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ABSTRACT: The interaction of water with surfaces is crucially
important in a wide range of natural and technological settings. In
particular, at low temperatures, unveiling the atomistic structure of
adsorbed water clusters would provide valuable data for under-
standing the ice nucleation process. Using high-resolution atomic
force microscopy (AFM) and scanning tunneling microscopy, several
studies have demonstrated the presence of water pentamers,
hexamers, and heptamers (and of their combinations) on a variety
of metallic surfaces, as well as the initial stages of 2D ice growth on
an insulating surface. However, in all of these cases, the observed
structures were completely flat, providing a relatively straightforward
path to interpretation. Here, we present high-resolution AFM
measurements of several water clusters on Au(111) and Cu(111),
whose understanding presents significant challenges due to both their highly 3D configuration and their large size. For each of
them, we use a combination of machine learning, atomistic modeling with neural network potentials, and statistical sampling
to propose an underlying atomic structure, finally comparing its AFM simulated images to the experimental ones. These
results provide insights into the early phases of ice formation, which is a ubiquitous phenomenon ranging from biology to
astrophysics.
KEYWORDS: atomic force microscopy, ice nanoclusters, machine learning, tip functionalization, neural network potentials

INTRODUCTION
Water−solid interfaces feature prominently in a wide spectrum
of scientific and technological problems, encompassing
materials science, chemistry, biology, and geology. A
prerequisite for their understanding is knowing how the
water molecules will be structurally organized on the solid
surface. The complex interplay between water−water and
substrate-water interactions gives rise to a highly diverse range
of possible structures, forming one-dimensional,1−3 two-
dimensional,4−6 and three-dimensional7 configurations.

Among this rich variety, ice nanoclusters7−10 are of
particular importance, as they enable sampling of the vast
space of metastable configurations explored by water molecules
during the heterogeneous ice nucleation process. Atomically
resolved images of these nanoclusters can be obtained from
atomic force microscopy (AFM) or scanning tunneling
microscopy (STM) experiments, under ultrahigh vacuum and
low temperature conditions and using tip-functionalization.11

However, beyond clusters of only a few molecules, the
resulting images are often difficult to analyze due to the
tendency of the nanoclusters to arrange in buckled, bilayered
structures once enough water molecules have been deposited.

The difficulty is further increased by the flexibility of their
hydrogen bond framework, which, at close distances, can be
significantly perturbed by an approaching microscope tip.

Due to these challenges, current investigations often focus
on planar, monolayered nanoclusters, for which structural
interpretation is relatively straightforward. To approach more
general and three-dimensional cases, a promising route could
be the application of recent advancements in machine learning
(ML) for AFM image analysis. These techniques have already
allowed extraction of physical descriptors,12 electrostatic
potential maps,13 ball-and-stick molecular representations,14

and molecular graphs15 from AFM image inputs. However,
these models were trained on organic molecules in a vacuum,
which present significantly different chemical features
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compared to water molecules adsorbed on metal surfaces.
Until architectures become available for robustly extrapolating
across chemical space, it will remain necessary to generate
additional data for applying automated AFM structure
discovery to new domains. Indeed, by training on a custom
water data set, the two-dimensional configuration of waters in a
Na+·4H2O hydrate was successfully predicted.16

Furthermore, to fully reconcile an experimental observation
with its predicted ice nanocluster structure, the underlying
substrate must be taken into account. This usually implies
carrying out a geometry relaxation of the hypothesized
structure onto the surface using quantum mechanical methods
such as density functional theory (DFT). For large and
bilayered clusters, this is inherently difficult, as very little
information can be obtained with AFM about the organization
of the lower ice layer. However, even for smaller monolayer
cases, the irregular arrangement of water molecules means that

even small variations in the initial hydrogen bond network and
adsorption configuration on the substrate can generate
drastically different final geometries. This holds true also for
weakly reactive, hydrophobic metal surfaces, which are
generally favored in experiments, as they do not cause further
complications such as hydrogen dissociation.

