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The three-dimensional Mercedes-Benz model was recently introduced to account for the structural and
thermodynamic properties of water. It treats water molecules as point-like particles with four dangling
bonds in tetrahedral coordination, representing H-bonds of water. Its conceptual simplicity renders the
model attractive in studies where complex behaviors emerge from H-bond interactions in water, e.g.,
the hydrophobic effect. A molecular dynamics (MD) implementation of the model is non-trivial and we
outline here the mathematical framework of its force-field. Useful routines written in modern Fortran are
also provided. This open source code is free and can easily be modified to account for different physical
context. The provided code allows both serial and MPI-parallelized execution.

Program summary
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Classification: 7.7
External routines: A random number generator, Mersenne Twister (http://www.math.sci.hiroshima-u.ac.
jp/m-mat/MT/VERSIONS/FORTRAN/mt95.f90), is used. A copy of the code is included in the distribution.
Nature of problem: Molecular dynamics simulation of a new geometric water model.
Solution method: New force-field for water molecules, velocity–Verlet integration, representation of
molecules as rigid particles with rotations described using quaternion algebra.
Restrictions: Memory and cpu time limit the size of simulations.
Additional comments: Software web site: https://gitorious.org/cashew/.
Running time: Depends on the size of system. The sample tests provided only take a few seconds.
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1. Introduction

Water is among the most abundant and important chemical
compounds on Earth. Its properties have crucial implications rang-
ing from the dynamics of the global climate to the chemistry of
organic life [1,2]. Not only is water ubiquitous, it is in many ways
anomalous among other common fluids: the heat capacity of wa-
ter is very large, water is denser as a liquid than solid at normal
atmospheric pressure, ice tends to melt under high pressure, etc.
Many of the peculiar properties of water arise from the way wa-
ter molecules dominantly interact via highly anisotropic hydrogen
bonding (H-bonds, HB), see e.g. [3–5].

There is an abundance of water models of various levels of so-
phistication and complexity, designed for different types of simula-
tion tasks, for reviews and examples, see e.g., [6–13]. As is typical
in numerical simulations, choosing the computational scheme is
based on a balance between required accuracy and available re-
sources. In addition, when simplified models are used, one should
always employ one that works best for the problem at hand.

A new water model called the three-dimensional (3D) Mer-
cedes-Benz (MB) model was introduced recently [14–16] as an
extension to a similar two-dimensional model [17–21]. It is also
closely related to another 3D model of similar type [22]. This
model treats water molecules as point-like particles with four dan-
gling bonds in tetrahedral coordination, representing the H-bonds
of water. It is designed to be a simple model that reproduces
the structural and thermodynamic properties of water especially
in studies of the hydrophobic effect [15,16].

By treating for H-bonds explicitly and by being able to account
naturally for the hydrophobic effect, the MB model is suitable for
studies of macromolecules in an aqueous environment as the com-
petition between these forces is the driving mechanism in phe-
nomena such as protein folding [23,24], condensation of DNA [27]
and lipoprotein assembly [25,26]. Due to its conceptual simplicity,
the 3D MB model is particularly interesting and suitable for in-
vestigations of the physics emerging from such systems. While it
is relatively easy to implement a 3D MB Monte Carlo code [14,
16,22], this is not the case for an MD program [15]. The latter is
recommended to simulate dynamic properties of macromolecules
in water since Monte Carlo (apart from kinetic MC) cannot ac-
count for kinetics. Furthermore, Monte Carlo moves for extended
molecules are non-local and computationally inefficient in sim-
ulations with explicit solvent as most moves would produce an
overlap of the macromolecule with the surrounding water. It is, of
course, possible to use methods such as configurational bias Monte
Carlo, but one loses the conceptual simplicity as compared to MD.

