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Abstract
We propose that the formation of zigzag structures on Si(1 1 0) during
anisotropic etching is mainly a result of the formation of inhomogeneous
regions in the etchant due to diffusion phenomena. In the same way as the
presence of these etchant inhomogeneities results in step bunches on miscut
(1 1 1) surfaces, it results in zigzags on the (1 1 0) surface. To support this
proposal, we present an incremental activity monitoring (IAM) method for
the simulation of step bunching using a kinetic Monte Carlo scheme. For
stepped (1 1 1) surfaces, comparison with a previous step density monitoring
(SDM) method shows that IAM is typically faster by one order of magnitude
and is well suited for the simulation of step bunching. By applying IAM to
(1 1 0), the formation of zigzag structures can be simulated, strongly
suggesting that the morphology of this surface is dominated by the formation
of inhomogeneous regions close to the surface in the etchant phase.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Anisotropic wet chemical etching of crystalline silicon is a
widely popular process for the fabrication of microstructures,
where it is used alone or in combination with other techniques.
From an engineering point of view, device performance
has become dependent on the quality of the micromachined
surfaces, in particular on their morphology and roughness.
From a fundamental perspective, there remains interest in
understanding a number of morphologic features. As an
example, there has not been a satisfactory explanation for
the surface morphology of anisotropically etched Si(1 1 0),
which involves the formation of zigzag structures [1, 2], as
shown in figure 1. It has been proposed that the zigzags
appear because they minimize the surface free energy [4]: the
crystallography of Si(1 1 0) allows the removal of a full row
of atoms and its placement somewhere else on the surface
with no energy cost and a gain in entropy. Perhaps the most

accepted explanation assumes the presence of micromasking
so that some of the atom rows remain temporarily frozen, thus
becoming the zigzag peaks, while other rows are removed, thus
becoming the zigzag valleys [5, 6]. Usually, the zigzags are
analyzed in conjunction with the formation of nosed structures,
also typically explained as the result of micromasking [5–7].
In this study we propose that the morphology of (1 1 0) is
strongly controlled by diffusion phenomena which lead to
the formation of inhomogeneous regions in the etchant, i.e.
locally supersaturated and/or undersaturated domains. Just
as these inhomogeneities generate step bunches on miscut
(1 1 1) surfaces, they produce zigzag structures on (1 1 0).
The paper focuses on the presentation of a faster method for
the simulation of step bunching using a kinetic Monte Carlo
(KMC) approach. Our simulations of the surface morphology
and its time evolution for stepped (1 1 1) and (1 1 0) strongly
suggest that the zigzag structures are another manifestation of
the presence of diffusion inhomogeneities.
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(a) (b)

(c)

(d )

Figure 1. Impact of surface morphology on engineering applications: formation of zigzag structures on (1 1 0) facets during anisotropic
etching of Si. (a) Micro-fabrication of micro-needles on a Si(1 0 0) wafer [3]. (b) Detail of (1 1 0) facets, region highlighted in (a). (c) Detail
of (1 1 0) morphology showing the zigzag profile. (d) 3D view of the zigzag structures.

In this paper, the terms diffusion and diffusion phenomena
are used to refer to the transport of the reactants and/or
products to/from the locations where they are being
consumed/produced. This transport takes a characteristic time
τ , which is typically larger than the typical time δt between the
atomistic, surface removal reactions (τ � δt). This transport
delay and the existence of intense activity at the steps (in
comparison to the rather inert terraces) results into a lower
etchant concentration at the steps, even in the presence of a
steady flow of reactants into such regions in order to neutralize
their continuous consumption. In this way, etchant depletion
regions (or inhomogeneities) are formed in the vicinity of the
steps.

The formation of these etchant inhomogeneities on
stepped Si(1 1 1) surfaces has been recently investigated
experimentally and computationally by Garcia et al [8, 9].
They concluded that the existence of inhomogeneities can
satisfactorily explain the formation of step bunches on stepped
(1 1 1) and thus the overall surface morphology of the (1 1 1)
surfaces. Additionally, experimental work by Tan et al has
previously stressed the importance of diffusion phenomena in
order to explain the variations in the etch rate and activation
energy of (1 1 1) and other vicinal orientations due to the
proximity of the masking patterns [10]. In this paper, we
explore computationally whether step bunching due to etchant
inhomogeneities can explain the formation of the zigzag
structures on Si(1 1 0). With this target in mind, we have
developed an alternative method for the simulation of step
bunching.

The paper does not focus on the formulation of a physical
model of the diffusion phenomena, nor on the determination
of the key diffusing species, which in principle can be any of
H2O, OH−, the etchant cations (such as K+ in KOH or TMA+

in TMAH) and the reaction products (such as Si(OH)4). We
simply assume the presence of inhomogeneous regions in the
etchant and explore what implications this can have on the
morphology of (1 1 0).

