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Abstract—We predict the physical distance between two users
based on the Channel State Information (CSI) of wireless channels.
The CSI of each user is measured at several multiantenna base
stations. We consider a supervised metric learning framework
using a neural network that ensures that the properties of a
metric are fulfilled: zero distance between a point and itself, non-
negativity, symmetry, and the triangle inequality. The training data
set consists of CSI from pairs of points and their physical distance.
As an example use case, we consider fingerprint localization, where
creating large datasets is impractical. The metric can be learned
from a small dataset because the number of training data pairs
increases quadratically in the number of CSI-fingerprints. We use
the learned metric for Weighted K-Nearest Neighbor (WKNN)
localization, to find neighbors in the dataset and to compute the
weighting vector. Simulation results show that the 80th percentile
error can be improved by some 70% using the learned metric as
compared to the Euclidean distance for WKNN regression.

Index Terms—Channel state information, non-line-of-sight
communication, fingerprint localization, metric learning, weighted
k-nearest-neighbors regression.

I. INTRODUCTION

Accurate localization is an important feature of modern wire-
less communication systems, enabling a wide range of location-
based services. In outdoor environments, well-established lo-
calization technologies, such as the Global Navigation Satellite
System (GNSS), generally meet the accuracy demands of most
applications. However, achieving high-precision localization in
indoor environments remains challenging due to the presence
of multipath propagation and signal attenuation. The advent
of Fifth Generation New Radio (5G NR) has significantly
enhanced indoor cellular positioning with a broad set of
standardized techniques [1], [2].

Among various indoor positioning methods, fingerprint-
based localization has emerged as a viable solution [3], [4].
This approach involves collecting radio measurements, e.g.,
Received Signal Strength (RSS) or Channel State Information
(CSI), at labeled locations to form a data set. A fingerprint
model is trained based on the created data set, using a
supervised machine learning method such as Weighted K-
Nearest Neighbor (WKNN) regression, a Support Vector
Machine (SVM), or a Deep Neural Network (DNN) [2].

WKNN regression is widely used because of its high
localization accuracy, particularly when the dataset is small,
and its low computational cost [5]–[7]. The WKNN method
shows better localization results than a DNN for a measured
data set in [6]. The performance of WKNN is influenced
by factors such as the choice of feature distance metric,
the weight function, and the number of nearest neighbors.

Typically the Euclidean distance and an exponential weight
function are used. In [8], it is shown that the Sørensen distance
outperforms other distances when RSS features are used. In [9]
an enhanced weighting function and a neighbor selection
criterion for WKNN localization are proposed. Additionally,
different CSI features and DNN architectures have been
explored for fingerprint-based localization [10]–[13].

In the literature, metric learning has been based on reducing
intra-class and increasing inter-class distance in classification
problems, leading to a non-convex optimization problem.
Relaxations have been considered to obtain sub-optimal
solutions [14], [15]. A Triplet neural network is used for
parameterizing the metric in [16], and applied for localization
and channel charting in [17], [18]. In [19], [20] Siamese neural
network is used to learn a distance/ similarity for classifications.
In [21], a Siamese neural network is used to parameterize
Sammon’s mapping and learn a 2D feature representation.

Unmanned aerial vehicle geometric localization is considered
in [22], based on a DNN that maps the CSI feature distance
between pairs of nodes to their physical distance. A multilater-
ation algorithm is then applied to find the physical location.
The distance obtained from DNN is symmetric. However, the
distance does not satisfy other axioms of a metric, i.e., non-
negativity, the vanishing of the distance from a point to itself,
and the triangle inequality. The proposed metric neural network
structure has two branches with common weights similar to
[19]–[21]. However, the loss function and input distance are
different.

In this paper, we propose a DNN-based metric learning
framework for wireless localization in challenging non-line-of-
sight (NLoS) indoor factory environments. The main contribu-
tions are:

• Metric Learning: Our framework learns a distance that
satisfies the axioms of non-negativity, symmetry and
triangle inequality, addressing limitations in [22], and
not limited to learning a metric for classifying data points
into two categories [16], [19].

