

Brain networks Current state and future challenges

Enrico Glerean – web: www.glerean.com – twitter: @eglerean

PART 1 Brain networks ABC

The Brain according to wikipedia

...The brain is the most complex organ in a vertebrate's body...

Enrico Glerean www.glerean.com I @eglerean The Brain according to wikipedia

...In a typical human the cerebral cortex (the largest part) is estimated to contain

15–33 billion (**10^9!!**) neurons each **connected** by synapses to **several thousand** other neurons...

Enrico Glerean www.glerean.com I @eglerean

Why do we want to study brain networks?

• The brain is a network with

~10^10 neurons and ~10^4 connections per neuron

- As for genomics in the 20th century, many authors are now praising the *connectomics* as the current revolution in neuroscience
- Multi-million projects like the Human Connectome Project, the BRAIN initiative
- Charting the *connectome* presents challenges

What is a connectome?

The connectome

The connectome is the complete description of the structural connectivity (the physical wiring) of an organism's nervous system.

Olaf Sporns (2010), Scholarpedia, 5(2):5584.

Enrico Glerean www.glerean.com I @eglerean

Structure and Function

Many types of networks

- Physical networks
 - Power grid network
 - Physical layer of the internet
 - Transportation networks (roads, rails)
- Non-physical networks
 - Social networks (Facebook, Twitter, etc.)
 - Stock Market
 - IP layer of the internet

Brain networks

- Structural connectivity (estimating actual connections, the connectome)
- Functional connectivity (based on temporal "co-variance")

Craddock, et al. (2013). Imaging human connectomes at the macroscale. Nature Methods, 10(6), 524–539. (*)

Aalto University School of Science Enrico Glerean www.glerean.com I @eglerean

Neural activity is constantly changing. It's like the water of the stream: it never sits still.

The connectome is like the bed of the stream: it guides the flow of the water, but over long timescales, the water also reshapes the bed of the stream.

Sebastian Seung

Connectivity in neuroscience

Structural connectivity (estimating actual connections)

- Invasive (tract tracing methods, 2 photon calcium imaging)
- Non invasive (Diffusion Tensor and Diffusion Spectral Imaging)
- Functional connectivity (based on temporal "co-variance")
 - Invasive (intracranial recordings)
 - Non invasive (fMRI, M/EEG, simulated data)

Craddock, et al. (2013). Imaging human connectomes at the macroscale. Nature Methods, 10(6), 524–539. (*)

Brain networks – general principles

- **Geographical networks:** nodes are located in 3D space and each node has specific function
- **Hierarchically structured**: with highly reproducible modules both at structural and functional level
 - Possibly arising from wiring economy Rivera-Alba, M.et al (2014). Wiring economy can account for cell body placement across species and brain areas. Current Biology, 24(3), R109-R110.
- Multiple instances:
 - we can estimate brain networks from **multiple subjects** or from the same subject at **multiple time points**
 - we can estimate brain networks from same subject using **multiple techniques**
- Computing network-level statistics (p values!):
 - what is significantly similar across subjects/time-points/techniques
 - What is significantly different (e.g. between groups or conditions)

Connectomes, spatial scales and imaging techniques

- **Microscopic scale** (i.e. actual neurons): worm, fruit fly, mouse retina [electron microscope or 2 photon imaging]
- Mesoscopic scale (based on neuronal tracing): mouse, macaque [usually viral neuronal tracing antero/retrograde transport -> one connection per animal]
- Mesoscopic/macroscopic scale (structural non invasive) [MRI, PET, DTI/DSI]
- Mesoscopic/macroscopic scale (functional non invasive) [fMRI, M/EEG]

Functional magnetic resonance imaging (fMRI)

- We measure **multiple time series** at once
- NOTE: 1 voxel -> 5.5e6

 neurons 4e10 synapses
 (density ~1/1000) [Logothetis
 2008 Nature]

Blood Oxygen Level signal

30min (900 samples)

Enrico Glerean www.glerean.com I @eglerean

Building a functional network

At each **node** we measure a **time series** We compute their **similarity**

b₁(t) MMMMMMMM////

 $b_2(t)$

Enrico Glerean www.glerean.com I @eglerean

Building a functional network

Similarity value used as weight of the edge between the two nodes. Repeat for each pair of nodes.

b₁(t) ₩ e.g. Pearson's correlation:

*r*₁₂ $r_{12} = \operatorname{corr}(b_1(t), b_2(t))$

mmn $b_2(t)$

Enrico Glerean www.glerean.com | @eglerean

PART 2 Brain networks Current state

Brain networks in animals

Why is it important?

