First Principles Study of Irradiation-Induced Magnetism in Graphite

P. O. Lehtinen¹, A. S. Foster¹, Y. Ma¹, A. V. Krasheninnikov¹, R. M. Nieminen¹

¹Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland

Motivation

• Studying intrinsic magnetic properties of pure carbon systems

• Experimental observation of magnetism in hydrogen and helium irradiated graphite samples by P. Esquinazi *et. al.* In Phys. Rev. Lett. 91, 227201 (2003)

• Ground state of an adatom in bridgelike structure

•Ground state magnetic with moment 0.45 m

a) Equilibrium structure of a vacancy in graphene

- weak bond between ions 1 and 2 making the pentagon complete
- A small Jahn-Teller distortion

b) Ion 3 has sp^2 - dangling bond contributing the calculated total **magnetic moment of 1.1** m

Computational Methods

Density Functional Theory (DFT)
Basis Set: Plane Waves
Supercell Approximation: Periodic Boundaries
Exchange-Correlation Functional: GGA (PW91)
PAW Potentials
Kinetic Energy Cut-off: 400 eV
Computer Program: VASP

Effect of Helium on Vacancy in Graphene

• Equilibrium position of helium 3.06 Å above the graphene slab with a vacancy

• Adsorption energy: 16 meV

•No effect on observed magnetism; vacancies and adatoms the main contributors

• Possible reason for small magnetic signal observed: recombination with adatoms (interstitals)

Effect of Hydrogen on Defects in

• Adatom with a hydrogen magnetic due to change in hybridization; magnetic moment 1.2 m

Hydrogen's ground state on graphene with a vacancy • Hydrogen 1.2 Å above the sheet

• ground state has **not magnetic moment**

The related references to this work:
 Migration of adatom on graphene:
Phys. Rev. Lett. 91, 017202 (2003)
 Migration of adatom on nanotubes:
Phys. Rev. B 69, 073402 (2004)
 Magnetic Properties of adatom on nanotubes:
Phys. Rev. B 69, 155422 (2004)
 Magnetic properties of a vacancy in graphene and in
nanotubes:
New J. Phys. 6, 68
 Irradiation induced magnetism in graphite:
Phys. Rev. Lett. 93, 187202 (2004)

• Vacancy surrounded by two hydrogens magnetic: **Magnetic moment 0.9** m arises from the dangling bond of the ion neighbour to the vacancy site

• Hydrogen also effective in preventing the recombination of adatoms and vacancies

• In nanotubes, the result depends on the chirality of a tube and the configuration of the defect site

System	"pai	allel"	"perper	idicular"	
	E(eV)	Mag (µ.,) E (eV) I	Mag (μ_B)	
(6, 0)	0.0	0.0	0.06	0.0	
(7, 0)	0.0	0.0	-0.08	0.9	
(8, 0)	0.0	0.0	-0.20	1.0	
$\langle 9, 0 \rangle$	0.0	0.0	0.29	0.0	
(10, 0)	0.0	0.0	0.29	1.0	
(4, 4)	0.0	0.0	0.22	0.0	
(5, 5)	0.0	0.0	0.48	0.0	

• Magnetic moment does not

- necessarily mean ferromagnetismMethod unable to provide
 - information of coupling
 H provides long-range perturbations of electronic system (see Phys. Rev. Lett. 84, 4910–4913 (2000))

Summary

• Mobility of adatoms creates difficulties in measuring the magnetic properties of pure Frenkel pairs at room temperature

• Presence of hydrogen slows defects' motion down; recombination more difficult