Mathematically, the 3D MB force field is more complicated
than, for instance, models where water molecules are described
using partial point charges, such as the TIPnP models. However,
the point charge models operate at a different level of detail than
the MB model and require the application of Ewald summation
or the fast multipole method (FMM) to achieve accurate results.
The 3D MB model, on the other hand, operates at the Lennard-
Jones level where the details operating at long distances have been
coarse-grained out. This gives the advantage of being able to work
with a water model that reproduces most of the physical prop-
erties of water yet allowing to use Lennard-Jones description for
polymers and other molecules, and without the need to use Ewald
summation or FMM. The 3D MB model can also be easily made
compatible with the even more coarse-grained approaches such as
the MARTINI model [28].

Here, we present the MD program CASHEW incorporating the
3D MB model. The acronym stands for “Coarse Approach Simulator
for Hydrogen-bonding Effects in Water”. Although the MB potential
is presented in detail in Ref. [14], in this paper, we derive the force
field corresponding to the potential, as implemented in CASHEW.
Fig. 1. The Mercedes-Benz molecules are described as a point with four tetrahe-
drally coordinated unit vectors attached. These vectors represent dangling H-bonds.
In principle two of them are donors and the other two are acceptors, though the
model does not discriminate between types of the dangling bonds. (a) The vec-
tor linking two molecules, i and j, is denoted ri j . The dangling bond vectors of
molecule i are denoted ûk

i , k = 1, . . . ,4 (and similarly for molecule j). (b) The pro-
jections of vectors on the plane perpendicular to ri j are denoted ri j u. The dihedral
angles φmn

ij are defined as angles between the projections of the bond vectors of
molecules i and j.

The program offers flexible input and output and ready-to-use ma-
chinery for MD simulations of water. Inclusion of polymers and
simple molecules at the Lennard-Jones level is straightforward and
we have also aimed at making the source code easily readable to
allow other developers to implement the model in their programs
with relative ease. The latest version, and possible future special
versions, of the code is/are available at the listed web site.

2. Water simulations

2.1. The 3D Mercedes-Benz model

The details of the MB model are explained in the following sub-
sections using the notations defined here and illustrated in Fig. 1:
indices i and j are the summation indices denoting MB molecules.
The index α refers to the MB molecule for which we are calculat-
ing the forces or torques (i.e., the molecule with respect to which
we are differentiating). The relative positions of MB-particles i
and j are denoted by ri j = R j − Ri , the position of molecule i be-
ing Ri [see Fig. 1(a)]. The dangling hydrogen bond “arms” (HB) of
molecule i are written as ûk

i , k = 1, . . . ,4. The hat symbol (ˆ) is
used for unit vectors, so we write the unit vector pointing from i
to j as r̂i j . The indices k and m are always the summation indices
for the dangling bond vectors of molecule i (or α); l and n are re-
served for molecule j. Projection of a unit vector û on the plane
defined as the normal plane of r is marked ru. Such projections
of the HB vectors are used for defining the dihedral angles of the
molecules: The angle between the projections ri j um

i and ri j un
j is

denoted φmn
ij [see Fig. 1(b)].

2.1.1. Mercedes-Benz potential
The 3D Mercedes-Benz potential and its basic properties are in-

troduced in Ref. [14]. The definition of the potential below is the
same as the one presented in the above mentioned reference, how-
ever, the notation is somewhat different. The physical significance
of the various terms is commented here, but for a thorough dis-
cussion see Ref. [14].

The potential energy of MB molecules comes from Lennard-
Jones (LJ) and hydrogen bond contributions:

U = 1

2

∑
i

j �=i

U i j = 1

2

∑
i

j �=i

U LJ
i j + U HB

i j (1)

U LJ
i j = 4εLJ

[(
σLJ

r

)12

−
(

σLJ

r

)6]
(2)
i j i j
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U HB
i j = εHB

4∑
k=1
l=1

bi G
kl
i jΦ

kl
i j . (3)

The H-bond potential (3) is a product of a Gaussian factor (Gkl
i j ),

a dihedral factor (Φkl
i j ), and a bond-order factor (bi ). The Gaussian

factor is a product of non-normalized Gaussian functions of the
intermolecular distance ri j and the angles between the HB-arms
and the vector connecting the molecules [see Fig. 1(a)]. The phys-
ical meaning of the factor is to push molecules to an equilibrium
distance of RHB and turn the dangling H-bond arms toward each
other. The Gaussian factor is defined as

