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Introduction

� Thin structures (shells, plates, membranes, beams) are the
main building blocks in modern structural design.

� Beside the classical fields as civil engineering, the variety of
applications have strongly increased also in many other fields
as aeronautics, biomechanics, surgical medicine or
microelectronics.

� In particular, new applications arise when thin structures are
combined with functional, smart or composite materials (shape
memory alloys, piezo-electric cheramics etc.).

� Increasing demands for accuracy and productivity have created
a need for adaptive (automated, efficient, reliable)
computational methods for thin structures.
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Kirchhoff plate bending model

� We consider bending of a thin planar structure occupied by

P = Ω × (− t

2
,
t

2
) ,

where Ω ⊂ R
2 denotes the midsurface of the plate and

t� diam(Ω) denotes the thickness of the plate.

� Kinematical assumptions for the dimension reduction:

— Straight fibres normal to the midsurface remain straight and
normal.

— Fibres normal to the midsurface do not stretch.

— The midsurface moves only in the vertical direction.
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Deformations

� Under these assumptions, with the deflection w, the
displacement field u = (ux, uy, uz) takes the form

ux = −z ∂w(x, y)
∂x

, uy = −z ∂w(x, y)
∂y

, uz = w(x, y) .

� The corresponding deformation is defined by the symmetric
linear strain tensor

ε(u) =
1
2
(∇u + (∇u)T

)
,

in the component form as

exx = −z ∂
2w

∂x2
, eyy = −z ∂

2w

∂y2
, ezz = 0 ,

exy = −z ∂
2w

∂x∂y
, exz = 0 , eyz = 0 .
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Stress resultants

Next, we define the stress resultants, the moments and the shear
forces:

M =

⎛
⎝Mxx Mxy

Myx Myy

⎞
⎠ with Mij = −

∫ t/2

−t/2

z σij dz , i, j = x, y ,

Q =

⎛
⎝Qx

Qy

⎞
⎠ with Qi =

∫ t/2

−t/2

σiz dz , i = x, y ,

where the stress tensor is assumed to be symmetric:

σij = σji , i, j = x, y, z.
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Equilibrium equations and

boundary conditions

The principle of virtual work gives, with the load resultant F , the
equilibrium equation

divdiv M = F with div M + Q = 0 .

and the boundary conditions

w = 0 , ∇w · n = 0 on ΓC ,

w = 0 , n · Mn = 0 on ΓS ,

n · Mn = 0 , ∂2

∂s2 (s · Mn) + n · div M = 0 on ΓF ,

(s1 · Mn1)(c) = (s2 · Mn2)(c) ∀c ∈ V ,

where the indices 1 and 2 refer to the sides of the boundary angle
at a corner point c on the free boundary ΓF.
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Constitutive assumptions

� The material of the plate is assumed to be

— linearly elastic (defined by the generalized Hooke’s law)

— homogeneous (independent of the coordinates x, y, z)

— isotropic (independent of the coordinate system).

� Furthermore, we assume that the transverse normal stress
vanishes: σzz = 0.
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Variational formulation

Let the deflection w belong to the Sobolev space

W = {v ∈ H2(Ω) | v = 0 on ΓC ∪ ΓS , ∇v · n = 0 on ΓC} ,

where n indicates the unit outward normal to the boundary Γ.

Problem. Variational formulation: Find w ∈W such that

(Eε(∇w), ε(∇v)) = (f, v) ∀v ∈W ,

with the elasticity tensor E defined as

Eε =
E

12(1 + ν)

(
ε +

ν

1 − ν
tr(ε)I

)
∀ε ∈ R

2×2 ,

with Young’s modulus E and the Poisson ratio ν.
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Morley finite element formulation

Let E denote an edge of a triangle K in a triangulation Th.
We define the discrete space for the deflection as

Wh =
{
v ∈M2,h |

∫
E

�∇v · nE� = 0 ∀E ∈ E i
h ∪ Ec

h

}
,

where M2,h denotes the space of the second order piecewise
polynomial functions on Th which are

— continuous at the vertices of all the internal triangles and

— zero at all the triangle vertices of ΓC ∪ ΓS .

Finite element method. Morley: Find wh ∈Wh such that∑
K∈Th

(Eε(∇wh), ε(∇v))K = (f, v) ∀v ∈Wh .
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A priori error estimate

The method is stable and convergent with respect to the following
discrete norm on the space Wh +H2:

‖|v‖|2h :=
∑

K∈Th

|v|22,K +
∑

E∈Eh

h−3
E ‖ �v� ‖2

0,E +
∑

E∈Eh

h−1
E ‖ �

∂v

∂nE
� ‖2

0,E ,

Proposition. (Shi 90, Ming and Xu 06) Assuming that Γ = ΓC

there exists a positive constant C such that

‖|w − wh‖|h ≤ Ch
(
|w|H3(Ω) + h‖f‖L2(Ω)

)
.

The numerical results indicate the same convergence rate for
general boundary conditions as well.
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A posteriori error estimates

� We use the following notation: �·� for jumps (and traces), hE

and hK for the edge length and the element diameter.

