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Abstract—In this work, we generalize the concept of transver-
sality in quantum error-correcting codes. Unlike conventional
methods, we study transversal logical two-qubit gates between
two different codes. We consider an application of this concept
for quantum networks which consist of multiple intermediate
stations equipped with quantum repeaters (QRs). The stations
may experience different error models. For instance, in one
station, a particular Pauli error may dominate, whereas in its
neighboring stations, other types of Pauli errors are more likely.
The standard approach of using the same CSS code Q in different
stations does not allow for simultaneously adaptating Q to be
optimized to the errors prevailing in various stations. Considering
this fact, we suggest using different CSS codes in each station. In
this work, we analyze CNOT and CZ transversality for pairs of
CSS codes and provide a complete characterization. We formulate
necessary and sufficient conditions for a pair of CSS codes to be
CNOT and CZ transversal. In comparison to the conventional
approach of having the same CSS code, we show that these
conditions are less restrictive.

Index Terms—Transversality, CSS codes, CNOT gate, CZ gate,
Quantum repeaters.

I. INTRODUCTION

IN order to achieve high accuracy in quantum computations,
the gates should be implemented in a fault-tolerant manner.

The transversal gate implementation is a natural way to ensure
fault-tolerant gates, wherein the gates do not entangle different
physical qubit subsystems within a code, and errors will not
accumulate [1].

The conventional way of using quantum error correction
code (QECC) is to have the same code for each code block
and conduct error correction procedure [2]. However, in some
scenarios, different system suffer from different biased errors,
and using different QECCs will provide better performance in
comparison to using the same QECCs. One particular example
is the quantum repeaters (QRs) which are widely have been
used in quantum communication realm as they can extent the
distance and reliability of information transmission [3].

We consider 2nd generation of QRs which currently are most
likely to be implemented in near-term quantum devices [4]. In
the 2nd generation QRs, QECCs are used in each station to
correct the transmission and local operation errors. The com-
munication protocol is based on logical entanglement between
different stations, and in order to avoid error propagation the

protocol should be fault-tolerant, which requires that QECCs
used in neighboring stations were CNOT-transversal [5].

In [3] error models appearing in the communication protocol
of the 2nd generation QRs have been analyzed, and showed
that the errors occurring in neighboring stations are biased and
correlated. For instance, the Pauli X error could be more likely
in one station and Z errors more likely in the neighboring
station. Authors introduced a CSS code based structure called
mirrored structure to overcome the biased and correlated errors.
The reason for these biased and correlated errors arises from
the Bell state purification and remote CNOT procedures [6].
Based on the above error model, it has been proposed to design
and optimize QECCs specifically [3]. Intuitively, they proposed
to use different CSS codes in nearby stations, one with larger
resistance to X errors, and another with larger resistance to
Z errors. However, such CSS codes may be non transversal,
which will lead to a non fault-tolerant communication proto-
col. This motivates us to study conditions on code pairs be
transversal.

Motivated by the above reasons, in this paper we study the
non-local CNOT and CZ-transversality of pairs of CSS codes
used for establishing neighboring entanglement. Note that this
differs from the logical CNOT gates used in the entanglement
swapping procedure, which consist of only local operations.

In our studies, we first provide conditions on the non-
local CNOT-transversality between CSS codes used in nearby
stations. We observe that in contrast to the well known fact
that for having a CNOT transversal gate, one needs to have
the same code in the station, less restrictive conditions are
needed. Although using transversal CNOT gate to achieve
non-local logical CNOT gate is common, another alternative
is using local logical Hadamard and non-local logical CZ
gate. Then, we investigate the transversality of the non-local
CZ gates and find sufficient conditions for achieving the CZ-
transversality. We show that for achieving the transversality,
one needs to select the mapping properly and otherwise the
transversality may not hold. As an example of transversal CZ-
gate, we investigate the mirrored structure. This structure could
get better result under the 2nd generation QRs error model
than using the same code in every station. We show that any
mirrored structure could achieve sufficient condition of non-



local CZ-transversality. Furthermore, through some examples,
we show that for achieving the transversality, one needs to
select the mapping properly and otherwise the transversality
may not hold. Finally using simulation results, we show that the
optimal performance region of the CNOT and CSS transversal
codes are different and depending on the error model either
using transversal CNOT or CZ gate could achieve better
performance.

