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We have modeled transport properties of nanostructures using Green’s-function method within the
framework of the density-functional theory. The scheme is computationally demanding, so
numerical methods have to be chosen carefully. A typical solution to the numerical burden is to use
a special basis-function set, which is tailored to the problem in question, for example, the
atomic-orbital basis. In this paper we present our solution to the problem. We have used the
finite-element method with a hierarchical high-order polynomial basis, the so-called p elements.
This method allows the discretation error to be controlled in a systematic way. The p elements work
so efficiently that they can be used to solve interesting nanosystems described by nonlocal
pseudopotentials. We demonstrate the potential of the implementation with two different systems.
As a test system a simple Na-atom chain between two leads is modeled and the results are compared
with several previous calculations. Secondly, we consider a thin hafnium dioxide �HfO2� layer on a
silicon surface as a model for a gate structure of the next generation of microelectronics. © 2006
American Institute of Physics. �DOI: 10.1063/1.2162900�
I. INTRODUCTION

Using small nanoscale lithographic structures, atomic
aggregates and even single molecules, it is possible to fabri-
cate new kinds of electronic devices.1 The function and scale
of these devices are based on quantum-mechanical phenom-
ena and cannot be described within the classical regime. Of
particular relevance are the electron-transport properties of
these nanoscale devices, as these will determine their effec-
tiveness in, for example, a new generation of transistors. As
the experimental work on these devices grows, increasing
emphasis is placed on developing a matching theoretical
description.2,3 Although some efforts have included a full
description of an electronic circuit,4,5 current research is
mainly focused to study single electronic components.

Density-functional theory �DFT� is widely used in atom-
istic modeling of material properties, and recently, also prop-
erties and phenomena in nanostructures. The power of DFT
is in its capacity to treat accurately systems with hundreds of
atoms, yet retain a full quantum-mechanical treatment. Al-
though the full justification of use of the DFT in electron-
transport calculations is debated,6,7 we adopt it as a practical
scheme to describe the real systems and devices.

In the Kohn-Sham scheme of DFT the electron density is
calculated using single-particle wave functions. The explicit
use of the wave functions in constructing the density suffices
well in two kinds of systems. Either the system has a repeat-
ing structure so that it can be modeled with periodic bound-
ary conditions or the system is so small that it can be calcu-
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lated as a whole. In nanoelectronics, however, a system
consists usually of a small finite part, the nanostructure,
which is connected to the surrounding infinite leads. If one
enforces periodic boundary conditions, even a large repeat-
ing supercell or calculation volume can cause finite-size ef-
fects with spurious results for electron transport.

A commonly used solution to this problem, which we
have also employed, is to combine DFT with Green’s-
function formalism.1 Green’s functions are first constructed
for the semi-infinite leads by using the analytically known or
easily calculated wave functions. Once Green’s function for
the combined nanostructure and leads is constructed, the
wave functions are no longer needed explicitly. This makes it
possible to use open boundary conditions between the nano-
structure and lead. In this way we have an effectively infinite
system without periodicity, making the finite-size effects
small. It is also possible to calculate the electric current
through the system for a finite bias voltage between the leads
in a self-consistent manner with the electron density. The
ensuing model for the current is analogous to the Landauer-
Bütteker model.2 We have used nonlocal pseudopotentials
for modeling atoms and the ideal metal “jellium” model for
the leads. The charge density in the leads can be varied ac-
cording to the conducting properties of the leads we wish to
model.

The use of Green’s functions instead of the explicit use
of wave functions is computationally demanding. This is
why special care has to be taken in choosing the numerical
methods. The first implementations used tight-binding
methods,8,9 but a more typical solution is to expand Green’s

functions in a special basis tailored for the system. Common
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examples are localized atomic orbitals,10,11 an O�N� opti-
mized basis,12 a wavelet basis,13 full-potential linearized aug-
mented plane waves,14 maximally localized Wannier
functions,15 a finite-difference method,16 and a linear finite-
element method.17 Our solution is to use the finite-element
method �FEM�. It allows a systematic error control which is
especially important in transport problems as there are many
different properties which must be monitored. For example,
the pole of Green’s function can cause numerical problems.
According to our experience electronic tunneling, in particu-
lar, is sensitive to numerical accuracy.

