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ABSTRACT: Scanning probe microscopy (SPM) techniques have
shown great potential in fabricating nanoscale structures endowed
with exotic quantum properties achieved through various
manipulations of atoms and molecules. However, precise control
requires extensive domain knowledge, which is not necessarily
transferable to new systems and cannot be readily extended to
large-scale operations. Therefore, efficient and autonomous SPM
techniques are needed to learn optimal strategies for new systems,
in particular for the challenge of controlling chemical reactions and
hence offering a route to precise atomic and molecular
construction. In this paper, we developed a software infrastructure
named AutoOSS (Autonomous On-Surface Synthesis) to automate bromine removal from hundreds of Zn(II)-5,15-bis(4-bromo-
2,6-dimethylphenyl)porphyrin (ZnBr2Me4DPP) on Au(111), using neural network models to interpret STM outputs and deep
reinforcement learning models to optimize manipulation parameters. This is further supported by Bayesian optimization structure
search (BOSS) and density functional theory (DFT) computations to explore 3D structures and reaction mechanisms based on
STM images.

■ INTRODUCTION
Precisely and controllably manipulating atoms or molecules on
surfaces offers the potential for assembling nanomaterials with
tunable exotic properties for novel applications in optoelec-
tronics and spintronics.1−7 Recently, scanning probing
microscopy (SPM), including scanning tunneling microscopy
(STM) and atomic force microscopy (AFM), has shown great
potential in nanofabrication through complex manipulations
including pulling, pushing, pick−transfer−drop, and dissocia-
tion.8−12 These manipulations are predominantly controlled
through the tip position (tipx, tipy, tipz), bias voltage (V), and
tunneling current (I) in STM. However, the selection and
optimization of such parameters is a time-consuming and
repetitive process and strongly depends on the domain
knowledge, which is not necessarily transferable to new
systems. Therefore, efficient and autonomous SPM techniques
are needed to reduce the reliance on human supervision and
efficiently learn optimal strategies for the fabrication of
functional nanostructures, particularly to the scale that would
have an impact on real technologies.

Advanced machine learning techniques, especially image
classification, image segmentation, and reinforcement learning
(RL), have recently emerged as promising methods to
automate various tasks in SPM, including the identification
of optimal sample regions, the evaluation of the quality of
scanning images, tip conditioning and the selection of

manipulation parameters, and the detection of reaction
sites.13−19 For example, RL decision-making agents have
been developed using discrete actions to find the proper
trajectories to lift a large molecule,20 and also to laterally
manipulate a polar molecule.21 In contrast to making decisions
within a set of discrete actions, Chen and co-workers
developed a deep reinforcement learning (DRL) approach
capable of selecting parameters from continuous action space
including tip-start and -end positions, bias voltage, and
tunneling conductance to steer the motion of atoms.22 The
advancements in SPM automation mentioned above pave the
way for the next step in nanostructure assembly: the
automation of chemical reactions.

For the engineering of new organic materials, on-surface
synthesis (OSS), which is based on chemical reactions, has
developed into a powerful tool for the controllable formation
of molecular structures on solid surfaces.23 In particular, the
ability to control chemical reactions using temperature24 and
light25 in combination with careful selection of molecular
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precursors has allowed for breakthrough work in the
fabrication of carbon nanostructures and organic molecular
networks.26 Partnered with the high-resolution characterization
SPM offers, sequences of on-surface reactions now provide
molecular assembly options that are impossible in solu-
tion.27−30 Alongside this, the concept of single-molecule
engineering, to control all of the elementary steps of a
molecular chemical reaction via SPM manipulations, was
introduced in 2000.31 Yet the potential of SPM for single-
molecule engineering has only emerged in recent years.28,32−35

Despite these exciting results, it is clear that the technical
challenges and time demands of manual manipulation
approaches are not suitable for fabrication beyond a few
molecules, and scaling these procedures beyond single
manipulations and reactions to fabricate large molecular
assemblies and engineer complex electronic states requires
autonomous SPM operation.30,36

In this paper, we establish a deep learning workflow to
automate STM manipulations and optimize manipulation
parameters to efficiently and selectively break C−Br bonds in
organobromides. Breaking these bonds is the first step of the
Ullmann reaction,23 and an important intermediary step in
OSS of complex molecules. This is then applied to Zn(II)-
5 , 1 5 - b i s ( 4 - b r o m o - 2 , 6 - d i m e t h y l p h e n y l ) p o r p h y r i n

(ZnBr2Me4DPP) on Au(111) as a model system to study
autonomous tip-induced reactions in STM. Meanwhile, density
functional theory (DFT)37 calculations and Bayesian opti-
mization structure search (BOSS)38 serve as auxiliary tools to
explore adsorption structures and reaction mechanisms in
combination with SPM results and DRL models.

