cu
∂a

,
∂C

∂τ
=

U∑
u=1

∂cu
∂τ

. (14)

In the projected gradient descent, at iteration t we update at
and τt as follows:

a′t = at−1 − λ
∂C

∂a
, at =

a′t
1Ta′t

(15)

τt = τt−1 − λ
∂C

∂τ
(16)

where λ is the step size.

V. SIMULATION

We consider network-based localization, where the UE
measures the covariance matrices and reports to the network to
create a fingerprint database. The data set is split into a training
set and a testing set. For the optimized weight function, the
parameters are found based on the training set. The neighbor
selection is processed at the network side.

As the covariance is a Hermitian matrix, it can be described
in terms of M2 real numbers for one BS. The log-scale
covariance feature is created by first taking the matrix logarithm
then taking the real and the imaginary parts to vectorize the
matrix. The received power feature is created from the B
received powers, consisting of B non-negative values, and the
log-scale received power feature is given by the logarithm
of the powers. Feature neighbors are found by the Euclidean
distances of features summed over all BSs.

For the benchmark localization methods, we consider WKNN
with exponential weight function (τ = 1) and DNN. The DNN
takes in a vectorized log-covariance and passes it through
three fully connected layers of size [256, 128, 64], using the
rectified linear unit (ReLU) activation function. The DNN
outputs estimated UE coordinates. The Mean Squared Error
(MSE) is considered as the loss function.

We evaluate localization performance in a non-line-of-
sight environment, specifically an Indoor Factory Sparse Low
(InF-SL) scenario of [16]. The simulation parameters are
summarized in Table I. The environment layout consists of
4 BSs located at xy-coordinates [−10, 10] m, [−10, −10] m,
[10, 10] m and [10, −10] m, where 2000 UEs are on a grid
with 0.4 m spacing. The basis of evaluation is synthetic channel
data generated with the QuaDRiGa simulator, considering large-
scale and small-scale effects including multi-path fading [14].
We adopt the values for delay spread, angle-of-arrival and
angle-of-departure distributions for the InF-SL scenario dis-
cussed in [16]. The log-covariance and log-power features are
computed with 50 time samples. The data set is split into
80% and 20% for training and testing, respectively. We study
the log-covariance positioning performance based on neighbor
selection methods, with generalized weight function in WKNN
regression. The Euclidean distance is used to determine the
feature neighbors and their distances. The benchmark feature
is the received power feature in the dB scale. The features

TABLE I: Simulation Parameters

Parameter Value Parameter Value

Center Freq. 3.5 GHz Subcarrier Spa. 30 kHz
Scenario InF-SL Bandwidth 10 MHz
BS Tx Power 20 dBm Noise Power -174 dBm
BS Height 1.5 m UE Height 1 m
BS Array 1-8 ULA UE Array 1
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Fig. 5: Localization RMSE against the number of neighbors
for neighbor selection algorithms. WKNN localization with
exponential weight function (τ = 1).

are in log scale, because the log scale feature shows better
localization performance than the linear scale.

First, we investigate neighbor selection methods, including
NSM 1, NSM 2 and NSM 1&2. Figure 5 shows RMSE
performance with the number of neighbors k. Generally, adding
more neighbors improves positioning performance of WKNN
regression. The considered neighbor selection methods are
beneficial to localization performance. Applying NSM 1&2, the
RMSE is decreased to 0.19 m. Table II summarizes the accuracy
of these approaches with k = 5 neighbors. We use the RMSE,
the 80th percentile distance error and 90th percentile distance
error as the performance metrics to evaluate and compare the
accuracy of the above discussed approaches.

Based on the neighbor selection, we explore the localization
performance with polynomial weight functions, considering
polynomial degree 2, 3, and 4. For the considered dataset,
the RMSE is best for a 3rd degree polynomial, giving an
RMSE approximately 45% of the distance between two nearest
samples in the data set. Larger polynomial degree leads to
overfitting. The 80th percentile distance error for polynomial
weight with neighbor selections is 0.33 m, which is smaller
than the distance between neighbors on the grid.

Simulation results show that both neighbor selection and
learning a polynomial weight function outperforms the bench-
mark methods. Performance is summarized in Table II. The
covariance matrix feature in log scale outperforms the power
feature in dB scale. For the covariance feature, both neigh-
bor selection and optimized polynomial weight function are
beneficial to localization performance.
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TABLE II: Localization Performance of Different Features and
Methods with 5 Neighbors

Feature Method 80% 90% RMSE

Power WKNN (exp.) 0.90 1.19 0.57

Covariance DNN 0.51 0.60 0.29

Covariance WKNN (exp.) 0.39 0.42 0.22
Covariance WKNN (poly. 3) 0.37 0.42 0.21

Covariance NS I WKNN (exp.) 0.37 0.42 0.20
Covariance NS II WKNN (exp.) 0.36 0.41 0.20
Covariance NS I & II WKNN (exp.) 0.35 0.41 0.20

Covariance NS I & II WKNN (poly. 2) 0.35 0.44 0.20
Covariance NS I & II WKNN (poly. 3) 0.33 0.40 0.18
Covariance NS I & II WKNN (poly. 4) 0.46 0.60 0.45

Figure 6 shows the CDF of the distance error based on
WKNN with log-scale covariance matrix feature and compared
error distribution applying neighbor selection methods with
k = 5 neighbors.

VI. CONCLUSIONS

In this paper, we have considered WKNN fingerprint-based
localization in a challenging NLoS indoor environment. We
constructed a CSI fingerprint from log-covariance of several
BSs. The neighbors of a test point were found by Euclidean
distance. We analyzed geometric characteristics of the set of
k-nearest neighbors and the relation to the localization error, ob-
serving that localization error increases when the true location
is outside the convex hull spanned by the k-nearest neighbors
in WKNN. We devised neighbor selection methods aiming
to expand the convex hull without increasing the number of
neighbors, using physical location information of the neighbors.
Specifically, we avoid points lying on a line, and select the
neighbor combination to cover a larger area. Furthermore, we
considered a generalized weight function whose parameters are
optimized based on the data set. The simulation results showed
that the RMSE was improved based on the optimum weight
function and neighbor selection methods. With optimum weight
function and neighbor selections, the RMSE performance was

improved by 18% and 38%, compared to the original WKNN
using exponential weight and DNN, respectively.
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