Besides systematic error control, the FEM also has other
good properties which makes it a natural method for trans-
port problems. It is a flexible method which allows one to
take into account the geometry of the nanodevice exactly.
Special boundary conditions are easy to derive without mix-
ing the model with the numerical method and their imple-
mentation is straightforward. Moreover, the local nature of
the basis produces sparse matrices for which efficient solving
methods exist. Varying the size of the elements can be used
to reduce the number of the basis functions and, conse-
quently, the size of the system as compared with the finite-
difference method. This is especially true for the high-order
p method. Finally, there exists a lot of theoretical work to-
gether with tested and reliable tools, such as mesh generators
and optimized linear solvers. These are used as standard
building blocks for any FEM implementation granting easy
access to state-of-the-art algorithms. Using the FEM, new
theoretical or numerical ideas are easy to implement and test.

The structure of the paper is as follows: In Sec. II we
describe the model itself in detail, including a discussion of
the formalism of our implementation. In Sec. III we apply
the model to two example systems: a Na-atom chain and
HfO2–Si interface between two leads. In Sec. IV we summa-
rize the work. In this paper we use atomic units in all equa-
tions.

II. MODEL

A schematic picture of our model is shown in Fig. 1.
Actually, the figure presents our second test case, the
HfO2–Si interface between two leads. We have an atomistic
nanostructure between two semi-infinite leads. The system is

FIG. 1. Schematic picture of the model. The HfO2 interface is used as an
example. The small and large gray spheres denote the Hf and Si atoms,
respectively, and dark spheres the O atoms. The gray volumes are the jel-
lium leads. The system consists of the volumes �L , �, and �R and the
boundaries ��L , ��R , ��P1 , ��P2 , ��P3, and ��P4.
divided into three parts, � being the calculation volume, and
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�L and �R are left and right leads, respectively. The bound-
aries ��L/R are open so that electrons can penetrate through
them without any reflection or refraction. We use the DFT to
model electron interactions. The basic quantity, the electron
density, is calculated from single-particle Green’s functions.
Then we use the density to calculate the effective potential as

Veff = Vext + Vc + Vxc + Vbias + V̂nl, �1�

where Vext is the external potential caused by positive back-
ground charges, local parts of the pseudopotential operators,
and the potential outside potential barriers. Vc is the
Coulomb-Hartree interaction part and Vxc is the exchange-
correlation part which we calculate using the local-density
approximation based on the quantum Monte-Carlo data by
Ceperley and Alder18 and parametrized by Perdew and
Zunger.19 Vbias sets the boundary conditions if a bias voltage

is applied. V̂nl is the nonlocal part of the pseudopotential
operators.

The Hartree potential is calculated from the modified
Poisson equation,

�2Vc
i − kP

2 Vc
i = 4���+ − �� − kP

2 Vc
i−1, �2�

where kP is an adjustable parameter. kP does not affect the
final self-consistent result, but the stability and convergence
of iterations are improved,20 because the Coulomb potential
due to charge redistribution between adjacent iterations is
screened. The nonlocal pseudopotential is an operator given
by

V̂nl��r� = �
l,m

el,m�l,m�r��
�

�l,m�r����r��dr�, �3�

where el,m and �l,m�r� are defined using the Troullier-Martins
pseudopotentials.21,22 Equation �3� uses the projection of the
function ��r� �arbitrary function, which in practical calcula-
tions is a basis function� on the atomic-specific function �l,m

depending on the quantum numbers l and m corresponding to
the angular momentum.

We have implemented the guaranteed-reduction Pulay23

method for the mixing of the self-consistent iterations. It
uses potentials from the five previous iterations for comput-
ing a new potential in such a way that the predicted norm of
the potential residue is minimized. The simplest mixing
scheme in which potentials are mixed with a linear feedback
coefficient does not work well in open systems. The calcula-
tions are rather unstable so that quite a small feedback coef-
ficient has to be used. This is because the net charge in the
calculation volume � varies during the calculations.