■ RESULTS AND DISCUSSION
The overall architecture of our software infrastructure
AutoOSS (Automated On-Surface Synthesis) consists of
three components (Figure 1): Target detection, search and
identify targeted fragments based on STM images; Inter-
pretation�Models to interpret the STM output during
manipulation; Decision-making, DRL agent for selecting
SPM parameters.
Target Detection. To efficiently detect promising

candidate molecules to test C−Br bond dissociation, we
acquired an STM image containing several molecules and
molecular clusters (see the Methods section for details of the
sample preparation). We then analyzed the distance between
them (default: 2.5 nm, comparable to the size of molecules)
and the area of the associated contrast patterns (default: 1.5−
2.5 nm2) to exclude clusters or fragmented molecules in Figure
2a. However, many individual fragments share similar areas,

Figure 1. AutoOSS workflow. AutoOSS consists of three key modules: target detection, decision-making, and interpretation. The target detection
module is responsible for detecting individual ZnBr2Me4DPP candidate molecules from a larger scanning image by evaluating distances and areas of
image contrast. The interpretation module aims at understanding the effect of manipulation parameters implemented on molecules through
identifying products based on STM output (images and signals). The identification of the products determines the next step. The decision-making
module generates the manipulation parameters. Here, we primarily employed two methods: a random generator and a DRL approach. The DRL
approach searches for optimal STM manipulation parameters toward a goal using a reward system based on the state. Finally, a substantive number
of 2D scanning images, reflecting various configurations of molecules on Au(111), collected during the whole process can be used to analyze the
geometric and electronic structures and potential reaction mechanisms with BOSS and DFT.
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especially the dissociated products resulting from the loss of
one or two bromine atoms (Figure S9a), which are hard to
distinguish from one another. Therefore, we developed a
neural network model to identify molecules more precisely
based on magnified images focusing on the targeted patterns,
where we zoomed in on a smaller scanning region of 3.5 nm ×
3.5 nm, still large enough to accommodate the target molecules
measuring around 2.3 nm (Figure 2b). Furthermore, the
complexity introduced by adsorbing a nonplanar 3D structure
onto a 2D surface, where the target molecule can undergo
rotations and bind to the substrate at various sites and
configurations, inevitably leads to diversity in observed STM
contrasts. To understand the features of the molecule for target
detection purposes, we correlated the observed STM contrast
with multiple configurations aided by simulated STM images
(see the Methods section and Figure S5). Among these, we
found that the most commonly seen contrast patterns in STM
images (four lobes (2, 3, 4, 5) symmetrically around a larger
lobe (1) in Figure 2c,d) match well with the three most stable
adsorption structures (structures 1, 38, 73, 110, 115, 150, and
158 in Figure S5), which have nearly isoenergetic computed
energies ranging from −2.43 to −2.32 eV.

To improve the ability of the models to identify molecules,
we defined the most frequently observed molecular features in
the STM images as target objects while allowing minor
deviations in tip conditions and molecular rotation (Figure
2c). The 3D structure and corresponding STM images (Figure
2d,e) revealed that the central lobe 1 represents the upper
periphery of the porphyrin ring; the two lobes of 2 and 3 at the
ends are partly due to the presence of Br atoms, and the other
two lobes of 4 and 5 originate mainly from the methyl
fragments on the phenyl ring. Based on these characteristics,
we manually constructed a labeled data set of 1350 images, and
an image classifier (Figure 2b) was trained to evaluate whether
the scanning image includes an individual ZnBr2Me4DPP −
the ultimate accuracy of the model was 98.5% on the test data
set (more details in the Methods section and Figure S12).
Interpretation. After finding and identifying the target

ZnBr2Me4DPP molecules, we are in a position to initiate the
C−Br dissociation process by placing the STM tip on a specific

site and applying a voltage bias (ramp pattern or pulse pattern,
details shown in Figure S16) and a current. Varying parameters
among these four (tipx, tipy, V, and I) may lead to various
effects on the molecules, as shown by the representative
selection in Figure 3a. The dissociation of the C−Br bond(s),
resulting in the corresponding dissociated molecules
ZnBrMe4DPP• and ZnMe4DPP2•, is the goal of the
manipulation. However, as reflected in STM images, there
are multiple possible outcomes of the manipulation process.
For example, the contrast pattern of a Br atom (lobe 2 or lobe
3 in Figure 2d) may disappear or coexist near the contrast
patterns of ZnBrMe4DPP• or ZnMe4DPP2•. Besides, the
appearance and contrast of these patterns may vary due to
the possible changes in the STM tip apex during the
manipulation process. In addition to changes in the chemical
structure of the molecule, some manipulation parameters kept
molecules intact, simply resulting in its rotation or translation
along the Au(111) surface as well as subtle shape or contrast
changes due to different tip conditions. On the other hand,
more extreme manipulation parameters can cause destructive
damage to molecules and induce breaking of other bonds than
C−Br, significant changes such as complete flips of the
molecular configuration, large movements of molecules far
away from the initial positions, and serious problems in tips
like contamination, instabilities, and multiple apexes (see
Figure S8).

