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Abstract. The weak ferromagnetism reported for graphite and related carbon
nanostructures is frequently related to the magnetic coupling of point defects
such as vacancies or hydrogen adatoms that interact with only one sublattice
in the bipartite graphene lattice. In this paper, using density functional theory
calculations we study the magnetic coupling between point defects, such as
carbon adatoms, which form bonds with atoms located on both sublattices.
We show that there is ferromagnetic coupling for small separations between
the adatoms. Further, we demonstrate that it is energetically favorable for C
adatoms to agglomerate. Our results indicate that the magnetism induced in
graphite by irradiation can be explained as being due to the existence of adatom
agglomerations and small graphene flakes formed from isolated adatoms rather
than uniformly distributed point defects.
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1. Introduction

Numerous theoretical predictions (for an overview, see [1, 2]) of intrinsic magnetism in carbon
materials such as graphite, fullerenes, nanotubes, nanodiamonds and graphene have stimulated a
considerable body of experimental work on this subject. Indeed, the experimental confirmation
of magnetism in low-density biocompatible carbon systems not involving any d-elements (but
possibly for hydrogen and nitrogen impurities), which have traditionally been believed to show
diamagnetic behavior, would be very important not only in the context of the fundamental solid
state physics, but also from the viewpoint of practical applications.

However, although there have been several reports [3]–[10] on magnetism in carbon
materials, the results are quite controversial and not always reproducible, as has been
already pointed out [1]. There is very little solid experimental evidence for the existence of
ferromagnetism in carbon systems (such as polymerized fullerenes [11, 12], irradiated graphite
by protons [13, 14] or heavy ions [15]–[17]). Many of the results appear to be controversial, as
they could not be reproduced by other groups; see [1] for details.

Most previously published papers argue that magnetism originates from defects [18, 19]
in the graphitic network, which give rise to local magnetic moments. Examples are
vacancies [20]–[26], interstitials [27], carbon adatoms [17, 28] and atoms on the edges of
graphitic nano-fragments with dangling bonds either passivated with hydrogen atoms [29]–[31]
or free [30, 32]. The nuclear magnetic resonance experiments indeed provide evidence [18] that
defects in carbon systems have magnetic moments, as they couple to implanted Fe atoms. Thus,
a key issue is the mechanism of the coupling of magnetic moments localized at defects.

The problem of defect coupling has been addressed in several papers [23]–[25] in the
framework of density functional theory (DFT). All of them dealt with point defects that affect
a single site in the graphenic network, such as vacancies or H adatoms. It was shown that
defects that reside on the same sublattice may couple ferromagnetically, while antiferromagnetic
(AFM) coupling is more favorable for defects residing on different sublattices [33, 34], and
that coupling may occur through the Ruderman–Kittel–Kasuya–Yoshida (RKKY) interaction.
However, one has to keep in mind that defects may be randomly distributed over the two
sublattices, which should give rise to zero net magnetic moment, according to the Lieb
theorem [35]. In addition, the RKKY interaction is expected to be weak due to the semi-metallic
electronic structure of graphene [33], [36]–[38].
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At the same time, the macroscopic ferromagnetic (FM) state may come from long-range
interaction between other defects that affect both sublattices, such as carbon and possibly other
adatoms on graphene that occupy the bridge [28, 39] or hollow (middle-of-the-hexagon) [40]
positions. However, the coupling of such defects has never been studied by first-principles
methods, but only by the tight-binding method with a model Hamiltonian, which ignores
relaxations of the atomic structures [41].

In this paper, in order to assess the magnetic coupling between defects that affect both
sublattices in the bipartite lattice of graphene, we carried out extensive computer atomistic
simulations based on the DFT approach. We concentrate on carbon adatoms on a graphene
sheet as an example of such defects. By evaluating the difference between the FM and the
corresponding AFM state, we show that there is FM coupling for small separations between the
adatoms. We further demonstrate that it is energetically favorable for C adatoms to agglomerate.
However, in some specific configurations, strong rehybridizations of sp2 and pz orbitals destroy
FM ordering.