• Enhanced Localization Performance: By integrating the
learned metric into WKNN localization, we demonstrate
significant improvements over conventional Euclidean
distance-based WKNN and direct DNN localization meth-
ods, particularly in challenging NLoS indoor environ-
ments.

The remainder of this paper is organized as follows: The
system model is introduced in Section II, the metric learn-
ing problem in Section III and the localization framework



Fig. 1. DNN structure for metric learning consisting of two DNN with the
same parameters θ. The output is a learned low dimensional feature. The
structure is used to predict the physical distance.

in Section IV. Section V provides performance evaluation
and complexity analysis, and Section VI simulation results.
Section VII concludes the paper.

II. SYSTEM MODEL

We consider a communication system with B Base Stations
(BSs), each BS having M antennas, e.g., arranged as a
Uniform Linear Array (ULA). User Equipments (UEs) have
one omnidirectional antenna.

We assume transmissions using Orthogonal Frequency-
Division Multiplexing (OFDM) with N subcarriers, where
the cyclic prefix is longer than the maximum delay spread
of the channels. The channel vector between UE u and BS b
over subcarrier n at time-sample s is hu,b,n,s ∈ CM×1. The
channel coefficients model path-loss as well as large and small
scale multipath fading effects.

We consider the covariance matrix, which captures statistical
spatial characteristics. The empirical covariance CSI feature of
the channel between UE u and BS b is a Hermitian M ×M
matrix computed from S time samples as

Ru,b =
1

S N

S−1∑
s=0

N−1∑
n=0

hu,b,n,s h
H
u,b,n,s . (1)

Here, the impact of small-scale fading is averaged, making
covariance-based features more robust to small-scale fading
effects. The Eigen-decomposition of a Hermitian matrix R is

R = UΛUH ,

where Λ = diag ([λ1, . . . , λM ]) a diagonal matrix of non-
negative eigenvalues, and U is a unitary matrix. If the matrix
is positive definite, with all Eigenvalues positive, the logarithm
of the matrix becomes:

log(R) = U diag ([log λ1, . . . , log λM ])UH . (2)

For a positive semi-definite matrix, a practical approach is to
find the matrix logarithm of the M ′ < M largest Eigenvalues,
with λm′ > 0 for m′ = 1, . . . ,M ′, and use the corresponding
Eigenvectors.

III. METRIC LEARNING

In the literature, several feature distances/similarities are
considered. The simplest distance between two matrices M
and M

′
is the Euclidean distance

dEuc

(
M,M

′
)
=

∥∥∥M−M
′
∥∥∥
F
, (3)

where ∥.∥F is the Frobenius norm. We will consider the
Euclidean distance to measure the distance between covariance
matrices as well as between logarithms of covariance matrices.

A metric d on a set X is a function d : X × X → R such
that for x, y, z ∈ X , the following conditions are satisfied

• Non-negativity: d(x, y) > 0 and d(x, y) = 0 if and only
if x = y.

• Symmetry: d(x, y) = d(y, x),
• Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

A metric space is an ordered pair (X, d), where X is the set
and d is the metric on X . If d(◦, ◦) on the set X is non-
negative, symmetric, and satisfies the triangle inequality, but
d(x, y) = 0 for some x ̸= y, it is called a pseudo metric. The
Euclidean distance is a metric.

Most metric learning methods aim to find a linear transform
of the features, which provides the best metric properties. For
this, a positive definite matrix A is searched for, such that the
distance between features fi and fj is

dA(fi, fj) =

√
(fi − fj)

T
A (fi − fj) . (4)

If A is positive semi-definite, the result is a pseudo metric. A
is learned with the goal of minimizing a cost function subject
to constraints defined by the data set. Most algorithms work
either with pairwise relationships or with proximity relation
triplets derived from labels [15]. A distance is sought for that
brings similar samples closer, while it pushing away dissimilar
ones. The problem can be formulated in various ways using
different objective functions. If A is decomposed in terms of
a µ× J-matrix L as A = LTL, the distance becomes

dL(fi, fj) = ∥L (fi − fj) ∥2 . (5)

When µ < J , the features have been projected to a lower-
dimensional space µ. Several optimization algorithms have
been used to find L [14], [15].