One of the major challenges for the automation of chemical
reactions in SPM is to understand and recognize the
consequences of applying manipulation parameters, as outlined
in the previous section. Due to the possibility of many complex
outcomes, we opted to simply classify all of these into three
categories: successful dissociation (Suc), intact molecule (Int),
and indeterminate status (Ind), as shown in Figure 3c. This is
used to determine if the manipulation action on a targeted
molecule has to be continued (in the case of Int) or stopped
(in the case of Suc and Ind) and whether the C−Br bond
dissociation succeeds (in the case of Suc). For the Int category,
the molecule may rotate but retain the typical characteristics of
the target molecules, indicating that manipulation can
continue. Meanwhile, the Ind status and Suc status mean

Figure 2. Search and identification of ZnBr2Me4DPP. (a) Detection of individual molecules from large images by the distance between the
molecules and the area of the contour. Blue points indicate the detected molecules in the contours. Red points represent the center point of
contours, whose areas are marked by values. (b) Architecture of the neural network used to predict whether the image includes an individual
ZnBr2Me4DPP. (c) Example of targeted contrast patterns in STM images at different rotation angles. (d) 3D view of DFT simulated STM with a
superimposed molecular structure. (e) Side view of ZnBr2Me4DPP adsorbed on Au(111).
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that the image pattern cannot be characterized as the targeted
molecule anymore, and the manipulation process is termi-
nated. The difference between the two is that in the former we
cannot establish if the C−Br bond has been dissociated, while
in the latter it has clearly succeeded, either resulting in
ZnBrMe4DPP• or ZnMe4DPP2•.

Aiming at automating this evaluation process of products, we
analyzed over 5000 cases from the STM output (see the
Methods section). The most straightforward way is to inspect
the images after dissociation. Therefore, we trained classi-
fication models (MInd and MDiss) with experts labeling images
to predict whether the products are Suc molecules
(ZnBrMe4DPP• or ZnMe4DPP2•), ZnBr2Me4DPP (Int mole-
cules), or belonging to the Ind category (accuracy higher than
97%, more performance matrices and algorithmic details
available in Figures S11−14 and the Methods section).

Another obvious signal to consider as a classifier is the bias
voltage (V)-topography (Z) curve; it clearly exhibits different
characteristics when resulting in different products during the
dissociation (Figure 3b). Generally, successful dissociation
tends to be accompanied by a larger hysteresis in their V-Z

curves. While a small hysteresis or even an overlapped curve
emerges for manipulation parameters keeping molecules intact,
especially those occurring at low voltage or current.
Furthermore, we quantitatively estimated the three categories
by analyzing the difference in topography between ramping up
and down (Difftopo) calculated by eq 5 in the section on Signal
classification. As shown in Figure S11, there is some overlap in
the distribution of the Difftopo for the three categories.
However, the values among Int cases are usually smaller than
3.0 nm, and for Suc cases, Difftopo values tend to be larger, even
reaching 20 nm, whereas a broader range of Difftopo values (0−
63 nm) is observed in Ind cases. While this offers useful insight
into the dissociation process in some cases, we found that it
was not a reliable classifier for DRL in general, as it was
difficult to distinguish among different manipulation effects.
Decision-Making. Random Action. Developing models

capable of interpreting STM manipulation outcomes is an
essential precondition to finding the optimal parameters to
reach the desired goal. Initially, we employed the most
straightforward method�random action, to generate the four

Figure 3. Interpretation of reaction. (a) Possible states after dissociation. The images in the first and third columns refer to STM images before and
after dissociation. Red points in the images indicate the tip positions for dissociation. The second column represents the topography change during
the implementation of parameters, where the red point marks the initial tip−sample distance. All values are relative to the initial tip−sample
distance. (b) Illustration of signal classifier for evaluating whether the dissociation happens. (c) Three categories for evaluating products using
image classifiers.
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most relevant manipulation parameters for dissociation of the
C−Br bonds: V, I, tipx, tipy.

We approximate the contrast pattern of a target molecule
ZnBr2Me4DPP as an ellipse, whose center is defined as the

Figure 4. Performance of random action. (a) Distribution of bias voltages and currents during 573 dissociation events. (b) Distribution of tip
positions. A ZnBr2Me4DPP molecule in green is superposed as a reference, where the yellow point represents the center point of the molecule,
approximated as an ellipse. (c) Dissociation attempts for each episode before termination, where red points indicate successful dissociation.

