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Kirchhoff plate bending model

Displacement formulation. Find the deflection w such that, in

the domain Ω ⊂ R
2, it holds

1

6(1 − ν)
∆2w = f .

Mixed formulation. Find the deflection w, rotation β and the

shear stress q such that it holds

−div q = f ,

div m(β) + q = 0 , with m(β) =
1

6
{ε(β) +

ν

1 − ν
div βI} ,

∇w − β = 0 .

I Furthermore, the boundary conditions on the clamped, simply

supported and free boundaries ΓC, ΓS and ΓF are imposed.
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FE formulations — Morley element

I We define the discrete space for the deflection as follows:

Wh =
{

v ∈ M2,h |

∫

E

J
∂v

∂nE
K = 0 ∀E ∈ Eh

}

,

where E represents an edge of a triangle K in a triangulation

Th, and M2,h denotes the space of the second order piecewise

polynomial functions on Th which are

— continuous at the vertices of all the internal triangles and

— zero at all the triangle vertices on the clamped boundary.

Finite element method. Find wh ∈ Wh such that
∑

K∈Th

(Eε(∇wh), ε(∇v))K = (f, v) ∀v ∈ Wh .
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Stabilized C0-element

I Given an integer k ≥ 1, we define the discrete spaces for the

deflection and the rotation, respectively, as

Wh = {v ∈ W | v|K ∈ Pk+1(K) ∀K ∈ Th} ,

V h = {η ∈ V | η|K ∈ [Pk(K)]2 ∀K ∈ Th} ,

where Pk(K) denotes the polynomial space of degree k on K.

Finite element method. Find (wh, βh) ∈ Wh × V h such that

Ah(wh, βh; v, η) = (f, v) ∀(v, η) ∈ Wh × V h ,

where the bilinear form Ah we split as

Ah(z, φ; v, η) = Bh(z, φ; v, η) + Dh(z, φ; v, η) ,
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with the stabilized (α) bending part (R–M with the limit t → 0)

Bh(z, φ; v, η) = (m(φ), ε(η)) −
∑

K∈Th

αh2
K(Lφ, Lη)K

+
∑

K∈Th

1

αh2
K

(∇z − φ − αh2
KLφ,∇v − η − αh2

KLη)K

and the stabilized (γ) free boundary part

Dh(z, φ; v, η) = 〈mns(φ), [∇v − η] · s〉ΓF
+ 〈[∇z − φ] · s, mns(η)〉ΓF

+
∑

E∈Fh

γ

hE
〈[∇z − φ] · s, [∇v − η] · s〉E

for all (z, φ) ∈ Wh × V h, (v, η) ∈ Wh × V h, where Fh represents

the collection of all the boundary edges on the free boundary ΓF,

and the twisting moment is mns = s · mn.

I The first term in Dh is for consistency, the second one for

symmetry and the last one for stability.
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A posteriori error estimates

I We use the following notation: J·K for jumps, hE and hK for

the edge length and the element diameter.

Interior error indicators

I For the local error indicator ηK we define: for all the elements

K in the mesh Th, and for all the internal edges E ∈ Ih,

(Morley) η̃2
K := h4

K‖f‖2
0,K ,

(Stabil.) η̃2
K := h4

K‖f + div qh‖
2
0,K + h−2

K ‖∇wh − βh‖
2
0,K ,

(Morley) η2
E := h−3

E ‖ JwhK ‖2
0,E + h−1

E ‖ J
∂wh

∂nE
K‖2

0,E ,

(Stabil.) η2
E := h3

E‖ Jqh · n K‖2
0,E + hE‖ Jm(βh)n K‖2

0,E .
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Boundary error indicators

I Let the boundary ∂Ω of the plate be divided into the parts of

the different boundary conditions: clamped, simply supported

and free, i.e., ∂Ω = ΓC ∪ ΓS ∪ ΓF.

I For the Morley element, we assume that ∂Ω = ΓC and for the

edges on the clamped boundary ΓC

(Morley) η2
E,C = h−3

E ‖ JwhK ‖2
0,E + h−1

E ‖ J
∂wh

∂nE
K ‖2

0,E .