Here, we instead consider a nonlinear model:

dθ(fi, fj) = ∥Φθ(fi)−Φθ(fj)∥2 , (6)

where Φθ(fi) ∈ ℜµ×1 is a mapping function parameterized by
θ. We consider a DNN structure as shown in Fig. 1, and use
the squared distance error loss function

Li,j = (dθ (fi, fj)− ∥pi − pj∥2)2 , (7)

in terms of the physical distance between physical locations pi

and pj in the training data set. The DNN learns the physical
distance between two users based on the their CSI.

It is easy to show that dθ(fi, fj) inherits the properties of a
pseudometric directly from the Euclidean distance used in (6).
From the definition, it is clear that it is non-negative and
symmetric. The triangle inequality can be proved as follows.
Defining zi = θ(fi), we first add and subtract the same term
and then use the Cauchy–Schwarz inequality:

∥zi − zj∥22 = ∥zi − zk + zk − zj∥22
≤

(
∥zi − zk∥2 + ∥zk − zj∥2

)2

.



Fig. 2. DNN structure for learning the physical distance [22].

Taking square roots on both sides results in the triangle
inequality.

It is worthwhile to compare the proposed DNN structure
to that discussed in [22], illustrated in Figure 2. The distance
learned in [22] satisfies only the symmetry property. The other
metric properties are not fulfilled.

The idea of using several copies of the same neural network
is used in Siamese DNN [19]–[21], where two copies are used,
and in triplet DNN [16]–[18], where three copies are used. The
loss functions for these networks are different from (7). In [19],
contrastive loss is considered. In [20], the cross-entropy loss
function is used. In [21], the Sammon mapping loss function
is used. In triplet DNNs, the loss enforces better separation
between similar and dissimilar points, by considering an anchor,
a positive, and a negative samples as inputs. For Siamese DNN
several loss functions have been considered.

IV. LOCALIZATION FRAMEWORK

We focus on fingerprint-based wireless localization in a
NLoS scenario, which is more challenging than in LoS. At the
network side, the CSI features are measured and the location
is estimated based on a machine leaning approach. The same
method can be used if the CSI feature is measured at the UE
side and fed back to the network.

We will consider both the raw covariance CSI feature and its
logarithm. The M ×M covariances of interest are Hermitian
matrices, and can be represented as M2-dimensional real
vectors. We stack the covariance matrices from B BSs into a
feature vector, which then becomes BM2-dimensional.

A data set consisting of U fingerprints {fu} is created in
the offline phase, with the corresponding physical positions
{pu}. The created data set will be used in the online phase
to estimate the position pu′ of UE u

′
/∈ {1, . . . , U} using fu′

and a machine leaning algorithm.
This paper focus on having a small data set, which is of high

importance from practical point view. In such a case, WKNN
outperforms DNN based localization as reported in [6].

We aim to reveal the benefit of using a DNN based
metric learning framework compared to a direct machine
learning approach, as exemplified by WKNN with Euclidean
distance and direct DNN based localization. The metric learning
approach utilizes U2 pairs of points to learn the metric, whereas
direct DNN based localization utilizes only U points. Therefore
metric learning mitigates the problem of having a small data
set.

An important property of the metric learning structure in
Figure 1 is that the two features are separately input to a DNN.
This results in learning a low dimensional representation of the
feature. This has an advantage when saving or feeding back
the feature, e.g., for fingerprinting localization there is no need
to save CSI features of the offline phase to be used in the
online phase. It is sufficient to save the learned low-dimensional
feature representation {zi}.