Note that our approach establishes the transversality between
different codes and may provide a new path to the fault-tolerant
universal quantum computation beyond the 2nd generation of
QRs. It is worth noting that the transversality between two
different codes is not only used for QRs system, but also can
be applied in quantum computation, like distributed quantum
computation, or other realms.

The paper is organized as follows: We review basic def-
initions of CSS codes in II. In Section III we consider
communication protocol and error models happened before
the entanglement swapping procedure. Next, we establish con-
ditions on code pairs to be CNOT and CZ-transversal IV.
Section V provides simulations results and finally, Section VI
concludes the paper.

II. QUBITS, QUANTUM OPERATIONS, AND CSS CODES

In this section, we recall the main definitions of quantum
CSS codes. More details on this can be found, e.g., in [7].

Let v = (v1, ..., vn) ∈ Fn
2 and |0⟩ = (1, 0)T , |1⟩ =

(0, 1)T ∈ C2. Then the quantum states |v⟩ = |v1⟩ ⊗ . . . |vn⟩
form the computational basis of C2n , and any pure state
|ψ⟩ ∈ C2n of n qubits can be written in the form

|ψ⟩ =
∑
v∈Fn

2

αv|v⟩, (1)

where
∑
v∈Fn

2

|αv|2 = 1.

The CNOT gate between a control qubit in a pure state |ψ⟩
and target qubit in |ξ⟩ corresponds to the unitary transformation
UCNOT (|ψ⟩ ⊗ |ξ⟩), where

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
For a, b ∈ F2 we have UCNOT (|a⟩ ⊗ |b⟩) = |a⟩ ⊗ |a + b⟩.
Denote by UCNOT,i,i+n ∈ C22n the gate that conducts the
CNOT for qubits i and n+ i and leave other qubits untouched.
Assume that we have two sets of n qubits in pure states

|ψ⟩ =
∑
v∈Fn

2

αv|v⟩, and |ξ⟩ =
∑
w∈Fn

2

βw|w⟩,

and denote by CNOT the operator that conducts CNOT gates
for all the qubit pairs (i, n+ i), i = 1, . . . , n. It is not difficult
to see that

CNOT (|ψ⟩ ⊗ |ξ⟩)
= (UCNOT,1,n+1UCNOT,2,n+2 . . .UCNOT,n,2n) (|ψ⟩ ⊗ |ξ⟩)

=
∑
v∈Fn

2

∑
w∈Fn

2

αvβw (|v⟩ ⊗ |v +w⟩) . (2)

Similar definitions can be made for quantum mixed states,
but we omit those details. Recall that Control-Z (CZ) gate
is defined by UCZ = diag(1, 1, 1,−1). We denote by CZ
the operator that applies CZ gates to all the qubit pairs
(i, n+ i), i = 1, . . . , n. It is again not difficult to see that

CZ(|ψ⟩⊗|ξ⟩) =
∑
v∈Fn

2

∑
w∈Fn

2

(−1)vw
T

αvβw (|v⟩ ⊗ |w⟩) . (3)

The widely used completely depolarizing error model is
described by the Pauli matrices:

X ≜

[
0 1
1 0

]
, Z ≜

[
1 0
0 −1

]
Y ≜

[
0 −i
i 0

]
, (4)

where i ≜
√
−1. For a, b ∈ Fn

2 we define operator

D (a,b) = Xa1Zb1 ⊗ ...⊗XanZbn .