A. Green’s-function model

The details of Green’s-function method for electron
transport in nanostructures are explained, for example, in
Ref. 24. Here we give only a short introduction to the equa-
tions to be solved. The retarded Green’s function Gr is solved

from the equation
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�� − Ĥ�r��Gr�r,r�;�� = ��r − r�� , �4�

where � is the electron energy and Ĥ is the DFT Hamil-
tonian of the system,

Ĥ�r� = −
1

2
�2 + Veff�r� . �5�

When we know Gr we can calculate the so-called lesser
Green’s function G�. In the equilibrium when no bias volt-
age is applied over the nanostructure, it is obtained from

G��r,r�;�� = 2fL/R���Gr�r,r�;�� , �6�

where fL/R are the Fermi functions of the leads. In the equi-
librium, fL= fR. For a finite bias voltage fL� fR and a more
complicated equation for G� has to be used. To obtain it we
write Eq. �4� in the form

�� − Ĥ0 − 	L
r ��� − 	R

r ����Gr�r,r�;�� = ��r − r�� , �7�

where Ĥ0 is the Hamiltonian of the isolated volume � and
	L/R

r are the so-called self-energies of the leads. We also
define

i
L/R = 	L/R
r − 	L/R

a = 2i Im�	L/R
r � , �8�

and can solve G� for a finite bias voltage as

G��r,r�;�� = − ifR����
��R

�
��R

Gr�r,rR;��
R�rR,r�R;��

� Ga�rR� ,r�;��drRdrR�

− ifL����
��L

�
��L

Gr�r,rL;��
L�rL,rL� ;��

� Ga�rL�,r�;��drLdrL� . �9�

The first and second terms correspond to electrons originat-
ing from the right and left leads, respectively. The electron
density is calculated from

��r� =
− 1

2�
�

−�

�

Im�G��r,r;���d� �10�

and the tunneling probability from

T��� = �
��L

�
��L

�
��R

�
��R


L�rL,rL� ;��Gr�rL�,rR;��

� 
R�rR,rR� ;��Ga�rR� ,rL;��drLdrL�drRdrR� , �11�

from the values of the functions at the boundaries ��L/R.
Finally, the current is determined as

I =
1

�
�

−�

�

T����fL��� − fR����d� . �12�

We use the FEM in the numerical implementation.
Therefore we first cast Eq. �4� in the variational form with

open boundary conditions �for the derivation, see Ref. 25� as
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�
�
�− ���r� ·

1

2
� Gr�r,r�;��

+ ��r��� − Veff�r��Gr�r,r�;���dr

− 		̂LGr,�
 − 		̂RGr,�
 = ��r�� , �13�

where ��r� is a smooth arbitrary function and the self-energy
operators

		̂LGr,�
 = �
��L

�
��L

1

4
Gr�rL�,r�;��

�
�2ge�rL�,rL;��

�nL � rL�
��rL�drL�drL. �14�

Above, ge is Green’s function of the semi-infinite lead in the
domain �L/R with the zero-value condition on the boundary
��L/R. In our implementation the leads are described by a
uniform positive background charge and therefore ge can be
calculated partly analytically. Thus our model means that the
leads are of some kind of ideal generic metals. The important
interface between the nanostructure, e.g., a molecule, and the
actual metallic lead can be described accurately by including
some lead metal atoms in the computational domain �. It is
also possible to use fully atomistic leads by calculating nu-
merically ge for them.