To find the k nearest neighbors of a CSI feature in the online
phase, its low dimensional feature needs to be found and then
the feature distances are computed using the Euclidean distance
on a lower dimensional space. We will consider WKNN
localization with Euclidean distance, WKNN localization
with the learned metric in (6), and DNN fingerprint based
localization.

A. Weighted K Nearest Neighbor Localization

WKNN regression is a non-parametric supervised learning
method. The output is the weighted average of the k nearest
neighbors. The neighbors are determined based on a distance
function.

Let pi be the physical location in the data set corresponding
to feature fi, and d(◦, ◦) the feature distance used. Here, for
conventional WKNN we use the Euclidean distance. To estimate
the physical location corresponding to feature fu, the distances
d(fi, fu) to all points in the data set are computed, and the set
Iu of the k feature points nearest to fu are determined, with
|Iu| = k. The weight ωu,i of UE i ∈ Iu when localizing UE
u is

ωu,i =
g (d(fi, fu))∑

j∈Iu
g (d(fj , fu))

, (8)

where function g(d) maps a distance d to a similarity. The
location corresponding to feature fu is then estimated as:

p̂u =
∑
i∈Iu

ωu,i pu,i , (9)

where pu,i is the location of neighboring point i in Iu.
WKNN with metric learning is based on using the trained

network to learn the low-dimensional feature, i.e., to find the
location of CSI feature fi. With the low-dimensional feature
zi = Φθ(fi) given by the DNN, the distance ∥zi − zu∥2 to all
points in the data set is found. The set of k nearest neighbors
Ii is then determined, the weight vector is computed and the
location is estimated as in (9).

B. Direct DNN based Localization

We compare WKNN with/without a learned feature distance
with direct DNN localization. For this, we train a DNN to
directly infer the location of a UE from the CSI feature:

p̂i = Γθ(fi) ,

where θ is parameter vector of the DNN. The DNN takes in a
CSI feature and passes it through several fully connected layers
until the output layer, which outputs the estimated position.

In the training phase, the loss function of the predicted
value against the ground truth value is computed. The MSE is



TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value

Center Freq. 3.5 GHz Subcarrier Spa. 30 kHz
Scenario InF-SL Bandwidth 10 MHz
BS Height 1.5 m UE Height 1 m
BS Array 8 ULA UE Array 1
Num. of BSs 4

considered as the loss function. The training of the DNN takes
place during an offline phase. The trainable parameters are
updated by back-propagation. In the online phase, the DNN is
used to predict the position for a given CSI feature.

V. PERFORMANCE EVALUATION AND COMPLEXITY
ANALYSIS

To evaluate localization performance, we consider the
statistics of the distance error, i.e., the difference of the
predicted and ground truth locations in the test data set. We
consider the 80th and 90th percentiles of the error, as well as
the Root Mean Squared Error (RMSE).

For the metric leaning framework, we consider in addition
the correlation coefficient between the learned and the true
distance. Pearson’s correlation coefficient between a pair of
random variables P and V is given as

ρ(P, V ) =
E [(P − µP )(V − µV )]

σPσV
, (10)

where E is the expectation, µP and σP are the mean and
standard deviation of P , respectively. The correlation coefficient
is between -1 and 1.

When evaluating complexity, we consider online phase
complexity only, which is crucial for real-time operation. In
ν-digit computation, the complexity of an addition operation
is O(ν) and a multiplication is O(ν2). We neglect additions
for simplicity.

In WKNN, the most computationally intensive step is
the feature distance computation when finding the nearest
neighbors. For Euclidean distance, the complexity is

C(Lf , U) = LfU ,

where U is the data set size and Lf is the length of the feature.
In DNN, assuming a fully connected layer q has size Lq,

the number of multiplications is a function of the number of
layers and the number of neurons at each layer,

C =

Q−1∑
q=1

Lq Lq+1 ,

where Q is the number of layers.
For metric learning with WKNN localization, the computa-

tion complexity includes the complexity of DNN to obtain the
low dimension feature, i.e., zi = Φθ(fu) and then using the
Euclidean distance to measure the distance between zi and zu.

