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Introduction

� Bending of a thin plane structure occupied by

P = Ω × (− t

2
,
t

2
),

— with Ω ⊂ R
2 denoting the midsurface of the plate P and

— t � diam(Ω) denoting the thickness of the plate.

� The material of the plate is assumed to be

— linearly elastic (defined by the generalized Hooke’s law)

— homogeneous (independent of the coordinates x, y, z)

— isotropic (independent of the orientation).

� The transverse normal stress is assumed to vanish:

σzz = 0.
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Variational formulation — Reissner–Mindlin

Let the deflection w and the rotation β belong to the spaces

W = {v ∈ H1(Ω) | v = 0 on ΓCH ∪ ΓCS ∪ ΓSH ∪ ΓSS},
V = {η ∈ [H1(Ω)]2 | η · n = 0 on ΓCH ∪ ΓCS , η · τ = 0 on ΓCH ∪ ΓSH}.

Variational problem. For the loading f ∈ H−1(Ω), find w ∈ W

and β ∈ V such that

(Eε(β), ε(η)) +
1
t2

(∇w − β,∇v − η) = (f, v) ∀(v, η) ∈ W × V ,

where the elasticity tensor E is defined as

Eε =
E

12(1 + ν)

(
ε +

ν

1 − ν
tr(ε)I

)
∀ε ∈ R

2×2,

with the symmetric gradient, strain tensor ε, Young’s modulus E

and the Poisson ratio ν.
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MITC finite element methods

For a triangular MITC family, the discrete spaces for the deflection
and the rotation are defined for k ≥ 2 as

Wh = {v ∈ W | v|K ∈ Pk(K) ∀K ∈ Ch},

V h = {η ∈ V | η|K ∈ [Pk(K)]2⊕[Bk+1(K)]2 ∀K ∈ Ch},

with the ”bubble space” for the rotation

Bk+1(K) = {b = b3p | p ∈ P̃k−2(K), b3 ∈ P3(K), b3|E = 0 ∀E ⊂ ∂K}.

Finite element method. (MITC: Bathe, Brezzi and Fortin 1989
etc.) Find wh ∈ Wh ⊂ W and βh ∈ V h ⊂ V such that

(Eε(βh), ε(η))+
1
t2

(Rh(∇wh−βh), Rh(∇v−η)) = (f, v) ∀(v, η) ∈ Wh×V h,
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where the reduction operator Rh : [H1(Ω)]2 → Qh maps the shear
force

qh =
1
t2

Rh(∇wh − βh) ∈ Qh ⊂ H(rot : Ω)

into the rotated Raviart—Thomas polynomial space of order k − 1:

〈(RKη − η) · τE , p〉E = 0 ∀p ∈ Pk−1(E) ∀E ⊂ ∂K,

(RKη − η, p)K = 0 ∀p ∈ [Pk−2(K)]2,

with τE denoting a unit tangent to E, while (·, ·)K and 〈·, ·〉E stand
for the standard inner products in L2(K) and L2(E), respectively.

Since it now holds that ∇Wh ⊂ Qh, the shear force simplifies to

qh =
1
t2

(∇wh − Rhβh).
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Postprocessing

� The original deflection approximation is of order k:

wh|K ∈ Pk(K).

� The postprocessed deflection approximation is of order k + 1:

w∗
h|K ∈ Pk+1(K) = Pk(K)⊕Ŵ (K) ⊕ W (K).

� New hierarchic degrees of freedom of order k + 1, corresponding
to the

— element edges, by space Ŵ (K), and

— element interior, by space W (K),

are added to the original approximation.
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Postprocessing method

Determining the new – local – hierarchic degrees of freedom is
based on the definition of the shear force:

q =
1
t2

(∇w − β) or ∇w = β + t2q.