Note that Eqs. �13� and �14� are analogous to those deri-
vations of the open boundary conditions in which truncated
matrices1 are used. In the continuum limit these two forms
give the same results. However, the weak form �13� is more
natural in the FEM formulation and more suitable for theo-
retical purposes when analyzing nonlinear partial differential
equations. It is also straightforward to use, and the error con-
trol is systematic. Note that this formulation can be used with
any continuous basis set, not only with the FEM. In the
context of basis-set methods, the weak formulation case is
known as the Galerkin method. In practice Green’s functions
are approximated with respect to this basis so that

Gr�r,r�;�� � �
i,j=1

N

gij���
i�r�
 j�r�� . �15�

The coefficients gij��� can be solved from �13� by choosing
�=
k and evaluating the equations.

B. Finite-element p basis

In the FEM we partition the calculation volume to �in
our case, tetrahedral� subdomains called elements, and the
basis functions 
i are constructed using globally continuous
�but not necessarily continuously differentiable� piecewise
polynomials with respect to the finite-element mesh. This
gives both unique flexibility of the approximating functions
as well as completeness of the basis with respect to almost
any norm. Each basis function has a support that is concen-
trated to only a few neighboring elements. This makes the
basis local and results in sparse system matrices.

There are several options on how to choose the finite-

element basis, and one has to be careful in achieving accept-
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able accuracy. The simplest basis is the linear one. It is easy
to implement and works well, especially in systems with
rapidly varying functions. A typical improvement to this ba-
sis is to use node-based higher-order elements. These ele-
ments converge faster to a smooth solution than the linear
ones. However, practically only relatively low orders, two
and three, can be used because of numerical stability prob-
lems.

In this work we have used the so-called hierarchical p
elements. They also span higher-order polynomials, but the
choice of the local basis ensures that stability problems do
not appear. This is because the basis functions are chosen so
that their derivatives are close to orthogonal in the L2 norm.
The hierarchical nature also makes it easy to change the or-
der of the basis from element to element within the same
mesh.

The actual FEM implementation consists of a reference
element and reference basis that are mapped separately to
each of the elements of the mesh. Our reference element is a
tetrahedron with nodes at the coordinates 1: �−1,0 ,0�, 2:
�1,0,0�, 3: �0,�3,0�, and 4: �0, 1

�3
,2�2

3
�. One can easily show

that there exists an affine map taking the reference element to
any of the tetrahedron. The order of our basis is p, meaning
that in each element polynomials of the order of p are em-
ployed. The basis is constructed hierarchically. First, there
are four linear node basis functions inside the elements shar-
ing a common node. In the reference element they are

L1 =
1

2
1 − � −
�

�3
−

�

�6
� ,

L2 =
1

2
1 + � −
�

�3
−

�

�6
� ,

L3 =
1
�3

� −

�

�8
� ,

L4 =�3

8
� , �16�

where � , �, and � are the Cartesian coordinates of the refer-
ence element. Second, for p�1 we have 6�p−1� edge func-
tions. For example, for the edge between nodes 1 and 2,

Ni−1
�1,2� = L1L2�i�L2 − L1� i = 2,…,p . �17�

Here one usually sets

�i��� =
4
i���
1 − �2 ,


i��� =� 1

2�2i − 1�
�Pi��� − Pi−2���� . �18�

Above Pi is the Legendre polynomial of the order of i. Third,
we have 2�p−1��p−2� face functions. For example, for the

face between nodes 1, 2, and 3 they are
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Ni,j
�1,2,3� = L1L2L3Pi�L2 − L1�Pj�2L3 − 1� ,

�19�
i, j = 0,…,p − 3,i + j = 0,…,p − 3.

Fourth, we have 1
6 �p−1��p−2��p−3� bubble functions,

which are supported only in a single element. These are

Ni,j,k = L1L2L3L4Pi�L2 − L1�

� Pj�2L3 − 1�Pk�2L4 − 1� ,

�20�
i, j,k = 0,…,p − 4,i + j + k = 0,…,p − 4.