2. Including diffusion phenomena in a kinetic Monte
Carlo simulation: step density monitoring (SDM)

We are interested in including the effects of diffusion on the
surface morphology in a simulation of anisotropic etching that
uses the kinetic Monte Carlo (KMC) method. In this method,
a surface atom i gets a removal rate k0

i whose value depends
on the actual configuration of the neighborhood. For instance,
k0
i can depend on the number of first and second neighbors,

n1
i and n2

i , as in k0
i = k0

(
n1

i , n
2
i

)
[11]. Alternatively, as in

most etching models, only a few distinct surface sites might
be considered (such as the terrace and step monohydrides,
the vertical and horizontal step dihydrides, etc [12]) and the
number of different k0

i s reduces to only 5–10.
Following Garcia et al [8, 9], we assume that the existence

of diffusion phenomena during anisotropic etching results in
the formation of inhomogeineities. Accordingly, one expects a
decrease in the reaction rates of the atoms affected by depletion
regions. Similarly, an increase in the rates is expected if
the reaction is strongly exothermic and the local rise in the
temperature increases the rates more than the etchant depletion
reduces them. The situation can be mathematically described
by introducing a scalar field D (referred to as the diffusion
factor) such that D = 1 denotes that the etchant is in its
normal, homogeneous state, D < 1 describes the presence of a
depletion inhomogeneity and D > 1 describes the occurrence
of a local increase in the etch rate:

ki = D(ri )k
0
i . (1)

Here, ki is the atom removal rate under the effect of an
inhomogeneity. Equation (1) stresses the fact that the diffusion
factor D = D(r) takes values that depend on the position r
on the surface. Although not explicitly written, D will also
change with time. As a result, also the rates ki typically depend
on time.

Since the formation of the inhomogeneities correlates
with the activity on the surface and the activity is typically
concentrated at the steps, Garcia et al assume that the diffusion
factor D is proportional to the step density ρ, as considered in
kinematic wave theory [9]:

D(r) = 1 + aρ(r). (2)

Here, the step density ρ is in the range [0, 1] and a is a model
parameter. If a = 0, no diffusion effects are simulated as the
etchant is completely homogeneous. In an experiment, this
is equivalent to vigorous stirring conditions. If a > 0, the
diffusion phenomena result in ‘boosting’ of the reaction rates
(also referred to as ‘acceleration’) and, if a < 0, diffusion
results in a ‘slow-down’ of the rates (i.e. ‘deceleration’). In
this case one must take care that the diffusion factor D never
becomes negative or zero (e.g. by using the constrain that
a > −1). As explained below, both a > 0 and a < 0 are
expected to produce step bunching. The two situations should
correspond to experiments where stirring is not used.

Within this formulation, the problem of simulating
diffusion effects (such as the formation of etchant
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Figure 2. Relation between the convoluted and the raw step
densities for a simple case (only one step). (a) A step between two
terraces. (b) Definition of the raw step density ρraw. (c) The
convoluted step density ρconv. (d) Different shapes for the
convolution kernel.

inhomogeneities and step bunching) is reduced to a large extent
to that of monitoring the step density ρ. Thus, we refer to this
approach as step density monitoring (SDM).

2.1. The convolution method

In order to calculate the diffusion factor D, the step density ρ

needs to be defined and monitored. Garcia et al have used a
convolution method which can be described as follows. Let
us consider raw and convoluted step densities (ρraw and ρconv,
respectively). For the raw step density, the terrace sites are
assigned the value ‘0’ and the non-terrace sites (typically step
sites) are assigned ‘1’, as shown schematically in figures 2(a)–
(b). Mathematically, the raw step density is defined as

ρraw(r) =
∑

i

δ(r − ri ). (3)

The convoluted density ρconv results from summing the values
of the so-called convolution kernel (K) to a region of radial
extent rmax centered at every non-terrace site (i.e. centered at
the ones of the raw step density), as indicated in figure 2(c).
This can be regarded as a stamping process that uses the kernel
function values in the rmax region as the stamp. As shown in
figure 2(d), different convolution kernels (or blur functions)
can be used such as an exponential decay, a Gaussian or a

(a) (b) (c)

(d ) (e) ( f )

Figure 3. Formation of step bunches due to the presence of inhomogeineities: (a)–(c) acceleration; (d)–(f ) deceleration. The extent of the
horizontal arrows describes the magnitude of the step velocity.

hat function, to name only some examples. We will refer to
the rmax region as the blur neighborhood. Mathematically, the
convoluted step density can be described as

ρconv(r) =
∫

K(r − r′)ρraw(r′)dr′ =
∑

i

K(r − ri ). (4)

The convoluted step density gets the highest value along the
steps and decays continuously as we move away from a step
into the terrace area. ρconv looks as a blurred version of ρraw,
as schematically shown in figure 2.

