

# Simultaneous Atom-Resolved AFM and STM Studies of the Hydroxylated TiO<sub>2</sub> (110) Surface



Henry P. Pinto<sup>1</sup>, Georg H. Enevoldsen<sup>2</sup>, Mona C. Christensen<sup>2</sup>, W. Hofer<sup>3</sup>, Jeppe V. Lauritsen<sup>2</sup>, Adam S. Foster<sup>1,4</sup> and Flemming Besenbacher<sup>2</sup>

<sup>1</sup>Laboratory of Physics, Helsinki University of Technology, P.O.Box 1100, 02015, Finland <sup>2</sup>Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, DK 8000 Aarhus C, University of Aarhus, Denmark

<sup>3</sup>Surface Science Research Centre, The University of Liverpool, Liverpool, United Kingdom <sup>4</sup>Department of Physics, Tampere University of Technology, P.O. Box 692, 33101, Finland E-mail: adam.foster@tut.fi



### Benchmark oxide

nc-AFM



Statistical analysis

the surface?

 TiO<sub>2</sub> remains a model oxide for many surface science studies, particularly for Scanning **Probe Microscopy** (SPM).

Even in UHV, residual

adsorbates can be seen

on the surface after a



Simultaneous STM/AFM







Powerful tool for

understanding contrast

and studying further

defects or adsorbates.



few hours. Rows match TiO<sub>2</sub> (110) surface, but what about the atoms, defects and



## Hydrogen manipulation









"protrusion" contrast. Contrast magnitude agrees with experiment for defect usual

Simulations with a

negative tip match

suspects.



- Subsurface hydrogen invisible in AFM, but seen in STM.
- Combined STM/AFM records manipulation of H from surface to subsurface site.

Simulations with a positive tip match "hole" contrast.

### Methods



 First principles simulations, with multiple scattering theory for tunneling.