Fig. 3. Pairwise feature distance versus true pairwise distance for the covariance
feature and the learned covariance feature.

VI. SIMULATION

We evaluate the localization performance in an NLoS envi-
ronment, specifically an Indoor Factory Sparse Low (InF-SL)
scenario of [23]. The simulation parameters are summarized
in Table I. The environment layout consists of 4 BSs located
at xy-coordinates [−10, 10] m, [−10, −10] m, [10, 10] m and
[10, −10] m, where 2000 UEs are on a grid with 0.4 m spacing.
The basis of evaluation is synthetic channel data generated with
the QuaDRiGa simulator, considering large-scale and small-
scale effects including multi-path fading [24]. We adopt the
values for delay spread, angle-of-arrival and angle-of-departure
distributions for the InF-SL scenario discussed in [23]. The
log-covariance and log-power features are computed with 50
time samples. We consider 200 points on a grid of 1.2 m for
training, and 1800 points for testing, unless otherwise stated.

To understand performance of the metric learning framework,
we study the linear relation between CSI feature distance and
true distance using correlation coefficient. We consider the
covariance and log-covariance features, as well as learned
features based on covariance and log-covariance.

Figure 3 shows the relation between the covariance feature
distances and the true distances in red, and the relation of the
corresponding learned feature distances and the true distances
in blue. The correlation coefficient without learning is 0.56,
while the learned distance has a correlation coefficient of 0.99.

Similarly, Figure 4 illustrates the log-covariance feature
distances in relation to the true distances (correlation 0.81),
with the associated learned feature distance again achieving
a correlation of 0.99. These results demonstrate that while
log covariance features have a better correlation with the
true distances than covariance features, the learned metrics
consistently achieve the highest correlation. This underscores
that metric learning is significantly more effective than relying
on raw covariance or log-covariance features.

To visualize the effect of metric learning, we compare the
following positioning methods:

• WKNN based localization with the Euclidean distance.



Fig. 4. Pairwise feature distance versus true pairwise distance for log-
covariance feature and the learned log-covariance feature.

• Metric-WKNN: WKNN based localization with metric
learning, as illustrated in Figure 1. The DNN architecture
consists of [2048, 1024, 512, 256, 128, 64] layers.

• [22]-WKNN: WKNN based localization with the learned
distance in [22] as shown in Figure 2. The DNN consists
[2048, 1024, 512, 256, 128, 64, 1] layers.

• DNN based localization. The DNN takes the CSI feature
and passes it through three fully connected layers of size
[256, 128, 64].

We consider an uniformed weight function for WKNN, and
consider k = 10 nearest neighbors.

Table II provides a summary of DNN structures for metric
learning, for the distance in [22] and direct fingerprint local-
ization. Rectified linear unit (ReLU) activation is used at the
layers, except for linear activation at the output layer.

We evaluate the localization performance using 80th and
90th percentiles and RMSE. The localization performances for
several approaches are summarized in Table III. The result of
WKNN with metric learning outperforms other approaches. The
log-covariance feature outperforms the covariance feature. The
gain in terms of 80th percentile is 4 cm, as compared to WKNN
localization without learning. The metric learning structure in
this paper outperforms the distance proposed in [22].

Figure 5 illustrates the cumulative distribution function
(CDF) of the errors for the metric-WKNN method utilizing
log covariance features, evaluated for different values of k
nearest neighbors. The results indicate that for k = 3, 5, 10, the
CDF curves exhibit similar trends, suggesting comparable error
distributions across these values. Notably, the configuration with

TABLE II
DNN STRUCTURES FOR DIFFERENT FRAMEWORKS

Framework DNN Layers

Metric learning [256, 2048, 1024, 512, 256, 128, 64]
Distance learning [22] [256, 2048, 1024, 512, 256, 128, 64, 1]
DNN localization [256, 256, 128, 64, 2]

Fig. 5. Localization errors CDF for metric-WKNN based method using log-
covariance features with different k=3,5, and 10 neighbors.