Postprocessing method. For each element K, find the local
postprocessed deflection approximation w∗

h|K ∈ Pk+1(K) such that

Ihw∗
h = wh in the element K,

〈∇w∗
h · τE ,∇v̂ · τE〉E = 〈(βh + t2qh) · τE ,∇v̂ · τE〉E ∀v̂ ∈ Ŵ (K),

(∇w∗
h,∇v̄)K = (βh + t2qh,∇v̄)K ∀v̄ ∈ W (K),

where Ŵ (K) and W (K), respectively, correspond to the hierarchic
edge and element (bubble) dofs of order k + 1, while Ih : Hs → Wh

denotes the corresponding hierarchic interpolation operator.
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Convergence in the H1-norm

Theorem. (Lyly, Niiranen and Stenberg, 2007) Assuming a
solution smooth enough, for the postprocessed deflection
approximation w∗

h it holds that

‖w − w∗
h‖1 ≤ C(h + t)hk

(
‖w‖k+1 + ‖β‖k+1 + ‖q‖k−1 + t‖q‖k

)
.

� This gives an improvement of order O(h + t) to the original
error estimate

‖w − wh‖1 ≤ Chk
(
‖w‖k+1 + ‖β‖k+1 + ‖q‖k−1 + t‖q‖k

)
.

� Furthermore, according to the computational results, a
corresponding accuracy improvement holds in the L2-norm as
well.
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A new a priori error estimate

� Next, we define a mesh dependent norm coupling the deflection
and the rotation as follows:

|||(v, η)|||2 = ||η||21 + |(v, η)|2h,

|(v, η)|2h =
∑

K∈Th

1
t2+h2

K

||∇v − η||20,K .

� This norm is stronger than the corresponding H1-norms and it
will be used for the a posteriori error analysis below as well.

Proposition. Assuming a solution smooth enough, it holds that

|||(w − w∗
h, β − βh)||| ≤ Chk

(
||w||k+2 + ||β||k+1 + ||q||k−1 + t||q||k

)
.
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A posteriori error estimates

We use the following notation as usual:

— �·� for jumps (and traces),

— hE and hK for the edge length and the element diameter.

Internal error indicators

For all the elements K in the mesh Th,

η̃2
K = h2

K(h2
K + t2)||f + div qh||20,K + h2

K ||div m(βh) + qh||20,K ,

and for all the internal edges E ∈ Ih,

η2
E = hE(h2

E + t2)||�qh · n�||20,E + hE ||�m(βh)n�||20,E ,

with the moment tensor m(η) = Eε(η).
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Inconsistency error indicators

Due to the reduction Rh and postprocessing, we define the
additional indicators: For the original MITC methods,

(σK)2 = ||rot (I − Rh)βh||20,K + ||(I − Rh)βh||20,K

=: (σ′
K)2 + (σ0

K)2,

while for the postprocessed MITC methods,

(σK)2 = (σ′
K)2 + (σ∗

K)2,

(σ∗
K)2 =

t4

t2 + h2
K

||q∗
h − qh||20,K =

1
t2 + h2

K

||(Rh − I)βh −∇wd
h||20,K ,

recalling the definitions w∗
h = wh+wd

h and

qh =
1
t2

(∇wh − Rhβh), q∗
h =

1
t2

(∇w∗
h − βh).
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Boundary error indicators

� The boundary of the plate is divided into

— hard and soft clamped,

— hard and soft simply supported,

— and free parts:

Γ = (ΓCH ∪ ΓCS) ∪ (ΓSH ∪ ΓSS) ∪ ΓF .

� For boundary edges on ΓCS , ΓSH , ΓSS and ΓF, respectively,

η2
E,CS

= hE ||τ · m(βh)n||20,E,

η2
E,SH

= hE ||n · m(βh)n||20,E ,

η2
E,SS

= hE ||m(βh)n||20,E ,

η2
E,F = hE ||m(βh)n||20,E + hE(h2

E + t2)||qh · n||20,E ,

measuring the fulfillment of natural boundary conditions.
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Error indicators — local and global

� For any element K ∈ Th, the local error indicator is defined as

ηK =
(
η̃2

K +
1
2

∑
E∈I(K)

η2
E + σ2

K

+
∑

E∈CS(K)

η2
E,CS

+
∑

E∈SH(K)

η2
E,SH

+
∑

E∈SS(K)

η2
E,SS

+
∑

E∈F (K)

η2
E,F

)1/2

,

with the notation

— I(K) for the set of internal edges of K,

— CS(K), SH(K), SS(K) and F (K), for the sets of boundary
edges of K on ΓCS , ΓSH , ΓSS and ΓF, respectively.

