Water chemistry and manipulation on alkaline earth halide surfaces

Adam S. Foster^{1,2}, T. Trevethan³, S. Hirth⁴, F. Ostendorf⁴, A. L. Shluger³ and M. Reichling⁴ ¹Department of Physics, Tampere University of Technology, P.O. Box 692, 33101, Finland ²Helsinki University of Technology, Lab. of Physics, P.O. Box 1100, FIN-02015 HUT, Finland ³Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK ⁴Fachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076, Osnabrück, Germany E-mail: adam.foster@tut.fi

+0.36

-0.70

+2.80

-0.69

-0.51

Diffusion paths

0.3/0.

Manipulation experiments

Adsorption and diffusion

+0.46

We use first principles calculations to
characterize the barriers for adsorption,
reaction and migration on the surface.

• AFM images as a function of time show the gradual deposition of water and the eventual manipulation of some of the resultant defects – similar defects seen in vacuum on a longer timescale.

Controllable
manipulation can be seen when
approaching the tip closer to the surface.

Only certain defects are moved.

CaF₂, SrF₂ and BaF₂

• We considered the properties of three alkali earth

- Water is too mobile on the ideal surface and must adsorb at vacancies.
- Initial immovable species are OH groups at neutral F-centres.

Over time, charged vacancies diffuse to the surface and trap molecular water – the manipulable species in images.

Mechanism of manipulation

• Plots of the barrier as a function of tip height demonstrate the influence of the tip on the barrier and identify the areas of maximum manipulation probability – irreversible?

• Water also reduces the barrier for vacancy diffusion on the surface.

Methods

 Bulk and surface calculations of defects and adsorbates initially made at first principles level (PBE-PAW-VASP) - including dipole and charge corrections.

• Diffusion paths and barriers of all adsorbates and defects calculated within this framework using the Climbing-NEB method.

 For imaging and manipulation, empirical potentials

• Key low barrier area appears already at about 0.45 nm – repulsion of fluorine under the tip makes vacancy part of diffusion easier, while H-F attraction aids molecular motion.

 Closer to the surface, the tip can act as part of the molecule's diffusion path.

Modelling manipulation

Barrier for water diffusion calculated at each tip position on a 7000 point grid, covering the area around the path and from 0.6 to 0.2 nm tip-surface distance.

were carefully checked against the first principles atomic structures and diffusion barriers (SCIFI).

• Very good agreement in structures and H_2O diffusion barrier (few %) – OH diffusion barrier underestimated by 30 %, but fully captures qualitative difference to H_2O . Manipulation experiments generally have contrast characteristic of imaging Ca
negatively terminated tip.

 Oxide tips interact too strongly with water and cannot reduce the barrier before desorption.

• Annealed a large CaF₂ cluster to form a realistic tip contaminated by the surface – F termination.

Tip clearly reduces
barrier and H₂O is
highly mobile at small
tip-surface separations.

• What is mechanism of defect generation?

• Why does water remain in defects?