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ABSTRACT

Atmospheric new-particle formation (NPF) is an important source of climatically relevant atmospheric
aerosol particles. NPF can be directly observed by monitoring the time-evolution of ambient aerosol particle
size distributions. From the measured distribution data, it is relatively straightforward to determine whether
NPF took place or not on a given day. Due to the noisiness of the real-world ambient data, currently the
most reliable way to classify measurement days into NPF event/non-event days is a manual visualization
method. However, manual labor, with long multi-year time series, is extremely time-consuming and human
subjectivity poses challenges for comparing the results of different data sets. These complications call for an
automated classification process. This article presents a Bayesian neural network (BNN) classifier to classify
event/non-event days of NPF using a manually generated database at the SMEAR 1II station in Hyytiala,
Finland. For the classification, a set of informative features are extracted exploiting the properties of multi-
modal log normal distribution fitted to the aerosol particle concentration database and the properties of the
time series representation of the data at different scales. The proposed method has a classification accuracy
of 84.2 % for determining event/non-event days. In particular, the BNN method successfully predicts all
event days when the growth and formation rate can be determined with a good confidence level (often
labeled as class Ia days). Most misclassified days (with an accuracy of 75 %) are the event days of class II,
where the determination of growth and formation rate are much more uncertain. Nevertheless, the results
reported in this article using the new machine learning-based approach points towards the potential of these
methods and suggest further exploration in this direction.

Keywords: atmospheric aerosol particles, new-particle formation, machine learning, Bayesian neural networks

1. Introduction

The Earth’s atmosphere, while providing shelter and com-
fort for its inhabitants, also hosts a multitude of interest-
ing and interconnected physical processes. Among these
the phenomenon of atmospheric new-particle formation
(NPF) has attracted growing scientific attention during

*Corresponding author. email: martha.zaidan@helsinki.fi

the last few decades (Nieminen et al., 2014). By providing
an initial surface for a significant fraction of cloud con-
densation nuclei, the tiny secondary atmospheric aerosol
particles are crucial players in cloud and climate processes
(Bianchi et al., 2016). Thus, atmospheric scientists are
interested in understanding how various processes modify
the properties of aerosol particles and especially how,
why and when these particles form.
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Examples of an event (a) and a non-event (b) day at Hyytidla, Finland, in May 2005. The x-axis shows one 24-h time period

whereas the y-axis shows the range of particle size diameters (from 3 to 1000nm). The color scale indicates particle concentration (cm™ °). In
(a) one can clearly see aerosol particles forming around noon and then growing into larger sizes. This data was accessed via Smart-SMEAR

(Junninen et al., 2009).
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Four different types of NPF days, classified based on the method proposed by Dal Maso et al. (2005). The x-axis shows the

24-h time period, whereas y-axis represents the range of particle diameters (from 3 to 1000nm). The color indicates the particle

concentration (cm™ ).

The most straightforward way to investigate NPF in
depth is to directly measure these events in the ambient
atmosphere. Typically, this is done by observing the time-
evolution of the particle size distributions. Figure 1 shows
example of both an event day (Fig. la: clear NPF and
growth to large sizes) and a non-event day (Fig. 1b: no
clear NPF).

The current procedure for generating the database of
aerosol formation days is based on the visualization
method, proposed by Dal Maso et al., (2005). Although
the visualization method and the event classes, it intro-
duced have been received very well by the atmospheric
community, at the same time, it is acknowledged that the
utilization of the method requires significant manual
labor. Furthermore, as the classification in the end is

determined by human judgement, inconsistencies may
arise between different datasets due to unavoidable
human subjectivity. Thus, robust automated procedures
for data analysis are called for (Kulmala et al., 2012).