Gkl
i j = g

(
ri j − RHB

σHB

)
g

(
ûk

i · r̂i j − 1

σθ

)
g

( ûl
j · r̂ ji − 1

σθ

)
= gHB

i j gθ
i jk gθ

jil (4)

g(x) = exp

(
−1

2
x2

)
. (5)

Please see Table 1 for definitions. The dihedral factor is a function
of the dihedral angles between dangling bonds m and n of MB
molecules i and j, φnm

ij [see Fig. 1(b)]. This term is included to
prevent the molecules from spinning freely around the ri j axis.

Φkl
i j = 1 + εφ

2

∑
m �=k
n �=l

(
1 + cos 3φmn

ij

)

= 1 + εφ

2

∑
m �=k
n �=l

(
1 + 4 cos3 φmn

ij − 3 cos φmn
ij

)
(6)

cosφmn
ij =

ri j um
i · ri j un

j

|ri j um
i ||ri j un

j |

= ûm
i · ûn

j + (ûm
i · r̂i j)(ûn

j · r̂ ji)

[(1 − (ûm
i · r̂i j)

2)(1 − (ûn
j · r̂ ji)

2)]1/2

= ûm
i · ûn

j + cm
ij cn

ji

[(1 − (cm
ij )

2)(1 − (cn
ji)

2)]1/2
= ηmn

ij

ξmn
ij

(7)

ru = û − (û · r̂)r̂ (8)

cm
ij = ûm

i · r̂i j (9)

ηmn
ij = ûm

i · ûn
j + cm

ij cn
ji (10)

ξmn
ij = [(

1 − (
cm

ij

)2)(
1 − (

cn
ji

)2)]1/2
. (11)

Here cm
ij , ηmn

ij and ξmn
ij are merely shorthands. Finally, the bond-

order factor is given by (please see Table 1 for definitions):

bi =
{

1 zi � 4( 4
zi

)v
zi > 4 (12)

zi =
∑
q �=i

f (riq) (13)

f (r) =
{1 r < Rb − Db

1
2

(
1 − sin π(r−Rb)

2Db

)
r ∈ S

0 r > Rb + Db

(14)

where S = [Rb − Db, Rb + Db]. This factor counts the number of
molecules in the immediate neighborhood of molecule i, zi , and
penalizes configurations where more than 4 neighbors are found
within a radius of Rb .

The MB potential is characterized by the set of parameters {εLJ,
εHB, εφ , σLJ, σHB, σθ , RHB, Rb , Db}, as defined above. In addition,
parameters such as cutoff radii are needed, as explained in the user
Table 1
List of suggested values for the physical parameters of the model in reduced units.

Input name Physical meaning Symbol Value

elj Lennard-Jones energy εLJ 0.05
ehb H-bond energy εHB −1.0
efi Dihedral angle energy εφ −0.01
rhb H-bond equilibrium length RHB 1.0
sigmalj Lennard-Jones sigma σLJ 1.04/21/6

sigmahb H-bond distance part sigma σHB 0.1
sigmath H-bond angle part sigma σθ 0.08
expbond Exponent of bond-order coefficient v 0.5
rbond Bonding distance of bond-order

coefficient
Rb 1.3

dbond Bonding cut width of bond-order
coefficient

Db 0.2

manual. The values for these parameters should be defined by the
user in the main input file. A set of parameters in reduced units,
optimized for bulk water and ice simulations, are given in Table 1,
taken from Ref. [14]. The parameters may also be inputted (please
see the manual) in real units (energies in eV, lengths in Å) which
affects, e.g., the numeric value of the Boltzmann constant.

CASHEW also allows incorporation of atomic particles in the
simulations in addition to the MB molecules. Interactions can be
defined for any pairs of elements (types of atomic particles) or
elements and MB molecules by choosing and combining from a
list of pair-potentials.

