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Summary We summarize the main parts of the theoretical results introduced and analyzed in [5] for the
MITC plate elements [2], [4]. We also illustrate and verify the superconvergence properties and the post-
processing method with various numerical computations.

Introduction
The deflection approximation of the MITC plate elements [2], [4] is shown to be superconvergent
with respect to a special interpolation operator [5]. This property holds in the H 1-norm and the
interpolation operator is closely related to the reduction operator used in the MITC methods. A
part of the superconvergence result is, roughly speaking, that the vertex values obtained with the
MITC methods are superconvergent. This may be an explanation why these methods have become
so popular.
By utilizing the superconvergence property a postprocessing method has been introduced in [5]
— to improve the accuracy of the deflection approximation. The new approximation for the
deflection is constructed element by element which implies low computational costs. The new
approximation is a piecewise polynomial of one degree higher than the original one.
Here we first summarize the main parts of the theoretical results. Then we show various com-
putational results illustrating the superconvergence properties of the original approximation and
confirming the improved accuracy of the postprocessed approximation. In the numerical tests both
uniform and non-uniform meshes are used and cases with different kinds of boundary conditions
are studied.

MITC finite elements for Reissner-Mindlin plates
We consider a linearly elastic and isotropic plate with the shear modulus G and the Poisson ratio
ν. The midsurface of the undeformed plate is Ω ⊂ R

2 and the plate thickness t is constant.
The boundary of the plate we divide into hard clamped, hard simply supported and free parts:
∂Ω = ΓC ∪ ΓSS ∪ ΓF. The spaces of kinematically admissible deflections and rotations are then

W = {v ∈ H1(Ω) | v|ΓC
= 0, v|ΓSS

= 0}, (1)

V = {η ∈ [H1(Ω)]2 | η|ΓC
= 0, (η · τ )|ΓSS

= 0}, (2)

where τ is the unit tangent to the boundary. For the analysis the problem is written in mixed form
in which the shear force q = t−2(∇w − β) is taken as an independent unknown in the space
Q = [L2(Ω)]2 [4], [5]. For the bilinear form we define the bending part and the linear strain



tensor:

a(φ,η) =
1

6
{(ε(φ), ε(η)) +

ν

1 − ν
(div φ,div η)}, (3)

ε(η) =
1

2
(∇η + (∇η)T ). (4)

We consider the triangular family but we emphasize that all the results are valid for quadrilateral
families as well. By Ch we denote the triangulation of Ω. As usual, we denote h = maxK∈Ch

hK ,
where hK is the diameter of K . The space of polynomials of degree k on K is denoted by Pk(K).
By C we denote positive constants independent of the thickness t and the mesh size h.
In the MITC methods [2], [4] the finite element subspaces Wh ⊂ W and V h ⊂ V are defined for
the polynomial degree k ≥ 2 as

Wh = {w ∈ W | w|K ∈ Pk(K) ∀K ∈ Ch}, (5)

V h = {η ∈ V | η|K ∈ [Pk(K)]2 ⊕ [Bk+1(K)]2 ∀K ∈ Ch}, (6)

with the ”bubble space”

Bk+1(K) = {b = b3p | p ∈ P̃k−2(K), b3 ∈ P3(K), b3|E = 0 ∀E ⊂ ∂K}, (7)

where P̃k−2(K) is the space of homogeneous polynomials of degree k−2 on the element K . The
discrete shear space is the rotated Raviart-Thomas space of order k − 1,

Qh = { r ∈ H(rot; Ω) | r|K ∈ [Pk−1(K)]2 ⊕ (y,−x)P̃k−1(K) ∀K ∈ Ch }. (8)

The reduction operator Rh : H(rot; Ω) → Qh is defined locally, with RK = Rh|K , through the
conditions

〈(RKη − η) · τE , p〉E = 0 ∀p ∈ Pk−1(E) ∀E ⊂ ∂K, (9)

(RKη − η,p)K = 0 ∀p ∈ [Pk−2(K)]2, (10)

where E denotes an edge to K and τ E is the unit tangent to E. (·, ·)K and 〈·, ·〉E are the L2-inner
products.
With these assumptions and notation the MITC finite element method for the Reissner-Mindlin
plate model, under the transverse loading g ∈ H−1(Ω), can be written in the following form [4],
[5]: Find the deflection wh ∈ Wh and the rotation βh ∈ V h such that

a(βh,η) +
1

t2
(Rh(∇wh − βh),Rh(∇v − η)) = (g, v) ∀(v,η) ∈ Wh × V h. (11)

The discrete shear force is qh = t−2Rh(∇wh − βh) ∈ Qh.