Although modern data science provides new techniques
to tackle large data sets. Neural networks have been one
of the most successful machine learning (ML) methods
which have been applied widely in many applications
(Hagan et al., 2014). In particular, modern day deep
neural network (DNN) learning methods are tailored to
find the essence of large datasets, therefore, they might
also help in dealing with the atmospheric data. But one
of the major drawbacks of deep learning approaches is
that huge amount of data and computational resources
are required for training such models.
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The second most common issue that arises in DNN
training is over-fitting, i.e. if the number of model param-
eters is too large, the model tends to overfit the training
data and its ability to generalise on the test dataset is
restricted. Hence, we propose to use a Bayesian neural
network (BNN) classifier which is known method not
only with good generalisation capability but also rela-
tively less computationally expensive then the DNN
(Szegedy et al., 2015). This method utilizes the representa-
tive features extracted from time series data to automatize
the classification process of atmospheric aerosol particle
formation days.

2. Atmospheric data

In this work, we utilize the aerosol particle size distribu-
tion data gathered at the SMEAR II station in
Hyytiédld, Finland.

2.1. Sampling site: SMEAR II Hyytiala, Finland

The SMEAR 1II station is located in Hyytiald forestry
field station in southern Finland (61" 51'N, 24" 17'E,
181m above sea level), about 220km northwest of
Helsinki. This lies between two big cities,
Tampere and Jyvaskyla. It is surrounded by homoge-
neous Scots-pine-dominated forests. Hyytiala forest is
classified as a rural background site considering the levels
of air pollutants, shown by e.g. submicron aerosol num-
ber size distributions (Asmi et al., 2011; Nieminen et al.,
2014). The SMEAR 1II has been established for multidis-
ciplinary research, including atmospheric sciences, soil
chemistry and forest ecology. A detailed description of
the continuous measurements performed at this station
can be found in Kulmala et al., (2001) and Hari and
Kulmala (2005).

In particular, aerosol particle number concentration
size distributions are measured with a twin-Differential
Mobility Particle Sizer (DMPS) system with condensation
particle counters (Aalto et al., 2001). The system com-
prises two separate DMPS instruments, the first

station

Schematic diagram of the ML methodology for classifying aerosol particle formation days.

instrument measures the particle sizes between 3 and
50nm and another DMPS measures the larger particles.
When SMEAR 1II was first operated, the measured par-
ticle size distributions ranged from 3 to 500nm until
December 2004. After that, it was extended to cover the
size range from 3 to 1000nm (Nieminen et al., 2014). In
the last few years, the size of the smallest particles that
can be detected has decreased from 3nm to around one
nanometer (Kulmala et al.,, 2012). Nevertheless, in this
study, we only utilize particle sizes ranging from 3 to
1000 nm due to the availability of the classification data-
base needed for the network training
and validation.

neural

2.2. Database: classification of aerosol particle
formation days

In order to perform supervised learning, an input—output
database is required to train classification or regression
models (Bishop, 2006). Here, we use a variety of features
extracted from the aerosol particle concentration data-
base for the training of the proposed method. Please see
Section 3 for further details related to feature extraction
and the classification methodology. For determining the
class information, i.e. event/non-event days, we use a clas-
sification database created by the atmospheric scientists
at the University of Helsinki during the years 1996-2014.
The database has been constructed by a visual inspection
method (Dal Maso et al., 2005) of the continuously meas-
ured aerosol size distributions over a size range of
3-1000nm at SMEAR II Hyytiala. The method classifies
the days into three main categories, which are event, non-
event and undefined days.

An event day occurs when there is a growing new mode
in the nucleation size range prevailing over several hours,
whereas a non-event day is assumed when the day is clear
of all traces of particle formation. A day is defined to be
an undefined day when it cannot be unambiguously classi-
fied as either an event or a non-event day. To avoid any
bias in the training of the neural network, we exclude the
undefined days in this study.
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From the concentration data, two types of features are calculated to be used in the learning and validating of the neural

network. At each instance of time, the ambient aerosol particle distribution can be presented as a multi-modal log normal distribution,

characterized by three parameters per mode (see panel (a)). The set of these fitted parameters are used as the first type of features given

to the neural network. The ambient particle distribution evolves throughout the day and this change is manifested in the parameters of

the log normal distributions. A set of time-domain quantities calculated over the entire measurement day (excluding nighttime) are given
to the neural network as second type of features (see panel (b) and Table 1).