2.1.2. Derivation of forces and torques
To extract the force Fα acting on the MB molecule α, one sim-

ply differentiates the potential energy (1) with respect to the po-
sition of the molecule—this derivative is denoted here by ∇α . For
instance, differentiating the distance between molecules i and j
yields

∇αri j = (δ jα − δiα)r̂i j = γi jα r̂i j . (15)

In Eq. (15) we define another shorthand, γi jα = δ jα − δiα , where δ

is the Kronecker delta. This factor is +1 if j = α, i �= α, −1 if i = α,
j �= α, and 0 otherwise. The physical interpretation of the factor is
simple: ri j only changes if one moves either particle i or j. We will
also need the derivative of the dot product

∇αck
i j = ∇α

(
ûk

i · r̂i j
)

=
(

∇α
1

ri j

)(
ûk

i · ri j
) +

(
1

ri j

)
∇α

(
ûk

i · ri j
)

= −γi jα

ri j

(
ûk

i · ri j
)
r̂i j + γi jα

ri j
ûk

i

= γi jα

ri j

ri j uk
i . (16)

Note that ∇α ûk
i = 0 since we are differentiating with respect to the

position of the particle, not its orientation. Using these results, the
force acting on molecule α can be calculated

Fα = −∇αU = −1

2

∑
i

j �=i

∇αU LJ
i j + ∇αU HB

i j = FLJ
α + FHB

α (17)

∇αU LJ
i j = 4εLJ

(
6σ 6

LJr
−7
i j − 12σ 12

LJ r−13
i j

)
γi jα r̂i j (18)

∇αU HB
i j = εHB

4∑
k,l=1

(
(∇αbi)Gkl

i jΦ
kl
i j + bi

(∇αGkl
i j

)
Φkl

i j

+ bi G
kl
i j

(∇αΦkl
i j

))
(19)

∇αGkl = (∇α gHB)
gθ gθ + gHB((∇α gθ

)
gθ + gθ

(∇α gθ
))

(20)
i j i j i jk jil i j i jk jil i jk jil
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∇α gHB
i j = − ri j − RHB

σ 2
HB

gHB
i j γi jα r̂i j (21)

∇α gθ
i jk = − ûk

i · r̂i j − 1

σ 2
θ

gθ
i jkγi jα

ri j uk
i

ri j
(22)

∇αΦkl
i j = εφ

2

∑
m �=k
n �=l

(
12 cos2 φmn

ij − 3
)∇α cosφmn

ij (23)

∇α cosφmn
ij = ξmn

ij ∇αηmn
ij − ηmn

ij ∇αξmn
ij

(ξmn
ij )2

(24)

∇αηmn
ij = γi jα

ri j

[
cn

ji
ri j um

i − cm
ij

ri j un
j

]
(25)

∇αξmn
ij = γi jα

ξmn
ij ri j

[
cm

ij

(
1 − (

cn
ji

)2)ri j um
i − cn

ji

(
1 − (

cm
ij

)2)ri j un
j

]
(26)

∇αbi =
{

0 zi � 4

−4v vz−v−1
i ∇αzi zi > 4

(27)

∇αzi =
⎧⎨
⎩

∑
q �=α

π
4Db

cos π(rαq−Rb)

2Db
r̂αqχrαq∈S i = α

π
4Db

cos π(rαi−Rb)
2Db

r̂αiχrαi∈S i �= α.
(28)

Above the notation χx∈A denotes the characteristic function which
is 1 when x ∈ A and 0 otherwise. Collecting all the terms we get
[29]

FLJ
α = 2εLJ

∑
j �=α

(
6σ 6

LJr
−7
α j − 12σ 12

LJ r−13
α j

)
r̂α j (29)

FHB
α = Fpair

α + Fmany
α (30)

Fpair
α = −εHB

2

∑
j �=α

(bα + b j)

4∑
k,l=1

Gkl
α j

[
Φkl

α j

(
− rα j − RHB

σ 2
HB

r̂α j

+ 1

σ 2
θ rα j

[(
ck
α j − 1

)rα j uk
α + (

cl
jα − 1

)rα j ul
j

])

