Unambiguous Interpretation of Atomically Resolved Force Microscopy Images of an Insulator

A. S. Foster¹, C. Barth², M. Reichling² and A. L. Shluger³

¹Laboratory of Physics, Helsinki University of Technology, PO Box 1100, 02015 HUT, Finland ²Department Chemie, Universität München, Butenandstrasse 5-13, 81377 München, Germany ³Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK

Email: asf@fyslab.hut.fi

Introduction

Atomic resolution has now been achieved on several insulating and semi-conducting surfaces using Non-contact Atomic Force Microscopy (NC-AFM). However, in most cases, due to the high symmetry of the lattice, the identity of atomic sized features is impossible to establish . Further progress requires characterization of the tip on the atomic scale and better understanding of the tip-surface interaction. One possible approach to this problem is by combining theoretical and experimental imaging asymmetric insulating surface, the CaF₂ (111) surface. of a more

- Tip-surface interaction causes a change in the frequency or detuning of oscillations.
- An image is generated by plotting the change from equilibrium frequency as the tip moves over the surface at a constant height.

Theoretical Setup

 Tip-surface interaction due to 3 components: Microscopic forces between atoms in the tip and atoms in the surface - calculated by atomistic simulation.

Macroscopic van der Waals force between tip and surface - calculated analytically. Electrostatic forces due to work functions charging and polarization of conducting materials - calculated by a combination of atomistic simulation and analytical functions

Atomic nano-tip can be orientated to produce both a positive and negative electrostatic potential.

Disturbance in the Force

Model the oscillations of the cantilever under the influence of total tip-surface force using experimental parameters

^a For stable imaging, experiments are setup so that any damping is cancelled by the external force. Also assuming F is independent of time we get:

$$\ddot{z} + \omega_0^2 z - \frac{\omega_0^2}{k} F(z+h) = 0$$

Solve numerically to find the change in frequency for a given tip-surface separation

$$\Omega^2 = 1 - \frac{1}{\pi k A_1} \int F(z+h) \cos(\tau) d\tau$$

Calculate frequency change over whole surface Simulated Image unit cell

Theoretical Images

Experimental Images

• Example experimental image and scanline taken at constant height. The white line is in the [121] direction and shows the position of the scanline. For this experiment the amplitude (A1) was 24 nm and the equilibrium frequency (f.) was 60 kHz.

2 0 0.0 0.5 1.0 1.5 2.0 distance (nm)

· Example experimental image and scanline taken at constant height. The white line is in the [121] direction and shows the position of the scanline. For this experiment the amplitude (A1) was 35 nm and the equilibrium frequency (fo) was 77 kHz.

Summarv

By combining high quality experiment with theoretical ulation. for the first time, unambiguous interpretation of NC-AFM images of a binary insulator has be achieved.

Simulation predicts two distinct contrast patterns dependent on the sign of the electrostatic potential from the tip:
A negative potential images the Ca²⁺ sublattice as bright and demonstrates a disk–like contrast pattern.

A positive potential images both F sublattices and demonstrates a triangular contrast pattern.
Reproducible experimental images also demonstrate two

distinct contrast patterns and a statistical comparison of features in simulated and experimental images show good agreement

height of 0.4 nm over the CaF2 (111) surface with a nano-tip with a positive electrostatic potential. The white line is in the [121] direction and shows the position of the scanline

Simulated image and scanline produced at a constant height of 0.4 nm over the CaF2 (111) surface with a nano-tip with a positive electrostatic potential. The white line is in the [121] direction and shows the position of the scanline

Statistics

* Statistical analysis of position of secondary peaks over many scanlines from 3 independent experiments shows very good agreement with simulation.

Contrast	Exp. 2 nd peak	Theo. 2nd peak
Pattern	position (nm)	position (nm)
Disk-like	0.32±0.05	0.33
Triangular	0.24±0.04	0.22

The clear difference in 2nd peak position for the two different contrast patterns in both experiment and theory introduces quantitative evidence for interpretation

References

. S. Foster, C. Barth, A. L. Shluger and M. Reichling - Phys. Rev. Lett. 86 (2001) 2373 C. Barth, A. S. Foster, M. Reichling and A. L. Shluger - J. Phys.: Condens. Matter 13 (2001) 2061