TABLE III
LOCALIZATION PERFORMANCE, 200 POINTS FOR TRAINING

Feature Method 80% 90% RMSE

Covariance WKNN 1.90 2.52 1.16
log-Covariance WKNN 1.01 1.24 0.56

Covariance DNN 1.03 1.45 1.44
log-Covariance DNN 1.11 1.45 0.64

Covariance Metric-WKNN 1.94 2.43 1.15
log-Covariance Metric-WKNN 0.97 1.11 0.53

Covariance [22]-WKNN 2.00 2.34 1.09
log-Covariance [22]-WKNN 0.97 1.13 0.55

k = 5 nearest neighbors demonstrates the best performance,
achieving lower error values across the distribution.

The performance of WKNN is based on the precision of the k
nearest distances. Thus to improve the metric learning for short
distances we train the DNN metric structure by considering a
subset of points— for each data point we select the nearest 20
points. This results in 200 × 20 data points for learning the
metric. The resulting localization performance is summarized
in Table IV. The gain in terms of the 80th percentile and
RMSE are 70 cm and 12 cm, respectively, compared to WKNN
localization without learning using the log-covariance feature.

To evaluate the gain of metric learning in terms of reducing
the size of the data set, we consider a data set of 1700
points in a grid of 0.4 m for the same environment. We
apply WKNN and DNN localization. The localization results
are summarized in Table V. As expected, having a large
data set improves localization performance of DNN and
WKNN. WKNN with short-distance-enhanced metric learning
in Table IV outperforms DNN localization for a data set of
1700 points with a wide margin, and provides comparable

TABLE IV
LOCALIZATION PERFORMANCE WITH SHORT-DISTANCE-ENHANCED

METRIC LEARNING. 200 POINTS, 20 NEAREST NEIGHBORS FOR EACH POINT

Feature Method 80% 90% RMSE

Covariance Metric-WKNN 0.4 0.64 0.50
log-Covariance Metric-WKNN 0.31 0.51 0.44



TABLE V
LOCALIZATION PERFORMANCE WITH LARGE DATA SET, 1700 POINTS FOR

TRAINING

Feature Method 80% 90% RMSE

Covariance WKNN 0.64 0.85 0.43
log-Covariance WKNN 0.38 0.46 0.22

Covariance DNN 0.62 0.82 0.61
log-Covariance DNN 0.67 0.86 0.40

TABLE VI
NUMBER OF MULTIPLICATIONS IN MILLIONS

Euclidean-WKNN Metric-WKNN [22]-WKNN DNN

0.066 3.33 1698.72 0.107

performance to WKNN with 1700 points. This shows how
WKNN with metric learning has the capability of exploiting a
small data set by producing a quadratic number of samples.

Table VI summarizes the computation complexity in millions
of multiplications. Metric-WKNN localization has negligible
complexity compared to [22]-WKNN localization.

VII. CONCLUSIONS

In this paper, we addressed predicting the physical distance
between two locations based on their Channel State Information.
We have developed a metric leaning framework using a deep
neural network, which guarantees that all the axioms of a
pseudo-metric are fulfilled by the learned metric. The proposed
approach benefits from the fact that the number of data points
is squared.

As an example application, we have used the learned metrics
for Weighted K-Nearest Neighbor localization. A correlation
coefficient of 0.99 between true distance and the learned metric
can be achieved for the considered data set. Localization
performance of WKNN based on metric learning was compared
to conventional WKNN with Euclidean distance, and DNN-
based localization. For a small data set of a high-dimensional
features, DNN provides poor localization performance, while
WKNN with metric learning outperformed the benchmark
schemes with a wide margin. In particular, limiting the training
in metric learning to enhance short distances leads to excellent
localization performance.

In future work, we shall investigate advanced neural network
structures such as convolutional networks and transformers for
metric learning, and address the scalability of the network
when a large number of base stations is considered.
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