− εφ

2

∑
m �=k
n �=l

(12 cos2 φmn
α j − 3)

rα j(ξ
mn
α j )3

([
cn

jα

(
ξmn
α j

)2

+ cm
α j

(
1 − (

cn
jα

)2)
ηmn

α j

]rα j um
α − [

cm
α j

(
ξmn
α j

)2

+ cn
jα

(
1 − (

cm
α j

)2)
ηmn

α j

]rα j un
j

)]
(31)

Fmany
α = 4v−1 v

πεHB

2Db

∑
q �=α

cos
π(rαq − Rb)

2Db
χrαq∈S r̂αq

×
[

z−v−1
α χzα>4

∑
j �=α

4∑
k,l=1

Gkl
α jΦ

kl
α j

+ z−v−1
q χzq>4

∑
j �=q

4∑
k,l=1

Gkl
qjΦ

kl
qj

]
. (32)

Differentiating the bond-order term bi generates many-body forces.
This happens because the movement of a third molecule q may af-
fect the interaction between molecules i and j by changing the
number of molecules in their surroundings. Because of this, sim-
ulating a solid (or a gas), where practically no many-body terms
appear, is computationally less demanding than simulating a liq-
uid.

Similarly to the forces, the torque Tα acting on molecule α is
obtained by differentiating the potential with respect to rotation
of the particle—we denote this derivative by ∇ϕ

α . For instance, in a
rotation around the y axis, the z component of the unit vector û,
uz , changes at a rate

∂uz

∂ϕy
= ux. (33)

In general, the ϕη derivative of the ν component of the vector is

∂uν

∂ϕη
=

∑
μ

εημνuμ (34)

where εημν is the Levi-Civita symbol. Using this we may derive
the derivative of the dot product ûk

i · r̂i j . Denoting the Cartesian
unit vectors as êx , êy , êz , we get

∇ϕ
α

(
ûk

i · r̂i j
) = δiα

∑
η

êη
∂

∂ϕη

(
ûk

i · r̂i j
)

= δiα

∑
η

êη

∑
ν

∂(ûk
i )ν

∂ϕη
êν · r̂i j

= δiα

∑
η

êη

∑
ν

∑
μ

εημν

(
ûk

i

)
μ
(r̂i j)ν

= δiα
(
ûk

i × r̂i j
)
. (35)

Note that ri j is constant with respect to rotations of molecules,
and only the differentiation of ûk

i gives non-zero derivatives. Using
(35), one can calculate the torque:

Tα = −∇ϕ
α U = −1

2

∑
i

j �=i

∇ϕ
α U HB

i j (36)

∇ϕ
α U HB

i j = εHB

4∑
k,l=1

bi
[(∇ϕ

α Gkl
i j

)
Φkl

i j + Gkl
i j

(∇ϕ
α Φkl

i j

)]
(37)

∇ϕ
α Gkl

i j = gHB
i j

(∇ϕ
α gθ

i jk

)
gθ

jil + gHB
i j gθ

i jk

(∇ϕ
α gθ

jil

)
(38)

∇ϕ
α gθ

i jk = − ûk
i · r̂i j − 1

σ 2
θ

gθ
i jkδiα

(
ûk

i × r̂i j
)

(39)

∇ϕ
α Φkl

i j = εφ

2

∑
m �=k
n �=l

(
12 cos2 φmn

ij − 3
)∇ϕ

α cosφmn
ij (40)

∇ϕ
α cosφmn

ij = ξmn
ij ∇ϕ

αηmn
ij − ηmn

ij ∇ϕ
α ξmn

ij

(ξmn
ij )2

(41)

∇ϕ
α ηmn

ij = γi jα
(
ûm

i × ûn
j

) − [
δiαcn

ji

(
ûm

i × r̂i j
)

+ δ jαcm
ij

(
ûn

j × r̂ ji
)]

(42)

∇ϕ
α ξmn

ij = − δiα

ξmn
ij

(
1 − (

cn
ji

)2)
cm

ij

(
ûm

i × r̂i j
)