The convolution method consists in approximating the
step density ρ in equation (2) by the convoluted step density
ρconv. When two steps come close to each other as a
result of fluctuations in their propagation velocities, the
superposition of the two corresponding blur functions will
lead to larger values of the convoluted step density in the
intermediate region, thus enabling interaction between the
steps. As shown in figures 3(a)–(c), the overlap between
two blur functions creates a region where the diffusion factor
D(r) = 1 + aρconv(r) increasingly exceeds 1 (if a > 0),
thus boosting the corresponding reaction rates (according to
equation (1)). As the step pair propagates faster, it eventually
catches up a third step, further increasing the value of D.
As more steps are involved, big step bunches are formed
(figure 3(c)). If a < 0 (figures 3(d)–(f )), D decreases when
two steps come closer, thus slowing down the rates and making
it possible for a third step to catch the pair, eventually also
leading to step bunching.

In figure 3, the red plotted curves in (a)–(c) represent
the onset of inhomogeneous regions in the temperature of the
etchant, locally leading to acceleration of the corresponding
step or step-bunch. The blue curves for (d)–(f ) correspond
to the formation of inhomogeneities in the concentration of
the etchant, which will in principle lead to deceleration.
Note, however, that etchant depletion does not necessarily
always lead to deceleration: it is known that the etch rate
can increase by decreasing the concentration, especially
in the low concentration range. Thus, the red curves in
(a)–(c) might as well describe the case of etchant depletion.
Even if the exact link between acceleration/deceleration
and the temperature/concentration inhomogeneities remains
imprecise, the general argument is still solid. The existence
of acceleration and/or deceleration of the step velocities can
be correlated to the formation of inhomogeneities, and is
ultimately due to the delay between diffusion transport and
surface reactivity.
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From a computational perspective, the central idea in
order to generate bunching is to encourage the overlap between
active regions, which typically correspond to the steps. The
convolution method directly follows the position of the steps
and spreads them out by means of the convolution operation,
thus enabling overlapping.

2.2. Difficulties of the convolution method

There are two main difficulties in using the convolution
method:

(i) Time-dependent rates. Since the diffusion factor D can
take many different values and change with time at every
surface atom, the reaction rates ki after multiplication
by D (see equation (1)) constitute a large set of time-
dependent rates. This occurs even if the number of the
original rates k0

i is limited to just a few. In order to use
variable rates in a kinetic Monte Carlo simulation, an
appropriate method must be used to ensure that the most
probable event is selected at each time step. For that
purpose, the most general method that can be used is the
K-level search (KLS) [13]. KLS is a general tree search
method that includes many particular cases such as the
binary search and the linear search. In [9] Garcia et al
present a ‘hybrid’ method based on an N-fold search [14]
of the next event out of the small set of time-independent
k0
i rates followed by the acceptance (or rejection) of the

event by comparing a random number to the value of
the diffusion factor Di (Metropolis acceptance/rejection
criterion [15]). Although the approach is completely
correct, the use of the Metropolis criterion can lead to
slow computations due to frequent rejection, specially
in the case of deceleration, where D is typically smaller
than 1. An efficient manner to deal with time-dependent
rates in a KMC simulation is the use of the KLS
method in one of its most efficient variants (e.g. binary
search and other choices). Our kinetic Monte Carlo
simulation program (which we refer to as TAPAS: three-
dimensional anisotropic processing at all scales) uses the
KLS method.

(ii) Slow computations. The use of a convoluted step
density (ρconv) requires defining a typically large blur
neighborhood of size rmax for every atom (at least in
the crystallographic basis). Here, ‘typically large’ means
about 2 nm in radius, which amounts to a volume with
more than a thousand Si atoms, corresponding to several
hundreds of atoms on the surface. Besides the extra use
of memory to keep these blur neighbors, updating the
values of ρconv to reflect each event during the system
evolution requires a loop over several hundreds of blur
neighbors, significantly slowing down the performance
of a kinetic Monte Carlo simulation. According to our
implementation of the convolution method, the computing
time per event is typically increased by an order of
magnitude as compared to a simulation that does not use
the blur neighborhood (see section 4.1). Thus, if possible,
one would like to reduce the size of rmax as much as
possible. A way to do this is presented in section 3.

3. Incremental activity monitoring (IAM)

Perhaps the most basic idea in order to simulate step
bunching is to enable the overlap between active regions,
which are typically the steps. The convolution method
records the positions of the steps and spreads them out using
the convolution operation, thus increasing the chances for
overlapping. An alternative manner to enable overlapping is to
keep track of the past positions of the steps so that overlapping
can occur when a step enters a previously marked region.
This approach assumes that the diffusion processes (i.e. the
transport of reactants and/or products in the etchant phase
close to the silicon surface) are typically slower than the actual
atom removals at the surface. As a result, the etchant builds up
a memory of the activity in the past. In a way, the convolution
method indirectly states that the diffusion inhomogeneities
follow the motion of the steps instantaneously and that they
are symmetric ahead and behind the steps. But it might be more
realistic to consider that the inhomogeneities are asymmetric,
lagging more behind the steps. If this is the case, recording the
surface activity in the past is a simple yet powerful manner of
introducing step bunching in a KMC simulation, as explained
below.