This paper is organized as follows. Details of our first-principles calculations are given
in section 2, and the results of calculations are presented in section 3, where we analyze the
adsorption of two carbon adatoms in various configurations and the existence of a coupling
between localized magnetic moments. The summery and conclusion are given in section 4.

2. Computational details and models

We have carried out DFT calculations using the Vienna ab initio simulation package VASP
[42, 43]. The code uses the full-potential projector augmented waves (PAW) framework [44, 45].
The Perdew–Burke–Ernzerhof (PBE) [46] functional, a generalized gradient approximation
(GGA)-type functional, was used in order to account for exchange-correlation effects in our
spin-polarized calculations. A kinetic energy cutoff of 400 eV was found to be sufficient for
achieving a total energy convergence within several meV considering k-point sampling. In the
(7 × 7) simulation cell, for (7 × 7) primitive graphene cells, used in most of our calculations, a
(3 × 3 × 1) k-point grid was used. We checked our results for several configurations using larger
meshes, up to (7 × 7 × 1), and did not find considerable differences in the coupling energies.

All atoms were fully relaxed until the forces on individual atoms were smaller than
0.02 eV A−1. Considering the smearing issue, during the geometry optimization runs a Gaussian
smearing with a width of 0.2 eV was used, while the tetrahedron method with Blöchl
corrections [47] was used for accurate energy calculations. The diffusion barriers were estimated
by the climbing image nudge elastic band method (CI NEB) [48, 49], with a force tolerance of
0.02 eV A−1 and five intermediate geometries for the transition state search.

To find a possible proof of magnetic in-plane interactions between defects in carboneous
nano-structures, we have focused our attention on a single graphene layer. Our model can
be directly used for explaining experimental results obtained in graphene and with a certain
caution to multi-layer systems, as recent theoretical works indicate the importance of inter-layer
interaction to magnetic effects [50, 51].

We have used a slab supercell calculation with 18.3 Å of vacuum in the c direction as
a model of the graphene layer. It ensures absence of reciprocal interaction between periodic
images in this particular direction. Note that pristine graphene consists of two equivalent
sublattices, denoted A and B in the following, whereas in graphite the sublattices are non-
equivalent due to inter-layer interactions [24].
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Figure 1. Two-adatom configurations on (7 × 7) primitive cells of graphene,
depicted by dashed lines. The first adatom is in 0 position, while the second
stands in X position (X = A, B, C, . . . , I), except for As configuration, in which
atoms lie two hexagons away.

Table 1. Structural, energetic and magnetic properties in As configuration. dad is
the distance between the two adatoms, d1st is the distance between the µ2 atom
and its first neighbor, db is the distance between the two basal C atoms bridged by
the adatom, µtot is the total magnetic moment of the cell and µad is the projected
magnetic moment of the adatoms.

Cell size dad (Å) d1st (Å) db (Å) EAF−FM (meV) µtot (µB) µad (µB)

4 4.92 1.53 1.55 −39 1.03 0.22
5 4.92 1.55 1.53 −42 1.26 0.26
6 4.98 1.56 1.53 −27 1.90 0.33
7 4.97 1.53 1.57 −35 1.44 0.26
9 4.99 1.54 1.55 −37 2.00 0.30
10 4.99 1.54 1.55 −35 1.77 0.29

10 × 5 4.96 1.54 1.56 −24 1.49 0.29

Taking into account that the interaction between adatoms could be significantly influenced
by the effects of periodic images of the cell, a set of test calculations has been performed by
varying the cell size and the k-point sampling accordingly. For instance, in the standard (7 × 7)
cell used for the section 3 discussion, a (3 × 3 × 1) k-point grid was used. We have restricted our
test case to a specific configuration of two adsorbed C atoms separated by two hexagon-widths,
denoted ‘As configuration’ in the following and depicted in figure 1.