− δ jα

ξmn
ij

(
1 − (

cm
ij

)2)
cn

ji

(
ûn

j × r̂ ji
)
. (43)

Simplifying, the total torque can be written

Tα = −εHB

2

∑
j �=α

(bα + b j)

4∑
k,l=1

Gkl
α j

[
1

σ 2
θ

Φkl
α j

(
ck
α j − 1

)(
r̂α j × ûk

α

)

+ εφ

2

∑
m �=k
n �=l

(
3 − 12 cos2 φmn

α j

)([ cn
jα

ξmn
α j

+ cm
α j

1 − (cm
α j)

2
cosφmn

α j

]

× (
r̂α j × ûm

α

) + 1

ξmn

(
ûn

j × ûm
α

))]
. (44)
α j
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It should also be mentioned that the torques are not symmetric:
the interaction between two particles will in general result in dif-
ferent torques for the two. This is due to the asymmetric û · r̂
terms.

2.2. Molecular dynamics

2.2.1. Integration of equations of motion
The positions and velocities of particles are updated using the

standard velocity–Verlet algorithm

ri(t + �t) = ri(t) + vi(t)�t + 1

2mi
Fi(t)(�t)2 (45)

vi(t + �t) = vi(t) + 1

2mi

(
Fi(t) + Fi(t + �t)

)
�t (46)

where r is the position, v is the velocity, F is the force, m is mass,
t is time and i is the particle index. The orientations of particles
are updated using similar integration where the spatial variables
are replaced with corresponding angular variables such as angles
of rotation, angular velocities, torques, and moments of inertia.

Instead of integrating Newtonian equations of motion, one can
also use Langevin dynamics

mi
d2ri

dt2
= Fi − γ mi

dri

dt
+ fi (47)

where γ is a friction coefficient and fi is a random force obeying
the fluctuation–dissipation relation 〈fi(t) · f j(t′)〉 = 2γ kBmi T δi jδ(t −
t′) with kB being the Boltzmann constant and T the temperature.
However, this introduces a complication for the velocity update
(46), since updating the velocity requires knowledge of the acceler-
ation Fi/2mi at a future time t +�t , and the Langevin acceleration
(47) depends on the velocity vi = dri/dt . Solving Eq. (47) for the
velocity at time t + �t leads to the equations

ri(t + �t) = ri(t) + vi(t)�t

+ 1

2mi

(
Fi(t) − γ mivi(t) + fi

)
(�t)2 (48)

vi(t + �t) = 1

1 + 1
2γ �t

[(
1 − 1

2
γ �t

)
vi(t)

+ 1

2mi

(
Fi(t) + Fi(t + �t)

)
�t + 1

mi
fi�t

]
. (49)

Following the standard velocity Verlet updating scheme, the ve-
locity update (49) is further split in two within the program: the
update step vi(t) → vi(t + 1

2 �t) is done first using the force, ve-
locity (friction) and random component at time t , after which the
step vi(t + 1

2 �t) → vi(t +�t) is carried out using the force at time
t + �t and the scaling factor (1 + 1

2 γ�t)−1 in Eq. (49) to account
for the friction.

2.2.2. Neighbor tracking
As shown in Section 2.1, the forces and torques resulting from

the MB potential are rather involved. On the other hand, the po-
tential is quite localized and needs to be evaluated for nearby
molecules only, allowing the use of short interaction cutoffs. For
efficient pair finding, CASHEW uses both Verlet neighbor lists [30,
31] and cell lists [32].

In addition to a cutoff distance specifying the range of inter-
actions, a neighbor list cutoff radius is used for determining the
size of the neighborhood in which neighbor pairs are searched
and listed. That is, the program analyzes the intermolecular dis-
tances between molecules and creates lists of all molecules which
are closer than the neighbor cutoff from each other. Since this
cutoff must be larger than the interaction cutoff, all interacting
pairs must always be found in this list. Finding interacting neigh-
bors from a predefined list accelerates the summation of pairwise
forces to be an O(n) operation instead of O(n2) like a search over
all molecules would be. The program then automatically estimates
how often the list has to be updated in order to guarantee that
all pairs of molecules which are within the interaction cutoff actu-
ally are in the neighbor list. The longer the neighbor cutoff radius
(with respect to the interaction cutoff), the longer the update in-
terval. On the other hand, the neighbor search itself is slower for a
larger cutoff.