- It's our only chance to estimate **actual connectomes**
- Only way to scale models from micro/neuronal to macro/functional and possibly the other way around
- Fascinating painstaking work of labelling each neuron and its synaptic contacts to **understand brain circuits**
- Videos from TED Talk "I am my Connectome"

Brain networks in animals Known connectomes so far

	C. elegans hermaphrodite (or male)	Fruit fly medulla column(s)	Mouse retina IPL segment	Fruit fly brain	Mouse cortical column	Mouse brain	Human brain
Volume in mm ³	0.0003	0.0001	0.001	0.071	0.12	450	1,400,000
Voxel dimensions X×Y×Z,nm	5×5×70	3.1×3.1×40	16×16×25	~8 ³	~15 ³	~15 ³	~15 ³
Voxel volume, nm ³	~1750	380	6800	~500	~3400	~3400	~3400
Voxels, x10 ¹²	0.13	0.3	0.15	142	35	130K	280M
Neurons traced	302	379	950	~10 ⁵	~104	~10 ⁸	~10 ¹¹
Synapses annotated	7283	8637	-	~10 ⁸	~10 ⁸	~10 ¹²	~10 ¹⁵
Proof time (person-year)	>10	10	10	4700	1200	4.5M	14G

Plaza, S. M., Scheffer, L. K., & Chklovskii, D. B. (2014). Toward large-scale connectome reconstructions. Current opinion in neurobiology, 25, 201-210.

Aalto University School of Science Enrico Glerean www.glerean.com I @eglerean

Brain networks in animals & network science – Resources

- All connectomes known so far stored in multiple online databases
 - Open Connectome <u>http://openconnecto.me/graph-services/download/</u>
 - Allen Institute Brain Atlases <u>http://connectivity.brain-map.org/</u>
 - NIH Blueprint non-human primate atlas <u>http://www.blueprintnhpatlas.org/</u>
- Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., ... & Mortrud, M. T. (2014). A mesoscale connectome of the mouse brain. Nature, 508(7495), 207-214.
- Shih, C. T., Sporns, O., Yuan, S. L., Su, T. S., Lin, Y. J., Chuang, C. C., ... & Chiang, A. S. (2015). Connectomics-based analysis of information flow in the Drosophila brain. Current Biology, 25(10), 1249-1258.
- Rubinov, M., Ypma, R. J., Watson, C., & Bullmore, E. T. (2015). Wiring cost and topological participation of the mouse brain connectome. Proceedings of the National Academy of Sciences, 112(32), 10032-10037.

Brain networks across species/scales (universality?)

Α	A MARK		
D	rosophila melanogaster	Mus musculus	Macaca mulatta
$1 2 \\ \bullet \rightarrow \bullet$ $1 \frac{12}{\bullet}$			
В		c the second	D A A A A A A A A A A A A A A A A A A A

Current Biology

Kaiser, M. (2015). Neuroanatomy: Connectome Connects Fly and Mammalian Brain Networks. Current Biology, 25(10), R416-R418.

- Goulas, A., et al. (2014). Comparative analysis of the macroscale structural connectivity in the macaque and human brain. PLoS Comput Biol, 10(3), e1003529.

- van den Heuvel, MP, et al. (2015). Bridging cytoarchitectonics and connectomics in human cerebral cortex. The Journal of Neuroscience, 35(41), 13943-13948.

