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Introduction

• The original deflection approximation is superconvergent

compared to a certain interpolant.

• The postprocessed deflection approximation is

a polynomial of one degree higher than the original one.

• It is constructed by utilizing the superconvergence property,

which gives accuracy of one degree higher than the original one.

• The postprocessing is local, which implies low computational

costs.
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MITC finite elements for

Reissner—Mindlin plates

• The plate is assumed to be

— linearly elastic

— isotropic, with

— the shear modulus G and

— the Poissonin ratio ν.

• The undeformed plate midsurface Ω ⊂ R
2 is a convex polygon.

• The plate thickness t << diam(Ω) is constant.
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Let the boundary conditions on Γ be

— clamped,

— simply supported or

— free.

Then the Reissner—Mindlin plate problem reads:

Problem. For the loading g ∈ H−1(Ω) find the deflection

w ∈ {v ∈ H1(Ω) | v|ΓC
= 0, v|ΓSS

= 0} and the rotation

β ∈ {η ∈ [H1(Ω)]2 | η|ΓC
= 0, (η · τ )|ΓSS

= 0} such that

a(β, η) +
1

t2
(∇w − β,∇v − η) = (g, v) ∀(v, η) ∈ W × V ,

where the bending bilinear form is, with the linear strain ε,

a(φ, η) =
1

6
{(ε(φ), ε(η)) +

ν

1 − ν
(div φ, div η)}.
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The polynomial interpolation for the MITC finite element method

is

• for the deflection approximation wh ∈ Wh of order k

• for the components of the rotation approximation βh ∈ V h

— of order k, enriched by

— the interior bubbles of order k + 1.

Method. (Bathe, Brezzi and Fortin 1989) Find wh ∈ Wh ⊂ W

and βh ∈ V h ⊂ V such that

a(βh, η)+
1

t2
(Rh(∇wh−βh), Rh(∇v−η)) = (g, v) ∀(v, η) ∈ Wh×V h,

where the reduction operator Rh maps the shear stress into

the rotated Raviart—Thomas polynomial space of order k − 1.
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Superconvergence and postprocessing

The interpolation operator Ih : Hs(Ω) → Wh, s > 1,

is defined through the conditions

(v − Ihv)(a) = 0 ∀ vertices a ∈ K,

〈v − Ihv, p〉E = 0 ∀p ∈ Pk−2(E) ∀ edges E ⊂ K,

(v − Ihv, p)K = 0 ∀p ∈ Pk−3(K).

The reduction and interpolation operators are

closely related:

Rh∇v = ∇Ihv ∀v ∈ Hs(Ω), s ≥ 2.
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Superconvergence

For the deflection approximation wh of order k,

with the mesh size h, it holds:

‖w − wh‖1 ≤ Chk,

where the exact deflection w is assumed to be smooth.

For the deflection approximation wh and the interpolant Ihw

it holds:

Theorem 1. Assuming a smooth solution,

‖Ihw − wh‖1 ≤ C(h + t)hk.
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Postprocessing

• The original deflection approximation is of order k

in the element K:

wh|K ∈ Pk(K).

• The postprocessed deflection approximation is of order k + 1

in the element K:

w∗
h|K ∈ Pk+1(K) = Pk(K) ⊕ Ŵ (K) ⊕ W (K).

• The new degrees of freedom of order k +1, corresponding to the

— element boundaries E, space Ŵ (K), and

— element interior, space W (K),

are added to the original deflection approximation.
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The postprocessing method is based on the definition of

the shear stress:

q =
1

t2
(∇w − β) or ∇w = β + t2q.

Postprocessing scheme. Find the local postprocessed deflection

approximation w∗
h|K ∈ Pk+1(K) such that

Ihw∗
h = wh in the element K,

〈∇w∗
h · τE ,∇v̂ · τE〉E = 〈(βh + t2qh) · τE ,∇v̂ · τE〉E ∀v̂ ∈ Ŵ (K),

(∇w∗
h,∇v̄)K = (βh + t2qh,∇v̄)K ∀v̄ ∈ W (K).
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In the postprocessing we utilize the superconvergence of

the original deflection approximation,

‖Ihw − wh‖1 ≤ C(h + t)hk.