In addition, updating the neighbor list by evaluating all the
pairs in the system would also be an O(n2) operation. To accel-
erate this, the system is split into smaller subcells in order to first
approximately locate particles in the system (an O(n) operation)
and then search for neighbors in the same and adjacent subcells
(an O(n) operation). If the subcells are made to be the size of the
neighbor list cutoff radius, all pairs within the cutoff distance will
be found in the same or adjacent subcells.

2.3. Quaternion representation of molecular orientations

MB molecules are in principle point-like particles to which four
vectors are attached. In CASHEW, they are treated as rigid objects
with both a position and an orientation. Defining a 3D position is
done simply using vectors. Orientations, however, are represented
by quaternions.

An orientation can be defined using a reference configuration
and a rotation in 3D space starting from the reference. In CASHEW,
the reference orientation for MB molecules is defined so that the
H-bond vectors become

û1 = [0,0,1] (50)

û2 = [2√
2/3,0,−1/3] (51)

û3 = [−√
2/3,

√
2/3,−1/3] (52)

û4 = [−√
2/3,−√

2/3,−1/3]. (53)

Rotations from this reference can be characterized, for instance, by
a unit vector [x, y, z] (with x2 + y2 + z2 = 1), defining the axis of
rotation, and an angle of rotation φ around this axis. This can be
summarized in a four-component unit quaternion [33]

q = cosφ/2 + x sin φ/2i + y sin φ/2 j + z sin φ/2k. (54)

It turns out [34] that applying standard quaternion multiplication
rules

i2 = j2 = k2 = i jk = −1 (55)

to rotation quaternions of the form (54), combined rotations are
obtained simply as quaternion products qtot = q2q1. Handling ro-
tations using quaternions is computationally faster than using ma-
trices, and the method is not susceptible to gimbal lock in the way
schemes based on geometric angles are [34].

In the program, orientations are represented by quaternions
both internally and externally. In other words, the input and out-
put format for molecular orientations is that specified by Eq. (54).
As a rule of thumb, the quaternion 1 = [1,0,0,0] is the ‘no rota-
tion’ orientation, i.e., the reference orientation given by (50)–(53),
and the other basis quaternions i = [0,1,0,0], etc. represent rota-
tions by 180◦ from the reference around the x, y and z axes.

3. Program structure

3.1. Source files

The program is divided to one main program file and support-
ing modules. The full list of files is
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Fig. 2. Parallel scaling for a system of (a) 9720 and (b) 34 200 MB molecules ran for 1000 and 500 time steps, respectively, with little output (red line) vs. the superideal
case (doubling the number of processors increases speed by a factor of 2 – blue line). The vertical axis shows the computational speed with respect to a calculation in serial
mode. For systems of this size and range, the scaling is adequate: doubling the number of cpus reduces the wall clock time by a factor of more than 1.7 (gray line). According
to these tests, one can use about nparticles/100 cpus (the number of processors can be any sufficiently small positive integer, not necessarily a power of 2). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
• Cashew.F90 – main program, includes MD routines (PRO-
GRAM cashew);

• IO.F90 – module for handling input and output (MODULE
file_handler);

• Model.F90 – module defining the physics of the MB model
(MODULE mb_model);

• Functions.F90 – module for some commonly used func-
tions (MODULE functions);

• Quaternions.F90 – module for quaternion and vector al-
gebra, representing 3D rotations (MODULE quaternions);

• Parallel.F90 – module for MPI-related variables and func-
tions (MODULE mpi_mod);

• Params.F90 – module for parameters and constants (MOD-
ULE parameters);

• Mersenne.F90 – module for random numbers (MODULE
mt95).