Let C1 and C2 be two classical linear codes with parameters
[n, k1, d1] and [n, k2, d2], respectively. By C⊥

1 and C⊥
2 we

denote their dual codes of dimensions k⊥1 and k⊥2 respectively.
Let also the property C⊥

2 ⊂ C1 hold. Then C1 and C2 define
an [[n, k, d]], k = k1 + k2 − n, d = min (d1, d2), quantum
CSS (C1, C2) code, which is a linear subspace of dimension 2k

in C2n . Let us assume that there is a linear bijection between
vectors ψ ∈ Fk

2 and representatives x ∈ C1 of cosets of C⊥
2

in the quotient group C1/C⊥
2 . Then CSS (C1, C2) poses the

orthogonal basis

|ψ⟩L =
1√∣∣C⊥
2

∣∣ ∑
y∈C⊥

2

|x+ y⟩. (5)

It is worth noting that the CSS codes are special case of the
stabilizer codes. This means that for any [[n, k, d]] CSS code
Q, we can find a commutative group S, |S| = 2n−k, composed
by operators γa,bD(a,b) where γa,b is either 1 or −1. For any
γa,bD(a,b) ∈ S, we have

γa,bD(a,b)|ψ⟩ = |ψ⟩, for any |ψ⟩ ∈ Q.

The vectors (a,b), defining the operators γa,bD(a,b) ∈ S ,
form the linear code with the generator matrix

GQ =

[
G⊥

2 0
0 G⊥

1

]
.



III. QUANTUM NETWORK WITH QUANTUM CODES
MATCHED TO ERROR MODEL

A typical quantum network link is shown in Fig.1. The
intermediate stations contain QRs and possibly other hardware.
In this work we assume that QRs of the 2nd generation are
used. The 2nd generation QRs use quantum codes to suppress
the procedure errors, as we discuss it below. Using quantum
codes is efficient in terms of achieving high fidelity and makes
the requirements on the quantum hardware and its control
relevantly low and therefore more achievable with near-term
quantum devices [4]. In this paper, following work from [3],
we assume CSS codes [[n, k, d]], k logical qubits encoded into
n physical qubits with code distance d.

Next, as we argue below, type of errors in stations along
a quantum link can vary significantly. So, we suggest to
use different CSS codes in different stations, and match the
codes to particular error models of the stations. We assume
that the neighboring stations A and B use CSS(C1, C2), and
CSS(C3, C4) codes respectively, where C3 and C4, C⊥

4 ⊂ C3,
are classical codes with parameters [n, k3, d3] and [n, k4, d4]
respectively, such that n − k = k3 + k4 = k1 + k2. By
C⊥
3 and C⊥

4 we denote their dual codes of dimensions k⊥3
and k⊥4 respectively. We assume that the following protocol
is conducted between neighboring stations.

Neighboring Stations Entanglement Swapping
1) Stations A and B prepare their k logical qubits

qA1 , . . . , q
A
k and qB1 , . . . , q

B
k in the states qAj = |+⟩L =

|0⟩L + |1⟩L, and qBj = |0⟩L, j = 1, . . . , k, respectively.
Further they encode the logical qubits into n physical
qubits pA1 , . . . , p

A
n and pB1 , . . . , p

B
n with CSS(C1, C2) and

CSS(C3, C4) codes respectively.
2) Station A generates N > n Bell pairs qubits, e.g,

photons, in |00⟩+ |11⟩ state, and sends the second qubit
of each pair to station B via a classical link, e.g., optic
fiber.

3) Stations A and B conduct K level purification procedure
for the N Bell pairs, see [8], and obtain n shared (noisy)
Bell pairs cA1 , c

B
1 ; . . . ; c

A
n , c

B
n .

4) Stations A and B conduct local operations shown in
Fig.2 using their qubits pA1 , . . . , p

A
n (green dots) and

cA1 , . . . , c
A
n (gray dots) and pB1 , . . . , p

B
n , c

B
1 , . . . , c

B
n re-

spectively, with U = UCNOT from green to gray
qubit in Station A and from gray to green qubit in
Station B. By doing this Stations A and B effectively
conduct remote CNOT operations between pAj and pBj ,
j = 1, . . . , n.

5) Stations A and B correct errors in their physical qubits
using decoders of CSS(C1, C2) and CSS(C3, C4), re-
spectively.