The NPF event days can be further divided into class I
and class II based on their confidence level. Class I is
assumed when the growth and formation rate can be
determined with a good confidence level, whilst class II
occurs when the derivation of these parameters is not
possible or there is a doubt in the accuracy of the results.
Class I can be still further divided into sub-classes Ia and
Ib. Class Ia is assumed when the day shows a very clear
and strong particle formation event, with very little or no
pre-existing particles obscuring the newly formed mode,
whereas class Ib contains the remaining class I events. An
example of four different types of NPF days is shown in
Fig. 2. In this study, we attempt to teach a neural net-
work to classify the days only into event and non-event
days. The sub-class classification of NPF days provides
useful information while analysing the result of the classi-
fication performance.

3. Machine learning method

Figure 3 illustrates the proposed ML classification strat-
egy. Aerosol particle concentration data (the second box)
obtained from the DMPS instruments (the first box) is
used in this analysis. These data need to be pre-processed
first (the third box) before it is fed into the ML model.
This section describes the methodology for data pre-proc-
essing and obtaining the relevant features. The BNN clas-
sifier used in this study is briefly introduced in the
final subsection.

Table 1. Time-domain feature representations used in this study.
The notation of x(i) and N denote the signal x(i) at time i and
the number of data points, respectively. In this case, the signal is
equivalent with the concentration level of every particle size
distribution.

Time-domain features Formula
Mean (7) ALZ,\:1 (z(3))
Variance %le (z(3) - 53)2

Standard Deviation

L3N (@) - 2)°
RMS value (RMS)

Peak value (PV) 1 (max(z(t)) — min(z(t)))

Kurtosis A i) -a)
#3), wo-27)
Crest factor s
Skewness A (@ti)-2)
Clearance factor +
H(ZL, VieO)
Impulse factor —
LS i)
Shape factor —_RMS__
£ )
K-Factor PV-RMS

3.1. Data pre-processing and feature extraction

In the data pre-processing step, we remove outlier data
points, which are typically due to sensor faults or extreme
conditions. Undefined days are also excluded to reduce
the uncertainty in training dataset because this class
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Principal Component (PC) space. In order to retain 99 per cent
of original data information, we need to select only the first 69
PCs from almost 400 calculated features.

cannot be unambiguously classified as either an event or
non-event day, hence may give rise to human associ-
ated bias.

In the feature calculation step, the pre-processed data
are then used to calculate representative features which
can be used in the actual ML process. Here, we consider
the following two types of quantities:

3.1.1. Mmulti-modal log normal distribution function.
The first set of features consists of the properties of a
multi-modal log normal distribution function. Most aero-
sol particle size distributions can be fitted with this distri-
bution function (Whitby, 1978). The multi-modal log
normal distribution function, f, can be expressed mathem-
atically by

N;

n
fD,D i Nis Ogi) = V2r108(Gu )
(Dp, Dy, ) ;\/ﬁlog(cgi)

[log(D,) — log(Dpg,)] ’

X exp |— 21087 (0g,)

()

where D, and n are the diameter of an aerosol particle and
the number of individual log-normal modes that character-
ize the particle number size distribution, respectively. This
distribution function also comprises three tuned parameters.
The parameters N, Géi and D)., represent the mode con-
centration, geometric variance and geometric mean diam-
eter, respectively. In this case, these parameters are fitted
using an automatic algorithm developed by Hussein et al.,
(2005). The fitting is done at each instance of time and the
fitted parameters are considered as the properties of the
multi-modal log normal distributions, which will then be
used as the first type of ML feature.

3.1.2. Time-domain features. The second set of ML fea-
tures are the time domain properties of aerosol particle con-
centrations, such as mean, standard deviation, kurtosis and
skewness. These features are adopted from time-domain sig-
nal processing techniques described in Howard (1994) and
Allen and Mills (2004). These features utilize the amplitude
vs. time characteristic of aerosol particles concentration. In
other words, we calculate all features mentioned in Table 1
for every type of particle size per day. This results in a single
value per particle size termed as a feature of the time series.
Once all the features for all types of particle size are calculated
they are then fed to the BNN model as inputs for the training
purpose. Table 1 shows all the calculated time-domain fea-
tures used in this study. In this case, x() is the number of con-
centration at time  for every particle size distribution.