When p elements are used one must take care of the conti-
nuity of the basis. This is because, for example, the local
basis function N3

�1,2� has an orientation on the boundary. The
basis includes the function ��L2−L1�, not ��L1−L2�, which
would be another possibility. This means that all the edges in
the mesh have to have information about the direction. Oth-
erwise there is very likely a continuity problem on some
boundaries. In practice, for tetrahedral elements the orienta-
tion problem can be handled for arbitrary finite-element
meshes using only two reference elements.26

The benefits of selecting the basis described above are
rather clear. The polynomial basis is very easy to realize and
has good approximating properties. For smooth solutions the
p basis is known to give exponential convergence rates with
respect to the number of basis functions used. In the DFT
methods the theory is typically developed to the direction
that the solutions are as smooth as possible. For example,
pseudopotential operators are designed so that they produce
as smooth an electron potential as possible. This is because
the plane-wave basis set needs smooth solutions in order to
work efficiently. On the other hand, in the case of nonsmooth
solutions one can benefit from the piecewise nature of the
FEM basis allowing one to approximate even singular solu-
tions to some extent. Moreover, the finite-element mesh can
be refined in regions where the solution changes rapidly.
When modeling molecules there is also a lot of empty space
in the calculation domain. It is then practical to use large
elements in the empty space and smaller ones near atoms.

C. Linear algebra methods

The use of Green’s-function method is computationally
demanding in comparison to explicit wave-function methods.
Since the main computational burden of our method is to
find a subset of the coefficients of Green’s function in ques-
tion, a special consideration must be taken when choosing
the methods of linear algebra to be used. The eigenvalue
problems in explicit wave-function methods are typically
solved by iterative methods. In our case it is better to use
direct solvers, because a set of linear equations needs to be
solved. We have opted for the frontal method widely used in
the solution of sparse linear systems27,28 and extremely suit-
able for finite-element matrices. The actual implementation
is ME47 of the Harwell Subroutine Library29 �HSL� �see
Refs. 30–32 for other similar approaches�. In the frontal
method, one first finds a permutation of the sparse matrix
aiming to minimize the fill-in resulting from the factorization

process. Next, a LU-decomposition �or Cholesky decompo-
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sition for symmetric problems� of the matrix A is found, and
finally, two systems with triangular coefficient matrices, Lz
=b and Ux=z �where U=LT for symmetric problems�, are
solved. To find all the required coefficients of the solution we
must vary the right-hand side b of the system.

For a three-dimensional problem the size of the linear
system can grow so large that the CPU time and memory
requirements of different systems have to be addressed. The
main question is how large systems can be calculated using
these methods so that the calculation time for a single self-
consistent iteration is not too large. Currently a system of
several tens of thousands of unknowns can be solved in a
commodity CPU cluster environment.

In detail, Green’s-function method includes a computa-
tion of the elements for the inverse of a sparse matrix, so that
the calculation time requirements increase relatively fast
with the system size. A classical complexity result for the
solution �and inversion� of a general N�N system with a
direct method is O�N3�. However, for sparse systems and
modern frontal methods this bound is too pessimistic.33 The
CPU time requirement depends on the fill-in of the inversion
problem. For very simple cases one can show that the key
statistics of the problem, the number of non-zeros �nnz’s�
present in the factors L and U, satisfies nnz�L��nnz�U�
=O�N log�N��.33 Then the solution of each of the systems
requires O�nnz�L�+nnz�R�� floating-point operations, and in
the worst case we must solve these with N different right-
hand sides, effectively giving us the inverse of the matrix A,
so that the total cost is O�N�nnz�L�+nnz�R���. However, in
modern computer systems the complexity is not the only
relevant measure since the performance may be highly non-
linear �see, e.g., Refs. 34 and 35 for an example on basic
linear algebra subroutine �BLAS� tuning�.

Another topic related directly to the performance of
modern computer systems is the relation between processor
power and memory bandwidth. This is especially true for the
computation of Green’s function, where the actual bottleneck
is the lack of available memory bandwidth in commodity-
based cluster systems used in calculations, not the floating-
point performance of the processor itself.