Table 1 summarizes the main geometric, energetic and magnetic properties of the particular
As configuration in the FM state for several cell sizes. The smallest cell (4 × 4) contains
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Figure 2. From top to bottom: (a) band structure of the pristine (7 × 7) primitive
cell system, and (b) spin-up and (c) spin-down polarization band structures of
one carbon adatom in µ2 position.

34 atoms (32 atoms in the graphene sheet and two adatoms), while the largest (10 × 10) cell
has 202 atoms. Note that the distances between the atoms are given in the FM state only.
However, very small deviations (less than 0.02 Å ) have been observed in the AFM state
geometries.

As shown previously [28], [52]–[54], a C adatom bridges two carbon atoms of different
sublattices, resulting in a µ2 position, with the perpendicular distance from the adatom to
the graphenic surface of 1.87 Å. Our calculations for a single C adatom performed with the
PBE functional give almost the same distance, i.e. 1.84 Å. Moreover, the distance between the
adsorbed carbon atom and its first neighbor (d1st) is about 1.52 Å, whereas the distance between
the two basal C atoms (db) belonging to A and B sublattices is 1.57 Å. The total magnetic
moment of the cell in the case of a single carbon adatom is 0.42µB, whereas the value in
the literature is about 0.45µB [28, 54]. In figure 2, the effects of the adsorption of a single
C atom are depicted in the spin-polarized band structures. In addition to the band splitting due
to symmetry breaking, two interesting features can be extracted from the spin-polarized band
structures. Due to the presence of the localized state close to the Fermi level, the graphene layer
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Figure 3. Energy difference between the FM state and the AF state energies
(EFM−AF) in meV (in black), and the total magnetic moment in µB of the cell
(in red) with respect to cell size expressed in multiple primitive cells (n × n
cells).

becomes metallic, with a slight left-shift of the band crossing initially in the K point, lying
between the M and K points of the Brillouin zone. Note that the corresponding anti-bonding
state in the spin-down polarization spectrum is also well localized and is further away from the
Fermi level. The highest occupied state and the lowest unoccupied band are almost flat in the K
point, whereas these states are known to have linear dispersion around this special point [55].
Thus, it is likely that C adatoms affect electronic transport in graphene.

When another C atom comes close to the previous adsorbed atom, corresponding to the As
configuration shown in figure 1, one observes almost no change in d1st and db, with a separation
of 4.97 Å between the two adatoms, denoted dad in the following. Interestingly, the influence of
cell size on the main geometric parameters, namely dad, d1st and db, is rather small. For instance,
the value of dad is increased by only 0.07 Å when passing from the smallest calculation cell
to the largest one. One possible explanation for this difference is the better localization of the
adatom’s state in the largest cell. Indeed, at the same time, one observes an increase of
the total magnetic moment of the cell from 1.03µB to 1.77µB, but more importantly in the
projected magnetic moment of the adatoms (0.22–0.29µB) for the (4 × 4) and (10 × 10)
systems, respectively. As a consequence of this better localization, the repulsion between the
adatoms is enhanced.

However, from figure 3 it can be seen that the convergence of the total magnetic moment
of the cell with respect to the cell size is non-monotonic. Hence the moment seems to be much
more dependent on the system size than on any other characteristic i.e. geometry and even
energetics. Indeed, when varying the concentration of adatoms while keeping the system in As-
position, the FM state is still the ground state and the energy difference between the FM and
AFM states lies around −35 meV since the cell size is larger than (6 × 6) primitive cells. In
other words, there is almost no influence of the periodically repeated images of the adatoms if
the distance to the next nearest neighboring adatom is larger than 12 Å. Hence the long-range
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(a)

(b)

Figure 4. Side view of (a) A and (b) C configurations.

nature of the interaction between impurities, usually evoked [56, 57], becomes questionable
as soon as the adsorbed species are shared by the two sublattices. Taking into account these
results, in what follows we restrict our attention to the (7 × 7) primitive cell model, which gives
a dilution of the defects of about 2%. Note that this value is still at least 10 times as large as
recent experimental estimations [4] of defect concentrations.

