SIMULATED ICE REGELATION BY NANOWIRE
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Regelation is the phenomenon THE CLASSIC EXPERIMENT PHASES OF WATER
where solid ice melts under high +0

Regelation Is com-

pressure and then resolidifies once monly demonstrated solidification _
the pressure is removed. We study by setting a weighted The Jpressure s G !
regelation and friction in bulk ice on  Wire on a block of ice, wire, allowing  the =
: : whereby the wire water to  freeze 7
the nanoscale by simulating the basses  through the again, leaving behind . iquid
passage of a nanowire, driven by an  solid without actually an intact solid. N s
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external force, through a lattice of  cutting it. flow o melting
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around the wire and diagram. This is unusual, since wusually liquids
allows it to travel regelation phenomenon poseible for water. Besides
through the solid. normal ice, ice-lh, water has many other exotic solid

phases as well, some of which are marked on the
diagram. These phases appear only in very cold
conditions or under extremely high pressure and

Water is described using the modified

3D Mercedez-Benz (MB) model which is ‘ )

a geometric coarse grained description

on the molecular level. The method :>
ignores the atomic structure of the water

molecules, but includes dangling bonds U

in tetrahedral coordination. This results

me'ti ng thus are not normally seen in nature.
in @ model that reproduces the correct :
local structure without computationally water molecule MB molecule Pressure is greatly
heavy long ranged forces. elevated under the R EGE LAT ION IN NATU RE
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dynamics simulations
of a nanowire, driven
by external force,
passing through an

Even tens of Kelvins below the melting point, ice
surfaces and interfaces are covered by an extremely

e _geo thin amorphous or quasiliquid layer. This is called
Creep S||d|ng Secondary phase premelting. The layer forms because the water

molecules on the surface are not fully coordinated

and are thus only weakly tied to their lattice

ice lattice. On this With very low forces, the When the driving force becomes positions. Regelation processes are also affected by
' pressure is not sufficient to strong enough, the wire slides premelting, which provides a pressure-independent
scale, different mole melt the ice. Still, it is through the ice at a steady rcnedt])amsam f?r: s ||3yer formla?'on m Interfacest'
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