Figure 5. Performance of DRL model. (a) Top: illustration of the fixed tip position referred to the center point of a molecule, approximated as an
ellipse (left) and the distribution of all tip positions referred to center points during the DRL training process (right). Bottom: architecture of DRL
model based on the SAC algorithm. It consists of a policy network, critic networks (Q-value function), temperature parameter, target Q-Networks,
and replay buffer. (b) Real STM trajectory while detecting targeted molecules ZnBr2Me4DPP on the Au(111) sample and corresponding
dissociation results. Red points indicate successful dissociation for the molecules, while gray points represent failed dissociation for the molecules
after at most 20 attempts with varying various parameters. Here, xy axes correspond to the STM measurement coordinates. (c) Performance of
image classifier on unknown cases. (d) Evolution of dissociate steps (top) and rewards (bottom) over episodes. (e) Evolution of bias voltages (top)
and currents (bottom) over dissociation times. (f) Distribution of the pairs of voltage and current implemented on molecules for 968 dissociation
times. (g) Repeatability test: dissociate 49 molecules at 3900.36 mV and 97.75 pA.
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reference tip position. Based on the size of the patterns in STM
images (about 2.4 nm, Figure S17), we limited the range of
possible tip positions to within a radius of 1.3 nm from the
reference position, sufficient to cover the whole pattern. In
addition, the ranges of voltages and currents are set to 1200−
4000 mV and 0−1200 pA based on domain knowledge. Figure
4 demonstrates the effects of 573 dissociation attempts on 150
molecules. Of these, 34% of the molecules (Figure 4c) were
successfully dissociated into either ZnBrMe4DPP• or
ZnMe4DPP2•, while the majority of molecules were catego-
rized as Ind cases. The voltage and current distribution (Figure
4a) revealed that successful dissociation reactions tend to
occur at higher voltages (above 2400 mV), but are also
accompanied by a high chance of unwanted reactions.
However, the possibility of unwanted reactions could be
reduced to some extent by using a lower current. We suspect
that a higher current leads to multiple electrons being injected
into the molecule, which excites multiple bonds, thus resulting
in products that are difficult to analyze. Yet, the dependency of
the applied current on the frequency of Ind cases is too noisy
to make any clear conclusion in this regard. Meanwhile, lower
voltages sometimes result in rotation of the molecule, or no
change at all. On the other hand, the dissociation reaction does
not seem highly sensitive to the tip position, even when the tip
is not directly on top of the molecule, it could still break the
C−Br bond as desired. The dI/dV spectra detected at points 3
and 9 of the molecule (Figure S7) indicate the characteristics
of the Au(111) substrate, suggesting that the C−Br bond
should be located between point 2 (or 8) and point 3 (or 9),
whose distance referred to the center point is less than 0.9 nm
(Figure S17). Moreover, we compared the result of the effect
of random actions with the tip position constrained to be over
molecules by reducing the radius from 1.3 to 0.6 nm in Figure
S16a; the success rate slightly increased to 0.39. Meanwhile,
the consequence of changing the voltage pattern from a pulse
of 8 s to a ramp of 42 s demonstrated a comparable success
rate of 0.40 in Figure S16b (more details of the voltage
patterns are illustrated in the Methods section, the pulse
pattern is the default if not said otherwise).

We further attempted to constrain the tip position near the
C−Br bond based on eq 6, which ensures consistent
positioning regardless of the rotational state of the contrast
patterns in images, and also applied randomly generated bias
voltages and currents to dissociate the molecule. The result for
164 molecules in Figure S18 showed a similar trend in the
distribution of voltage and current as with random tip position
previously used. However, the success rate increased from 0.34
to 0.43, implying that specific tip positions could somewhat
reduce the possibility of unwanted reactions of the molecules.
Optimize Action by DRL. By definition, the random

generator lacks the ability to optimize the dissociation
parameters. Generally, this kind of decision-making problem
can be formalized as a Markov decision process, where the
manipulation parameters (action) depend solely on the current
STM image (state). Therefore, we employed a DRL approach
based on the Soft Actor-Critic (SAC) algorithm39 to optimize
parameters for breaking the C−Br covalent bond, using a
rational reward design based on interpreting the SPM scanning
images during manipulations. To simplify the issue, we
hypothesize states in DRL are the same with a 1D state
space for all selected ZnBr2Me4DPP molecules, regardless of
tip condition and slight changes in the molecular conforma-
tions on the surface. The goal in our DRL models is to

optimize the bias voltage and current at the same specific tip
position (Figure 5a) under the reward system in eq 7.