I For the stabilized C0-element, for the edges on the simply

supported boundary ΓS

(Stabil.) η2
E,S := hE‖mnn(βh)‖2

0,E ,

and for the edges on the free boundary ΓF

(Stabil.) η2
E,F := hE‖mnn(βh)‖2

0,E+h3
E‖

∂

∂s
mns(βh)−qh·n‖2

0,E .
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Error indicators — local and global

I Now, for any element K ∈ Th, let the local error indicator be

ηK :=
(

η̃2
K+

1

2

∑

E∈Ih

E⊂∂K

η2
E+

∑

E∈Ch

E⊂∂K

η2
E,C+

∑

E∈Sh

E⊂∂K

η2
E,S+

∑

E∈Fh

E⊂∂K

η2
E,F

)1/2

,

with the notation

— Ih for the collection of all the internal edges,

— Ch, Sh and Fh for the collections of all the boundary edges

on ΓC, ΓS and ΓF, respectively.

I Finally, the global error indicator is defined as

η :=
(

∑

K∈Th

η2
K

)1/2

.
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Upper bounds — Reliability

I With Eh denoting the collection of all the triangle edges, we

define the mesh dependent norms for the Morley element and

for the stabilized C0-element, respectively, as

‖|v‖|2h :=
∑

K∈Th

|v|22,K +
∑

E∈Eh

h−3

E ‖ JvK ‖2
0,E +

∑

E∈Eh

h−1

E ‖ J
∂v

∂nE
K ‖2

0,E ,

‖|(v, η)‖|2h :=
∑

K∈Th

|v|22,K + ‖v‖2
1 +

∑

E∈Ih

h−1

E ‖ J
∂v

∂nE
K ‖2

0,E

+
∑

K∈Th

h−2

K ‖∇v − η‖2
0,K + ‖η‖2

1 .

Theorem. There exists positive constants C such that

(Morley) ‖|w − wh‖|h ≤ Cη ,

(Stabil.) ‖|(w − wh, β − βh)‖|h + ‖q − qh‖−1,∗ ≤ Cη .
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Lower bounds — Efficiency

I Let ωK be the collection of all the triangles in Th with a

nonempty intersection with the element K.

Theorem. There exists positive constants C such that

(Morley) ηK ≤ C
(

‖|w − wh‖|h,K + h2
K‖f − fh‖0,K

)

,

(Stabil.) ηK ≤ C
(

‖|(w − wh, β − βh)‖|h,ωK
+ h2

K‖f − fh‖0,ωK

+ ‖q − qh‖−1,∗,ωK

)

,

for any element K ∈ Th.
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Numerical results

I We have implemented the methods in the open-source finite

element software Elmer developed by CSC – the Finnish IT

Center for Science.

I Test problems with convex rectangular domains, and with

known exact solutions, we have used for investigating the

effectivity index for the error estimators derived.

I Non-convex domains we have used for studying the adaptive

performance and robustness of the methods.
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Effectivity index

(Morley) ι =
η

‖|w − wh‖|h
(Stabil.) ι =

η

‖|(w − wh, β − βh)‖|h
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Figure 1: Effectivity index; Left : the Morley element (with C-

boundaries); Right : the stabilized method (with C/S/F-boundaries).
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Simply supported L-domain — Starting mesh

— Deflection

Figure 2: The stabilized method: Deflection distribution for the first

mesh (constant loading).
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Adaptively refined mesh — Error estimator

Figure 3: The stabilized method: Distribution of the error estimator

for two adaptive steps.
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Uniform vs. Adaptive — Convergence in the

norm ||β − β
h
||1 + |(w − wh,β − β

h
)|h
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Figure 4: The stabilized method: Convergence of the error estimator

for the uniform refinements and adaptive refinements; Solid

lines for global, dashed lines for maximum local ones.
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Clamped L-domain — Refinements

— Error estimator

Figure 5: Distribution of the error estimator after adaptive refine-

ments: Left : the Morley element; Right : the stabilized method.
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Conclusions

I A posteriori error analysis has been accomplished for Kirchhoff

plates:

— the Morley element for clamped boundaries

— the stabilized C0-continuous element for general boundary

conditions

— efficient and reliable error estimators for both methods.

I Numerical benchmarks confirm the adaptive performance and

robustness of the error indicators.
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How do we deal with a blinking star?
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We snow it by adaptively refined

mesh flakes!
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