Interior error indicators

� For all the elements K in the mesh Th,

η̃2
K := h4

K‖f‖2
0,K ,

and for all the internal edges E ∈ Ih,

η2
E := h−3

E ‖ �wh� ‖2
0,E + h−1

E ‖ �
∂wh

∂nE
�‖2

0,E .
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Boundary error indicators

� The boundary of the plate is divided into clamped, simply
supported and free parts:

Γ := ∂Ω = ΓC ∪ ΓS ∪ ΓF .

� For edges on the clamped and simply supported boundaries ΓC

and boundary ΓS, respectively,

η2
E,C := h−3

E ‖ �wh� ‖2
0,E + h−1

E ‖ �
∂wh

∂nE
� ‖2

0,E ,

η2
E,S := h−3

E ‖ �wh� ‖2
0,E .
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Error indicators — local and global

� For any element K ∈ Th, let the local error indicator be

ηK :=
(
η̃2

K +
1
2

∑
E∈Ih
E⊂∂K

η2
E +

∑
E∈Ch
E⊂∂K

η2
E,C +

∑
E∈Sh
E⊂∂K

η2
E,S

)1/2

,

with the notation

— Ih for the collection of all the internal edges,

— Ch and Sh for the collections of all the boundary edges on
ΓC and ΓS, respectively.

� The global error indicator is defined as

ηh :=
( ∑

K∈Th

η2
K

)1/2

.
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Upper bound — Reliability

Theorem. Reliability: There exists a positive constant C such that

‖|w − wh‖|h ≤ Cηh .

Lower bound — Efficiency

Theorem. Efficiency: For any element K, there exists a positive
constant CK such that

ηK ≤ CK

(
‖|w − wh‖|h,K + h2

K‖f − fh‖0,K

)
.

Efficiency is proved by standard arguments; reliability needs a new
Clément-type interpolant and a new Helmholtz-type decomposition.
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Techniques for the analysis

— Helmholtz decomposition

Lemma. Let σ be a second order tensor field in L2(Ω; R2×2).
Then, there exist ψ ∈W , ρ ∈ L2

0(Ω) and φ ∈ [H̃1(Ω)]2 such that

σ = Eε(∇ψ) + ρ + Curlφ, with ρ =

⎛
⎝0 −ρ
ρ 0

⎞
⎠ .

‖ψ‖H2(Ω) + ‖ρ‖L2(Ω) + ‖φ‖H1(Ω) ≤ C‖σ‖L2(Ω).

Here H̃m(Ω), m ∈ N, indicate the quotient space of Hm(Ω) where
the seminorm | · |Hm(Ω) is null.

In analysis, Lemma is applied to the tensor field Eε(∇(w − wh)).
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Numerical results

� We have implemented the method in the open-source finite
element software Elmer developed by CSC – the Finnish IT
Center for Science.

� The software provides error balancing strategy and complete
remeshing for triangular meshes.

� We have used test problems with convex rectangular domains –
and with known exact solutions – for investigating the
effectivity index for the error estimator derived.

� Non-convex domains we have used for studying the adaptive
performance and robustness of the method.
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Effectivity index ι = ηh

‖|w−wh‖|h
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Figure 1: Left : uniform refinements; Right : adaptive refinements.
Clamped (squares), simply supported (circles) and free (triangles)
boundaries included.
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Adaptively refined mesh — Error estimator

Simply supported L-corner

Figure 2: Simply supported L-shaped domain: Distribution of the
error estimator for two adaptive steps.
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Uniform vs. Adaptive — Convergence
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Figure 3: Simply supported L-shaped domain: Convergence of the
error estimator for the uniform refinements and adaptive re-
finements; Solid lines for global, dashed lines for maximum local
ones.
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Adaptively refined mesh — Error estimator

Clamped L-corner

Figure 4: Simply supported L-shaped domain with a clamped L-
corner: Distribution of the error estimator for two adaptive steps.

25



Uniform vs. Adaptive — Convergence
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Figure 5: Clamped L-corner: Convergence of the error estimator for
the uniform refinements and adaptive refinements; Solid lines
for global, dashed lines for maximum local ones.
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Adaptively refined mesh — Error estimator

Simply supported M-domain

Figure 6: Simply supported M-shaped domain: Distribution of the
error estimator for two adaptive steps.
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Uniform vs. Adaptive — Convergence
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Figure 7: Simply supported M-shaped domain: Convergence of the
error estimator for the uniform refinements and adaptive re-
finements; Solid lines for global, dashed lines for maximum local
ones.
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Conclusions and Discussion

Advantages

� Reliability: computable (non-guaranteed due to C) global
upper bound for the error.

� Efficiency: computable (non-guaranteed due to CK) local lower
bound.

� Robustness: CK independent of the mesh size, data and the
solution.

� Computational costs: small (local) compared to solving the
problem itself.
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Disadvantages

� Residual based error estimates in the energy norm only
— no estimates for other quantities of interest.

� Method dependent: applicaple for the Morley element only
— although the techniques can be generalized.

� Valid only for static problem with transversal loading and
isotropic, homogeneous, linearly elastic material
— so far.
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