It is important to note that under the assumption that codes
CSS(C1, C2) and CSS(C3, C4) are CNOT-transversal (see a
formal definition in the next Section), at Step 5 the physical
qubits at Stations A and B are turned into the encoded states
of these codes corresponding to logical qubits |qAj qBj ⟩ =
|00⟩ + |11⟩, j = 1, . . . , k. Therefore conducting the above

protocol for the Stations along the network link, and further
applying entanglement swapping one achieves long-distance
entanglement between k pairs of the logical qubits in the
terminal Stations of the network link [9], which requires less
resources for achieving a target fidelity in comparison to a
direct use of the Bell state purification procedure [10].

The purified Bell states at Step 3 are still noisy and that noise
propagates to physical qubits pA1 , . . . , p

A
n , p

B
1 , . . . , p

B
n through

the gate of the circuit shown in Fig.2. This results in a complex
error model for the physical qubits. One such model was
introduced and analysed recently in [3]. Let ρ denote the error-
free joint density matrix of physical qubits pAj and pBj for some
fixed j after conducting the remote CNOT. Then, according to
the error model from [3], the physical qubits will have the
density matrix

N (ρ) =

(
1−

3∑
i=1

fi

)
[IAIB ](ρ) + f1[ZAIB ](ρ)

+ f2[IAXB ](ρ) + f3[ZAXB ](ρ), 0 ≤ f1, f2.f3 ≤ 1,
(6)

where PA and PB denote the operation P in Stations A and B,
respectively; and [U1U2](ρ) denotes (U1 ⊗U2)ρ(U

†
2 ⊗U†

1).
Note that f1 is the probability of errors Z in Station A and the
absence of errors in Station B, while f2 is the probability of
X errors in Station B, and f3 is the probability of correlated
errors. It was observed in [3] that typically one type of errors
dominates. For example, we may have that f1 > f2 >> f3.
So, it is desirable to use different CSS codes, say Q1 and Q2

in Stations A and B, as it is shown in Fig.1. By adjusting these
codes to error models of Stations A and B, we can significantly
improve the fidelity, reduce time cost, and so on. However, it is
important to remember that we cannot use arbitrary CSS codes
since the codes should be CNOT-transversal.

In the next Sections we study the main principles of
construction of CNOT-transversal CSS codes. In [3] it was
shown that if CZ-transversal codes are used in Stations A
and B, then the Local Swapping Protocol can be modified
by logical Hadamard gates, using either magic states or local
operations [11]. Thus, one can still implement the needed
non-local CNOT operation with rather low overhead. For this
reason, we also study the construction of CZ-transversal codes.

IV. TRANSVERSALITY OF CSS CODES

First we would like to recall the well known fact that if
the same CSS code is used in Stations A and B then we
have CNOT-transversality granted and therefore can implement
Local Swapping Protocol. However, as we explained above,
due to asymmetry of errors it would more beneficial to use
different CSS codes in neighboring Stations.

Let us assume that use two CSS(C1, C2) and CSS(C3, C4)
codes in stations A and B, respectively. Our objective is to find
suitable conditions that would guarantee CNOT and/or CZ-
transversality of these codes. Let G⊥

2 and G⊥
4 be generator



Fig. 1. Q1 and Q2 are different CSS codes with higher capability for
correcting Pauli Z and X errors. These codes are designed to provide
CNOT (or CZ) transversality between Stations A and B, corresponding to
the bias created by the non-local CNOT protocol. Using the same Q1-code
at Station B enables local transversal CNOT within the station. End-to-end
entanglement can thus be created with transversal operations using these two
codes. Alternatively, the same CSS Q1-code can be used at Station B that
enables implementation of transversal CNOT since any CSS code is CNOT-
transversal.