In this work, we tackle these challenges by developing a
simulation workflow for structure discovery in high-resolution
AFM imaging of large, buckled, mono- and bilayered ice
nanoclusters on Au(111) and Cu(111) surfaces. We utilized
the workflow on eight experimental AFM images, obtaining
excellent agreement with the simulated AFM from the
discovered atomic structures. Furthermore, we demonstrate
robustness of the predictions upon their relaxation on surfaces,
fully closing the loop between experiment and interpretation.

Figure 1. Workflow for structure discovery in AFM images of ice nanoclusters. If scanning tunneling microscopy (STM) is carried out in
conjunction with the AFM, the monolayer or bilayer character of the nanocluster can be initially determined from the measured height
difference to the substrate (see Figure S2). Then, an atomic structure prediction is inferred from the experimental AFM image stack.
Incomplete molecules are fixed, while possibly unrealistic ones are eliminated. Next, multiple hydrogen bond networks and surface positions
are rapidly evaluated by carrying out neural network potential relaxations. The most stable resulting structure is further optimized with DFT,
from which simulated AFM images can be obtained and compared to the initial experiment.

Figure 2. Schematic of the geometry prediction process. The prediction process is split into two parts. Following our previous work,15 the
first part uses a CNN to transform the input AFM image(s) into a grid where the atomic positions are marked by Gaussian peaks which are
then identified by a peak-finding algorithm to arrive at a list of coordinates for the atoms. The second part constructs a graph out of the
found positions, which unlike previous work is done here in one shot. The process starts on the left by overlaying the found atom positions
(gray dots) onto the AFM image and selecting rectangular patches around these positions. A CNN then turns the image patches into the
initial embedding vectors (colored squares) for every node of the graph, and edges (dashed lines) are added to the graph based on the
proximity of the nodes. Finally, a GNN processes the information in the node vectors and does a classification of the nodes into atom types
and a binary classification on each edge whether it corresponds to a chemical bond.
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Figure 3. Geometry predictions for experimental AFM images and corresponding simulated AFM images from the PPM (in vacuum).
Experiment B was conducted on Cu(111), while others were on Au(111). Each row corresponds to one experiment. Experiments A and B
are monolayer, and experiments C−H are bilayer. On the left are the farthest and closest distance experimental AFM images, in the middle
the predicted geometries, and on the right the simulations based on the predicted geometries. The tip−sample distances in the simulations
are manually chosen in each case to visually match the experimental images. The sizes of the atoms in the geometry indicate the relative
depths of the atoms.
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RESULTS
The structure discovery workflow involves a sequence of steps
summarized in Figure 1. We apply it on seven experimental
samples on a Au(111) surface and on one sample on Cu(111).
The full experimental AFM image sets are shown in Figure S1
in the Supporting Information. In the following sections, we
outline the individual components of the workflow in detail.
Geometry Prediction. In the initial phase of the workflow,

an AFM image stack is fed into our ML geometry prediction
model, schematized in Figure 2. Building upon our previous
infrastructures,13,15 the model comprises an Attention U-Net
convolutional neural network (CNN) for predicting atomic
positions, and a Graph Neural Network (GNN) for identifying
their corresponding atomic species.

Three different ML models were trained, covering each type
of system we encountered in experiments. Particularly, we
considered separately monolayer and bilayer nanoclusters on
Au(111) and monolayers on Cu(111). The models were
trained on distinct data sets of AFM images simulated with the
probe particle model (PPM).17 The images were obtained
using the hartree potentials of randomly generated ice
nanoclusters, previously relaxed with neural network potentials
(NNP), as shown in Figure S3. The NNPs themselves were
also trained separately, one for each metal, using a diverse
range of water structures, exemplified in Figure S4.

The results are shown in Figure 3, where we compare the
experimental AFM images of the clusters, their predicted
geometries, and the AFM simulations from the predictions.
The experimental data here have been preprocessed in two

ways before being input to the machine learning model. First,
the model has been trained on a fixed pixel resolution (0.125 Å
in both x- and y-directions) and z-height step (0.1 Å), so the
experimental images are rescaled by linear interpolation to
match the predefined resolution. Figure S1 in the Supporting
Information shows which of the z-slices were constructed by
interpolation. Second, each z-slice in the image stack is
normalized individually by subtracting the mean and dividing
by the sample standard deviation of the pixel values.