3. Two carbon adatoms

To study the influence of the adsorption position of the second adatom in the neighborhood of
the first C adatom on the structural, energetic and magnetic characteristics of the system, we
have carried out a series of calculations for the configurations depicted in figure 1.

3.1. Structural characteristics

From the geometries of the adsorbed atoms described by d1st and db, one can immediately show
two distinct types of behavior. Speaking in terms of bond lengths, when the two adatoms are
separated by a distance larger than 5 Å, that is, As, E, F, G, H and I configurations, the atomic
geometry of the system is very close to those obtained in the single adatom case: d1st is about
1.53 Å, db is very close to 1.57 Å, while the distance to the graphene plane is slightly larger than
1.90 Å on average. In these configurations, the effects of adsorption on the geometry are erased
in a very short range, i.e. after the second neighbor ring.

In contrast, when the separation between the two adatoms is smaller than 5 Å, for A,
B, C and D configurations, strong geometry distortions are observed; see figure 4 for A and
C configurations. Due to the lateral interactions of the adatoms, they tend to maximize their
separation, inducing a higher elevation of the neighboring atoms away from the graphene plane.
This is exacerbated in the A configuration, in which the orbitals clearly change from the sp2

to a more pronounced sp3 character, resulting in a buckled structure. Note that, in all tested
configurations, very small differences in the geometric parameters (less than 0.1 Å on average)
of the FM and AFM states have been observed. From a structural point of view, the adatoms do
not feel each other (no changes in the bond lengths between the adatom and neighboring atoms
occur) as soon as the distance between them is larger than 5 Å.
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3.2. Magnetic coupling versus distances

In all tested configurations, the magnetic states, i.e. FM or AFM states, have lower energy than
the non-magnetic (NM) states by at least 20 meV in the case of C configuration, up to 160 meV
in the case of A configuration, and thus are more stable. On average, the NM state lies at about
100 meV above the most stable magnetic state.

The interaction of the localized moments is evaluated by calculating the energy difference
EFM−AFM between the FM state and AFM state energies. In figure 5, EFM−AFM as a function of
the distance between the adatoms is shown. Except for the C configuration, which appears to
be very specific due to strong rehybridization (it will be discussed in the next subsection), when
adatom separation is less than 6 Å, the FM states are the ground states. On average, the energy
difference for these configurations is about 50 meV. By relating the energy difference to the
Heisenberg model with a coupling value of J = EFM−AFM/2 per pair of spins, one can estimate
the critical temperature Tc using the mean-field expression Tc = JS(S + 1)/3kB. With S = 1, one
obtains a Tc value of about 200 K. Now, if one considers the formula, Tc = 0.44JS(S + 1)/kB,
used in [25] that corresponds to a quantum Monte-Carlo study of a quasi-two-dimensional
Heisenberg ferromagnet on a square lattice [58], one gets Tc = 255 K.

This rough estimate has only the same order of magnitude as the published experimental
values lying in the range of 300–500 K; see [3, 4, 6]. This discrepancy may be attributed to
the well-known underestimation of GGA-flavor DFT calculations of the exchange coupling
constants. Indeed, in the case of hybrid functional-type calculations for H-decorated vacancies
in interaction, at a distance of about 5 Å, J goes up to 150 meV [25]. However, our estimated
value of J, i.e. 25 meV, compares relatively well with the values obtained by GGA-type DFT.
Although the nature of defects can vary, a rough estimate of the average value is 40 ± 20 meV.
For instance, in the work of Xia et al [17], J is 38 meV, whereas in [59], 28 meV was obtained
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for two metallic adatoms separated by 5 Å, in the top position on a carbon nanotube’s wall.
Compared with the value obtained in an analytical model, there is fairly good agreement; see
for instance [37].

