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Introduction

Thin structures (shells, plates, membranes, beams) are the

main building blocks in modern structural design.

Beside the classical fields as civil engineering, the variety of
applications have strongly increased also in many other fields
as aeronautics, biomechanics, surgical medicine or

microelectronics.

In particular, new applications arise when thin structures are
combined with functional, smart or composite materials (shape

memory alloys, piezo-electric cheramics etc.).

Increasing demands for accuracy and productivity have created
a need for adaptive (automated, efficient, reliable)

computational methods for thin structures.
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Kirchhoff plate bending model

» We consider bending of a thin planar structure occupied by

t 1
P:QX(_§7§)7

where ) C R? denotes the midsurface of the plate and
t < diam(€2) denotes the thickness of the plate.
» Kinematical assumptions for the dimension reduction:

— Straight fibres normal to the midsurface remain straight and

normal.
— Fibres normal to the midsurface do not stretch.

— The midsurface moves only in the vertical direction.



Deformations

» Under these assumptions, with the deflection w, the
displacement field u = (uy, u,, u,) takes the form

B 8w(51: n B 8w(a: V) B
Uy = o Uy = oy u, = w(x,y).

» The corresponding deformation is defined by the symmetric

linear strain tensor

1
e(u) = 5 (Vu+ (Vu)"),
in the component form as
02w 02w
Cox = —z@ ,  Cyy = _Z8—y2 , €., =0,
0w
exyz—zaxay, €zz =0, ey, =0.



Stress resultants

Next, we define the stress resultants, the moments and the shear
forces:
£/2

M with Mij:_/ ZO'Z'de, L) =Y,
My, M,, 12

Q t/2
Q ’ with Qz :/ Oiz dZ, i:CU,y,
Qy —t/2

where the stress tensor is assumed to be symmetric:

Oij —0j4i, 1) —=L,Y,%.



Equilibrium equations and
boundary conditions

The principle of virtual work gives, with the load resultant F', the

equilibrium equation
divdivM = F with divM +Q =0.

and the boundary conditions

w=0, Vw-n=0 onI'c,
w=0, n-Mn=0 on I's,
n-Mn =20, %(s-Mn)—l—n-divM:O on I'p,
(s1-Mmnq)(c) = (s2 - Mns)(c) VeeV,

where the indices 1 and 2 refer to the sides of the boundary angle

at a corner point ¢ on the free boundary I'g.



Constitutive assumptions

» The material of the plate is assumed to be
— linearly elastic (defined by the generalized Hooke’s law)
— homogeneous (independent of the coordinates x, ¥, z)
— isotropic (independent of the coordinate system).

» Furthermore, we assume that the transverse normal stress

vanishes: o,, = 0.
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Variational formulation

Let the deflection w belong to the Sobolev space
W={veH*Q)|v=0onTcUTIg, Vv-n=0o0nTI¢},

where n indicates the unit outward normal to the boundary I'.

Problem. Variational formulation: Find w € W such that
(Ee(Vw),e(Vv)) = (f,v) YveW,

with the elasticity tensor E defined as

E
FEe (E -+

— T R2X2
T tr(e) ) Ve ¢ ,

1 —v

with Young’s modulus E and the Poisson ratio v.
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Morley finite element formulation

Let E denote an edge of a triangle K in a triangulation 7},.
We define the discrete space for the deflection as

Wh:{UEMg’h | /[[VU-’I’LE]]:O \V/EES;ZZUS;CI},
E

where Ms j, denotes the space of the second order piecewise

polynomial functions on 7; which are

— continuous at the vertices of all the internal triangles and

— zero at all the triangle vertices of I'c U T'g.

Finite element method. Morley: Find wy € W), such that

> (Be(Vwp),e(Vv)) g = (f,v) Vv €W,
KeT,

12



A priori error estimate

The method is stable and convergent with respect to the following

discrete norm on the space Wj, + H?:

Il = D WBx+ D bz

KeT,, Ecé&y, Ecé&,

5| [[— 132,
ong

Proposition. (Shi 90, Ming and Xu 06) Assuming that I' =T'¢

there exists a positive constant C' such that
lw —wallln < Ch (Jwlas@) + bl fllzz@)) -

The numerical results indicate the same convergence rate for

general boundary conditions as well.

13
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A posteriori error estimates

» We use the following notation: [[-] for jumps (and traces), hg
and hg for the edge length and the element diameter.