Of these experiments, two (A and B) are monolayer and the
others bilayer, which is indicated by different height profiles in
STM line scans, shown in Figure S2 in the Supporting
Information. Sample B is on Cu(111), and the others are on
Au(111). For each sample, we include images at both high and
low tip heights, emphasizing the markedly three-dimensional
character of these structures. We observe an excellent
agreement between predictions and observations, with just a
single very high atom in sample H that perhaps confused the
model and was not accounted for.

We found the performance of the geometry predictions to
improve upon increasing the input AFM image stack size, nz,
saturating at around nz = 10. We carry out an in-depth analysis
of this trend in section “Effect of the AFM image stack size”
and Figures S5−S7 in the Supporting Information. In the same
section, we further show how, if using only nz = 1, the images
closer to the sample provide more information, as expected.
Prediction Pruning. In the least bright regions of the

images, which are the hardest even for human experts to
interpret, all our three models tend to generally predict the
presence rather than the absence of low-lying atoms. This is

Figure 4. Estimation procedure to connect an ML geometry prediction to a DFT relaxation on a metal substrate. The geometry center of
mass (shown as a blue cross in the snapshots) is positioned in a random position of the substrate unit cell, and the cluster is randomly
rotated around z. In particular, the initial height of the cluster center of mass is taken randomly from an interval around the central peaks of
the Figure S10 (left column). For each of the starting positions, an iterative bond-creation/NNP-relaxation loop is then carried out. A
tentative hydrogen bond network is constructed with the algorithm shown in Figure S8. The cluster is then relaxed using the NNP. The
RMSD of the relaxed oxygens relative to their initial position is then computed. At this point, more refinements iterations can be carried out,
with the oxygens that did move less than a certain threshold being fixed and the rest of the network being constructed again. The sample
RMSDs are then sorted and the sample with the lowest one is relaxed with DFT. In the case of bilayer nanoclusters, the only change is the
addition of an hexagonal ice layer between the substrate and the prediction, whose orientation is also randomly sampled.
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likely due to the ML model trying to reproduce as accurately as
possible the experimental image features, which are generally
sampled from a distribution different from the simulated ones
the ML was trained on. This is a well-known problem when
adapting models trained on synthetic data onto real-world
scenarios, and the development of strategies to overcome it is
still an active area of research.18−21

When moving on to the next step of the workflow, the
addition of the substrate and the geometry relaxation, the
presence of possibly spurious molecules can become problem-
atic. In general, we filter out molecules from the predictions
that are low-lying and either isolated or placed inside closed
loops, as we have observed that they usually increase in height
and form brighter, inconsistent features post-relaxation. For
example, this is clearly visible in the predicted geometry of
experiment G in Figure 3−the predicted water fragments at the
left corners or inside the biggest loops are eventually removed
after relaxing on the surface. An informed decision can be
made after several trials by observing how the molecule
rearranges during the relaxations and by visually evaluating its
resulting features in the simulated images. At the moment, the
pruning procedure is carried out manually, and it depends on
human intuition and experience. Strategies to automate this
step are currently being explored.

Lastly, before bringing the surface into the picture, we also
adjust eventual incomplete water molecules. In fact, the ML
model is not forced to predict complete water molecules but
only atomic structures that generate a matching simulated
image with experiment. Missing hydrogens are added so that
the internal angles of their corresponding molecules are

correct. Beyond this condition, the exact hydrogen positioning
is not important at this stage since the molecules will
subsequently be rotated in searching for stable hydrogen
bond frameworks.
Surface Relaxation. In Figure 4 we illustrate the process