It is likely that a better performance can be achieved by
upgrading several parts of the algorithms. First, the current
parallel solver is implemented using the message passing
interface �MPI�.36 However, in symmetric multiprocessor
�SMP� systems it is likely that well-designed OPENMP �Ref.
37� �or similar� parallelism would reduce the need for data
transfer and thus increase performance. It would also de-
crease the memory requirements of the problems. Second, at
the moment the solution of Green’s function is computed by
varying one vector on the right-hand side at a time. A better
performance could be obtained if the equations could be
solved for multiple right-hand sides at a time, allowing the
use of BLAS3 routines. Finally, it is likely that computations
would benefit from a computer system having a larger

memory bandwidth than our present commodity-based one.
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III. EXAMPLE SYSTEMS

A. Atomic wire

Using the atomic force microscope or the mechanically
controlled break junction technique, a chain of atoms can be
made from certain metals.38 It has been observed that the
conductances of atom chains vary as a function of the num-
ber of atoms in the chain.39 The conductances of these sys-
tems have been studied also theoretically in several works. In
order to benchmark our results against other calculations, we
use Na-atom chains as test systems. They have been simu-
lated in several previous studies40–43 using different models.
According to these calculations the conductances of the
wires show even-odd oscillation as a function of the number
of atoms in the wire.

In our setup, the Na-atom chain is located between two
leads, with the lead shape defined by a 70° cone angle �see
Fig. 2�. We consider two different connections of the atom
chain to the electrodes. In Fig. 2�a� we just have three Na
atoms between the jellium leads. This resembles closely the
system used in Ref. 41. In Fig. 2�b�, there are four Na atoms
at the tips of the leads in a square form. This makes the
connection between the atom chain and the leads more real-
istic. This kind of structure is modeled also in Ref. 42.

The conductances as a function of the number of chain
atoms for systems A and B are shown in Fig. 3. In the Na-
atom chain, electrons have only one conducting mode so that
the conductance can be one conductance quantum 2e2 /h at
maximum. Both systems A and B exhibit conductance oscil-
lations as a function of the number of atoms. These oscilla-
tions arise from resonance states in the atom chain. Depend-
ing on the position of the resonances relative to the Fermi
level, the conductance has either a maximum or minimum
value, so that the maxima and minima correspond to ap-
proximately half and fully occupied resonance states, respec-
tively. The oscillation is within the range of �0.9–1.0�
�2e2 /h for system A and �0.6–1.0��2e2 /h for system B.
The difference between the oscillation amplitudes is due to
the different strengths of the connection of the chains to the
leads. System B has a weaker coupling to the leads than
system A. Weak connections make the resonances also

FIG. 2. Two models of the Na-atom chain. �a� Na atoms are directly con-
nected to the cone-shaped leads. �b� there are four Na atoms shown as
squares at the tips of the leads.
sharper, as is seen in the tunneling probability in Fig. 4. In
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contrast to Ref. 44, we do not see a strong lead-shape depen-
dence in the conductance. The widening of the cone angle
lowers the conductance as the edges of the wire become
sharper.

The electron tunneling probabilities through chains of
three- and four-atom systems A and B are shown in Fig. 4.
The probability function T��� is defined in Eq. �11�. The
conductance of the system in the zero-bias limit can be read
at the Fermi level. Here, as well as in Fig. 3, we see that the
conductance oscillations for systems A and B are in a differ-
ent phase. This is because in system B the atom chain is
effectively shorter than in A, as the first and the last chain
atoms are partly inside the square of the four Na atoms.

When we compare the conductance oscillations of sys-
tem A �see Fig. 3� to those in Ref. 41 obtained by using
semi-infinite jellium leads with planar surfaces ��=180° �,
we see that the even-odd oscillations in the conductance are
in the same phase. In the case of system B we can directly
compare the tunneling probability of Fig. 4 with those in
Ref. 42, where the atom chain is connected also through a
square of four Na atoms to jellium. The phase and amplitude

FIG. 3. Conductance through the Na-atom chain as a function of the number
of Na atoms in the chain. The results for systems A and B �see Fig. 2� are
denoted by circles and stars, respectively. For system A with three Na atoms,
results corresponding to 50° and 90° cone angles � are also given.