Fig. 2. The transversal non-local gate schematic: Unitary operator U can be
selected as CNOT or CZ gate in order to achieve transversal non-local CNOT
(green qubit as control) or CZ gate. After implementing U operator, these Bell
states (gray dots), are measured in Pauli Z and X bases. According to the
outcome, the feedback Pauli X and Z operation will be applied on physical
qubits (green dots) in each station.

matrices of C⊥
2 and C⊥

4 , respectively. Then, the generator
matrices of C1 and C3 can be written in the following form

G1 =

[
G⊥

2

A

]
, G3 =

[
G⊥

4

B

]
, (7)

where A and B are k × n binary matrices of rank k.
We will use A and B for defining the linear bijections

between vectors ψA,ψB ∈ Fk
2 and representatives xA ∈ C1

and xB ∈ C3 of cosets in the quotient groups C1/C⊥
2 and

C3/C⊥
4 . With these bijections the code vectors of CSS (C1, C2)

and CSS (C3, C4) corresponding to logical qubits in the states
|ψA⟩ and |ψB⟩ are

|ψA⟩L =
1√
|C⊥

2 |

∑
y∈C⊥

2

|xA + y⟩ (8)

|ψB⟩L =
1√
|C⊥

4 |

∑
z∈C⊥

4

|xB + z⟩, (9)

where xA = ψAA and xB = ψBB which we call them
mapping matrices.

Theorem 1. Codes CSS (C1, C2) and CSS (C3, C4) are
CNOT-transversal, with CSS (C1, C2) being the control and
CSS (C3, C4) the target code, iff

C⊥
2 ⊆ C⊥

4 (10)

C1/C⊥
2

∼= C3/C⊥
4 (11)

Proof. For showing the transversality, we need to show that
applying CNOT gates to k pairs of logical qubits in the
states |ψA⟩ and |ψB⟩, and then encoding the results into code
vectors of CSS(C1, C2) and CSS(C3, C4) gives the same result
as applying CNOT operations to n pairs of physical qubits in
states |ψA⟩L and |ψB⟩L defined in (8) and (9).

If we first apply CNOT gates to logical qubits and then
conduct encoding into code vectors of CSS(C1, C2) and
CSS(C3, C4). According to (2), we will get the result

|ψA⟩L ⊗ |ψA ⊕ψB⟩L, (12)

where using definition in (8), and according to (5) and (7),

|ψA ⊕ψB⟩L =
1√
|C⊥

4 |

∑
y∈C⊥

4

|
(
ψA +ψB

)
B+ y⟩. (13)

Next, if we apply CNOT gates to the n pairs of physical qubits
encoded into states defined in (8) and (9) then, according to
(2), we get the state

CNOT(|ψA⟩L ⊗ |ψB⟩L)

=
1√∣∣C⊥

2

∣∣ ∣∣C⊥
4

∣∣ ∑
y∈C⊥

2 ,z∈C⊥
4

|xA + y⟩ ⊗ |xA + xB + y + z⟩

(a)
=

1√∣∣C⊥
2

∣∣ ∣∣C⊥
4

∣∣ ∑
y∈C⊥

2 ,z′∈C⊥
4

|xA + y⟩ ⊗ |xA + xB + z′⟩,

(14)

where (a) is true iff C⊥
2 ⊆ C⊥

4 or equivalently C4 ⊆ C2.
For achieving the transversality we need that (13) be equal

to (14) for any ψA and ψB . This is possible if and only if
A = B, and this means that C1/C⊥

2
∼= C3/C⊥

4 . Note that the
cosets in C1/C⊥

2 and C3/C⊥
4 may contain different number of

vectors, since C⊥
2 can be smaller than C⊥

4 , but the quotient
groups are still isomorphic if A = B.

Note that considering (7) and CNOT-transversality con-
straints given in (10) and (11), we can rewrite the generators
of C1 and C2 as follows

G1 =

[
G⊥

2

A

]
, G3 =

G⊥
2

D
A

 , (15)

where D is a (k⊥4 − k⊥2 ) × n matrix of the rank k⊥4 − k⊥2 ,
which serves as a generator of C⊥

4 /C⊥
2 . Note that this structure

implies that C1 ⊂ C3 and may prompt one to conclude that it is
sufficient to have C1 ⊂ C3 for achieving CNOT-transversality.
However, this is not correct. For example we can consider the
case that C1 = C⊥

4 ⊂ C3, i.e.,

G1 =

[
G⊥

2

A

]
, G3 =

G⊥
2

A
D

 .