for searching for a stable combination of substrate positioning
and hydrogen bond arrangement for a given monolayer cluster
prediction. We follow the same procedure for bilayers, but also
place below the predicted molecules an ice hexagonal layer as
in the standard bilayer ice model,22 from which the outer edges
are removed to arrive at an isolated, nonperiodic ice
nanocluster. In the search, we consider the oxygens in the
filtered ML prediction as the ground truth, and we then
explore a large array of translations and rotations of the
nanocluster center of mass on the surface. For each starting
position, a different hydrogen bond network is then generated
according to the algorithm in Figure S8, also exemplified in
Figure S9 in the Supporting Information. More specifically,
hydrogen bonds are created starting from a randomly chosen
water molecule, proceeding radially toward the others. A
probability is assigned to each molecule to form one or two
bonds with its neighbors according to its oxygen height above
the surface, following simple statistical considerations from the
ML data sets, as shown in Figure 10 and Figure 11 in the
Supporting Information. Briefly, we found that in monolayers,
low-lying molecules tend to be bonded with two neighbors,
arranging in a horizontal position on the surface. Molecules at
intermediate heights are instead more frequently positioned
vertically (i.e., with one OH bond toward the surface), thus
bonding with only one neighbor, while molecules with even

Figure 5. On-surface geometries optimized with an NNP, corresponding simulated AFM images, and comparison to experiment. Rows A−H
correspond to the experiments with the same labels as in Figure 3. On each row, on the left is the final optimized geometry, in the middle is
the simulated AFM image, and on the right is the experimental image.
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higher oxygen z coordinate are instead more diversely oriented.
For bilayers, this latter situation applies to all of the predicted
molecules, which are effectively decoupled from the metal. In
the bottom layer, waters are allowed to rotate upward, if
standing below a molecule that was positioned horizontally.
Once the position and the bonds of each configuration have
been set, we do geometry optimization using the previously
described NNPs. The NNP-relaxed structures are then ranked
based on how much the oxygens were displaced compared to
their ML prediction ground truth. The highest ranked
structure is finally relaxed using DFT, and its Hartree potential
is used for simulating the AFM images to be compared with
experiment.

In Figure 5, we compare the surface-relaxed geometries,
their AFM simulations, and the experimental images. We do an
extended comparison over three different tip−sample heights
in Figure S12 in the Supporting Information. Additionally, we
compare experiments, vacuum simulations, and on-surface
simulations together in Figure S13 in the Supporting
Information. Generally, we find the agreement between
simulations and experiments to be still very good after the
addition of the underlying bottom ice layer and the metal
surface. In addition, we only observe minimal ionic movements
during the DFT runs, confirming the accuracy of our NNPs.
The agreement is particularly well-preserved for samples A, B,
and C, whose small size allowed the positioning and bonding
search procedure to thoroughly explore most viable combina-
tions. For the bigger clusters, we notice instead slight
readjustments of the molecules, especially in their z coordinate.
Sample H in particular, the largest among the clusters, tended
to adopt a more three-dimensional structure upon relaxation,
diverging from the flat profile predicted by the ML model. This
is to be expected, and it results from the higher complexity of
these bigger structures, where even small errors in the oxygen
positions or slight differences in the choice of hydrogen bonds
could have global effects on the cluster geometry.

DISCUSSION
To the best of our knowledge, only cluster B was previously
reported in literature, as part of the development of

electrostatic discovery in AFM.13 In light of a recent work23

that showed the presence of a common 15-mer cluster on
Cu(111) and Pt(111), we also observe that experiment A
resembles the initial state of the 15-mer formation, potentially
signaling its presence on Au(111) as well.

We notice that structure predictions from samples A, E, F,
and G possess a similar final orientation of the underlying
lattice, despite not having imposed such a rotational constraint
on the clusters during the search. Certainly, in such amorphous
clusters, multiple bonding configurations and center of mass
rotations could still result in visually similar and stable
geometries. Nevertheless, as the experiments were effectively
conducted on an individual clean Au(111) surface, it is a
promising result to retrieve the correct orientation. Sample B’s
final surface orientation was also found to be matching the
experimental one. This was the only sample measured on
Cu(111), but STM images of its surface had been taken and
they allowed us to confirm the matching.

We also want to highlight an additional experiment, shown
in Figure 6, for which the geometry prediction failed to extract
the complete molecular structure, especially in the center of
the cluster. To better understand what caused the ML models
to struggle, we attempted to manually build a tentative
geometry, which is also shown in the bottom row of the same
figure. In all probability, the presence of very high and low
molecules next to each other in a concentrated region of the
cluster constituted the confounding factor for the ML
predictions. The situation might have further been worsened
by the lowest images being affected by tip−sample interactions,
which may have altered the cluster geometry. In future
improvements, we aim to address both problems. First, we will
ensure incorporation of similar configurations in our data set,
as a postprocessing step on some of the randomly generated
clusters. In general, as we analyze more experimental images
and thus uncover more problematic patterns, we will
correspondingly expand our data set generation to include
them. Second, tip-induced relaxation effects in the ice clusters
could be directly included in the creation of the data sets,
providing the ML with educated guesses about structural
changes of the clusters depending on the image height.