� The global error estimator is finally defined as

ηh =
( ∑

K∈Th

η2
K

)1/2

.
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Upper bound — Reliability

Theorem. Reliability: There exists a positive constant C such that

|||(w − w∗
h, β − βh)|||2 + t2||q − qh||20

+ ||q − qh||2V ′ + t4||rot (q − qh)||20 ≤ C η2
h.

Lower bound — Efficiency

Theorem. Efficiency: There exists a positive constant C such that

η2
h ≤C

(
|||(w − w∗

h, β − βh)|||2 + t2||q − qh||20
+ ||q − qh||2V ′ + t4||rot (q − qh)||20 + osc(f)2

)
.

Efficiency is proved by standard arguments, whereas reliability
needs more technicalities (taking inspiration from the work of
Carstensen and Hu, 2008).
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Benchmark results from adaptive

computations

� We have implemented

— the lowest order MITC7 element (k = 2)

— with the postprocessing and error indicators

— in the open-source finite element software Elmer developed
by CSC – the Finnish IT Center for Science.

� For adaptive mesh refinements, the software provides

— error balancing strategy and

— complete remeshing for triangular meshes.
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Semi-infinite plate — boundary layers

� We consider the plate domain Ω = {(x, y) ∈ R
2 | y > 0}:

— Poisson ratio ν = 0.3, shear modulus G = 1
2(1+ν)

— thickness t = 0.01

— loading f = G−1 cosx.

� On the boundary Γx = {(x, y) ∈ R
2 | y = 0}, two different

types of boundary conditions are imposed:

— hard simply supported (no boundary layer) or

— free (strong boundary layer).

� We discretize the domain D = [0, π/2] × [0, 3π/2] with
nonhomogenous Dirichlet boundary conditions matching the
exact solution on the boundary part ∂D \ Γx.
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Hard simply supported boundary — regular solution
Convergence — uniform vs. adaptive
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Hard simply supported boundary — regular solution
Convergence — contributions of the error indicators
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Free boundary — boundary layer
Adaptively refined meshes

Figure 1: Semi-infite domain, free boundary, t = 0.01: Meshes for
the steps 1, 6, 8 and 12 (the last step) of an adaptive run with
N = 22, 1160, 1856 and 3558, respectively.
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Free boundary — boundary layer
Convergence — uniform vs. adaptive
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Free boundary — boundary layer
Convergence — contributions of the error indicators
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Free boundary — boundary layer
Mesh refinements — the first ... the final
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Free boundary — boundary layer
Mesh refinements — ... a closer look on the final
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Non-convex domains

— corner singularities and boundary layers

Figure 2: L-shaped domains, t = 0.01: Meshes for the final steps
12 and 20 of adaptive runs with N = 1301 and N = 6208, respec-
tively, for soft clamped (left) vs. soft simply supported (right)
boundaries
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Non-convex domains

Convergence — uniform vs. adaptive
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Figure 3: L-shaped domains, t = 0.01: soft clamped (left) and soft
simply supported (right) boundaries.
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Conclusions and discussion

— advantages

� Reliability: computable (non-guaranteed due to C) global
upper bound for the error.

� Efficiency: computable (non-guaranteed due to C) local lower
bound.

� Robustness: C independent of the mesh size, data and the
solution.

� Small computational costs: local postprocessing and indicators.

� Element independent: applicaple for a wide range of MITC
elements.
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Conclusions and discussion

— disadvantages

� Methodology: residual based error estimates in the energy
norm only
— no estimates for other quantities of interest.

� Method and problem dependence: applicaple for MITC
methods for Reissner–Mindlin plates only
— the methodology and techniques are general, however.

� Validity: proved and tested only for static problems with
transversal loading and isotropic, homogeneous, linearly elastic
material
— so far.
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