Figure 5b displays the trajectory of 328 episodes with a total
of 968 dissociation manipulations on the ZnBr2Me4DPP
molecules. The xy coordinates correspond to the real
coordinates in the STM, reflecting the distribution of the
molecules in this region. The red points indicate molecules
that underwent successful dissociation, while the gray points
indicate indeterminate cases. Note that the heterogeneity in
success rate across the surface is a function of nonuniform
distribution of molecules on the surface, interruptions in
scanning for technical reasons and also the influence of regions
used for tip conditioning, and it is difficult to make any
inferences on the role of the surface itself. The confusion
matrix in Figure 5c further confirms the high accuracy of image
classifier models on the unknown data set. Figure 5d illustrates
that the model starts to converge after 60 episodes, with a
success rate before 60 episodes of 0.43, consistent with that in
the tests using random voltage and current. After 60 episodes,
the success rate increases to 0.62, and the dissociation steps per
episode are fewer than 3 in most cases, also with a higher
occurrence of larger accumulated rewards. The fluctuation of
rewards between 1 and −10 could be attributed to the high
proximity between parameters leading to successful and
indeterminate dissociation. Due to differences in molecular
conformations on Au(111) and tip conditions, parameters that
lead to successful C−Br dissociation for one molecule may
result in an indeterminate dissociation for another. This is
confirmed by repeatedly testing these successful parameters to
dissociate molecules (Figure S19), where the success rate is
just 0.42, comparable to that in random dissociation.
Meanwhile, the voltage converged to higher values (more
than 3500 mV), whereas the current narrowed to lower values
(less than 400 pA), despite some fluctuations, as shown in
Figure 5e,f. Such narrowing of the range of voltage and current
guided by the reward decreases the dissociation steps per
episode and increases the success rate. Furthermore, the
analysis for the distribution of these parameters in Figure S20
implies that the sets of parameters with voltage higher than
3800 mV and current less than 200 pA offer a higher possibility
to successfully dissociate molecules and reduce indeterminate
cases.

To explore whether we can further increase the success rate,
we randomly selected a set of parameters with a lower current
value (97.75 pA) and higher voltage value (3900.36 mV) from
those associated with a high likelihood of successful
dissociation in DRL training and repeatedly applied these
parameters to 49 molecules, as shown in Figure 5g, obtaining
an increase of the success rate up to 0.8. This demonstrates the
feasibility of our model applied to long-term, selective, efficient
operations for autonomous on-surface synthesis in STM.
Furthermore, the orbital energies of the highly localized C−Br
σ* states of the adsorbed ZnBr2Me4DPP molecule with respect
to the Fermi level at 3.7 eV (Figure S10e), comparable to the
voltage bias applied to promote successful dissociation, suggest
that selective bond dissociation is probably achieved by
tunneling electrons into the corresponding antibonding states,
consistent with the literature.32,40,41

■ CONCLUSIONS
To summarize, we have demonstrated the capability of a deep
learning model to identify reactants and products based on
STM outputs, enabling a DRL agent to evaluate various
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manipulation parameters. Furthermore, the establishment of a
deep reinforcement learning approach allows the agent to
optimize these parameters. These advancements address key
challenges in STM automation and molecular synthesis.
Ultimately, the integration of target detection module,
interpretation module, and decision-making module into the
AutoOSS workflow achieved the automation of tip-induced
C−Br bond breaking from ZnBr2Me4DPP in STM. AutoOSS
enables long-term, selective, and efficient operations without
human intervention. Moreover, the extensive data set
accumulated from experiments, combined with big-data
analysis, DFT calculations, and BOSS, offers the opportunity
to uncover hidden physical information, explore 3D molecular
conformations, and investigate reaction mechanisms despite
the limits of resolution in STM images.

AutoOSS paves the way for automating manipulations in on-
surface synthesis, thus, pioneering a new paradigm in single-
molecular engineering. Moving forward, we anticipate the
possibility of extending AutoOSS to a diverse array of
molecules and applications pertinent to complex chemical
reactions, encompassing various chemical bonds, molecules,
tips, and manipulation types. For similar reaction processes, it
could be flexibly transferred to different molecule and substrate
combinations through retraining the model with appropriate
classifiers of reaction success. Furthermore, there is the
potential to enhance the model’s selectivity and precision by
using a refined tip, optimized bias voltage pattern, or
incorporating AFM signals into the workflow to provide
atom-level resolution scanning images.

■ METHODS
Experimental Preparation and STM Microscopy.

ZnBr2Me4DPP molecules (chemical structure shown in Figure 6)

were synthesized via the precursors 5,15-bis(4-bromo-2,6-
dimethylphenyl)porphyrin (H2Br2Me4DPP) from 2,6-dimethyl-4-
bromobenzaldehyde, as shown in Figure S22. Characterizations
associated with ZnBr2Me4DPP molecules and precursors
H2Br2Me4DPP (Figures S23−S30), including 1H and 13C nuclear
magnetic resonance (1H NMR and 13C NMR) spectroscopy, mass
spectrometry (MS), and ultraviolet−visible (UV/vis) spectroscopy,
were implemented. Then, ZnBr2Me4DPP molecules were evaporated
from a Knudsen cell heated to 230 °C onto a Au(111) sample kept
below the 7 K temperature. The STM scanning and dissociation
manipulations were performed in constant current mode on a Createc
LT-STM system with a gold-coated PtIr tip. The STM images
recorded at different scales from 100 to 3.5 nm are shown in Figure
S1. Contrast-adjusted STM images in Figure S3 show examples of
different adsorption sites of individual molecules on the Au(111)
surface. Ultimately, we chose 20 nm × 20 nm to detect promising
targeted molecules and 3.5 nm × 3.5 nm to make further
identification by neural networks and dissociation manipulations.
The scanning speed and the number of pixels for all images are 1000
Å/s and 128, resulting in around 42 s per image.
Spiral Path Planning. The approach area was about 700 nm ×