Figure 6. Additional experiment with a prediction and an optimized geometry, and the corresponding simulations in vacuum (top) and on
surface (bottom).
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CONCLUSIONS
We have demonstrated the effectiveness of our workflow for
structure discovery in three-dimensional ice nanoclusters and
validated it by comparison to experimental measurements. In
contrast to previous efforts in approaching similar problems,
we now automate the structure prediction, the hydrogen bond
arrangement, and the substrate relaxation, leveraging recent
advancements in machine learning which allow us to iterate
through tentative structures much more efficiently compared
to traditional DFT. Our work enables the partnering of high-
resolution AFM with accurate simulations of a wide variety of
as yet unexplored complex ice systems, which have generally
been inaccessible due to the sheer difficulty in their
interpretation. This will broaden and accelerate our under-
standing of heterogeneous ice nucleation and, more generally,
of water−surface interactions, a fundamental concept in
numerous scientific and technological domains.

METHODS
AFM Experiments. The experiments were performed on two

separate noncontact AFM/STM systems (Createc, Germany) at 5 K
using qPlus sensors equipped with a tungsten (W) tip (spring
constant k0 ≃1800 N/m, resonances frequencies of f 0 ≃29.1 kHz, and
quality factor Q ≃ 105). All of the AFM frequency shift (Δf) images
were obtained with the CO-terminated tips in constant-height mode.
The CO-tip was obtained by positioning the tip over a CO molecule
on the Au(111) surface at a set point of 100 mV and 10 pA, followed
by increasing the current to 400 pA. The CO functionalization on
Cu(111) was achieved by positioning the tip over a CO molecule at
the set-point of 8 mV and 100 pA, followed by ramping the sample
bias from zero to 2.6 V with feedback off. The oscillation amplitude of
experimental AFM imaging was 50 pm (cluster B on Cu(111)) or
100 pm (all experiments on Au(111)). The Au(111) and Cu(111)
single crystal were purchased from MaTeck. The Au(111) surface was
cleaned by repeated Ar+ ion sputtering at 1 keV and annealing at
about 700 K for multiple cycles. The Cu(111) surface was prepared
by repeated Ne+ ion sputtering at 750 eV followed by annealing at
about 820 K. Ultrapure H2O (Sigma-Aldrich, deuterium-depleted, 1
ppm) was used and further purified under vacuum by 3−5 freeze-and-
pump cycles to remove remaining gas impurities. The water molecules
were deposited in situ onto the surface held at 5 K through a dosing
tube, followed by annealing at 77 K for 10 min. Note that the fact that
we have only monolayer ice clusters on Cu (111), and both
monolayer and bilayer ice clusters on Au (111) is a function of the
availability of high quality experimental images at a variety of heights.
We cannot make any inference on the probability of different ice
structures on these limited statistics.
AFM Simulations. The AFM simulations are performed using the

probe particle model (PPM)17 code using a Lennard-Jones interaction
and an electrostatic interaction calculated from the Hartree potentials
of the samples obtained from the DFT calculations detailed below.
The only exception to this is the simulations on the predicted
geometries (Figure 3), where only the Lennard-Jones model is used,
since the prediction only contains the geometry and atom types
without any electrostatics information. The default built-in Lennard-
Jones parameters in PPM are used.