All that is required is to define an integer variable, the
incremental activity (A), whose value is incremented by one
unit at the first and second neighbors of each removed atom.
This provides a way to record the past activity, i.e. the past
removals. As more incremental updates are realized into A,
a moving step leaves on A a track of its previous locations.
In other words, the surface atoms keep a memory of when
their neighboring atoms have been removed. The larger A is,
the closer in time is the previous removal. The incremental
activity monitoring (IAM) method consists in replacing the
step density ρ in equation (2) by the normalized activity
defined as ρA = A/ max(A).

In order to prevent an infinite memory, A should be
refreshed periodically. We find that truncation of the tails
works satisfactorily. Truncation means periodically finding the
minimum value Amin and updating as A = A − Amin − �A,
as shown in figure 4. �A is a small value (e.g. �A = 1)
used to ensure truncation even if Amin = 0. If the refresh
rate is too short, A follows the steps closely but only weak
overlapping can be realized. If the refresh rate is too large,
we keep too much memory of the past activity. By using
an intermediate refresh rate, realistic results can be obtained.
Thus, we define a truncation interval �T (the inverse of the
refresh rate) that allows control of the amount of past memory
in the etchant. We measure �T in units of removal events,
expressed as a fraction with respect to the number of particles
on the surface. For instance, �T = 0.20 means that truncation
occurs every time that 20% of the surface atoms have been
removed.

We have noticed that additional truncation of the top
values improves the results obtained by the previous tail
truncation. This head truncation does not need to be performed
periodically. Since A is continuously incremented, it is very
easy to keep track of the maximum value and thus limit the
values of A not to exceed a predefined maximum Amax.

In principle, the normalized activity ρA can alternatively
be periodically recalculated from scratch, e.g., as the
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(a)

(b)

(c)

(d)

Figure 4. Schematic representation of the truncation method.

convolution of the raw step density ρraw by using any of the
convolution kernels of figure 2(d) over a region of extent rmax.
From the point of view of the convolution method, this would
ensure that the normalized activity is ‘correctly’ calculated as
the step density periodically (i.e. ρA = ρconv at the beginning
of each period). However, this also destroys the memory
of recent past diffusion processes. If the inhomogeneities
in the etchant should be lagging behind the activity on the
surface, this recalculation completely destroys the recent shape
of the inhomogeneities. Besides, this approach can involve
computationally expensive loops if rmax is large, making
it slower, whilst the truncation method does not involve
any blur neighborhood loops, making it faster. Thus, we
favor the use of the truncation method against recalculation.

(a) (b)

(c) (d)

Figure 5. Examples of simulated (hhh ± 2) surfaces. Step bunching generated using the IAM method (a = 10.0, �T = 0.4,
Amax = 18, �A = 1). No bunching obtained with a = 0.

The main implementation headlines of the incremental
activity monitoring method using truncation are given in
appendix A.

4. Results

In this section we compare the results obtained using
our implementation of the previously existing step density
monitoring method and the newly proposed incremental
activity monitoring method. Focus is first placed on the relative
efficiency of the two methods and the ability to simulate step
bunching. At the end of this section we provide simulation
results for Si(1 1 0), showing that the formation of zigzag
structures on this orientation has the same physical origin as
step bunching on miscut (1 1 1) surfaces.

4.1. Comparison between SDM and IAM

In order to perform the comparison tests between the SDM
and IAM methods, we consider miscut Si(1 1 1) surfaces of
type (h h h ± 2), where h is an integer, similar to those used
by Garcia et al [8, 9]. Figure 5 shows two examples of miscut
surfaces.

For improved quantitative comparison of the IAM and
SDM methods, we measure the terrace width distribution
(TWD) at different times, including early and late moments,
as shown in figure 6. The TWD is constructed by analyzing a
number of 10 to 50 cross sections of the surface, as indicated
in figure 6(a). For every cross section, a histogram is obtained
for the different terrace widths found. By gathering all
the histograms together and ordering the results according
to increasing terrace width we obtain the terrace width
distribution.

The TWD is typically Gaussian at early times (figure 6(b))
and becomes exponential as the steps bunch together, which
results in a small number of wide and a large number of narrow
terraces (figure 6(c)). As it turns out, it is not necessary to look
at the TWD plots nor at the surfaces themselves in order to
know if step bunching occurs and, if so, how strongly. The
TWD can be characterized by one single number that contains
this information. We have found that the variance of the
TWD and the maximum terrace width are both good measures
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(a)

(b) (c)

Figure 6. Construction of the terrace width distribution (TWD) for
monitoring step bunching. (a) Definition of the terrace width
histogram used to obtain the TWD. (b)–(c) TWD for early and late
times during the same simulation.

in order to characterize step bunching. The terrace width
variance corresponds to the second moment of the terrace
width distribution.