Superconvergence and postprocessing
For the superconvergence result we need the classical quasi-optimal interpolation operator Ih :
Hs(Ω) → Wh, s > 1, [5]: With a vertex a and an edge E of the triangle K , we define

(v − IKv)(a) = 0 ∀a ∈ K, (12)
〈v − IKv, p〉E = 0 ∀p ∈ Pk−2(E) ∀E ⊂ K, (13)
(v − IKv, p)K = 0 ∀p ∈ Pk−3(K), (14)

with IK = Ih|K ∀K ∈ Ch. The key property for the proof of the superconvergence is the close
connection between the interpolation and reduction operators [5, Lemma 4.5]:

Rh∇v = ∇Ihv ∀v ∈ Hs(Ω), s ≥ 2. (15)

Then the following superconvergence result holds [5, Theorem 4.1]:



Theorem 1. There is a positive constant C such that

‖∇(Ihw−wh)‖0,K ≤ ChK‖β−βh‖1,K+‖β−βh‖0,K+t2‖q−qh‖0,K+t2‖q−Rhq‖0,K . (16)

For one element this gives a local improvement of order hK + t when comparing the convergence
rate for ‖wh − Ihw‖1 to the rates for both ‖w − wh‖1 and ‖w − Ihw‖1 [5, Theorem 3.2, Lemma
4.2]. Since Ihw interpolates w at the vertices (see Eq. (12)) this also gives an indication that the
vertex values of wh converge with an improved speed.
In the postprocessing we construct an improved approximation for the deflection in the space

W ∗
h = {v ∈ W | v|K ∈ Pk+1(K) ∀K ∈ Ch}. (17)

For the postprocessing we first introduce the interpolation operator I ∗
h : Hs(Ω) → W ∗

h , s > 1, by
the equations (12)—(14) with k + 1 in place of k. Thus, the interpolation operators I ∗

h and Ih are
hierarchical, and the local spaces for the additional degrees of freedom are defined as

Ŵ (K) = {v ∈ Pk+1(K) | IKv = 0, (v, p)K = 0 ∀p ∈ P̃k−2(K)}, (18)

W (K) = {v ∈ Pk+1(K) | IKv = 0, 〈v, p〉E = 0 ∀p ∈ P̃k−1(E) ∀E ⊂ K}. (19)

Furthermore, the space Q∗
h follows the definition (8) and the operator R∗

h the definitions (9) and
(10), with k + 1 in place of k. Now the method is defined as follows [5]:

Postprocessing scheme. For all the triangles K ∈ Ch find the local postprocessed finite element
deflection w∗

h|K ∈ Pk+1(K) = Pk(K) ⊕ Ŵ (K) ⊕ W (K) such that

Ihw∗
h|K = wh|K, (20)

〈∇w∗
h · τ E,∇v̂ · τ E〉E = 〈(βh + t2qh) · τ E,∇v̂ · τ E〉E ∀E ⊂ ∂K, ∀v̂ ∈ Ŵ (K), (21)

(∇w∗
h,∇v̄)K = (βh + t2qh,∇v̄)K ∀v̄ ∈ W (K). (22)

We note that the postprocessed deflection is conforming since (βh + t2qh) ·τ is continuous along
inter element boundaries. For the method we have the following error estimate [5, Theorem 5.1]:

Theorem 2. There is a positive constant C such that

‖∇(w − w∗
h)‖0,K

≤ C
(
hK‖β − βh‖1,K + ‖β − βh‖0,K + t2‖q − qh‖0,K

+ ‖∇(w − I∗hw)‖0,K + ‖β − R∗
hβ‖0,K + t2‖q − R∗

hq‖0,K + t2‖q − Rhq‖0,K

)
.

(23)

Also this result is local and it is made up of two parts: The first part is related to the error of the
original method and the second part consists of interpolation estimates — both parts giving an
improvement by the factor hK + t compared to the original approximation.

Selected computational results
Our numerical computations are performed for a test problem for which an analytical solution has
been obtained in [1]. The domain is the semi-infinite region Ω = {(x, y) ∈ R

2 | y > 0} and the
loading is g = 1

G
cos x. The Poisson ratio is ν = 0.3, the shear modulus is G = 1/(2(1 + ν)),

the shear corrector factor is κ = 1 and the thickness is t = 0.01. The boundary Γ = {(x, y) ∈
R

2 | y = 0} is either hard simply supported or free. We have used both uniform and non-uniform
meshes with quadratic (k = 2) and cubic (k = 3) elements.



The numerical results are clearly in accordance with the theory: In the interior of the plate the
convergence rate of the original finite element deflection in the H 1-norm is r ≈ k, and the con-
vergence rate of the postprocessed finite element deflection is r∗ ≈ k + 1 ≈ r + 1, as seen in
Fig. 1 (left). The behavior in the L2-norm looks very similar, although to rigorously prove the
improvement in that case seems to be difficult. In the boundary region of the free edge case the
rate of convergence rapidly slows down for both the original and the postprocessed deflection, as
proved in [6], [3]. But still, a significant accuracy improvement is obtained, especially for coarse
meshes and lower order elements. Furthermore, the superaccuracy of the vertex values is obvious,
as seen in Fig. 1 (right).
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Figure 1: Left: Simply supported edge; Interior region; Uniform mesh; H 1- error with k = 2, 3
(dashed line for the original, solid line for the postprocessed deflection).
Right: Free edge; Boundary region; Non-uniform mesh; Pointwise error along the line y = π/4
with k = 2 (dashed line for the original, solid line for the postprocessed deflection, triangles for
the vertex values).
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