In order to augment the data set and make the trained machine
learning models more robust, the simulation is performed multiple
times for the same sample while varying some of the simulation
parameters. Following the example of the QUAM-AFM data set,14 we
vary the lateral spring constant kxy and the oscillation amplitude A. In
addition, we vary the closest tip−sample distance dts and the lateral
equilibrium position of the probe particle txy. In the QUAM-AFM
data set, the parameters take all combinations of predetermined
values, in total 24 different combinations for the two parameters. In
our case where we have 4 parameters to vary, the number of different
combinations would grow very large, so we instead choose to do a

fixed number of 10 simulations for each sample, randomly picking the
parameters in set ranges from a uniform distribution. The set ranges
are 0.2−0.5 N/m for kxy, 0.4−2.0 Å for A, txy is in a disk of radius 0.3
Å, and Δdts = 0.5 Å. The average of dts is chosen by eye such that
sharp features like ones seen in real AFM images at close approach are
seen in the simulated images. The simulations are performed at 15
tip−sample distances with a 0.1 Å step, producing 3D stacks of AFM
images.
Geometry Prediction Model. The atomic geometry prediction

model follows closely our previous work on reconstructing molecule
graphs from AFM images15 with some modifications to make the
model more general. The basic structure of the model stays the same:
there is a convolutional neural network (CNN) that first predicts the
positions of the atoms from the AFM image stack, and a graph neural
network (GNN) that uses the predicted positions along with the
AFM images to construct a labeled molecule graph, as illustrated in
Figure 2. The biggest differences to the original model are that the
CNN and GNN networks are now completely separate without any
shared layers between them, the CNN is modified to allow arbitrary
size inputs in the z-dimension, and the GNN is simplified to label and
connect the molecule graph in one shot for the whole graph instead of
iteratively for each atom. These modifications are explained in more
detail in the following.
Atom Position Prediction. The atom positions are predicted

using an Attention U-Net CNN24,25 modified to accept variable size
inputs while producing fixed-size outputs in z. In the U-Net
architecture, the input image is first passed through an encoder that
has a series of CNN blocks interleaved with pooling layers that
gradually downsample the feature maps to a smaller size and then a
decoder that gradually upsamples the feature maps back to the
original size. Additionally, there are skip-connections between the
corresponding stages of the encoder and decoder that allow
information to propagate in the network at multiple scales and
allow more efficient back-propagation of gradients. The Attention U-
Net24 adds to the skip connections attention gates that produce a map
of coefficients in [0, 1] for every pixel in a given feature map which is
multiplied by that map of coefficients, therefore forcing the model to
highlight the relevant regions in the feature map. The attention
mechanism is useful by itself for improving the model performance,
but they can also be used for gaining insight into what regions the
model focuses on for making the prediction,26 although here they do
not make use of this aspect of the model.

We construct here a variant of the attention-gate layer that modifies
the size of the feature map in z into a fixed size. Suppose we have a
feature map X in the middle of the network with size K in the z-
dimension, then we produce a new feature map X′ with size K′ by
applying the operation
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k k k
1

= { }
= (1)

where f k′ is a convolution block with unique weights for each z-layer
k′ in the output and with padding to retain the z-size throughout,

: 0, 1[ ] is an activation function, and ⊙ denotes element-wise
multiplication. Here we choose to use 3 layers and zero-padding in
the convolution block, and we use the sigmoid activation function
σ(z) = 1/(1 + exp(−z)). We add this layer to the output of the
encoder and all of the skip connections so that the decoder can work
with fixed z-size feature maps at all scales. The value for K′ is a
hyperparameter for which we choose here the values 3 for the encoder
output and 3, 5, and 10 for the skip-connection outputs from the
smallest to largest scale. The encoder does not use any pooling in the
z-dimension so that the input AFM image stack can even have just a
single z-layer.
Graph Construction. The original graph construction model15

works in an iterative way, taking one of the predicted atom positions
at a time and adding a corresponding node to the graph with
associated edges corresponding to chemical bonds. The node labeling
process is informed by a channel of information coming from a CNN
that is shared with the U-Net. The structure of the model creates
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some problems for the predictions. First, the iterative nature of the
model makes the predictions dependent on the order in which the
atoms are added to the graph. Second, the shared weights between the
two networks make the training process more difficult because the
two prediction tasks need to be balanced at the same time.
Additionally, the way that the GNN uses absolute coordinates of
the atoms makes the predictions dependent on the chosen coordinate
system and the exact size of the AFM images, and especially makes
the predictions close to the edge of the image less reliable.15