Figure 7(a) shows the standard deviation of the terrace
width (i.e. the square root of the variance) and the maximum
terrace width as functions of the number of removal events
in the simulations. For both the IAM and SDM methods,
step bunching develops with increasing time as the number of
simulated events increases. At early times, the TW variance
and maximum are small, signaling the absence of bunches. At
longer times, both the TW variance and maximum increase
to a maximum value, implying the existence of stable step
bunches, as supported by figure 7(b). Even though both
methods produce bunching, SDM generates bunches only
moderately whilst IAM exhibits large, well-packed, bunches
that are also more realistic. In general, we find that it is
actually rather difficult to produce strong bunching with our
implementation of the SDM method. The bunching results by
Garcia et al can be placed somewhere in between our SDM
and IAM implementations: IAM gives the strongest bunching,
followed by [9] and finally SDM gives the weakest features.
The use of a hat function for the convolution kernel instead

(a) (b)

Figure 7. Comparison of step bunching characteristics produced by the IAM and SDM methods. IAM produces larger, clearer bunches.
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Figure 8. Dependence of the maximum bunch size on the truncation
interval �T for the IAM method.

of a Gaussian or an exponential provides slightly improved
bunching with SDM, but never as strong as with IAM.

The weaker bunching obtained with SDM as compared
to the results from Gracia et al is not due to differences in
the kinetic Monte Carlo implementation. We use the same
program for both the IAM and SDM methods and we find
strong bunching with IAM. This includes the same K-level
search algorithm for finding the next event in the kinetic Monte
Carlo simulations. We have independently tested the ‘hybrid’
kinetic Monte Carlo implementation by Garcia et al in other
systems and it always produces the correct time evolution.
As a matter of fact, the hybrid method can be shown to be
equivalent to any K-level search, as shown in appendix B. We
presume that the differences in bunching might be related to a
different choice of removal rates, resulting into quite isotropic
step flow on (1 1 1) in their case and quite anisotropic in our
case. For the more isotropic case, one would expect that the
inhomogeneities become more round and thus overlapping
may improve.

The size of the largest bunch can be easily controlled in
the IAM method. Increasing the absolute value of parameter
a will produce larger bunches. Also increasing the truncation
interval �T and/or the maximum activity value Amax will
produce the same effect. As an example, figure 8 shows that
the size of the bunches increases as the truncation interval �T

is increased. This is expected since enlarging �T corresponds
to increasing the amount of memory of past activity kept in A.
For a fixed truncation interval, figure 8 shows that the size of
the bunches increases linearly with time (the number of events
in that figure) and finally approaches an asymptotic value,
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Figure 9. Comparison of computational efficiency of the IAM and
SDM methods. IAM is typically an order of magnitude faster than
SDM. Top and right axes for IAM. Bottom and left axes for SDM.
Size of simulations: 50 × 50 nm2.

corresponding to the typical size of stable bunches. As the
truncation interval is increased, larger bunches are produced,
leading to surfaces with larger roughness values, i.e. larger
interface widths. For the case of an infinite truncation interval
(which corresponds to never realizing the truncation operation)
one single, large bunch is developed always independently of
the size of the system.

For the case of the IAM simulation shown in figure 7,
the parameter values were a = 10.0,�T = 0.4, Amax = 18
and �A = 1, and for the SDM simulation, a = 10.0 and
a hat function as the kernel with rmax = 2.0 nm. The size
of the simulations was 50 × 100 nm2, of which a region of
approximately 30 × 30 nm2 is shown. Similar results where
obtained with larger sizes (up to 300 × 300 nm2).

Figure 9 shows a comparison of the computational
efficiency of the IAM and SDM methods for similar choices of
parameters. The total CPU time spent to complete 50 million
removal events is plotted as a function of the kernel radius
for SDM (section 2.1). The convolution kernel was a hat
function in all cases. For IAM, the same CPU time is plotted
against the truncation interval. The size of the inhomogeneities
(denoted as the ‘diffusion range’ in the figure) increases as both
the kernel radius and the truncation interval increase. The
figure shows that the computational cost of the IAM method is
independent of the diffusion range whilst increasing the size of
the bunches rapidly becomes prohibitive for the SDM method.
In addition, IAM is at least one order of magnitude faster
than SDM. For instance, IAM is about 25 times faster for the
case shown in figure 7 (�T = 0.4) and it can be hundreds
of times faster if larger inhomogeneities are simulated. As
explained in section 2.2, updating the convoluted density in
SDM is a heavy, time-consuming task. Note that the two x-
axes in figure 9 are not completely equivalent, meaning that
the diffusion ranges in the two methods do not exactly match.
However, this is immaterial since the IAM curve is completely
horizontal.

In conclusion, the newly proposed incremental
activity monitoring method provides faster simulations and
improved step bunching characteristics as compared to
our implementation of the convolution-based step density
monitoring method.

(a)

(c)

(b)

(d )

Figure 10. (1 1 0) and (1 0 0) as limiting examples of stepped (1 1 1)
surfaces.

(a) (b)

(c)

(d)

(e)

Figure 11. Schematic formation of zigzag structures on (1 1 0).

4.2. Morphology of Si(1 1 0)

As noted previously, the main objective of our study is to
describe the formation of zigzag structures on Si(1 1 0). In
this section we describe how the zigzags can appear as a result
of the formation of etchant inhomogeneities.