These two types of ML features are illustrated in Fig.
4. The parameters of a multi-modal log normal distribu-
tion can be seen as features calculated from the y-axis of
the NPF ‘banana plot’, whereas the time-domain features
are calculated from the x-axis. This way the ML proced-
ure should be able to take into account both the instant-
aneous shape of the aerosol particle distribution and the
evolution of the distribution. This strategy enables us to
construct an information-rich feature set to distinguish
between the event and the non-event days.

The combination of the first and second feature sets
results in a large data dimension, which may lead to the
‘curse of dimensionality’: the proposed algorithm may
perform poorly with very high-dimensional data (Bishop,
2006). Therefore, as illustrated in the fifth box in Fig. 3,
a set of dominant features are extracted which is then
finally used to train the ML model. Principal component
analysis (PCA) (Pearson, 1901) is a popular technique to
perform dimensionality reduction for large data sets (Lu,
Plataniotis, and Venetsanopoulos 2011). In this case, we
use PCA to project all of the obtained features onto prin-
cipal components (PCs) space. Then, we select only the
directions with highest variance PCs for the input of ML
model. Figure 5 illustrates the cumulative sum of eigen-
values of the data in the PC space. It can be seen that
there are almost 400 calculated features which can be
reduced to be only 69 PCs as ML features by retaining
99 % information from original calculated features.
Finally, the selected PCs are fed into the selected ML
method (the last box in Fig. 3), that is a BNN classifier.
Nevertheless, other ML approaches may also be adopted
and implemented using this general strategy. BNN classi-
fier will be introduced briefly in the following subsection.

3.2. Bayesian neural network

We use a BNN (Bishop, 2006) to model the unknown
relationship, y = f(x), between the features x and their
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corresponding event/non-event days output y. Unlike
standard neural networks (Lippmann, 1987), BNN uses
Bayesian inference in optimizing the network weights. It
adds a regularization term to the network performance
function. This steers the training towards simpler neural
networks, thus reducing the risk of over-fitting.

Figure 6a shows a schematic representation of the
neural network. The input layer consists of an M-dimen-
,Xp}, containing the number
of selected features M (in our case M =69). In this case,
the output y is just a binary number (e.g. zero and one),
representing event/non-event days. The jth neuron in the
Lth layer computes its output sz as follows:

L_ L | 7L
;=0 E wjl-x,—Q—bj
i
where w

i s the weight of connection between the com-
puting neuron and its ith input in the preceding layer,
and bjL is an additional bias parameter.

The symbol o() represents an activation function. In
this case, the used activation functions for the hidden
layer and the output layer are hyperbolic tangent sigmoid
(tansig) and softmax basis functions, respectively. They
are expressed mathematically as follows:

sional array x = {x},x2,...

2

L

. 2
G(u) = tanSIg(u) = m*l (3)
exp
o (up) = softmax(uy) = —5——— forp=1,...,0
(Up) (Up) >2, exp
(C)

The tansig basis function ranges between —1 and 1,
which is a good choice for a hidden layer function. The
softmax basis function on the output layer is typically
used for classification. It is equivalent with a generaliza-
tion of the logistic function that ‘squeezes’ a Q-

input: u 5
softmax activation function
1
input
p 505 output
0
1 2 1 2

Schematic representation of a BNN with one hidden layer (a) and the used activation functions (b).

dimensional vector u of arbitrary real values to a Q-
dimensional vector o(u) of real values in the range 0 and
1 that add up to 1. The shape of both activation func-
tions is illustrated in Fig. 6b.

Once a training dataset {x,y} with reference inputs x
and their corresponding outputs y is given, it becomes
possible to find a suitable set of weights w by minimizing
the cost function:

E= DY (em -5 4 5w

where f(x,,w) is the output of the BNN from training
inputs x,. The first term on the right-hand side is the pre-
diction error of the model on the training data, and its
minimization leads to a model that fits the data. The
second term on the right-hand side comes from the deriv-

©)

ation of Bayesian inference in the training and effectively
gives a penalty to complex models with larger weights,
thus preventing over-fitting. The two contributions are
weighted by hyperparameters o and f, are initiated to
capture the knowledge about the network weight before
any data is collected and then they are iteratively updated
during the training process (MacKay, 1992). This helps in
reducing the models uncertainty and improve its general-
ization capability (Hagan et al., 2014).