Hence, we modify the graph construction network here in a way
that addresses all of these issues (see the schematic at the bottom of
Figure 2). Instead of processing the whole stack of AFM images as a
whole, we instead choose small patches from the AFM images for
each of the predicted atoms based on the proximity of the atom
coordinates to the coordinates of the AFM image pixels. The patches
are processed with a CNN to produce fixed-size feature vectors for
each of the atoms, and these feature vectors are then used as initial
hidden vectors for the nodes in a GNN. The GNN mixes the
information between the nodes for multiple rounds along edge
connections based proximity between the atoms, and finally the nodes
are classified by a multilayer perceptron (MLP). This process
simplifies the model by getting rid of the iteration for the nodes
and makes it one-shot instead, with the AFM features gathered locally
in a way that makes the predictions independent of the lateral size of
the AFM image. Additionally, only relative coordinates are used
within the network, so that the choice of the origin of the coordinate
system is arbitrary.

Starting with the AFM images, let rq
q
N

1{ } = be the set of coordinates
for the atoms produced by the U-Net model, and let {Rij} be the set of
xy-coordinates for the voxels of the AFM image stack. For each of the
atom coordinates rq, we gather from the stack of AFM images a square
patch of voxels whose xy-coordinates are within a cutoff distance da:

R r d .ij ij
q

a . We use the value da = 1.125 °A for the cutoff,

which with a pixel resolution of 0.125 °A reates patches of size 19 ×
19. In the case in which the atom is close to the edge of the image, the
image is padded with zeros so that the patches have a constant size.
This produces a set of smaller AFM images, which are processed by a
CNN to produce a fixed size feature vector for each atom. The CNN
has three ResNet27 blocks with 2 × 2 pooling after each block, an
attention gate layer similar to eq 1 to reduce the 3D feature map
down to just a single voxel, and a one final fully connected layer that
transforms the feature vector size to the one used inside the GNN.
The three ResNet blocks have 12, 24, and 48 channels, respectively,
and all have 2 layers.

The final feature vectors from the preceding CNN are used as the
initial hidden vectors hv0 for each node labeled with v ∈ {1...N}. The
hidden vectors are updated for nt iterations by a message-passing
GNN:28
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where t ∈ {1···nt}, fm is an MLP, fh is a gated recurrent unit (GRU),29

and v( ) denotes the set of neighbors for the node v. Note that the
message function in eq 2 uses the relative coordinates between the
nodes, which makes the update iteration translationally invariant. The
set of neighbors of a node is decided based on proximity to other
nodes: given a cutoff distance de, the set of neighbors for a node v is

v u r r d( ) u v
2 e= { | }. Here we use the value de = 3 Å for the

cutoff, which is enough to capture all possible bonding distances
between the atoms, including hydrogen bonding. Additionally, we
choose nt = 5, |hvt | = |mvut | = 40, and fm has two hidden layers of size
196.

The final classification of the node types is done by another MLP
fc:

c f h v N( ) 1...v v
n

c
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The final layer of fc is followed by a softmax activation so that yv is a
probability distribution over the node classes. The loss for the
classification task is the cross entropy loss, L(cv,cv′) = −∑i = 1

C cv,i′ log cv,i,
where C is the number of classes and cv′ is a one-hot vector for the
ground-truth class of node v. We choose to use one hidden layer of
size 196 in fc.

In addition to labeling the nodes, the edge connections between
the nodes, corresponding to the bonds between the atoms, can be
constructed. The bonds are not used here in practice for the
subsequent simulations, but the method is described here for
generality. The basic idea is to take the neighbor connections v( )
between the nodes and do a binary classification for each one on
whether it corresponds to an edge in the final graph or not. To this
end, in addition to maintaining a hidden vector for each node, we also
maintain a hidden vector guvt for each (unordered) pair of neighboring
nodes u v E u v u v( , ) ( , ) ( ) .= { | } The hidden vector is
initialized to the average of the node hidden vectors, guv0 = (hu0 +
hv0)/2, and then updated on each iteration of the GNN as
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where t ∈ {1···nt}, and fg is a GRU. The final classification of the edge
connections is done as
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where fe is an MLP with sigmoid activation in the final layer. The loss
for the prediction is the binary cross-entropy loss. Like with the node
classifier, we use one hidden layer of size 196 in fe. The activation
function for all of the layers in the model is the ReLU function.
Model Training. During training, the AFM images are