When the distance between impurities is above 6 Å, the AFM state has the same or even
lower energy than the FM state, except for the H configuration. However, one should keep
in mind that those energy differences (about 5 meV) are close to the precision limit of our
calculations. In addition, the second-nearest neighbors (images of the adatoms due to the
use of periodic boundary conditions) may also affect the results. Indeed, for the F, G and
H configurations in (7 × 7) cell calculations, the distance to the first second-nearest neighbor
is 11.2, 9.8 and 10.7 Å, respectively. Nevertheless, for the (10 × 10) primitive cell slab, the
distance between second-nearest neighbors increases and is 18.6, 17.3 and 17.8 Å for the F, G
and H configurations, respectively, but only minor changes in EFM−AFM are observed, less than a
few meV for each tested case. This may be considered as an indirect proof of the destruction of
FM ordering for separations above 6 Å. Thus, it is reasonable to state that above 6 Å no magnetic
ordering exists, and that ferromagnetism can appear at smaller separations of the adatoms.

3.3. C configuration: the antiferromagnetic state stable at short distance?

The previous statement may be referred to as one resulting in a discrepancy: the C configuration.
Indeed, at this specific geometry the minimization of the system energy always gives the AFM
state, independent of whether the starting configuration corresponds to the FM or AFM state.
Adatom magnetic moments are ±0.16µB. In figure 4, the side view of the optimized C geometry
is given in comparison to the A relaxed structure. Due to the presence of the adatoms that repel
each other in the A configuration, the elevation, with respect to the graphene plane, of two
neighboring atoms bound to each adatom is relatively high, i.e. 0.9 Å. As a consequence, these
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Figure 7. From top to bottom: band structures of A configuration, in spin-up
(a) and spin-down (b).

specific atoms possess a more pronounced sp3 character, which explains the drastic change in
band structure (see figure 7) when compared to the single adatom case. One important feature
of the band structure in the A geometry is the metallic character of the system, with the highest
occupied state crossing the Fermi level between 0 and M points and K and 0 points. The
second main characteristic is the presence of a flat band very close to the Fermi level in the
spin-up density, corresponding to a localized state on the adatoms, responsible for the total
magnetic moment of the system. Note that due to this particular state, band crossing in the K
points is no longer observed. In summary, for the A configuration the change in hybridization
of basal atoms (bound to the adatoms) stabilizes the spin-up states and ensures the FM state.

When comparing the geometry of the C configuration with that of A, the main difference
is the distance of the basal atoms from the graphene layer, which is decreased by 0.3 Å. As a
result, the basal atoms have a less pronounced sp3 character, which destabilizes the localized
states. The extra electrons are shared over several atoms, and the associated bands end up with
a gap (0.27 eV) at the M point; see the last panel of figure 8. The highest occupied state is more
delocalized, and its dispersion is more pronounced than in the B configuration. Indeed, in B
geometry, occupied spin-up states with the two highest energies are very flat and the highest
occupied state outcrops the Fermi level at the K point. That also explains the large value of the
total magnetic moment obtained in the B configuration (2.0 versus 1.70µB for A configuration).

However, the C configuration is less stable than the A configuration, with an energy
difference of 225 meV. Moreover, when one estimates the energy barrier associated with the
adatom migration process, with one adatom kept fixed, from the C to A configuration, one
obtains only 30 meV. Comparatively, when passing from B to A configuration, again with
one adatom in a fixed position, the energy barrier is larger: about 250 meV. As a consequence,
the A configuration is thermodynamically a more probable structure than C, and from the kinetic
point of view, the existence of the AFM state in the C configuration is highly improbable due to
the high mobility of the adatoms.