FIG. 4. Tunneling probability from Eq. �11� for three- and four-atom chains
between two semi-infinite jellium leads. The solid and dashed lines corre-
spond to systems A and B shown in Fig. 2, respectively. The Fermi level is

marked by dashed vertical lines. The cone angle �=70°.
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of the conductance oscillations of these results are in good
agreement with our values in Fig. 3. Now that we have sat-
isfied ourselves that the method provides a good model for
electron transport, we can consider a more interesting and
demanding example.

B. Thin insulating layer

The general increase in the performance of microelec-
tronic devices in the past few decades has been made pos-
sible by continuous transistor scaling based on a reduction in
the thickness of the gate dielectric in typical metal-oxide-
semiconductor field-effect transistors �MOSFETs�. At
present the process has reached a bottleneck, as further re-
duction leads to a large increase in leakage current due to
direct tunneling across the thin silicon dioxide �SiO2� layer.
Several possible approaches to resolve this are being
considered,45 but retaining conventional MOSFET design re-
mains an economically attractive choice, and a leading op-
tion is just to replace SiO2 with another oxide of higher
dielectric constant �high k�. A high-k oxide would provide a
higher effective capacitance to a comparable SiO2 layer,
hence allowing thicker layers to be used to reduce losses due
to tunneling. The specific choice of oxide is determined by a
set of requirements46 based on both the intrinsic properties of
the grown oxide and its integration into the fabrication pro-
cess, and at present hafnium oxide �HfO2� remains a leading
candidate.

In order to study the transport properties of thin HfO2

films, we have simulated the growth of the oxide on a silicon
surface via first-principles molecular dynamics.47 Here we
consider three model interfaces: �i� a nonstoichiometric ox-
ide interface �C�, which is basically metallic due to Hf–Hf
and Hf–Si bonds across the interface; �ii� a stoichiometric
oxide interface �D�, which has a localized state in the band
gap due to a few Hf–Hf bonds; and �iii� a more idealistic
interface �E�, which remains insulating if no defects are
present. The last model is based on the interface used in Ref.
48, but slightly reduced in size to make it computationally
manageable.49 These models were calculated with periodic
boundary conditions with k points on the boundaries
��P1/P2/P3/P4. The effective potentials have been calculated
for systems C and D using the gamma point, and for system
E, four k points. All the tunneling probabilities T��� are cal-
culated using four k points, which were enough to converge
the probabilities to a good accuracy.

As shown in Fig. 1, the interface models are positioned
between two leads. The charge density in the leads is chosen
so that in the right lead rs=2 �electron density ne

=3/ �4�rs
3��, representing a metal, and in the left one rs

=3.1, representing doped silicon as in a standard MOSFET
design.

The tunneling profiles of the systems are shown in Fig.
5. Here it is seen that systems C and D show clearly metallic
behavior, with a large tunneling probability at the Fermi en-
ergy. Although, in principle, the stoichiometric interface �D�
has a much lower density of metallic bonds, it is clear that

both interfaces C and D around two channels dominate the
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transport. The localized defect state in the band gap of sys-
tem D plays an equivalent role in transport to the metallic
bonds in interface C.

As expected, the tunneling probability for the more ideal
interface E is an order of magnitude smaller at the Fermi
energy than those for interfaces C and D. Yet we also see that
it remains significant; this is largely due to the structure of
the interface itself.48 Although bulk HfO2 is a wide-band-gap
insulator, at the interface it exists as almost tetragonal
HfSiO4, and the effective band gap is actually smaller than
that of bulk silicon below the interface. This means that there
is a negative conduction band offset between silicon and
HfO2, and no real barrier for leakage. Although some of this
is caused by the underestimation of the band gap in the DFT,
this also reduces the silicon band gap �although the effect is
not systematic�.