In this example C1 ⊂ C3, however this configuration does not
satisfy the property given in (11). Below we give an example
of two different CSS codes that CNOT-transversal.

Example 1. The following CSS codes of length n = 7 with
k1 = 4, k2 = 5, and k3 = 5, k4 = 4 respectively and generator
matrices

G1 =

[
G⊥

2

A

]
=


1 1 0 0 0 0 0
0 1 0 1 1 1 1
0 0 1 1 0 1 1
1 0 1 1 1 0 0



G3 =

G⊥
2

D
A

 =


1 1 0 0 0 0 0
0 1 0 1 1 1 1
0 1 1 1 0 1 0
0 0 1 1 0 1 1
1 0 1 1 1 0 0

 ,

satisfy the conditions of Theorem 1. Thus, these CSS codes
are transversal. This example shows that one can find codes
with different parameters and structures to fit a particular
error model in neighboring Stations of a quantum network. For
instance, one code can be better protected against X errors
and another code against Z errors. Moreover, nonidentical
code allows correcting drastically better correlated errors in
the neighboring stations compared to using an identical codes
in both stations. Detailed research on this will be presented in
future works.

It is common to use transversal CNOT gate to achieve non-
local logical CNOT gate. Also, using a local logical Hadamard
and a non-local logical CZ gate, we can achieve a non-local
logical CNOT gate. Let us now consider the CZ transversality.
In the following theorem, we define the conditions for CSS
codes to be CZ-transversal.

Theorem 2. Codes CSS (C1, C2) and CSS (C3, C4) are CZ
transversal iff

ABT = I , (16)

and for all y ∈ C⊥
2 , z ∈ C⊥

4 and ψA,ψB ∈ Fk
2 we have

xAzT + y
(
xB + z

)T
= 0 , (17)

where

xA = ψAA,

xB = ψBB .

Proof. According to (3), if we apply CZ operations to the k
pairs of logical qubits in the states |ψA⟩ and |ψB⟩, we get the
state

(−1)ψ
A(ψB)T |ψA⟩L ⊗ |ψB⟩L. (18)

At the same time, if we apply CZ gates to the n pairs of
physical qubits, we get

CZ(|ψA⟩L ⊗ |ψB⟩L)

= α
∑

y∈C⊥
2 ,z∈C⊥

4

(−1)(x
A+y)(xB+z)

T

|xA + y⟩ ⊗ |xB + z⟩

= αβ
∑

y∈C⊥
2 ,z∈C⊥

4

(−1)x
AzT+y(xB+z)

T

|xA + y⟩ ⊗ |xB + z⟩

(19)

where α = 1√
|C⊥

2 ||C⊥
4 |

and β = (−1)x
A(xB)

T

. For having a

transversal CZ gate, (18) should be equal to (19). Thus, from
(18), (8), and (9), we get that (17) must hold. Further

β = (−1)x
A(xB)

T

= (−1)ψ
AABT (ψB)

T

must be equal to (−1)ψ
A(ψB)

T

, for all ψA and ψB . This is
possible iff ABT = I.

Note that either of the two CSS-codes can be the control
or target code. This theorem allows to formulate the following
sufficient conditions for CZ-transversality.

Corollary 1. It is sufficient for codes CSS (C1, C2) and
CSS (C3, C4) to satisfy the following conditions in order to be
CZ-transversal:

C1/C⊥
2

∼= A1, C3 ⊆ C2, ABT = I, (20)

or
C1 ⊆ C⊥

4 , C3/C⊥
4

∼= B1, ABT = I, (21)

where A1 ⊂ C4 and B1 ⊂ C2 are group of vectors c ∈ Fn
2 .