700 nm, where four 100 nm × 100 nm squares near the boundary
were set aside to form tips. Therefore, the manipulation region usually
corresponded to the XY coordinates in STM from −300 to 300 nm,

where the center point of the region of 20 nm × 20 nm for detecting
target candidates was updated by the shortest distance ddist away from
the reference point beyond the forbidden area. It was formulated as
ddist = dEucli + α*dManha, where dEucli and dManha indicate Euclidean
distance = +d x x y y( ) ( )Eucli ref

2
ref

2 and Manhattan distance
dManha = |x − xref| + |y − yref|, respectively, and the coefficient of α is set
as 1.
Detect Target Candidates. We first converted raw scanning

images from STM to grayscale images and then made further analyses
to detect target candidates using two methods. One method is to limit
the distance between image contrast patterns, where binary images
with threshold pixel values of 50 (pixels less than 50 were set to 0)
and 150 (pixels greater than 150 were set to 255) were obtained to
find the individual molecules through a thresholding distance
(default: 2.5 nm) between points to get rid of dimer, trimer, or
clusters. Another method is to limit the area of patterns, for which we
detected contours by the Otsu algorithm42,43 with a clear outline
(other two algorithms�global thresholding and Otsu thresholding
after Gaussian filtering were compared by corresponding areas in
Figure S2). Based on the statistical analysis of candidates, we
restricted the area of patterns within 1.5−3.0 nm2 to further exclude
some individual fragments.
BOSS. We employed the BOSS method38 to reduce the number of

DFT evaluations needed to map out the configurational phase space.
Data points were initialized with a quasi-random Sobol sequence, and
the GP-Lower Confidence Bound acquisition function with increasing
exploration (elcb) was used on all runs. The kernels for rotation and
xy-translation were standard periodic kernel (stdp), while the z-
coordinate used radial basis functions (rbf). The surface symmetry
was exploited to multiply the acquired data points by applying
symmetry operations to the adsorbate at high-symmetry sites, where
the Au(111) surface has three rotationally equivalent sites in addition
to two translationally equivalent ones. Initially, a conformational
search was conducted on the isolated gas-phase ZnBr2Me4DPP
molecule, with the search variables being full rotation of the phenyl
moieties and their methyl substituents (6D search). The surrogate
model was constructed from 407 DFT data points. The search
resulted in one single main conformer in terms of phenyl rotation, as
shown in Figure S4, which was subsequently employed as the
molecular building block in the adsorption structure search. The same
structure was used as the building block for ZnBrMe4DPP• and
ZnMe4DPP2•, since loss of the terminal Br atoms does not result in
significant rearrangement of the rest of the molecule following DFT
relaxation. The adsorption structure search was done by constructing
a surrogate model of the DFT (PBE+vdWsurf) PES for the
translational and rotational degrees of freedom (6D search) and
subsequently relaxing the lowest-energy surrogate model local minima
with DFT, thus accounting for any changes in the structures of the
isolated rigid molecular building blocks enabled by the surface
interaction. The molecular adsorbate building blocks for the search
were the lowest-energy ZnBr2Me4DPP, ZnBrMe4DPP•, and
ZnMe4DPP2• species as described above, which were combined
with the relaxed 11 × 12 × 4 Au(111) substrate building block. The
surrogate models for the adsorption structures were constructed out
of 262, 94, and 108 data entries for ZnBr2Me4DPP, ZnBrMe4DPP•,
and ZnMe4DPP2•, respectively. The global minimum predictions
oscillated between the symmetrically equivalent rotational config-
urations (±60°).
DFT Calculations. All DFT computations were performed using

FHI-aims.37 For the initial conformational search using BOSS, we
employed the B3LYP functional44,45 with light defaults and first-tier
basis functions. Subsequently, the resulting global minimum con-
formers, substrate, and all adsorption structures were relaxed to a
force less than 0.01 eV/Å2 using the Perdew−Burke−Ernzerhof
(PBE) functional augmented with the van der Waals dispersion
correction, including collective screening effects of the substrate
electrons (vdWsurf), fully denoted (PBE+vdWsurf).46,47 This choice of
functional for both isolated and adsorbed molecules was motivated by
the properties of an adsorbed configuration being of interest, for

Figure 6. Chemical structure of ZnBr2Me4DPP.
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which this functional has been demonstrated accurate in comparison
with experiments.48 The same functional was also used during BOSS
data acquisition iterations for the adsorption structures. The Brillouin
zone was sampled using a 1 × 1 × 1 Monkhorst−Pack grid, and the
slab was constructed using four layers of 11 × 12 gold atoms as the
Au(111) surface, of which the two lowest layers were kept fixed
during all computations. The length of the box in the z-direction was
in total 60 Å, ensuring sufficient vacuum space. This relatively large
slab size was chosen to avoid interactions with the adjacent
adsorbates. Spin polarization was used for the dissociated
ZnBrMe4DPP• and ZnMe4DPP2• species.