The (1 1 0) orientation can be considered as a limit
example of a stepped (1 1 1) surface, in this case without
terraces, as shown in figure 10. Thus, the ideal (1 1 0) surface
can be regarded as a large bunch of steps, as outlined in
figures 11(a)–(b) for the two equivalent terrace families. From
this perspective, the over sized bunch will necessarily split
into smaller bunches during etching as a result of the same
step velocity fluctuations which generate step bunching in
misoriented (1 1 1) surfaces. This is graphically explained
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(a)

(b)

Figure 12. Formation of zigzag structures on (1 1 0). (a) Simulation
using IAM (a = 2.0, �T = 1.4, Amax = 18, �A = 1).
(b) Simulation without inhomogeneities (a = 0). The system
size is 100 × 100 nm2. Compare figure 1(c)–(d).

in figure 11(c), where the initial (1 1 0) surface transforms
into a collection of (1 1 1) terraces separated by bunched SM
steps. Considering larger systems, this behavior leads to a
zigzag profile where each segment is in reality a collection
of (1 1 1) terraces separated by step bunches, as described in
figures 11(d)–(e).

In order to test the previous qualitative explanation we
have simulated anisotropic etching on (1 1 0) using the IAM
method. Figure 12 shows typical simulated morphologies
that can be compared with a typical experiment, such as
figures 1(c)–(d). It becomes apparent that the presence of
etchant inhomogeneities, which leads to step bunching on
miscut (1 1 1) surfaces, results in zigzags on (1 1 0). Thus,
we conclude that the zigzags on (1 1 0) appear as a result of
diffusion transport.

5. Additional methods

During our study of zigzag formation on (1 1 0), we also
explored other alternative approaches for the incorporation
of inhomogeneities and the simulation of step bunching.
Although we consider IAM as the best alternative from a
computational perspective, we report here on two additional
methods in the hope that some readers might find some of the
ideas stimulating.

(a) (b) (c)

Figure 13. Examples of some time decay functions T (t) for the timed diffusion method.

5.1. Timed diffusion (TD)

In this method, the use of time management is the main
difference from the other methods. We simply monitor the
surface activity and use time stamps to keep memory of which
regions have been active and when. The main features of the
method are as follows: (a) when an atom is removed from the
surface, local acceleration or deceleration due to diffusional
transport is assumed to affect the first and second neighbors;
(b) the current time is recorded as a time stamp on the first and
second neighbors, enabling boosting or slow-down of their
rates for a period of time τ (starting at the current time);
(c) if an atom is stamped again (due to some other neighbor
removal) the diffusion time will be extended (i.e. by adding
τ to the remaining time) and the etching rate will be changed
accordingly. These features are realized by using the following
diffusion factor:

D = D(t) = 1 + aT (t). (5)

T (t) is a time decay function such as a hat function of duration
τ , a decaying exponential with decay time τ or some other
suitable choice, as shown in figure 13. As expected, D boosts
the etching rates if a > 0 and slows them down if a < 0.

This method produces step bunching by considering
a small neighborhood (only first and second neighbors)
in comparison to the step density monitoring method
(typically involving blur neighborhoods with hundreds of
atoms). A disadvantage is that the method has an additional
computational cost for updating the time stamp and τ values
for every process after each atom removal.

Timed diffusion is close in spirit to incremental activity
monitoring, at least in the sense that both methods monitor
and keep a record of the active regions of the surface, which
enables overlapping. From a computational point of view, the
use of time stamps in TD makes the program more complicated
and slower, and requires a larger use of memory.

5.2. Height dependent diffusion (HDD)

An alternative method is based on the observation that zigzag
formation on (1 1 0) will occur if some of the steps are
essentially frozen, thus becoming the zigzag peaks, whilst
other steps are essentially boosted, thus becoming the zigzag
valleys. This can be realized by using a diffusion factor D that
depends on the relative height, such as the following:

D(ri ) = 1 + a e− hi−have
w . (6)

Here, hi is the height of the surface atom situated at position
ri , have = ∑N

i=1 hi/N is the average height of the surface and

w = [∑N
i=1(hi − have)

2/N
]1/2

is the interface width. As
schematically shown in figure 14, equation (6) decelerates
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Figure 14. Examples of diffusion factor values for the
height-dependent diffusion method.

steps A and B and accelerates D and E, while not affecting
the rate of step C. When the surface is initially flat, statistical
fluctuations produce small peaks and valleys, which then are
amplified by the diffusion factor giving rise to the formation
of the zigzag patterns.

The use of have is not compulsory and other reference
levels can be used, such as the minimum hmin, as in

D(ri ) = 1 + a e− hi−hmin
w∗ , (7)

where w∗ = hmax − hmin. In this case, all atom rates are
accelerated, the boosting factor being maximum for the zigzag
valleys (D = 1 + a) and minimum for the zigzag peaks
(D ≈ 1 + a/e). Deceleration can be obtained by using, e.g.,

D(ri ) = a e− hi−hmin
w∗ with 0 < a < 1.