Enrico Glerean www.glerean.com I @eglerean

From animals to humans

Connectivity in neuroscience... non invasively

- Structural connectivity (estimating actual connections)
 - Invasive (tract tracing methods, 2 photon calcium imaging)
 - Non invasive (Diffusion Tensor and Diffusion Spectral Imaging)
- Functional connectivity (based on temporal "co-variance")
 - Invasive (intracranial recordings)
 - Non invasive (fMRI, M/EEG, simulated data)

Craddock, et al. (2013). Imaging human connectomes at the macroscale. Nature Methods, 10(6), 524–539. (*)

The brain at rest

The activity of the brain at rest is ideal for estimating the connectome

By looking at regions that change together in time we can **estimate their connectivity**

Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14(4)

Enrico Glerean www.glerean.com I @eglerean

Zhang, D., & Raichle, M. E. (2010). Disease and the brain's dark energy. Nature reviews. Neurology, 6(1), 15–28.

7-Network Parcellation (N=1000)

- Blue (Somatomotor)
- Green (Dorsal Attention)
- Violet (Ventral Attention)
- Cream (Limbic)
- Orange (Frontoparietal)

Red (Default)

Yeo et al. (2011)

The organization of the human cerebral cortex estimated by intrinsic functional connectivity J Neurophysiol. 106(3):1125-65.

A *rich club* of strong hubs in multiple modules is at the core of the human brain

Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature reviews. Neuroscience, 13(5), 336–49

Aalto University School of Science Enrico Glerean www.glerean.com I @eglerean

Brain networks in humans – data

- Multiple data-sharing efforts using large subjects
- Functional data: resting state/task fMRI & MEG (e.g. human connectome project: 900 subjects with fMRI and 500 with MEG)

http://www.humanconnectome.org/data/

- Structural data DSI: <u>http://www.humanconnectomeproject.org/data/</u>
- Many initiatives also for various mental disorders (Autism, Alzheimer's Disease, Schizophrenia, ADHD) [usually MRI and fMRI]

Enrico Glerean www.glerean.com I @eglerean

PART 3 Brain networks Challenges

1D – Space

What is a node?

- Many are happy to assume that a node is
 - A region of interest identified histologically or from another dataset
 - A region where the signal of neighbour voxels is more similar (i.e. dimensionality reduction e.g. via ICA)
 - A single voxel

More powerful scanners (7T) -> higher SNR -> single voxels will be more and more important

Moerel et al (2015) Processing of frequency and location in human subcortical auditory structures SciRep

Enrico Glerean www.glerean.com I @eglerean

The spatial resolution challenge

- How to build the network?
- More nodes -> exponential growth of the network
 - 6x6x6mm voxels -> ~6000 nodes -> ~18e6 undirected connections [manageable]
 - 4x4x4mm voxels -> ~17000 nodes -> ~130e6 undirected connections [huge memory]
 - 2x2x2mm ??? -> needs distributed computing approach
- Novel methods are using distributed computing:
 - Freeman, J., Vladimirov, N., Kawashima, T., Mu, Y., Sofroniew, N. J., Bennett, D.
 V., ... & Ahrens, M. B. (2014). Mapping brain activity at scale with cluster computing. Nature methods, 11(9), 941-950.
- How to deal with storage? Storing all the links? Where to draw the line?
- Network scientists should work with neuroscientists starting from the modelling of the time series/network.

2D – Individuals

The average brain

- As a first step, it is informative to look at the average brain
- However the average brain does not actually exist
- Variability between individuals and on the same individual over time
- First efforts
 - Machine learning: fingerprinting of brains
 - Large scale modelling (canonical correlation) between individual behavioural variables and connectivity patterns
 - Comparing network of individuals at brain level vs behavioural vs phenotypical etc

Connectivity fingerprints

- Red links: highly unique
- Blue links: highly consistent

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., ... & Constable, R. T. (2015). Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nature neuroscience.