The files contain original source code written by the authors, ex-
cept the last one, which defines the random number generator.
We have used the “Mersenne Twister” random number genera-
tor written in Fortran by José Rui Faustino de Sousa and avail-
able as open source code (see Program summary). It may be
replaced by another random number generator. The generator
is invoked by other parts of the program as a module named
“mt95”, and the functions called are named “genrand_init”
(initialization), “genrand_real1” (random real in [0,1]) and
“genrand_real2” (random real in [0,1[).

A makefile is provided for compiling the program. There is a
known issue in compiling the input handling module “IO.F90”
with aggressive compiler optimization in some Fortran compilers,
and therefore it is recommended to use only low level compiler
optimization for this module.

3.2. Input files

The program is executed from the command line by supplying
the name of the simulation as a parameter, e.g., cashew system
(if the compiled executable is named cashew). The name of the
main input file read by the program is formed by attaching the
suffix “.mb” to the name of the simulation, e.g., “system.mb”.

The program reads this input file containing all necessary infor-
mation for setting up and running the simulation. The file should
in general be in the directory from which you launch the program.
The input is not case sensitive, but it must follow a certain pre-
defined, though flexible, structure. The input must be divided in
blocks. A block starts with a tag such as <particles> and ends
with a tag such as </particles>. Anything outside such tags is
ignored. The names of the blocks recognized in the input file are

• <control> – control parameters, required;
• <mb-model> – parameters of the MB model, required;
• <cell> – supercell parameters, optional;
• <elements> – names and masses of particles other than MB

molecules, optional;
• <particles> – types and starting positions of particles, re-

quired;
• <velocities> – initial velocities of particles, optional;
• <constraints> – constraints, optional;
• <potentials> – atom–atom and MB–atom interactions, op-

tional;
• <statistics> – statistics to be recorded, optional.

The detailed syntax of the input is explained in the user manual.

3.3. Output files

The main output file is marked by the suffix .out and it con-
tains a summary of input parameters and run progress. Other
output files are generated on demand. For instance, the output
of detailed statistics can be invoked by including the <statis-
tics> block in the input file. The contents of the output files
and the interface for enabling their output is explained in the user
manual.

3.4. Parallelization and optimization

CASHEW has been written with emphasis on well structured
and readable code instead of optimal performance. As is typical in
MD programs, most computational effort is spent on calculating
the forces and torques acting on the particles. This is done within
the routine calc_forces in the file Model.F90.

The source code includes both a serial and a parallel version,
of which the latter is obtained using conditional compiling with
the compiler option -Dmpi. All the cpu intensive tasks have been
MPI-parallelized, and of these the most important is the calcula-
tion of forces. The force calculation task is split among processors
by distributing molecules. To obtain better load balancing among
the cpus, the loads are actively monitored and redistributed where
necessary. This is likely not the optimal way to parallelize the
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problem—for instance distribution of the task by a spatial decom-
position is usually a more efficient scheme [35]. Still, according to
our tests as shown in Fig. 2, the current simple scheme allows one
to use up to n/100 processors, where n is the number of particles
in the simulation, while maintaining adequate scaling of parallel
efficiency. Thus, the code is production-run ready.

In addition to CPU parallelization, the MB model could benefit
from GPU acceleration. As the model allows for local computa-
tions, it is amenable to GPU implementation as minimal amount
of communication with the CPU is required. We are currently in-
vestigating an Open CL implementation of the code.

4. Summary and outlook

We present an MD program for simulations of aqueous systems
implementing the 3D MB model [16]. This coarse-grained model,
and code, reproduce many of the known water anomalies remark-
ably well [16]. The force field related to the model is derived and
the structure of the program is briefly discussed. The program is
distributed with a user manual and a tutorial which should allow
the user to easily set up and run a simulation using the MB model.
The freely available source code together with the provided docu-
mentation should enable code developers a straightforward path
to implementing the MB model in other programs, if desired. Fu-
ture versions of CASHEW are planned to include tools to simulate
biomolecules in aqueous environment, e.g., proteins.
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