Figure 15 shows an example of step bunching produced
by this method. Comparison of frames (a) and (b) shows that
the diffusion factor always reaches a peak at the bottom edge
of a bunch. Note that the largest bunch (denoted with letter B
in figure 15(c)) does not actually get the largest diffusion factor
value. Instead, a smaller bunch (C in figure 15(c)) receives it.
This behavior agrees with the fact that bunch C corresponds to
the lowest region of the whole surface, so the diffusion factor
should be largest according to equation (7).

The HDD method always leads to a large, single bunch
independently of the system size. In this sense, the method
is similar to IAM without truncation (see the discussion in
relation to figure 8 in section 4.1). However, for HDD
typically the step which eventually becomes the highest peak is
already decided at an early stage, during the initial fluctuations,
in the same way as the lowest valley typically corresponds
to the first valley formed at the beginning. Although the
formation of one single, final bunch in principle agrees
with typical behavior found in growth, where the interface
width often diverges with time, the step bunches during
anisotropic etching typically reach limited proportions. Even
though sometimes the peak-to-valley horizontal distance of the
zigzags can reach the micron scale in the experiments, there
is no evidence for a completely divergent behavior. Since a
non-divergent behavior can be obtained by using IAM with
a finite truncation interval and, additionally, we expect the
largest inhomogeneities to be developed close to the largest
step bunches (not beside the deepest features, as given by

(a) (b)

(c)

Figure 15. Time-shot from a simulation of step bunching on (977)
using the height-dependent diffusion factor (equation (7), a = 10.0).

HDD), we perceive the morphologies produced with IAM as
more realistic than those produced by the HDD method.

Another interesting feature of the HDD method is that
the diffusion factor D essentially becomes a mirror image of
the surface: D has a local/global maximum where the surface
has a local/global minimum (see figure 15(c)). We have
noticed a similar behavior when using the IAM method without
truncation. In this case, the activity A increases continuously,
effectively becoming a mirror copy of the surface itself. In
this respect, the truncation used in IAM, which avoids the
formation of this mirror behavior, can be considered as a way
to introduce height differences in the HDD method which are
local, e.g. involving a local height average hl

ave or a minimum
height hl

min for small regions with characteristic size l. From
this point of view, the IAM method can be understood as a
HDD model where the height differences are local, instead of
global as in the HDD method itself.

Since HDD is based on a global height reference level
(i.e. have or hmin or other choices), it is difficult to apply it
to engineering applications where etch masks are used and a
number of crystallographic orientations are likely to appear.
HDD is only suitable for one surface at a time. If many surfaces
appear in the system, the results will be quite unphysical.

6. Conclusions

We have proposed that the formation of zigzag structures
on Si(1 1 0) during microstructure fabrication by anisotropic
etching is mainly a result of diffusion phenomena. In brief, the
explanation is as follows: (1 1 0), which can be considered as a
stepped (1 1 1) surface, suffers step velocity fluctuations which
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lead to the formation of inhomogeneous regions in the etchant.
The inhomogeneities in turn counter-affect the reaction rates
of the steps, which leads to step bunching on (1 1 1) and
zigzag formation on (1 1 0). To support this argument, we
have introduced an incremental activity monitoring (IAM)
method for the simulation of step bunching during anisotropic
etching using a kinetic Monte Carlo scheme. Benchmark tests
for stepped (1 1 1) surfaces against a previously existing step
density monitoring (SDM) method show that IAM provides
not only faster simulations but also an increased ability to
reproduce bunching. As a result, we have been able to
simulate the formation of zigzags on (1 1 0). This means that
the morphology of (1 1 0) is dominated at least partly by the
presence of etchant inhomogeneities.
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Appendix A. Implementation of the IAM method

We present the main headlines of our implementation of the
IAM method in a kinetic Monte Carlo simulation of anisotropic
etching. In addition to the notation introduced in sections 2
and 3, we use the following acronyms:

TA Target atom
FN First neighbor
SN Second neighbor

R The total rate, which can change with time.
Sum of the rates of all atoms currently on surface.

KLS K-level search (see [13])
SAL Surface atom list.

List of atoms at the leaves of the KLS tree.

Pseudo code for IAM implementation

(i) Use KLS to find the next TA (to be removed).
Let i be the element in SAL corresponding to the chosen
TA.

(ii) Increase time: t = t + δt , with δt = 1/R.
(iii) Remove chosen TA:

(a) Update the rate ki stored at leaf i in the KLS tree.
(The old rate is replaced by a zero.)

(b) Loop over the FNs and SNs of the TA:
Let j be the element in SAL corresponding to the
currently considered FN or SN.
(1) If FN was not in the surface, add it now. (Placing

it at leaf i prevents leaving holes in the KLS tree.)
Give an initial value to the activity (e.g. copy
value from TA):

A(rj ) = A(ri ).