Enrico Glerean www.glerean.com I @eglerean

Matching individual traits with connectivity

- 461 resting subjects
- 158 variables
 - (age, gender, income, IQ, smoking habits, etc)
- 'Good' and 'bad' humans

Smith SM, Nichols TE, Vidaurre D, Winkler AM, Behrens TE, Glasser MF, Ugurbil K, Barch DM, Van Essen DC, & Miller KL (2015). A positivenegative mode of population covariation links brain connectivity, demographics and behavior. Nature Neuroscience

Enrico Glerean www.glerean.com I @eglerean

Intersubject analysis framework

- Networks of subjects compared across dimensions
- Mantel test (comparison between similarity matrices)

Glerean, E., et al. (in press) **Reorganization of functionally connected brain subnetworks in highfunctioning autism** Human Brain Mapping.

2D – individuals: mental health

Alzheimer's disease

The most expensive hubs are attacked by the disease

Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature reviews. Neuroscience, 13(5), 336-49

Bullmore, E., & Sporns, O. (2012). The economy of brain network organization.

Unbalanced small-worldness

Enrico Glerean www.glerean.com I @eglerean

Brain networks as biomarkers

Pievani, M., Filippini, N., van den Heuvel, M. P., Cappa, S. F., & Frisoni, G. B. (2014). Brain connectivity in neurodegenerative diseases [mdash] from phenotype to proteinopathy. Nature Reviews Neurology, 10(11), 620-633. Chicago

How to deal with individuality?

- Other **approaches**?
- Dimensionality scaling (machine learning, ICA, subnetworks) is still a big limiting decision
- Modelling noise vs signal?
- It adds on top of the other challenges (especially on how to build the network)
- Healthy vs clinical groups

3D – Imaging modalities

Brain networks across modalities

- Multiple imaging modalities
- Is it the same object projected over different planes?
- Integrating modalities

PULITZER PRIZE WINNER 20th-anniversary Edition : With a new preface by the author

GÖDEL, ESCHER, BACH:

an Eternal Golden Braid

Brain networks across modalities

- Successful efforts of integrating
 - fMRI
 - -*M/EEG*
 - DTI/DSI
 - -MRI
 - Computational models

Reference list is long, I can email

• Upcoming efforts of linking **PET** with DTI/ DSI and functional connectivity

Different modalities present different assumptions and artefacts

- How to **combine** all the types of networks from **same subject**?
- How to use one modality as 'prior' knowledge for another modality?
- How to summarize properties that generalize across modalities (or not!) [multiplex networks?]

4D – Time

Brain networks in time

- At ms scales: interesting works works with MEG
- At second scales: sliding window connectivity and other measures
 - Lots of disagreement in the field
- Repeated measures for a single subject
 - My connectome project <u>http://myconnectome.org/wp/</u> same subject scanned ~100 times
 - Some measures are stable some other covary with time of the day, time of the year etc.
- Work across age groups (e.g. the developing brain)

Network changes from childhood to adulthood

Brain networks in time

- First we need meaningful methods to estimated meaningful temporal networks
- Can novel advances in the network science of temporal networks help neuroscientists?
- How to integrate temporal measures
 across imaging techniques

5D – Networks of networks

Two persons neuroscience

- We interact with eachother and our brain network activity influences others' brain networks activity
- Modelling a network between the two networks
- This network will not have usual properties (e.g. lower significance of strength of connections)
- How to model this? Bi-partite network? [so far I have been using permutation based approaches]

Two persons neuroscience

Aalto University School of Science Enrico Glerean www.glerean.com I @eglerean

Conclusion

Summary of challenges

- 1) **space** (increasingly larger networks due to higher quality of data)
- 2) **individual variability** (individual subjects with individual phenotypical/behavioral/genetic/clinical variables versus group averages)
- 3) imaging modalities (integration of multiple modalities/ types of data such as structural MRI, functional MRI, M/ EEG, PET, DTI/DSI, modeling, etc)
- 4) **time** (networks evolving in time at ms/seconds/hours/ years temporal scales)
- 5) networks of networks (two-persons neuroscience)

Brain networks Current state and future challenges

Enrico Glerean – web: www.glerean.com – twitter: @eglerean