The STM images were simulated using FHI-aims with the Tersoff-
Hamann approximation as implemented therein.49 The simulation
bias was kept at 1.0 V for all images, which were created with
VESTA50 using an isovalue between 10−10 and 10−12 a.u. to match
experimental STM images.

The calculations for the C−Br dissociation model reactions were
performed using the climbing image nudged elastic band and growing
strings methods51,52 as implemented in https://gitlab.com/cest-
group/aimsChain-py3. The pathways of both bond cleavage reactions
were modeled using 12 images in total, where the growing string force
threshold was 0.5 eV/Å2, while the climbing image threshold was 0.05
eV/Å2. The initial structure for the reaction was the global minimum
adsorption configuration as determined by BOSS, while the
dissociated final structures of each step in the reaction were
determined by moving the Br atom 5 Å away from the rest of the
porphyrin, and relaxing with DFT to the force threshold as the initial
image.

The adsorption energy is formulated as Eads = Emol+sub − Emol −
Esub, where mol+sub denotes molecule on the substrate, mol is the
isolated molecule, and sub is the isolated substrate.
Image Classification. All image classifiers were developed based

on the ResNet18 model53 (the architecture of the neural network
shown in Figures 2b and S6), taking STM images with a size of 3.5
nm × 3.5 nm and the pixel numbers of 128 as input. To ensure the
intact pattern of fragment in the image, we adjust the scanning region
based on the center of the pattern in STM images and scan again if
the center point is beyond the threshold region. The default criterion
for the center in the pattern is less than 0.438 nm along both xy axes,
referred to as the center point of the scanning region.

The image classifiers consist of three binary models (MTarget, MInd,
MDiss) and one multiclass model (MTriple) with the numbers of
corresponding data sets shown in Table 1, intended for detecting

reactants and distinguishing products. Due to the complexity in
products, caused by variable tip conditions, various conformations,
and subtle differences for dissociated molecules and pristine
molecules, we trained another two binary models (MInd and MDiss)
for more elaborate distinctions to supplement MTriple. In brief, these
models were designed to distinguish ZnBr2Me4DPP and non-
ZnBr2Me4DPP (MTarget), to distinguish indeterminate and non-
indeterminate (MInd) and to distinguish intact molecules
(ZnBr2Me4DPP) and dissociated molecules (ZnBrMe4DPP• or
ZnMe4DPP2•) (MDiss).

The Adam optimizer54 with cross-entropy loss function and
StepLR were used to optimize parameters in models. In addition,

Bayesian optimization was introduced to optimize the learning rate
based on the converged loss values under corresponding learning rate
values. Eventually, the optimal learning rates in Adam optimizer are
1.11 × 10−5, 4.22 × 10−5, 5.84 × 10−5, and 0.0001 for MTarget, MInd,
MDiss, and MTriple, respectively. All models perform decently with
accuracy more than 94% and the area under the curve (AUC) higher
than 98% (more performance metrics are shown in Figures S12−S15
and Table S4). A confusion matrix divides the classification results
into 4 categories through comparing the true values and predicted
values: True Position (TP, both real values and predicted values are
1), True Negative (TN, both real values and predicted values are 0),
False Positive (FP, real values are 0, but predicted values are 1), and
False Negative (FN, real values are 1, but predicted values are 0).
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+ + +
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TP TN

TP FP TN FN (1)

=
+

precision
TP

TP FP (2)

=
+
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TP

TP FN (3)

= × ×
+

F1
2 precision recall

precsion recall (4)

Signal Classification. We tested two types of voltage bias
patterns�a ramp of 42 s and a pulse of 8 s, with similar processes, as
shown in Figure S16. Times were divided into 1024 steps. The initial
voltages are 1 V: for a ramp pattern, the voltage starts to increase to
the specific voltages from point 20 until point 512, symmetrically,
then decrease to 1 V at point 1004; while for a pulse pattern, the
voltage directly jumps to the specific voltage at point 20, which is
maintained until point 1004, then back to 1 V. We analyzed signal
changes during the dissociation by the difference of topography,
formulated as follows

=
= =

V VDiff
i i

topo
1

512

topo
513

1024

topo
(5)

where Vtopo indicates the value of topography at a point during the
process of voltage variation along 1024 points.
Specific Tip Position.