Theorem 2. For the postprocessed deflection approximation w∗
h

it

holds, assuming a smooth solution,

‖w − w∗
h‖1 ≤ C(h + t)hk.

This is an error estimate of order h + t better than the original one,

‖w − wh‖1 ≤ Chk.

According to the computational results, a corresponding

accuracy improvement holds also in the L2-norm.
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Computational results

• The following semi-infinite plate is considered:

— the midsurface Ω = {(x, y) ∈ R
2 | y > 0}

— Poisson ratio ν = 0.3

— shear modulus G = 1
2(1+ν)

— thickness t = 0.01

— loading g = 1
G

cosx.

• For the boundary Γ = {(x, y) ∈ R
2 | y = 0} two different types

of boundary conditions are imposed:

— simply supported or

— free.

• The discretized domain is D = [0, π/2] × [0, 3π/2].

12



Accuracy for the uniform meshes

— Interior domain
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Figure 1: Uniform meshes, with N = 2, 4, 6, 8; Interior domain Di;

Boundary region Db.
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Simply supported boundary — Deflection
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Figure 2: Uniform mesh; Deflection in the discretized domain, with

N = 2, 8 and k = 2.
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Simply supported — H1- and L2-errors

Interior domain
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Figure 3: Uniform mesh; Convergence in the H1- and L2-norms,

with k = 2, 3 (red dashed line for the original, black solid line

for the postprocessed deflection).
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Free boundary — Deflection
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Figure 4: Uniform mesh; Deflection in the discretized domain, with

N = 2, 8 and k = 2.
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Free — H1- and L2-errors

Interior domain
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Figure 5: Uniform mesh; Convergence in the H1- and L2-norms,

with k = 2, 3 (red dashed line for the original, black solid line

for the postprocessed deflection).
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Accuracy for the uniform meshes

— Boundary region
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Figure 6: Uniform meshes, with N = 2, 4, 6, 8; Interior domain Di;

Boundary region Db.
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Simply supported — H1- and L2-errors

Boundary region
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Figure 7: Uniform mesh; Convergence in the H1- and L2-norms,

with k = 2, 3 (red dashed line for the original, black solid line

for the postprocessed deflection).
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Free — H1- and L2-errors

Boundary region
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Figure 8: Uniform mesh; Convergence in the H1- and L2-norms,

with k = 2, 3 (red dashed line for the original, black solid line

for the postprocessed deflection).
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Free — Pointwise errors — Along the line x = π/4
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Figure 9: Uniform mesh; Pointwise error on the line x = π/4, with

N = 4, k = 2 (red dashed line for the original, black solid line for

the postprocessed deflection, triangles for the vertex values).

21



Accuracy for the non-uniform meshes

— Boundary region
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Figure 10: Non-uniform meshes, with N = 2, 4, 6, 8; Interior domain

Di; Boundary region Db.
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Simply supported boundary — Deflection
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Figure 11: Non-uniform mesh; Deflection in the discretized domain,

with N = 2, 8 and k = 2.
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Simply supported — H1- and L2-errors

Boundary region
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Figure 12: Non-uniform mesh; Convergence in the H1- and L2-

norms, with k = 2, 3 (red dashed line for the original, blue solid

line for the postprocessed deflection).
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Free boundary — Deflection
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Figure 13: Non-uniform mesh; Deflection in the discretized domain,

with N = 2, 8 and k = 2.
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Free — H1- and L2-errors

Boundary region
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Figure 14: Non-uniform mesh; Convergence in the H1- and L2-

norms, with k = 2, 3 (red dashed line for the original, blue solid

line for the postprocessed deflection).
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Free — Pointwise errors — Along the line y = π/4
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Figure 15: Non-uniform mesh; Pointwise error on the line y = π/4,

with N = 4, k = 2 (red dashed line for the original, blue solid

line for the postprocessed deflection, triangles for the vertex

values).
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Conclusions

• A superconvergence result in the H1-norm holds for

the original deflection approximation.

• Improved accuracy in the H1-norm holds for

the postprocessed deflection approximation.

• The numerical computations confirm the results,

for both uniform and nonuniform meshes.

• Furthermore, the numerical computations

— indicate similar results also in the L2-norm and

— show the superaccuracy of the vertex values.
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