Proof. In order to satisfy (17), it is enough that one of the
following conditions holds

• xAzT = 0 and y
(
xB + z

)T
= 0: this is the case if

C1/C⊥
2

∼= A1 ⊆ C4, and C3 ⊆ C2;
• xAzT = 1 and y

(
xB + z

)T
= 1: this cannot happen

since z belongs to a linear code and therefore it could be
(0, . . . , 0);

•
(
xA + y

)
zT = 0 and y

(
xB
)T

= 0: this is the case if
C1 ⊆ C⊥

4 , and C3/C⊥
4

∼= B1 ⊆ C2;
•
(
xA + y

)
zT = 1 and y

(
xB
)T

= 1: this cannot happen
since z belongs to a linear code.

The fact that ABT = I should be satisfied as well completes
the proof.

Below we provide an example of CSS codes that CZ-
transversal.

Example 2. In [3], mirrored CSS codes were proposed, defined
by the following generators[

G⊥
2 0
0 G⊥

1

]
and

[
G⊥

4 0
0 G⊥

3

]
=

[
G⊥

1 0
0 G⊥

2

]
. (22)

We further proved that these codes are CZ-transversal. Below
we consider an example of such codes and prove that they are



CZ-transversal using Corollary 1. We consider mirrored CSS
codes defined by

G⊥
1 =

1 1 0 0 1 0 0
1 1 1 0 0 1 0
1 1 1 0 0 0 1

 ,
and

G⊥
2 =

[
1 1 0 0 0 0 0
0 1 0 1 1 1 1

]
.

After simple manipulations we find that

G4 = G1 =

[
G⊥

2

A

]
=


1 1 0 0 0 0 0
0 1 0 1 1 1 1
0 0 1 1 0 1 1
1 0 1 1 1 0 0

 ,

G2 = G3 =

[
G⊥

4

B

]
=


0 0 0 0 1 1 0
0 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 1 0 0 1
0 1 1 0 0 0 1

 .
We see that C1/C⊥

2 ⊂ C4, C3 = C2, and ABT = I2. Thus the
conditions (20) are satisfied and the mirrored CSS codes are
indeed CZ-transversal.

This examples leads to an alternative proof of CZ-
transversality of the mirrored CSS code with generators (22) ,
based on Corollary 1. The only non-trivial part is to show that
matrices A and B can be chosen so that ABT = I. For this,
We first show that U = ABT has full rank.

The (i, j)-th entry of U is ui,j = aib
T
j , where ai and bj

are ith and jth row of A and B, respectively. If U is not full
rank, its columns are dependent; there exists a binary vector
x = (x1, x2, ..., xn) such that

∑
i xiaiB

T = 0. If we define
a′ = Σixiai, we then have a′ ∈ B⊥. According to Example 2,
for mirrored CSS codes, code spaces and their duals are related
as

G1 =

[
G⊥

3

A

]
, G3 =

[
G⊥

1

B

]
.

For a rank-deficient U we thus would have G⊥
3 = G1 ∩B⊥,

as a′ is a linear combination of ai ∈ A ⊂ G1. Thus a′ ∈
G⊥

3 , which means that G1 is not full rank matrix which is a
contradiction. U has to have full rank.

From the fact that U has full rank it follows that using
Gaussian elimination we can find a W such that WU =
WABT = A′BT = I.

Depending on the error model, whether it is biased
or not, CNOT and CZ transversal codes provide different
performance—using CZ transversal codes for realizing non-
local CNOTs requires additional Hadamard gates.

V. SIMULATION RESULTS

In this section, we compare a mirrored structure CZ-
transversal code of Example 2, designed for biased errors, with
a symmetric CNOT transversal code optimized for depolarizing
errors. For both codes we use maximum likelihood decoding
defined by biased error probabilities

In the simulation, we only consider two error resources.
First, we have two-qubit CNOT gate errors with a depolarizing
error model described as follows:

NCNOT (ρ) = (1− fgate)[II](ρ) +
fgate
15

4∑
i,j=1,ij ̸=1

[Pi
cP

j
t ](ρ) ,

(23)
where fgate is gate error rate, and Pi

c/t is single-qubit Pauli
operator on control/target qubit. Second, we have distance-
related transmission errors described as