3.4. Agglomerations of the adatoms

After having estimated the absolute energy of the most stable state, be it the AFM or the
FM state, for all tested configurations, it appears that A-position has the lowest energy; see
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Figure 8. From top to bottom: band structures of B configuration, in spin-
down (a) and spin-up (b), and band structure for spin-up polarization in C
configuration (c).

figure 6. Indeed, if one chooses as the reference state the configuration where two C adatoms
are maximally separated (in the 7 × 7 supercell the repeated images are 17.2 Å away from
each other), it is more favorable for the adatoms to be in configurations A, B, C, D and E.
In contrast, positions As, F, G, H and I are less stable than a state with two well-separated
adatoms. In the most favorable case, the stabilization energy is about 125 meV per adatom,
whereas for the less stable state it is close to 75 meV per adatom. Interestingly enough, all
configurations having distances between adatoms of less than 5 Å are more stable than infinitely
separated adatoms. This may be considered as evidence for the existence of a driving force to
agglomerate adatoms in a small region in the graphitic network, with the impurities shared by
the two sublattices. However, a small increase in energy at separations of 6–9 Å may prevent
adatom clustering. To study this issue in more detail, we calculated the energy barrier of adatom
diffusion, which proved to be 0.52 eV, in good agreement with [28] for the hopping process of a
single C adatom. We found that when a second adatom is present in the vicinity of the moving
adatom, for instance when passing from B to A configuration, the energy barrier associated
with the migration process is almost divided by a factor of two, i.e. 0.25 eV. Thus, provided that
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the concentration of adatoms is relatively high (otherwise the probability for adatoms to ‘find’
each other is too low), clustering of adatoms is possible. Keeping in mind the ion impact as a
source of adatoms, another necessary condition is the proper temperature range (close to room
temperature): if the temperature is too low, adatoms do not move, and if it is too high, adatoms
will quickly diffuse away from the local area where they have been created by the energetic ion.

Ion irradiation experiments carried out at low temperatures followed by in situ magnetic
measurements at various temperatures may be used to create magnetic defects in graphene
and detect them. Then, by increasing the temperature and measuring the magnetic response
of the system, the contribution of different types of defects and their agglomeration can be
probed. For graphene flakes deposited on TEM grids, the defects can be created and even
directly observed [60]. Adatoms should contribute to magnetism at low temperatures when
they are immobile. In practice, magnetic effects may come from the co-existence of several
types of defect, e.g. adatoms and vacancies. Advanced techniques such as spin-polarized
scanning–tunneling spectroscopy may be used to detect the magnetic moments of adatom
agglomerations and shed light on their interactions. In particular, superparamagnetism may
be observed if the adatom agglomerations are weakly coupled. Moreover, different Curie
temperatures may be found provided that agglomerations of adatoms are large enough.

4. Conclusion

We carried out extensive first-principles computer atomistic simulations aimed at evaluating
the coupling between point defects on the graphene lattice and their energetics. In contrast to
previous studies that considered defects such as vacancies or hydrogen adatoms that interact
with only one sublattice in the bipartite graphene lattice, we studied the magnetic coupling
between point defects that form bonds with atoms located on both sublattices in graphene.
We concentrated on carbon adatoms on a graphene sheet as an example of such defects. By
evaluating the difference between the FM and the corresponding AFM state, we showed that
there is FM coupling for small separations between the adatoms. Although C adatoms on
graphene sheets may be too mobile to exist at room temperature, such configurations may
be stabilized in graphite or graphene paper, a recently manufactured analogue of nanotube
buckypaper, which shows interesting magnetic properties [61]. Further, we demonstrated that
it is energetically favorable for C adatoms to agglomerate over small distances. On the basis
of this observation, one can assume that if the concentration of adatoms is high or the
temperature is relatively low, a magnetic island exhibiting intriguing magnetic behavior, e.g.
superparamagnetism, can be formed. Adatoms may coalesce, so small graphene flakes between
graphite layers (or on top of a graphene sheet) may eventually be formed. Such flakes also
exhibit magnetic properties [62], with the spin value being dependent on their shapes due to
topological frustration. Overall, our results indicate that the magnetism observed in graphite can
be explained as being due to the existence of local defect agglomerations and small graphene
flakes with finite magnetic moments rather than being due to uniformly distributed point defects.
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