In our case, the training process needs 700 iterations to
find optimal network weights, which consumes about
17 minutes in a desktop computer (iMac with OSX oper-
ating system, 3,5 GHz Intel Core i7 and 32 GB RAM).
The computation is relatively fast because the simplifica-
tion of ML features and BNN algorithm has a closed-
form solution. More details on BNN can be found in
MacKay (1992), Foresee and Hagan (1997), Bishop
(2006) and Hagan et al., (2014).
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Table 2. Training performance (1996-2010).

Visualization method

Event-days Non-event days
BNN Event-days 1223 (42.0 %) 29 (1.0 %) 97.7 %
Non-event days 32 (1.1 %) 1630 (55.9 %) 98.1 %
97.5 % 98.3 % 97.9 %

Table 3. Validation performance (2011-2014).
Visualization method

Event-days Non-event days
BNN Event-days 245 (30.3 %) 63 (7.8 %) 79.5 %
Non-event days 65 (8.0 %) 435 (53.8 %) 87.0 %
79.0 % 87.3 % 84.2 %

4. Results

Once the relevant features have been calculated and
extracted, we obtain an input/output database. Then, we
divide the database into two different parts: training and
testing data (validation set). We use the data from 1996 to
2010 for training data, whereas the period of 2011-2014 is
used for testing data. The training data contain 43.1 %
event days and 56.9 % non-event days. This share represents
a good balance between two classes and is beneficial for
training the ML classifier. In particular, event days com-
prises 4.1 % of class Ia, 16.5 % of class Ib and 22.5 % of
class II. Although the ML model will not be trained using
sub-classes output, it is advantageous to trace these sub-
classes for analysing the classification performance.

The next step is to set up the structure of the BNN
network. After several validation tests, the best classifica-
tion performance is found in a BNN structure with one
hidden layer of 25 neurons. As shown in Fig. 6 the net-
work uses hyperbolic tangent sigmoid (tansig) and soft-
max activation functions on the hidden layer and the
output layer, respectively. Once the structure of the net-
work is defined, the training data are fed into the BNN
model and Bayesian regularization is used to optimize the
network weights as described in Section 3.2.

The results of the training are presented as a confusion
matrix in Table 2. The matrix presents the BNN accuracy
in comparison to the visualization method (i.e. the target
data set). The total number of days in the two classes
(event/non-event) is the sum of the respectively labelled
columns, while the values along the rows indicate the
BNN classification performance (percentage values are
given in parenthesis). On the last row of Table 2, it can
be seen that BNN is trained well on event days (97.5 %)
and non-event days (98.3 %). The bottom-most value of
the right-most column reports the total BNN training

classification accuracy to be 97.9 %, indicating that the
training process was very successful.

As a result of the training process, we obtain the opti-
mized weights for the BNN model, which is then called
trained BNN classifier. The testing input data from 2011
to 2014 is then fed to the trained BNN classifier. The real
output classes within these years comprise 38.37 % of
event days and 61.63 % of non-event days. The classifica-
tion outcome that the predicted number of event and
non-event days are then compared with the real output
classes (i.e. the event/non-event days obtained from visu-
alization) to evaluate the testing performance. Table 3
presents the testing results (validation performance),
again in the form of a confusion matrix. It can be seen
from the last row that BNN predicts successfully 79 and
87.3 % for event and non-event days, respectively.
Overall, BNN has a total classification accuracy of 84.2
% for determining event/non-event days using aerosol
particle concentration data. In other words, the BNN
classifies automatically event/non-event days from 2011
to 2014 with an accuracy of 84.2 %.