The poor performance of interface D can also be seen in
its capacity for dropping the potential. Figure 6 shows the
potential change for the 0.25 V applied bias voltage. The
potential drop across HfO2 is less than 0.05 eV, demonstrat-
ing that the oxide hardly perturbs the electron flow from the
right lead. The potential drops fastest at the right-hand side
of the HfO2 layer where pure HfO2 exists, and much more
slowly in the thin layer of SiO2 formed due to diffusion of
oxygen. Electrons can rather freely flow through the oxide
layer from the right lead to the left lead. Because the electron
density is assumed to be unperturbed in the leads beyond the
boundaries ��L /R, there will be a surplus �deficiency� of
electrons in the left �right� lead inside the computational vol-
ume. These net charges account for the bias voltage drop
outside the oxide �and Si� layers.

In the rigid-band approximation �used, for example, in
Ref. 48� it is assumed that the shape of the tunneling prob-
ability stays constant and is only shifted in energy so that
T�� ,Vbias�=T��+�Vbias�, where � is the ratio of potential
drop at the other end of the nanostructure to the total drop

FIG. 5. Tunneling probability T��� through thin HfO2 layers. Results for
system C �dotted line�: nonstoichiometric interface, system D �solid line�:
stoichiometric interface, and system E: ideal interface are shown. The inset
shows T��� normalized with the conducting area, enabling the comparison
of actual insulating properties of different systems.
over the nanostructure. In Fig. 7 we have studied how well

Downloaded 30 May 2006 to 130.233.204.58. Redistribution subject to
this approximation works for interface D. The curves are
plotted so that the zero-bias Fermi level is in the middle of
the left and right Fermi levels of the biased interface. This
corresponds to the symmetric case with �=0.5. We see that
the tunneling probability curves roughly coincide. This indi-
cates that the potential drops symmetrically over the nano-
structure, and the rigid-band approximation gives a rather
reasonable result.

The above results show, in agreement with previous
calculations,48 that tunneling through a more ideal, insulating
interface is still significant due to a negative band offset with
silicon. Since the only HfO2 interfaces providing significant
band offsets to silicon were built very idealistically �i.e., as-
suming no significant atom migration nor interfacial SiO2

FIG. 6. Change of the average effective potential in interface D when a 0.25
V bias voltage is applied over the HfO2 layer. In every position along the
transport direction, the effective potential is averaged over the perpendicular
coordinates. Atom positions indicated by open circles are silicon, filled
circles and stars are hafnium and oxygen atoms, respectively.

FIG. 7. Tunneling probability through a thin HfO2 layer. Results for inter-
face D with 0.25 V bias �solid line� and zero bias �broken line� voltages are
shown. The vertical lines show the positions of the Fermi levels in the left
and right leads for the biased system. Between them is located the so-called
conductance window �see Eq. �12��. The Fermi level of the nonbiased sys-

tem is in the middle of these lines.
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growth�,50,51 this indicates that fabricating a good interface
directly between silicon and HfO2 is very difficult. A more
viable alternative may be to sacrifice somewhat the dielectric
constant and grow HfO2 onto a preexisting SiO2 layer. These
possibilities will be explored in more detail in a further
work.47

IV. CONCLUSIONS

In this paper we present a finite-element implementation
of the nonequilibrium Green’s-function method which is
combined to the density-functional theory. Although
Green’s-function method is computationally demanding, we
demonstrate that by using hierarchical p elements, large,
physically relevant systems become tractable. More impor-
tantly, our method offers a much more rigorous control of
accuracy than is usually possible in transport calculations.

We demonstrate the functionality of our implementation
with two kinds of systems, the sodium-atom chain wire and
the silicon-HfO2 interface. For the atom chain, we show that
the method reproduces the previous results of other Green’s-
function transport methods. This gives us confidence to ap-
ply it to the more complex system: a thin layer of hafnium
oxide on a silicon substrate. Here we show that the transport
properties are an even more sensitive indicator of the role of
defects than the electronic structure. Comparison of stoichio-
metric and nonstoichiometric HfO2 oxide layers demon-
strates that even one or two defects in a stoichiometric inter-
face can result in tunneling comparable to that of a fully
metallic nonstoichiometric interface.
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