= × × + × × +H Htip , tip sin , cosx x 1 2 (6)

where H and α are the height and the angle of an ellipse evaluated by
the fitEllipse function in OpenCV,55 γ is a coefficient (default: 0.3),
and β1 and β2 are random noise ranging from −0.1 to 0.1 Å.
Reward Design. The assessments from image classifiers are

applied to evaluate the reward and make further decisions. The
reward is defined as
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where t indicates the dissociate times in an episode and factor is a
coefficient with a default value of 0.2.
Success Rate. The success rate in a test is defined as

=
+

N
N N

succ rate Suc

Succ Ind (8)

In this equation, NSuc and NInd represent, respectively, the number of
successful dissociations and the number of indeterminate cases for all
episodes in one test. The value is used to evaluate the ability of the
model optimizing parameters to avoid indeterminate cases. Dis-
sociation steps in an episode can be used to assess how fast the model

Table 1. Dataset for Four Images Classifiers

target or not indeterminate or not

class train test class train test

true mol 273 39 indeterminate 1186 270
non-true 1116 159 non-indeterminate 2764 607

dissociation or not products

class train test class train test

original mol 2023 438 original mol 2023 438
diss mol 741 169 diss mol 741 169

indeterminate 1186 270
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can find successful dissociation parameters. Therefore, the unchanged
dissociation is not necessarily considered here.
Tip Conditioning. The tip may suffer bluntness, contamination,

instability, damage, or multiple tips during the scanning process.
Correspondingly, different parameters related to voltage, indentation
depth, and time may be needed to identify the condition for a sharp
and stable tip. To maintain a good tip, the workflow monitors the tip
condition and reforms when needed. Experience in this task
demonstrates that random approach heights ranging from 2 to 5.5
nm and constant voltage of 1 V usually can achieve a decent tip. As
the criteria for successful tip conditioning, we search for candidate
molecules in a 20 nm × 20 nm image; if this fails many times (default:
4), our algorithm tries deeper immersion with 10 nm. This strategy
allows long-term operations in the whole workflow ranging from
detection to dissociation. Tip conditioning is activated only when
detecting molecules. Once the targeted molecule is found, it
consecutively tests different dissociation parameters until it
terminates, without interruption from the conditioning tip. On the
one hand, the movement during the tip conditioning may lead to the
shift of coordinates in the STM and the tip status after forming may
be complex and still effectively bad, which may damage targeted
molecules. On the other hand, if the molecules are damaged by a
dissociation manipulation rather than tip itself, we treat it as a failed
manipulation and classify it as an indeterminate case. Furthermore,
empirically, gentle manipulations during dissociation in our task
sometimes even make the tip better in obtaining high-quality scanning
images. Therefore, tip conditioning during the dissociation attempts is
not necessary.

To avoid moving the tip long distances, four square regions with a
length of 100 nm near the edge of the approach area were set, among
which the tip moves toward the closest one for conditioning. To
reduce the time on scanning the tip conditioning region, we just
condition the tip at a random point in the square in practice. As an
option, the algorithm of detecting point from the blank region to
avoid molecules (Figure S21) is available.
Soft Actor-Critic. The SAC approach consists of a policy sampling

module for mapping a state to an action, two state-value q networks
for evaluating the state-value, and one state-action value q network.
The maximum entropy RL in the model maximizes the cumulative
rewards and also pursues the diversity of policy through introducing
the entropy term
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1. Value network: The loss function of value:
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2. Policy network: The action was determined by a policy network,
which generated the mean and std of Gaussian distribution by 1 linear
layer (hidden_dim: 512) and then sampled action from the Gaussian
distribution. The loss function of policy was set based on the
Kullback−Leibler (KL) Divergence:56

= [ | ]L E a s Q s a( ) log ( ) min ( , )s R a t t w t t,t t (12)

3. Entropy regularization: To maximize the entropy, the correspond-
ing loss function was set as follows:

= [ | ]L E a s H( ) log ( )s R a t t, 0t t (13)

where α is the temperature parameter. In addition, the advanced
sampling technique, Hindsight Experience Replay (HER),57 was used
to improve the data efficiency. The optimal hyperparameters found in
testing are learning rate lr of 0.0003, discount factor γ of 0.99, and
target smoothing pf τ of 0.1.

■ ASSOCIATED CONTENT
Data Availability Statement
A video demonstrating AutoOSS’s ability to autonomously and
selectively control the reaction, all training data set and
parameters in machine learning models, and input and output
of BOSS and DFT calculations can be obtained on the Zenodo
repository at 10.5281/zenodo.13761822. The source codes
and examples are available on the GitHub repository at
https://github.com/SINGROUP/AutoOSS.
*sı Supporting Information
The Supporting Information is available free of charge at
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