(2) If SN was not in the surface, do nothing.
(3) If FN or SN was already in the surface:

Increment the activity by one unit:
IF(A(rj ) < Amax) THEN

A(rj ) = A(rj ) + 1

END IF.

This is the key idea of the IAM method. It records
the activity observed at TA into its neighborhood.
Incrementing is limited by Amax in order to
prevent A from exploding.

(4) Update D for this FN or SN:
if boosting (a > 0) use

D(rj ) = 1 + aρA(rj );
if slowing-down (a < 0) use

D(rj ) = 1 + a(1 − ρA(rj ))

where ρA(rj ) = A(rj )/Amax is the normalized

activity, as defined in section 3.

(5) Calculate the new rate using the diffusion factor:
kj = D(rj )k

0
j .

(6) Update the rate stored at leaf j in the KLS tree.
(Subtract the old rate and add the new one.)

(iv) Truncate the activity A every �T events:
Find the minimum of A and update A as:

A = A − Amin − �A

where �A = 1 is used to ensure truncation even if

Amin = 0. Update D, k and the KLS tree correspondingly

(as in (iii.b)4 through (iii.b)6, but this time always using

D(rj ) = 1 + aρA(rj )

for both a > 0 and a < 0).

(v) Update R.
Calculate averages of observables (global etch rate,
etc . . . ) and write output if needed.

(vi) Go back to first item (i).

Note: the diffusion factor is updated according to equation (2),
except in (iii.b) if a < 1 (deceleration), where the expression
D = 1 + a(1 − ρ) is used. (1 − ρ) predicts the activity ahead
of the steps in the same manner as ρ records the activity behind
them.

Appendix B. Is the ‘hybrid’ method correct?

According to equation (1), the removal rate k in the presence
of inhomogeneities is the product of the diffusion factor D and
the ‘raw’ rate k0. In [9] Garcia et al present a ‘hybrid’ method
to find the next removed atom. This is a two-stage approach
including (i) an N-fold search [14] in the time-independent set
of k0 rates, consisting in grouping the k0 rates (also referred
to as events) into bins, choosing a bin and then picking up
randomly an event in the bin; and (ii) accept (or reject) the
chosen event by comparing a random number to the value of the
diffusion factor D (Metropolis acceptance/rejection criterion
[15]). As shown in [16], the N-fold method in (i), also known
as BKL, is a particular example of a more general binning
method [17] and can be replaced by many different, tree-based,
search methods, such as a binary search (typically faster than
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BKL) or a linear search (typically slower than BKL), which
are two particular examples of the most general tree search
method, known as K-level search (KLS) [13]. In this sense, (i)
can be simply regarded as ‘a search’ which can be carried out
in practice in multiple manners (binary, linear, KLS, binning
and BKL methods). Here we are interested in the question of
whether combining ‘a search’ in the k0 set of rates in (i) with a
Metropolis acceptance according to D in (ii) is equivalent (or
not) to ‘a search’ in the k = Dk0 set of rates.

Let the system have M site types (indices α, β, . . .) with
Nα sites each and ‘raw’ rates k0

α . N = ∑
αNα is the total

number of sites. Let, in addition, each site have a diffusion
parameter Di so that the probability for choosing the site is
pi ∝ Dik

0
αi

, i.e. pi = CDik
0
αi

where αi is the type of site i.
Normalization requires

∑
i pi = 1 so C = 1

/∑
i Dik

0
αi

. The
probabilities are then

pi = Dik
0
αi∑

j Djk0
αj

. (B.1)

Let us calculate the probabilities in the hybrid method.
First, the BKL probability to choose a type α is

P type
α = Nαk0

α∑
β Nβk0

β

. (B.2)

The probability to pick site i is

P site
i = P

type
αi

Nαi

(B.3)

= k0
αi∑

β Nβk0
β

. (B.4)

The hybrid probability to then accept the site for removal is

P acc
i = C ′DiP

site
i (B.5)

= C ′ Dik
0
αi∑

β Nβk0
β

, (B.6)

where C ′Di is the probability to accept the removal at
the second stage of the hybrid method (i.e. the Metropolis
acceptance/rejection). It is possible that we choose to decline
and nothing is done. Let the total probability for this be Q. In
this case the procedure is repeated from the beginning. The
total probability for the site i to be the one where the next
removal will eventually happen is then

P final
i = P acc

i + QP acc
i + Q2P acc

i + · · · (B.7)

=
∑
m

QmP acc
i (B.8)

=
∑
m

QmC ′ Dik
0
αi∑

β Nβk0
β

, (B.9)

i.e. the sum of the probability that acceptance will occur at
the first trial plus the probability that it will be rejected and
accepted at the second trial plus the probability that it will be
rejected twice and then accepted and so on. Normalization
now states

∑
i P

final
i = 1 which gives for the normalization

constants
∑

m QmC ′ = ∑
β Nβk0

β

/ ∑
i Dik

0
αi

yielding

P final
i = Dikαi∑

j Djk0
αj

= pi. (B.10)

So the removal probability in the hybrid method is correct.
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