Figure 7 presents the details of the validation results.
The bar chart displays the number of days that are pre-
dicted successfully and unsuccessfully. It can be seen that
BNN predicts all of class Ia days successfully (100 %
accuracy). This perfect classification is expected as the
class Ia contains the days with very clear NPF. In add-
ition, the BNN classifier is still able to predict reasonably
well for class Ib, with a success rate of 85 % (92 days).
However, the method predicts correctly only 75 %
(146 days) of class II events. Also, the misclassified event
days take place mostly on class II days. This is not sur-
prising, as the class II event days are also more difficult
and ambiguous to classify using the manual visualization
approach. Thus, it is expected that these events pose the
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greatest challenge for the BNN model as well. Similarly,
the failures in predicting the non-event days, 13 %
(63 days), occur due to the BNNs confusion in recogniz-
ing the difference between class II and non-event days.
Nevertheless, the accuracy prediction of BNN classifier
for non-event days (87 %) is acceptable.

In general, the analysis of the results indicates that the
applied ML method is a promising tool for automatically
classifying aerosol particle formation days based solely on
particle size distribution measurements. The developed
ML model is certainly adequate to provide rapid estima-
tion for classifying event/non-event days, especially for
searching the NPF days of class Ia. This may also speed
up NPF analysis particularly in research stations where
the database of aerosol formation days does not exist yet.
Given that this is the first ML attempt dealing with this
problem, there is still plenty of room for improvements;
some possibilities are discussed in the following section.

5. Conclusion

This article presents the use of ML model to automa-
tize the classification of NPF days based on aerosol
particle size distribution measurements. The method is
expected to complement the existing visualization
method in order to speed up the classification process
as well as the analysis of NPF days. Specifically, this
method is advantageous in providing fast NPF classifi-
cation on the aerosol particle concentration data
obtained from research stations where a classification
database does not exist yet.

This work proposes to use the properties of multimodal
log normal particle size distribution and time-series domain
quantities as ML features for automated classification. A
BNN is then trained to classify the event/non-event days

The bar chart of the successful and unsuccessful number of predicted days.

using an aerosol particle formation database measured at
the SMEAR II station in Hyytiald, Finland.

The results provide very good accuracy in the training
process and acceptable performance in the testing and
validation. The misclassified days take place mostly on
class II and non-event days. Our initial analysis suggests
that the main reason for the misclassification is the simi-
larity of the class II events and non-event days: the ML
model is not always able to correctly distinguish these
from each other.

It might be possible that the selected features do not con-
tain enough information to present the particle concentra-
tion distributions needed for the analysis. In future work, it
is worth to investigate the use of more complex features
(e.g. on the frequency domain) as they may encode more
information about the properties of each class.

On the other hand, the applied ML model may still
suffer from overfitting although it already contains a
Bayesian regulator. In our case the telltale of a possible
overfitting, reduced testing performance in comparison to
training, is almost 15 %. Appropriate ML modeling prac-
tice maintains that similar performance should be
obtained during training and testing. The implementation
of more complex ML model might cope with this issue.
For example, probabilistic Bayesian modelling involving
not only Bayesian inference in the hyperparameters opti-
mization but it also providing confidence levels in the
outcome might be required for better classification.

Finally, NPF is an extremely complicated process. ML
methods might benefit from having also other sources of
information than the particle size distributions. Therefore,
one future research direction is to use additional input,
such as various gas concentrations and solar radiation.

In conclusion, even though the proposed method
does not provide an excellent performance at this stage,
it is nevertheless promising due to two main reasons.
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First, the testing performance is still adequate to accel-
erate the classification process and provide rapid esti-
mation of NPF days, especially for searching the NPF
days of class Ia. Second, as mentioned above, there are
many routes to improve the ML approach suggesting
that such methods might eventually solve this problem
to higher accuracy.

This article proposes a generic methodology for classi-
fying NPF event days based on a data-driven learning
approach, hence it can be easily adapted for any other
dataset from other measurement sites. The only require-
ment then is to extract the relevant features again and to
train the model on the extracted set of features. The
parameters of the model can then be tuned based on the
available sets of data from different SMEAR stations. At
this moment, we have access only to SMEAR II dataset
but in the future, we will incorporate data sets from other
SMEAR stations for training the ML model training, this
will enable the proposed method classify NPF event days
on other sites.
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