N (ρ) = (1− εde)[I](ρ) +
εde
3

([X] + [Y ] + [Z])(ρ), (24)

where εde = 1− e−αL denotes the error rate and L is the dis-
tance between two neighboring stations, and α shows channel
quality. Inserting these into the neighbor-station entanglement
swapping procedure, the dominant errors are modeled as (6).
We set α = 0.015 and assume Bell state purification level
K = 5. We use logical infidelity as the performance metric
which is defined as

ϵ = 1− Tr (ρiρe) , (25)

where ρi and ρe stand for the ideal and practical (erroneous)
density matrices after error correction [7].

In Fig. 3, we compare two scenarios. Neighboring stations
either use a) two mirrored CSS codes (see Example 2), or b)
identical Steane codes. All codes are [[7, 1]]. The minimum
distance of the mirrored structure CSS code is 2, while the
Steane code has minimum distance 3. We plot logical infidelity
against neighboring station distance and local gate error rate.

When the distance is relatively small, the Steane code has
lower logical infidelity. At small distances, depolarizing errors
dominate, which the Steane code is better at correcting due
to its structure larger minimum distances. In the opposite
regime, when the gate error is small and distance-related errors
dominate, the mirrored structure CSS code corrects errors more
efficiently. This shows that when the biased errors arising
from the non-local CNOT gate protocol between stations are
relevant, sacrificing minimum distance in order to realize the
mirrored structure becomes a viable option.

VI. CONCLUSION

Motivated by the fact that different quantum systems may
suffer from various error models, this paper studies transver-
sality between two different quantum error-correcting codes
(QECCs). This generalizes the concept of the transversality
in QECCs, different from conventional approach of using the
same code in each code blocks. Specifically, by focusing on
CSS codes, we identify necessary and sufficient conditions
for the transversality of CNOT and CZ gates, which impose
less restrictive constraints than having the same CSS codes.
Through simulation result, we showed that the performance of
CNOT or CZ transversal codes have different optimal regions.
A possible future direction is to investigate gates from higher
levels of the Clifford hierarchy, such as T-gate to examine
the possibility of having universal transversal gate set using



Fig. 3. Comparison of the logical infidelity of the Steane code (CNOT
transversal) and mirrored 7-qubit code (CZ transversal) for different gate error
rates and distances.

different codes in nearby stations. We believe that the study
of transversality is not only limited with the 2nd generation
quantum repeaters QRs but could also be applied to construct
fault-tolerant quantum computation, e.g., in efficient way to
prepare magic state.
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J. Eschner, S. Höfling, D. Meschede, P. Michler et al., “Extending
quantum links: Modules for fiber-and memory-based quantum repeaters,”
Advanced quantum technologies, vol. 3, no. 11, p. 1900141, 2020.

[5] D. Gottesman, “Opportunities and Challenges in Fault-Tolerant Quantum
Computation,” in Proc. Solvay Conference on Physics, May 2022.

[6] X. Zhou, D. W. Leung, and I. L. Chuang, “Methodology for quantum
logic gate construction,” Physical Review A, vol. 62, no. 5, p. 052316,
2000.

[7] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[8] B. M. Terhal, M. Horodecki, D. W. Leung, and D. P. DiVincenzo, “The
entanglement of purification,” Journal of Mathematical Physics, vol. 43,
no. 9, pp. 4286–4298, 2002.

[9] S. Bose, V. Vedral, and P. L. Knight, “Multiparticle generalization of
entanglement swapping,” Physical Review A, vol. 57, no. 2, p. 822, 1998.

[10] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang,
“Optimal architectures for long distance quantum communication,” Sci-
entific reports, vol. 6, no. 1, p. 20463, 2016.

[11] T. J. Yoder, R. Takagi, and I. L. Chuang, “Universal fault-tolerant gates
on concatenated stabilizer codes,” Physical Review X, vol. 6, no. 3, p.
031039, 2016.