preprocessed in several ways following previous work,13 including
normalization, random noise, cutouts, pixel shifts, random back-
ground gradients, and random rotations and reflections. Here we also
randomize the z-size of the AFM image stack between 1 and 15 slices
and randomize the starting slice between 1 and 5. The simulations
additionally have 10 different random parameter sets for each sample,
as described above. The samples are divided into several shards, and
for each training epoch, one of the parameter sets is chosen at random
for each shard.

The graph construction model is trained separately from the
position prediction model. In order to account for the fact that the
predicted positions have some uncertainty in them, we add Gaussian
noise (σ = 0.08 °A) to the input node positions during training of the
graph construction model. The model parameters are optimized with
the Adam optimizer,30 using the default momentum parameters. The
models are trained for 1000−1500 epochs until the loss does not
improve significantly anymore. The final model parameters are chosen
from the epoch with the lowest validation loss.

It may be of interest that we also tried first training the models on a
larger data set with more elements13 and then fine-tuning on the
water-only data set. However, we found in practice that these models
did no better or worse than ones trained from the beginning on the
water data set, as measured by the training and validation losses.
Finally, while the assumption of intact water molecules is not directly
enforced in the ML model, only neutral molecules were considered in
the training for simplicity.
DFT Calculations. DFT calculations were conducted with the

Vienna Ab Initio Simulation Package (VASP),31,32 modeling core
electrons with projector augmented wave (PAW) potentials and
expanding valence electrons with plane-waves with Ecutoff = 500 eV.
The nonlocal van der Waals-density functional optB86b-vdW-
DF33−35 was utilized, as it has been shown to accurately describe
the adsorption of water molecules on metal substrates.4,5,9,10,36

Depending on the size of the water cluster in consideration, a 9 ×
9, 11 × 11, or 13 × 13 Cu/Au(111) supercell was selected, using 3
atomic layers and a vacuum separation of 20 Å along the slab
perpendicular direction. Convergence tests of the k-grid showed that
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Γ point calculations were already accurate at the meV level for the
considered supercells.

Note that the growth of small monolayer clusters and ice bilayers
on Au(111) is only weakly affected by the commensurability with the
substrate,6 so we did not consider the influence of the herringbone
reconstruction.
Neural Network Potentials. NNPs were employed via

NequIP,37 which allows building of an E(3)-equivariant NNP from
a reference data set of ab initio calculations. By leveraging euclidean
neural networks from e3nn38 and by utilizing both scalar and higher-
order tensor atomic features, the NequIP architecture reaches state of
the art accuracy and data efficiency.

Initially, two NequIP models were trained for Au(111) and
Cu(111) on 700 structures exemplified in Figure S4, which provided a
diverse variety of both high and low energy structures to avoid
overfitting and making a robust interatomic potential. These
preliminary NNPs were then used to geometry relax a series of
randomized water clusters to build the ML data set, as shown in
Figure S3.

The relaxations were performed with ASE39 BFGS minimizer, using
a force tolerance of 3 meV/Å. After carrying out single-point DFT
runs on the relaxed clusters, the NNPs were finally retrained on both
their initial data set and on a portion of these new structures, which
were more representative of our target distribution compared to the
initial data set. For both the Au(111) and the Cu(111), we utilized
1850 data points, a rotation order of l = 2, a batch size of 2, a learning
rate of 0.0075 and a PerSpeciesL1Loss for the force loss term. For the
Au(111) model, we obtained validation energy and force Mean
Absolute Errors (MAE) of respectively 0.414 meV/atom and 0.00558
meV/ Å (of which H_f_mae = 0.0147, O_f_mae = 0.0184, and
Au_f_mae = 0.00362). For the Cu(111) model, the final MAEs were
instead 0.859 meV/atom for the validation energy and 0.00950 meV/
Å for the validation force (of which H_f_mae = 0.0160, O_f_mae =
0.0215, and Cu_f_mae = 0.00789).
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