Interior error indicators

» For all the elements K in the mesh 7,

e = hicllf

and for all the internal edges E € 7,

|3,K7

— 8wh
|(%,E +hg') ﬂ% I

ng = hg" || [w] 0.5
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Boundary error indicators

» The boundary of the plate is divided into clamped, simply

supported and free parts:
F:z@Q:FCUFSUFF.

» For edges on the clamped and simply supported boundaries I'c
and boundary I'g, respectively,

_ _ owy,
Np.c =hg | Twn] 15,z + b5 | [5,—1 15,2
ng

ng.s = hg | [wa] 5,
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Error indicators — local and global

» For any element K € 7}, let the local error indicator be

. 1 1/2
N = (n%+§ donk+ Y et Y. n?z,s) ,
Ecl,, FEely, EeSy,
ECOK ECOK ECOK
with the notation
— 1, for the collection of all the internal edges,
— Cp, and Sy, for the collections of all the boundary edges on

I'c and I'g, respectively.

» The global error indicator is defined as

Nh = ( Z 77%()1/2-

KETh
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Upper bound — Reliability

Theorem. Reliability: There exists a positive constant C such that

[Jw —wp|[[n < Cny .

Lower bound — Efficiency

Theorem. Efficiency: For any element K, there exists a positive

constant C'i such that

i < Cx ([lw —wnllln.x + Wi | f = fullox) -

Efficiency is proved by standard arguments; reliability needs a new
Clément-type interpolant and a new Helmholtz-type decomposition.

18



Techniques for the analysis
— Helmholtz decomposition

Lemma. Let o be a second order tensor field in L*(Q; R?*?).
Then, there exist 1 € W, p € L3(Q) and ¢ € [H(Q)]? such that

—p
p 0
[\ 20y + el z2) + @l e @) < Cllo|z @)

o=FEe(VY)+p+Curlgp, with p=

Here H™(Q), m € N, indicate the quotient space of H™ () where
the seminorm |- |gm(q) is null.

In analysis, Lemma is applied to the tensor field Ee(V(w — wp)).

19
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Numerical results

We have implemented the method in the open-source finite
element software Elmer developed by CSC — the Finnish IT

Center for Science.

The software provides error balancing strategy and complete

remeshing for triangular meshes.

We have used test problems with convex rectangular domains —
and with known exact solutions — for investigating the

effectivity index for the error estimator derived.

Non-convex domains we have used for studying the adaptive

performance and robustness of the method.
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Figure 1: Left: uniform refinements; Right: adaptive refinements.
Clamped (squares), simply supported (circles) and free (triangles)

boundaries included.
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Adaptively refined mesh — Error estimator
Simply supported L-corner
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Figure 2: Simply supported L-shaped domain: Distribution of the

error estimator for two adaptive steps.
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Uniform vs. Adaptive — Convergence

Convergence of the Error Estimator

10 10 10° 10° 10 10
Number of Elements

Figure 3: Simply supported L-shaped domain: Convergence of the
error estimator for the uniform refinements and adaptive re-
finements; Solid lines for global, dashed lines for maximum local

ones.
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Adaptively refined mesh — Error estimator

Clamped L-corner
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Figure 4: Simply supported L-shaped domain with a clamped L-

corner: Distribution of the error estimator for two adaptive steps.
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Uniform vs. Adaptive — Convergence
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Figure 5: Clamped L-corner: Convergence of the error estimator for
the uniform refinements and adaptive refinements; Solid lines

for global, dashed lines for maximum local ones.
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Adaptively refined mesh — Error estimator
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Figure 6: Simply supported M-shaped domain: Distribution of the

error estimator for two adaptive steps.
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Uniform vs. Adaptive — Convergence
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Convergence of the Error Estimator

10_ 1 1 1
10 10 10° 10° 10* 10°
Number of Elements

Figure 7: Simply supported M-shaped domain: Convergence of the
error estimator for the uniform refinements and adaptive re-
finements; Solid lines for global, dashed lines for maximum local

ones.
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Conclusions and Discussion

Advantages

Reliability: computable (non-guaranteed due to C') global

upper bound for the error.

Efficiency: computable (non-guaranteed due to C'x) local lower
bound.

Robustness: Cix independent of the mesh size, data and the

solution.

Computational costs: small (local) compared to solving the

problem itself.
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Disadvantages

» Residual based error estimates in the energy norm only

— no estimates for other quantities of interest.

» Method dependent: applicaple for the Morley element only
— although the techniques can be generalized.

» Valid only for static problem with transversal loading and
isotropic, homogeneous, linearly elastic material

— so far.
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